1
|
Sjoerdsma JN, Bromley EK, Shin J, Hilliard T, Liu Y, Horgan C, Hwang G, Bektas M, Omstead D, Kiziltepe T, Stack MS, Bilgicer B. Combination non-targeted and sGRP78-targeted nanoparticle drug delivery outperforms either component to treat metastatic ovarian cancer. J Control Release 2024; 375:438-453. [PMID: 39271060 PMCID: PMC11486564 DOI: 10.1016/j.jconrel.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Metastatic ovarian cancer (MOC) is highly deadly, due in part to the limited efficacy of standard-of-care chemotherapies to metastatic tumors and non-adherent cancer cells. Here, we demonstrated the effectiveness of a combination therapy of GRP78-targeted (TNPGRP78pep) and non-targeted (NP) nanoparticles to deliver a novel DM1-prodrug to MOC in a syngeneic mouse model. Cell surface-GRP78 is overexpressed in MOC, making GRP78 an optimal target for selective delivery of nanoparticles to MOC. The NP + TNPGRP78pep combination treatment reduced tumor burden by 15-fold, compared to untreated control. Increased T cell and macrophage levels in treated groups also suggested antitumor immune system involvement. The NP and TNPGRP78pep components functioned synergistically through two proposed mechanisms of action. The TNPGRP78pep targeted non-adherent cancer cells in the peritoneal cavity, preventing the formation of new solid tumors, while the NP passively targeted existing solid tumor sites, providing a sustained release of the drug to the tumor microenvironment.
Collapse
Affiliation(s)
- Jenna N Sjoerdsma
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Emily K Bromley
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jaeho Shin
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tyvette Hilliard
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yueying Liu
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Caitlin Horgan
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Gyoyeon Hwang
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Michael Bektas
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - David Omstead
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Tanyel Kiziltepe
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA
| | - M Sharon Stack
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Basar Bilgicer
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA; Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA; Berthiaume Institute for Precision Health, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Aanniz T, Bouyahya A, Balahbib A, El Kadri K, Khalid A, Makeen HA, Alhazmi HA, El Omari N, Zaid Y, Wong RSY, Yeo CI, Goh BH, Bakrim S. Natural bioactive compounds targeting DNA methyltransferase enzymes in cancer: Mechanisms insights and efficiencies. Chem Biol Interact 2024; 392:110907. [PMID: 38395253 DOI: 10.1016/j.cbi.2024.110907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
The regulation of gene expression is fundamental to health and life and is essentially carried out at the promoter region of the DNA of each gene. Depending on the molecular context, this region may be accessible or non-accessible (possibility of integration of RNA polymerase or not at this region). Among enzymes that control this process, DNA methyltransferase enzymes (DNMTs), are responsible for DNA demethylation at the CpG islands, particularly at the promoter regions, to regulate transcription. The aberrant activity of these enzymes, i.e. their abnormal expression or activity, can result in the repression or overactivation of gene expression. Consequently, this can generate cellular dysregulation leading to instability and tumor development. Several reports highlighted the involvement of DNMTs in human cancers. The inhibition or activation of DNMTs is a promising therapeutic approach in many human cancers. In the present work, we provide a comprehensive and critical summary of natural bioactive molecules as primary inhibitors of DNMTs in human cancers. The active compounds hold the potential to be developed as anti-cancer epidrugs targeting DNMTs.
Collapse
Affiliation(s)
- Tarik Aanniz
- Medical Biotechnology Laboratory, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Rabat, B.P, 6203, Morocco.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco.
| | - Abdelaali Balahbib
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco.
| | - Kawtar El Kadri
- High Institute of Nursing Professions and Health Techniques of Errachidia, Errachidia, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Medicinal and Aromatic Plants Research Institute, National Center for Research, P.O. Box: 2424, Khartoum, 11111, Sudan.
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Hassan A Alhazmi
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan, Saudi Arabia; Pharmacy Practice Research Unit, Clinical Pharmacy Department, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco.
| | - Younes Zaid
- Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Morocco.
| | - Rebecca Shin-Yee Wong
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Department of Medical Education, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Chien Ing Yeo
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre, School of Medical and Life Sciences, Sunway University Malaysia, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir, 80000, Morocco.
| |
Collapse
|
3
|
Ren X, Wang X, Zheng G, Wang S, Wang Q, Yuan M, Xu T, Xu J, Huang P, Ge M. Targeting one-carbon metabolism for cancer immunotherapy. Clin Transl Med 2024; 14:e1521. [PMID: 38279895 PMCID: PMC10819114 DOI: 10.1002/ctm2.1521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND One-carbon (1C) metabolism is a metabolic network that plays essential roles in biological reactions. In 1C metabolism, a series of nutrients are used to fuel metabolic pathways, including nucleotide metabolism, amino acid metabolism, cellular redox defence and epigenetic maintenance. At present, 1C metabolism is considered the hallmark of cancer. The 1C units obtained from the metabolic pathways increase the proliferation rate of cancer cells. In addition, anticancer drugs, such as methotrexate, which target 1C metabolism, have long been used in the clinic. In terms of immunotherapy, 1C metabolism has been used to explore biomarkers connected with immunotherapy response and immune-related adverse events in patients. METHODS We collected numerous literatures to explain the roles of one-carbon metabolism in cancer immunotherapy. RESULTS In this review, we focus on the important pathways in 1C metabolism and the function of 1C metabolism enzymes in cancer immunotherapy. Then, we summarise the inhibitors acting on 1C metabolism and their potential application on cancer immunotherapy. Finally, we provide a viewpoint and conclusion regarding the opportunities and challenges of targeting 1C metabolism for cancer immunotherapy in clinical practicability in the future. CONCLUSION Targeting one-carbon metabolism is useful for cancer immunotherapy.
Collapse
Affiliation(s)
- Xinxin Ren
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
- Department of PathologyCancer CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xiang Wang
- Department of PharmacyAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Guowan Zheng
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Shanshan Wang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Qiyue Wang
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Mengnan Yuan
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Tong Xu
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Jiajie Xu
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| | - Ping Huang
- Department of PharmacyCenter for Clinical PharmacyCancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Minghua Ge
- Department of Head and Neck SurgeryOtolaryngology & Head and Neck Center, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceHangzhouZhejiangChina
- Zhejiang Provincial Clinical Research Center for Malignant TumorHangzhouZhejiangChina
| |
Collapse
|
4
|
Iskandar M, Ruiz-Houston KM, Bracco SD, Sharkasi SR, Calabi Villarroel CL, Desai MN, Gerges AG, Ortiz Lopez NA, Xiao Barbero M, German AA, Moluguri VS, Walker SM, Silva Higashi J, Palma JM, Medina DZ, Patel M, Patel P, Valentin M, Diaz AC, Karthaka JP, Santiago AD, Skiles RB, Romero Umana LA, Ungrey MD, Wojtkowiak A, Howard DV, Nurge R, Woods KG, Nanjundan M. Deep-Sea Sponges and Corals off the Western Coast of Florida-Intracellular Mechanisms of Action of Bioactive Compounds and Technological Advances Supporting the Drug Discovery Pipeline. Mar Drugs 2023; 21:615. [PMID: 38132936 PMCID: PMC10744787 DOI: 10.3390/md21120615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
The majority of natural products utilized to treat a diverse array of human conditions and diseases are derived from terrestrial sources. In recent years, marine ecosystems have proven to be a valuable resource of diverse natural products that are generated to defend and support their growth. Such marine sources offer a large opportunity for the identification of novel compounds that may guide the future development of new drugs and therapies. Using the National Oceanic and Atmospheric Administration (NOAA) portal, we explore deep-sea coral and sponge species inhabiting a segment of the U.S. Exclusive Economic Zone, specifically off the western coast of Florida. This area spans ~100,000 km2, containing coral and sponge species at sea depths up to 3000 m. Utilizing PubMed, we uncovered current knowledge on and gaps across a subset of these sessile organisms with regards to their natural products and mechanisms of altering cytoskeleton, protein trafficking, and signaling pathways. Since the exploitation of such marine organisms could disrupt the marine ecosystem leading to supply issues that would limit the quantities of bioactive compounds, we surveyed methods and technological advances that are necessary for sustaining the drug discovery pipeline including in vitro aquaculture systems and preserving our natural ecological community in the future. Collectively, our efforts establish the foundation for supporting future research on the identification of marine-based natural products and their mechanism of action to develop novel drugs and therapies for improving treatment regimens of human conditions and diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Meera Nanjundan
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, FL 33620, USA; (M.I.); (K.M.R.-H.); (S.D.B.); (S.R.S.); (C.L.C.V.); (M.N.D.); (A.G.G.); (N.A.O.L.); (M.X.B.); (A.A.G.); (V.S.M.); (S.M.W.); (J.S.H.); (J.M.P.); (D.Z.M.); (M.P.); (P.P.); (M.V.); (A.C.D.); (J.P.K.); (A.D.S.); (R.B.S.); (L.A.R.U.); (M.D.U.); (A.W.); (D.V.H.); (R.N.); (K.G.W.)
| |
Collapse
|
5
|
Farooqi AA, Rakhmetova V, Kapanova G, Tanbayeva G, Mussakhanova A, Abdykulova A, Ryskulova AG. Role of Ubiquitination and Epigenetics in the Regulation of AhR Signaling in Carcinogenesis and Metastasis: "Albatross around the Neck" or "Blessing in Disguise". Cells 2023; 12:2382. [PMID: 37830596 PMCID: PMC10571945 DOI: 10.3390/cells12192382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
The molecular mechanisms and signal transduction cascades evoked by the activation of aryl hydrocarbon receptor (AhR) are becoming increasingly understandable. AhR is a ligand-activated transcriptional factor that integrates environmental, dietary and metabolic cues for the pleiotropic regulation of a wide variety of mechanisms. AhR mediates transcriptional programming in a ligand-specific, context-specific and cell-type-specific manner. Pioneering cutting-edge research works have provided fascinating new insights into the mechanistic role of AhR-driven downstream signaling in a wide variety of cancers. AhR ligands derived from food, environmental contaminants and intestinal microbiota strategically activated AhR signaling and regulated multiple stages of cancer. Although AhR has classically been viewed and characterized as a ligand-regulated transcriptional factor, its role as a ubiquitin ligase is fascinating. Accordingly, recent evidence has paradigmatically shifted our understanding and urged researchers to drill down deep into these novel and clinically valuable facets of AhR biology. Our rapidly increasing realization related to AhR-mediated regulation of the ubiquitination and proteasomal degradation of different proteins has started to scratch the surface of intriguing mechanisms. Furthermore, AhR and epigenome dynamics have shown previously unprecedented complexity during multiple stages of cancer progression. AhR not only transcriptionally regulated epigenetic-associated molecules, but also worked with epigenetic-modifying enzymes during cancer progression. In this review, we have summarized the findings obtained not only from cell-culture studies, but also from animal models. Different clinical trials are currently being conducted using AhR inhibitors and PD-1 inhibitors (Pembrolizumab and nivolumab), which confirm the linchpin role of AhR-related mechanistic details in cancer progression. Therefore, further studies are required to develop a better comprehension of the many-sided and "diametrically opposed" roles of AhR in the regulation of carcinogenesis and metastatic spread of cancer cells to the secondary organs.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Venera Rakhmetova
- Department of Internal Diseases, Medical University of Astana, Astana 010000, Kazakhstan
| | - Gulnara Kapanova
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
- Scientific Center of Anti-Infectious Drugs, 75 Al-Farabi Ave, Almaty 050040, Kazakhstan
| | - Gulnur Tanbayeva
- Faculty of Medicine and healthcare, Al-Farabi Kazakh National University, 71 Al-Farabi Ave, Almaty 050040, Kazakhstan (G.T.)
| | - Akmaral Mussakhanova
- Department of Public Health and Management, Astana Medical University, Astana 010000, Kazakhstan;
| | - Akmaral Abdykulova
- Department of General Medical Practice, General Medicine Faculty, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan;
| | - Alma-Gul Ryskulova
- Department of Public Health and Social Sciences, Kazakhstan Medical University “KSPH”, Utenos Str. 19A, Almaty 050060, Kazakhstan;
| |
Collapse
|
6
|
Saquib Q, Schwaiger S, Alilou M, Ahmed S, Siddiqui MA, Ahmad J, Faisal M, Abdel-Salam EM, Wahab R, Al-Rehaily AJ, Stuppner H, Al-Khedhairy AA. Marine Natural Compound (Neviotin A) Displays Anticancer Efficacy by Triggering Transcriptomic Alterations and Cell Death in MCF-7 Cells. Molecules 2023; 28:6289. [PMID: 37687120 PMCID: PMC10488820 DOI: 10.3390/molecules28176289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
We investigated the anticancer mechanism of a chloroform extract of marine sponge (Haliclona fascigera) (sample C) in human breast adenocarcinoma (MCF-7) cells. Viability analysis using MTT and neutral red uptake (NRU) assays showed that sample C exposure decreased the proliferation of cells. Flow cytometric data exhibited reactive oxygen species (ROS), nitric oxide (NO), dysfunction of mitochondrial potential, and apoptosis in sample C-treated MCF-7 cells. A qPCR array of sample C-treated MCF-7 cells showed crosstalk between different pathways of apoptosis, especially BIRC5, BCL2L2, and TNFRSF1A genes. Immunofluorescence analysis affirmed the localization of p53, bax, bcl2, MAPKPK2, PARP-1, and caspase-3 proteins in exposed cells. Bioassay-guided fractionation of sample C revealed Neviotin A as the most active compound triggering maximum cell death in MCF-7, indicating its pharmacological potency for the development of a drug for the treatment of human breast cancer.
Collapse
Affiliation(s)
- Quaiser Saquib
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Stefan Schwaiger
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Mostafa Alilou
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (A.J.A.-R.)
| | - Maqsood A. Siddiqui
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Javed Ahmad
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (E.M.A.-S.)
| | - Eslam M. Abdel-Salam
- Department of Botany & Microbiology, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.F.); (E.M.A.-S.)
| | - Rizwan Wahab
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (S.A.); (A.J.A.-R.)
| | - Hermann Stuppner
- Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; (S.S.); (M.A.); (H.S.)
| | - Abdulaziz A. Al-Khedhairy
- Chair for DNA Research, Zoology Department, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.A.S.); (J.A.); (R.W.); (A.A.A.-K.)
| |
Collapse
|
7
|
Kim J, Ji S, Lee JY, Lorquin J, Orlikova-Boyer B, Cerella C, Mazumder A, Muller F, Dicato M, Detournay O, Diederich M. Marine Polyether Phycotoxin Palytoxin Induces Apoptotic Cell Death via Mcl-1 and Bcl-2 Downregulation. Mar Drugs 2023; 21:md21040233. [PMID: 37103372 PMCID: PMC10143546 DOI: 10.3390/md21040233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Palytoxin is considered one of the most potent biotoxins. As palytoxin-induced cancer cell death mechanisms remain to be elucidated, we investigated this effect on various leukemia and solid tumor cell lines at low picomolar concentrations. As palytoxin did not affect the viability of peripheral blood mononuclear cells (PBMC) from healthy donors and did not create systemic toxicity in zebrafish, we confirmed excellent differential toxicity. Cell death was characterized by a multi-parametric approach involving the detection of nuclear condensation and caspase activation assays. zVAD-sensitive apoptotic cell death was concomitant with a dose-dependent downregulation of antiapoptotic Bcl-2 family proteins Mcl-1 and Bcl-xL. Proteasome inhibitor MG-132 prevented the proteolysis of Mcl-1, whereas the three major proteasomal enzymatic activities were upregulated by palytoxin. Palytoxin-induced dephosphorylation of Bcl-2 further exacerbated the proapoptotic effect of Mcl-1 and Bcl-xL degradation in a range of leukemia cell lines. As okadaic acid rescued cell death triggered by palytoxin, protein phosphatase (PP)2A was involved in Bcl-2 dephosphorylation and induction of apoptosis by palytoxin. At a translational level, palytoxin abrogated the colony formation capacity of leukemia cell types. Moreover, palytoxin abrogated tumor formation in a zebrafish xenograft assay at concentrations between 10 and 30 pM. Altogether, we provide evidence of the role of palytoxin as a very potent and promising anti-leukemic agent, acting at low picomolar concentrations in cellulo and in vivo.
Collapse
Affiliation(s)
- Jaemyun Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Seungwon Ji
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Jean Lorquin
- Institut Méditerranéen d'Océanologie, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
| | - Barbora Orlikova-Boyer
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Claudia Cerella
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| | - Florian Muller
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer (LBMCC), BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210 Luxembourg, Luxembourg
| | - Olivier Detournay
- Planktovie SAS, 45 Rue Frédéric Joliot Curie, CEDEX 13, 13013 Marseille, France
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08626, Republic of Korea
| |
Collapse
|
8
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhang Z, Wang G, Li Y, Lei D, Xiang J, Ouyang L, Wang Y, Yang J. Recent progress in DNA methyltransferase inhibitors as anticancer agents. Front Pharmacol 2022; 13:1072651. [PMID: 37077808 PMCID: PMC10107375 DOI: 10.3389/fphar.2022.1072651] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
DNA methylation mediated by DNA methyltransferase is an important epigenetic process that regulates gene expression in mammals, which plays a key role in silencing certain genes, such as tumor suppressor genes, in cancer, and it has become a promising therapeutic target for cancer treatment. Similar to other epigenetic targets, DNA methyltransferase can also be modulated by chemical agents. Four agents have already been approved to treat hematological cancers. In order to promote the development of a DNA methyltransferase inhibitor as an anti-tumor agent, in the current review, we discuss the relationship between DNA methylation and tumor, the anti-tumor mechanism, the research progress and pharmacological properties of DNA methyltransferase inhibitors, and the future research trend of DNA methyltransferase inhibitors.
Collapse
Affiliation(s)
- Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Yuyan Li
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Dongsheng Lei
- School of Physical Science and Technology, Electron Microscopy Center of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Jin Xiang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- Science and Technology Department, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yanyan Wang, ; Jinliang Yang,
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, Innovation Center of Nursing Research, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
- *Correspondence: Yanyan Wang, ; Jinliang Yang,
| |
Collapse
|
10
|
Chaudhry GES, Md Akim A, Sung YY, Sifzizul TMT. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front Pharmacol 2022; 13:842376. [PMID: 36034846 PMCID: PMC9399632 DOI: 10.3389/fphar.2022.842376] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is a multifactorial, multi-stage disease, including complex cascades of signaling pathways—the cell growth governed by dysregulated and abrupt cell division. Due to the complexity and multi-regulatory cancer progression, cancer is still a challenging disease to treat and survive. The screening of extracts and fractions from plants and marine species might lead to the discovery of more effective compounds for cancer therapeutics. The isolated compounds and reformed analogs were known as future prospective contenders for anti-cancer chemotherapy. For example, Taxol, a potent mitotic inhibitor discovered from Taxus brevifolia, suppresses cell growth and arrest, induces apoptosis, and inhibits proliferation. Similarly, marine sponges show remarkable tumor chemo preventive and chemotherapeutic potential. However, there is limited research to date. Several plants and marine-derived anti-cancer compounds having the property to induce apoptosis have been approved for clinical trials. The anti-cancer activity kills the cell and slows the growth of cancer cells. Among cell death mechanisms, apoptosis induction is a more profound mechanism of cell death triggered by naturally isolated anti-cancer agents. Evading apoptosis is the major hurdle in killing cancer cells, a mechanism mainly regulated as intrinsic and extrinsic. However, it is possible to modify the apoptosis-resistant phenotype of the cell by altering many of these mechanisms. Various extracts and fractions successfully induce apoptosis, cell-cycle modulation, apoptosis, and anti-proliferative activity. Therefore, there is a pressing need to develop new anti-cancer drugs of natural origins to reduce the effects on normal cells. Here, we’ve emphasized the most critical elements: i) A better understanding of cancer progression and development and its origins, ii) Molecular strategies to inhibit the cell proliferation/Carcino-genesis, iii) Critical regulators of cancer cell proliferation and development, iv) Signaling Pathways in Apoptosis: Potential Targets for targeted therapeutics, v) Why Apoptosis induction is mandatory for effective chemotherapy, vi) Plants extracts/fractions as potential apoptotic inducers, vii) Marine extracts as Apoptotic inducers, viii) Marine isolated Targeted compounds as Apoptotic inducers (FDA Approved/treatment Phase). This study provides a potential therapeutic option for cancer, although more clinical studies are needed to verify its efficacy in cancer chemotherapy.
Collapse
Affiliation(s)
- Gul-e-Saba Chaudhry
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
- *Correspondence: Gul-e-Saba Chaudhry, ,
| | - Abdah Md Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health sciences, University of Putra Malaysia, Seri Kembangan, Malaysia
| | - Yeong Yik Sung
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | | |
Collapse
|
11
|
Giglio ML, Boland W, Heras H. Egg toxic compounds in the animal kingdom. A comprehensive review. Nat Prod Rep 2022; 39:1938-1969. [PMID: 35916025 DOI: 10.1039/d2np00029f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 1951 to 2022Packed with nutrients and unable to escape, eggs are the most vulnerable stage of an animal's life cycle. Consequently, many species have evolved chemical defenses and teamed up their eggs with a vast array of toxic molecules for defense against predators, parasites, or pathogens. However, studies on egg toxins are rather scarce and the available information is scattered. The aim of this review is to provide an overview of animal egg toxins and to analyze the trends and patterns with respect to the chemistry and biosynthesis of these toxins. We analyzed their ecology, distribution, sources, occurrence, structure, function, relative toxicity, and mechanistic aspects and include a brief section on the aposematic coloration of toxic eggs. We propose criteria for a multiparametric classification that accounts for the complexity of analyzing the full set of toxins of animal eggs. Around 100 properly identified egg toxins are found in 188 species, distributed in 5 phyla: cnidarians (2) platyhelminths (2), mollusks (9), arthropods (125), and chordates (50). Their scattered pattern among animals suggests that species have evolved this strategy independently on numerous occasions. Alkaloids are the most abundant and widespread, among the 13 types of egg toxins recognized. Egg toxins are derived directly from the environment or are endogenously synthesized, and most of them are transferred by females inside the eggs. Their toxicity ranges from ρmol kg-1 to mmol kg-1, and for some species, experiments support their role in predation deterrence. There is still a huge gap in information to complete the whole picture of this field and the number of toxic eggs seems largely underestimated.
Collapse
Affiliation(s)
- Matías L Giglio
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina.
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr Rodolfo R. Brenner", INIBIOLP, CONICET CCT La Plata - Universidad Nacional de La Plata (UNLP), Facultad de Ciencias Médicas, 60 y 120, 1900 La Plata, Argentina. .,Cátedra de Química Biológica, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
12
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
13
|
Di Cesare Mannelli L, Palma Esposito F, Sangiovanni E, Pagano E, Mannucci C, Polini B, Ghelardini C, Dell’Agli M, Izzo AA, Calapai G, de Pascale D, Nieri P. Pharmacological Activities of Extracts and Compounds Isolated from Mediterranean Sponge Sources. Pharmaceuticals (Basel) 2021; 14:ph14121329. [PMID: 34959729 PMCID: PMC8715745 DOI: 10.3390/ph14121329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Marine pharmacology is an exciting and growing discipline that blends blue biotechnology and natural compound pharmacology together. Several sea-derived compounds that are approved on the pharmaceutical market were discovered in sponges, marine organisms that are particularly rich in bioactive metabolites. This paper was specifically aimed at reviewing the pharmacological activities of extracts or purified compounds from marine sponges that were collected in the Mediterranean Sea, one of the most biodiverse marine habitats, filling the gap in the literature about the research of natural products from this geographical area. Findings regarding different Mediterranean sponge species were individuated, reporting consistent evidence of efficacy mainly against cancer, infections, inflammatory, and neurological disorders. The sustainable exploitation of Mediterranean sponges as pharmaceutical sources is strongly encouraged to discover new compounds.
Collapse
Affiliation(s)
- Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
- Correspondence:
| | - Fortunato Palma Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.P.E.); (D.d.P.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (M.D.)
| | - Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.P.); (A.A.I.)
| | - Carmen Mannucci
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (G.C.)
| | - Beatrice Polini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (P.N.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health—Neurofarba—Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy;
| | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy; (E.S.); (M.D.)
| | - Angelo Antonio Izzo
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy; (E.P.); (A.A.I.)
| | - Gioacchino Calapai
- Department of Biomedical and Dental Sciences and Morphological and Functional Imaging, University of Messina, 98125 Messina, Italy; (C.M.); (G.C.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy; (F.P.E.); (D.d.P.)
| | - Paola Nieri
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (B.P.); (P.N.)
- Interdepartmental Center of Marine Pharmacology (MarinePHARMA), University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
14
|
Natural Bioactive Compounds Targeting Epigenetic Pathways in Cancer: A Review on Alkaloids, Terpenoids, Quinones, and Isothiocyanates. Nutrients 2021; 13:nu13113714. [PMID: 34835969 PMCID: PMC8621755 DOI: 10.3390/nu13113714] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of the most complex and systemic diseases affecting the health of mankind, causing major deaths with a significant increase. This pathology is caused by several risk factors, of which genetic disturbances constitute the major elements, which not only initiate tumor transformation but also epigenetic disturbances which are linked to it and which can induce transcriptional instability. Indeed, the involvement of epigenetic disturbances in cancer has been the subject of correlations today, in addition to the use of drugs that operate specifically on different epigenetic pathways. Natural molecules, especially those isolated from medicinal plants, have shown anticancer effects linked to mechanisms of action. The objective of this review is to explore the anticancer effects of alkaloids, terpenoids, quinones, and isothiocyanates.
Collapse
|
15
|
Chavda VP, Ertas YN, Walhekar V, Modh D, Doshi A, Shah N, Anand K, Chhabria M. Advanced Computational Methodologies Used in the Discovery of New Natural Anticancer Compounds. Front Pharmacol 2021; 12:702611. [PMID: 34483905 PMCID: PMC8416109 DOI: 10.3389/fphar.2021.702611] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 12/15/2022] Open
Abstract
Natural chemical compounds have been widely investigated for their programmed necrosis causing characteristics. One of the conventional methods for screening such compounds is the use of concentrated plant extracts without isolation of active moieties for understanding pharmacological activity. For the last two decades, modern medicine has relied mainly on the isolation and purification of one or two complicated active and isomeric compounds. The idea of multi-target drugs has advanced rapidly and impressively from an innovative model when first proposed in the early 2000s to one of the popular trends for drug development in 2021. Alternatively, fragment-based drug discovery is also explored in identifying target-based drug discovery for potent natural anticancer agents which is based on well-defined fragments opposite to use of naturally occurring mixtures. This review summarizes the current key advancements in natural anticancer compounds; computer-assisted/fragment-based structural elucidation and a multi-target approach for the exploration of natural compounds.
Collapse
Affiliation(s)
- Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Vinayak Walhekar
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Dharti Modh
- Department of Medicinal Chemistry, Bharati Vidyapeeth's Poona College of Pharmacy, Pune, India
| | - Avani Doshi
- Department of Chemistry, SAL Institute of Pharmacy, Ahmedabad, India
| | - Nirav Shah
- Department of Pharmaceutics, SAL Institute of Pharmacy, Ahmedabad, India
| | - Krishna Anand
- Faculty of Health Sciences and National Health Laboratory Service, Department of Chemical Pathology, School of Pathology, University of the Free State, Bloemfontein, South Africa
| | - Mahesh Chhabria
- Department of Pharmaceutical Chemistry, L.M. College of Pharmacy, Ahmedabad, India
| |
Collapse
|
16
|
Munekata PES, Pateiro M, Conte-Junior CA, Domínguez R, Nawaz A, Walayat N, Movilla Fierro E, Lorenzo JM. Marine Alkaloids: Compounds with In Vivo Activity and Chemical Synthesis. Mar Drugs 2021; 19:374. [PMID: 34203532 PMCID: PMC8306672 DOI: 10.3390/md19070374] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Carlos A. Conte-Junior
- Centro de Tecnologia, Programa de Pós-Graduação em Ciência de Alimentos, Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou 225009, China;
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou 310014, China;
| | | | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, rúa Galicia No. 4, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (R.D.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
17
|
Ozyerli-Goknar E, Bagci-Onder T. Epigenetic Deregulation of Apoptosis in Cancers. Cancers (Basel) 2021; 13:3210. [PMID: 34199020 PMCID: PMC8267644 DOI: 10.3390/cancers13133210] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells possess the ability to evade apoptosis. Genetic alterations through mutations in key genes of the apoptotic signaling pathway represent a major adaptive mechanism of apoptosis evasion. In parallel, epigenetic changes via aberrant modifications of DNA and histones to regulate the expression of pro- and antiapoptotic signal mediators represent a major complementary mechanism in apoptosis regulation and therapy response. Most epigenetic changes are governed by the activity of chromatin modifying enzymes that add, remove, or recognize different marks on histones and DNA. Here, we discuss how apoptosis signaling components are deregulated at epigenetic levels, particularly focusing on the roles of chromatin-modifying enzymes in this process. We also review the advances in cancer therapies with epigenetic drugs such as DNMT, HMT, HDAC, and BET inhibitors, as well as their effects on apoptosis modulation in cancer cells. Rewiring the epigenome by drug interventions can provide therapeutic advantage for various cancers by reverting therapy resistance and leading cancer cells to undergo apoptotic cell death.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
18
|
Abstract
DNA methylation is an epigenetic modification that contributes to essential biological processes such as retrotransposon silencing, cell differentiation, genomic imprinting and X-chromosome inactivation. DNA methylation generates a stable epigenetic mark associated with silencing of gene expression. Aberrant DNA methylation is associated with the development of different tumor types. Reversing DNA methylation is a rational strategy to restore gene re-expression and induce cell differentiation in cancer. DNA hypomethylating agents is a class of drugs that demonstrated efficacy in different tumors. In this chapter, the classification of DNA hypomethylating agents, their pharmacodynamics and their potential drawbacks will be discussed.
Collapse
Affiliation(s)
- Md Gias Uddin
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV, United States
| | - Tamer E Fandy
- Department of Pharmaceutical & Administrative Sciences, School of Pharmacy, University of Charleston, Charleston, WV, United States.
| |
Collapse
|
19
|
Moriou C, Lacroix D, Petek S, El-Demerdash A, Trepos R, Leu TM, Florean C, Diederich M, Hellio C, Debitus C, Al-Mourabit A. Bioactive Bromotyrosine Derivatives from the Pacific Marine Sponge Suberea clavata (Pulitzer-Finali, 1982). Mar Drugs 2021; 19:143. [PMID: 33800819 PMCID: PMC7999702 DOI: 10.3390/md19030143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Chemical investigation of the South-Pacific marine sponge Suberea clavata led to the isolation of eight new bromotyrosine metabolites named subereins 1-8 (2-9) along with twelve known co-isolated congeners. The detailed configuration determination of the first representative major compound of this family 11-epi-fistularin-3 (11R,17S) (1) is described. Their chemical characterization was achieved by HRMS and integrated 1D and 2D NMR (nuclear magnetic resonance) spectroscopic studies and extensive comparison with literature data. For the first time, a complete assignment of the absolute configurations for stereogenic centers C-11/17 of the known members (11R,17S) 11-epi-fistularin-3 (1) and 17-deoxyfistularin-3 (10) was determined by a combination of chemical modifications, Mosher's technology, and ECD spectroscopy. Consequently, the absolute configurations of all our new isolated compounds 2-9 were determined by the combination of NMR, Mosher's method, ECD comparison, and chemical modifications. Interestingly, compounds 2-7 were obtained by chemical transformation of the major compound 11-epi-fistularin-3 (1). Evaluation for acetylcholinesterase inhibition (AChE), DNA methyltransferase 1 (DNMT1) modulating activity and antifouling activities using marine bacterial strains are also presented.
Collapse
Affiliation(s)
- Céline Moriou
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (D.L.); (A.E.-D.)
| | - Damien Lacroix
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (D.L.); (A.E.-D.)
| | - Sylvain Petek
- IRD, CNRS, Ifremer, LEMAR, Univ Brest, F-29280 Plouzane, France; (R.T.); (C.H.); (C.D.)
| | - Amr El-Demerdash
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (D.L.); (A.E.-D.)
| | - Rozenn Trepos
- IRD, CNRS, Ifremer, LEMAR, Univ Brest, F-29280 Plouzane, France; (R.T.); (C.H.); (C.D.)
| | - Tinihauarii Mareva Leu
- IRD, Ifremer, ILM, EIO, Univ de la Polynésie française, F-98713 Papeete, French Polynesia;
| | - Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg;
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea;
| | - Claire Hellio
- IRD, CNRS, Ifremer, LEMAR, Univ Brest, F-29280 Plouzane, France; (R.T.); (C.H.); (C.D.)
| | - Cécile Debitus
- IRD, CNRS, Ifremer, LEMAR, Univ Brest, F-29280 Plouzane, France; (R.T.); (C.H.); (C.D.)
| | - Ali Al-Mourabit
- CNRS, Institut de Chimie des Substances Naturelles, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France; (C.M.); (D.L.); (A.E.-D.)
| |
Collapse
|
20
|
Muzychka L, Voronkina A, Kovalchuk V, Smolii OB, Wysokowski M, Petrenko I, Youssef DTA, Ehrlich I, Ehrlich H. Marine biomimetics: bromotyrosines loaded chitinous skeleton as source of antibacterial agents. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:15. [PMID: 33424135 PMCID: PMC7776313 DOI: 10.1007/s00339-020-04167-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
UNLABELLED The marine sponges of the order Verongiida (Demospongiae: Porifera) have survived on our planet for more than 500 million years due to the presence of a unique strategy of chemical protection by biosynthesis of more than 300 derivatives of biologically active bromotyrosines as secondary metabolites. These compounds are synthesized within spherulocytes, highly specialized cells located within chitinous skeletal fibers of these sponges from where they can be extruded in the sea water and form protective space against pathogenic viruses, bacteria and other predators. This chitin is an example of unique biomaterial as source of substances with antibiotic properties. Traditionally, the attention of researchers was exclusively drawn to lipophilic bromotyrosines, the extraction methods of which were based on the use of organic solvents only. Alternatively, we have used in this work a biomimetic water-based approach, because in natural conditions, sponges actively extrude bromotyrosines that are miscible with the watery environment. This allowed us to isolate 3,5-dibromoquinolacetic acid from an aqueous extract of the dried demosponge Aplysina aerophoba and compare its antimicrobial activity with the same compound obtained by the chemical synthesis. Both synthetic and natural compounds have shown antimicrobial properties against clinical strains of Staphylococcus aureus, Enterococcus faecalis and Propionibacterium acnes. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00339-020-04167-0.
Collapse
Affiliation(s)
- Liubov Muzychka
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, Vinnytsia 21018 Ukraine
| | - Oleg B. Smolii
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, Kiev, 02094 Ukraine
| | - Marcin Wysokowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
| | - Diaa T. A. Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522 Egypt
| | | | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner Str. 3, 09599 Freiberg, Germany
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
21
|
Conte M, Fontana E, Nebbioso A, Altucci L. Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy. Mar Drugs 2020; 19:md19010015. [PMID: 33396307 PMCID: PMC7824531 DOI: 10.3390/md19010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. A high percentage of marine species have evolved to synthesize biologically active molecules, termed secondary metabolites, as a defense mechanism against the external environment. These natural products and their derivatives may play modulatory roles in the epigenome and in disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adaptation to the environment and confer a competitive advantage to marine species by mediating the production of complex chemical molecules with potential clinical implications. Bioactive compounds are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling interactions of the tumor microenvironment crucial to cancer phenotypes. In this review, we discuss the current understanding of secondary metabolites derived from marine organisms and their synthetic derivatives as epigenetic modulators, highlighting advantages and limitations, as well as potential strategies to improve cancer treatment.
Collapse
|
22
|
Marine-derived drugs: Recent advances in cancer therapy and immune signaling. Biomed Pharmacother 2020; 134:111091. [PMID: 33341044 DOI: 10.1016/j.biopha.2020.111091] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022] Open
Abstract
The marine environment is an enormous source of marine-derived natural products (MNPs), and future investigation into anticancer drug discovery. Current progress in anticancer drugs offers a rise in isolation and clinical validation of numerous innovative developments and advances in anticancer therapy. However, only a limited number of FDA-approved marine-derived anticancer drugs are available due to several challenges and limitations highlighted here. The use of chitosan in developing marine-derived drugs is promising in the nanotech sector projected for a prolific anticancer drug delivery system (DDS). The cGAS-STING-mediated immune signaling pathway is crucial, which has not been significantly investigated in anticancer therapy and needs further attention. Additionally, a small range of anticancer mediators is currently involved in regulating various JAK/STAT signaling pathways, such as immunity, cell death, and tumor formation. This review addressed critical features associated with MNPs, origin, and development of anticancer drugs. Moreover, recent advances in the nanotech delivery of anticancer drugs and understanding into cancer immunity are detailed for improved human health.
Collapse
|
23
|
An introduction to EpiPol (Epigenetic affecting Polymorphism) concept with an in silico identification of CpG-affecting SNPs in the upstream regulatory sequences of human AHR gene. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Dyshlovoy SA. Blue-Print Autophagy in 2020: A Critical Review. Mar Drugs 2020; 18:md18090482. [PMID: 32967369 PMCID: PMC7551687 DOI: 10.3390/md18090482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an elegant and complex biological process that has recently attracted much attention from the scientific community. The compounds which are capable of control and modulation of this process have a promising potential as therapeutics for a number of pathological conditions, including cancer and neurodegenerative disorders. At the same time, due to the relatively young age of the field, there are still some pitfalls in the autophagy monitoring assays and interpretation of the experimental data. This critical review provides an overview of the marine natural compounds, which have been reported to affect autophagy. The time period from the beginning of 2016 to the middle of 2020 is covered. Additionally, the published data and conclusions based on the experimental results are re-analyzed with regard to the guidelines developed by Klionsky and colleagues (Autophagy. 2016; 12(1): 1–222), which are widely accepted by the autophagy research community. Remarkably and surprisingly, more than half of the compounds reported to be autophagy activators or inhibitors could not ultimately be assigned to either category. The experimental data reported for those substances could indicate both autophagy activation and inhibition, requiring further investigation. Thus, the reviewed molecules were divided into two groups: having validated and non-validated autophagy modulatory effects. This review gives an analysis of the recent updates in the field and raises an important problem of standardization in the experimental design and data interpretation.
Collapse
Affiliation(s)
- Sergey A Dyshlovoy
- Laboratory of Pharmacology, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
25
|
Elmallah MIY, Cogo S, Constantinescu AA, Elifio-Esposito S, Abdelfattah MS, Micheau O. Marine Actinomycetes-Derived Secondary Metabolites Overcome TRAIL-Resistance via the Intrinsic Pathway through Downregulation of Survivin and XIAP. Cells 2020; 9:cells9081760. [PMID: 32708048 PMCID: PMC7464567 DOI: 10.3390/cells9081760] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 01/03/2023] Open
Abstract
Resistance of cancer cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis represents the major hurdle to the clinical use of TRAIL or its derivatives. The discovery and development of lead compounds able to sensitize tumor cells to TRAIL-induced cell death is thus likely to overcome this limitation. We recently reported that marine actinomycetes’ crude extracts could restore TRAIL sensitivity of the MDA-MB-231 resistant triple negative breast cancer cell line. We demonstrate in this study, that purified secondary metabolites originating from distinct marine actinomycetes (sharkquinone (1), resistomycin (2), undecylprodigiosin (3), butylcyclopentylprodigiosin (4), elloxizanone A (5) and B (6), carboxyexfoliazone (7), and exfoliazone (8)), alone, and in a concentration-dependent manner, induce killing in both MDA-MB-231 and HCT116 cell lines. Combined with TRAIL, these compounds displayed additive to synergistic apoptotic activity in the Jurkat, HCT116 and MDA-MB-231 cell lines. Mechanistically, these secondary metabolites induced and enhanced procaspase-10, -8, -9 and -3 activation leading to an increase in PARP and lamin A/C cleavage. Apoptosis induced by these compounds was blocked by the pan-caspase inhibitor QvD, but not by a deficiency in caspase-8, FADD or TRAIL agonist receptors. Activation of the intrinsic pathway, on the other hand, is likely to explain both their ability to trigger cell death and to restore sensitivity to TRAIL, as it was evidenced that these compounds could induce the downregulation of XIAP and survivin. Our data further highlight that compounds derived from marine sources may lead to novel anti-cancer drug discovery.
Collapse
Affiliation(s)
- Mohammed I. Y. Elmallah
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Correspondence: (M.I.Y.E.); (O.M.)
| | - Sheron Cogo
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Andrei A. Constantinescu
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
| | - Selene Elifio-Esposito
- Graduate Programme in Health Sciences, Pontifícia Universidade Catolica do Parana, Curitiba 80215–901, Parana, Brazil;
| | - Mohammed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt;
- Marine Natural Products Unit (MNPRU), Faculty of Science, Helwan University, 11795 Ain Helwan, Cairo 11795, Egypt
| | - Olivier Micheau
- LNC, INSERM, UMR1231, F-21079 Dijon, France; (S.C.); (A.A.C.)
- UFR Science de Santé, Université de Bourgogne Franche-Comté, F-21079 Dijon, France
- Correspondence: (M.I.Y.E.); (O.M.)
| |
Collapse
|
26
|
Wong KK. DNMT1 as a therapeutic target in pancreatic cancer: mechanisms and clinical implications. Cell Oncol (Dordr) 2020; 43:779-792. [PMID: 32504382 DOI: 10.1007/s13402-020-00526-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer or pancreatic ductal adenocarcinoma (PDAC) is one of the most devastating cancer types with a 5-year survival rate of only 9%. PDAC is one of the leading causes of cancer-related deaths in both genders. Epigenetic alterations may lead to the suppression of tumor suppressor genes, and DNA methylation is a predominant epigenetic modification. DNA methyltransferase 1 (DNMT1) is required for maintaining patterns of DNA methylation during cellular replication. Accumulating evidence has implicated the oncogenic roles of DNMT1 in various malignancies including PDACs. CONCLUSIONS Herein, the expression profiles, oncogenic roles, regulators and inhibitors of DNMT1 in PDACs are presented and discussed. DNMT1 is overexpressed in PDAC cases compared with non-cancerous pancreatic ducts, and its expression gradually increases from pre-neoplastic lesions to PDACs. DNMT1 plays oncogenic roles in suppressing PDAC cell differentiation and in promoting their proliferation, migration and invasion, as well as in induction of the self-renewal capacity of PDAC cancer stem cells. These effects are achieved via promoter hypermethylation of tumor suppressor genes, including cyclin-dependent kinase inhibitors (e.g., p14, p15, p16, p21 and p27), suppressors of epithelial-mesenchymal transition (e.g., E-cadherin) and tumor suppressor miRNAs (e.g., miR-148a, miR-152 and miR-17-92 cluster). Pre-clinical investigations have shown the potency of novel non-nucleoside DNMT1 inhibitors against PDAC cells. Finally, phase I/II clinical trials of DNMT1 inhibitors (azacitidine, decitabine and guadecitabine) in PDAC patients are currently underway, where these inhibitors have the potential to sensitize PDACs to chemotherapy and immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
27
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
28
|
Lernoux M, Schnekenburger M, Losson H, Vermeulen K, Hahn H, Gérard D, Lee JY, Mazumder A, Ahamed M, Christov C, Kim DW, Dicato M, Bormans G, Han BW, Diederich M. Novel HDAC inhibitor MAKV-8 and imatinib synergistically kill chronic myeloid leukemia cells via inhibition of BCR-ABL/MYC-signaling: effect on imatinib resistance and stem cells. Clin Epigenetics 2020; 12:69. [PMID: 32430012 PMCID: PMC7236970 DOI: 10.1186/s13148-020-00839-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chronic myeloid leukemia (CML) pathogenesis is mainly driven by the oncogenic breakpoint cluster region-Abelson murine leukemia viral oncogene homolog 1 (BCR-ABL) fusion protein. Since BCR-ABL displays abnormal constitutive tyrosine kinase activity, therapies using tyrosine kinase inhibitors (TKis) such as imatinib represent a major breakthrough for the outcome of CML patients. Nevertheless, the development of TKi resistance and the persistence of leukemia stem cells (LSCs) remain barriers to cure the disease, justifying the development of novel therapeutic approaches. Since the activity of histone deacetylase (HDAC) is deregulated in numerous cancers including CML, pan-HDAC inhibitors may represent promising therapeutic regimens for the treatment of CML cells in combination with TKi. Results We assessed the anti-leukemic activity of a novel hydroxamate-based pan-HDAC inhibitor MAKV-8, which complied with the Lipinski’s “rule of five,” in various CML cells alone or in combination with imatinib. We validated the in vitro HDAC-inhibitory potential of MAKV-8 and demonstrated efficient binding to the ligand-binding pocket of HDAC isoenzymes. In cellulo, MAKV-8 significantly induced target protein acetylation, displayed cytostatic and cytotoxic properties, and triggered concomitant ER stress/protective autophagy leading to canonical caspase-dependent apoptosis. Considering the specific upregulation of selected HDACs in LSCs from CML patients, we investigated the differential toxicity of a co-treatment with MAKV-8 and imatinib in CML versus healthy cells. We also showed that beclin-1 knockdown prevented MAKV-8-imatinib combination-induced apoptosis. Moreover, MAKV-8 and imatinib co-treatment synergistically reduced BCR-ABL-related signaling pathways involved in CML cell growth and survival. Since our results showed that LSCs from CML patients overexpressed c-MYC, importantly MAKV-8-imatinib co-treatment reduced c-MYC levels and the LSC population. In vivo, tumor growth of xenografted K-562 cells in zebrafish was completely abrogated upon combined treatment with MAKV-8 and imatinib. Conclusions Collectively, the present findings show that combinations HDAC inhibitor-imatinib are likely to overcome drug resistance in CML pathology.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Hélène Losson
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Koen Vermeulen
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Hyunggu Hahn
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Déborah Gérard
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Aloran Mazumder
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Muneer Ahamed
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | | | - Dong-Wook Kim
- Seoul St. Mary's Hospital, Leukemia Research Institute, the Catholic University of Korea, Seoul, Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540, Luxembourg, Luxembourg
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Byung Woo Han
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
29
|
Florean C, Dicato M, Diederich M. Immune-modulating and anti-inflammatory marine compounds against cancer. Semin Cancer Biol 2020; 80:58-72. [PMID: 32070764 DOI: 10.1016/j.semcancer.2020.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The recent advances in cancer immunotherapy confirm the crucial role of the immune system in cancer progression and treatment. Chronic inflammation and reduced immune surveillance are both features of the tumor microenvironment. Strategies aimed at reverting pro-tumor inflammation and stimulating the antitumor immune components are being actively searched, and the anticancer effects of many candidate drugs have been linked to their ability to modulate the immune system. Marine organisms constitute a rich reservoir of new bioactive molecules; some of them have already been exploited for pharmaceutical use, whereas many others are undergoing clinical or preclinical investigations for the treatment of different diseases, including cancer. In this review, we will discuss the immune-modulatory properties of marine compounds for their potential use in cancer prevention and treatment and as possible tools in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg
| | - Marc Diederich
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
30
|
Saleh NM, El-Gazzar MG, Aly HM, Othman RA. Novel Anticancer Fused Pyrazole Derivatives as EGFR and VEGFR-2 Dual TK Inhibitors. Front Chem 2020; 7:917. [PMID: 32039146 PMCID: PMC6993756 DOI: 10.3389/fchem.2019.00917] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
EGFR and VEGFR-2 represent promising targets for cancer treatment as they are very important in tumor development as well as in angiogenesis and metastasis. In this work, 6-amino-4-(2-bromophenyl)-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile 1 and (E)-4-(2-Bromobenzylidene)-5-methyl-2,4-dihydro-3H-pyrazol-3-one 11 were selected as starting materials to synthesize different fused pyrazole derivatives; dihydropyrano[2,3-c]pyrazole 1, 2, 7–9, and 15, pyrazolo[4′,3′:5,6]pyrano[2,3-d]pyrimidine 3–6, pyrazolo[3,4-d]pyrimidine 12 and 13, and pyrazolo[3,4-c]pyrazole 14 derivatives were synthesized to evaluate their anticancer activity against HEPG2 human cancer cell lines compared to erlotinib and sorafenib as reference drugs. Seven compounds 1, 2, 4, 8, 11, 12, and 15 showed nearly 10 fold higher activity than erlotinib (10.6 μM) with IC50 ranging from 0.31 to 0.71 μM. In vitro EGFR and VEGFR-2 inhibitory activity were performed for the synthesized compounds, and the results identified compound 3 as the most potent EGFR inhibitor (IC50 = 0.06 μM) and compound 9 as the most potent VEGFR-2 inhibitor (IC50 = 0.22 μM). Moreover, compounds 9 and 12 revealed potent dual EGFR and VEGFR-2 inhibition, and these results were supported by docking studies of these two compounds within the active sites of both enzymes.
Collapse
Affiliation(s)
- Nashwa M Saleh
- Department of Chemistry, Faculty of Science (Girl's), Al-Azhar University, Cairo, Egypt
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Hala M Aly
- Department of Chemistry, Faculty of Science (Girl's), Al-Azhar University, Cairo, Egypt
| | - Rana A Othman
- Department of Chemistry, Faculty of Science (Girl's), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
31
|
Ozyerli-Goknar E, Sur-Erdem I, Seker F, Cingöz A, Kayabolen A, Kahya-Yesil Z, Uyulur F, Gezen M, Tolay N, Erman B, Gönen M, Dunford J, Oppermann U, Bagci-Onder T. The fungal metabolite chaetocin is a sensitizer for pro-apoptotic therapies in glioblastoma. Cell Death Dis 2019; 10:894. [PMID: 31772153 PMCID: PMC6879621 DOI: 10.1038/s41419-019-2107-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/12/2019] [Accepted: 10/16/2019] [Indexed: 01/19/2023]
Abstract
Glioblastoma Multiforme (GBM) is the most common and aggressive primary brain tumor. Despite recent developments in surgery, chemo- and radio-therapy, a currently poor prognosis of GBM patients highlights an urgent need for novel treatment strategies. TRAIL (TNF Related Apoptosis Inducing Ligand) is a potent anti-cancer agent that can induce apoptosis selectively in cancer cells. GBM cells frequently develop resistance to TRAIL which renders clinical application of TRAIL therapeutics inefficient. In this study, we undertook a chemical screening approach using a library of epigenetic modifier drugs to identify compounds that could augment TRAIL response. We identified the fungal metabolite chaetocin, an inhibitor of histone methyl transferase SUV39H1, as a novel TRAIL sensitizer. Combining low subtoxic doses of chaetocin and TRAIL resulted in very potent and rapid apoptosis of GBM cells. Chaetocin also effectively sensitized GBM cells to further pro-apoptotic agents, such as FasL and BH3 mimetics. Chaetocin mediated apoptosis sensitization was achieved through ROS generation and consequent DNA damage induction that involved P53 activity. Chaetocin induced transcriptomic changes showed induction of antioxidant defense mechanisms and DNA damage response pathways. Heme Oxygenase 1 (HMOX1) was among the top upregulated genes, whose induction was ROS-dependent and HMOX1 depletion enhanced chaetocin mediated TRAIL sensitization. Finally, chaetocin and TRAIL combination treatment revealed efficacy in vivo. Taken together, our results provide a novel role for chaetocin as an apoptosis priming agent and its combination with pro-apoptotic therapies might offer new therapeutic approaches for GBMs.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Ilknur Sur-Erdem
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Fidan Seker
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Ahmet Cingöz
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Alisan Kayabolen
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Zeynep Kahya-Yesil
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey
| | - Fırat Uyulur
- Department of Computational Biology, Koç University, 34450, Istanbul, Turkey
| | - Melike Gezen
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Nazife Tolay
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Batu Erman
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Mehmet Gönen
- Department of Industrial Engineering, College of Engineering, Koç University, İstanbul, Turkey
| | - James Dunford
- Botnar Research Centre, NIHR Biomedical Research Centre Oxford, University of Oxford, Oxford, OX3 7LD, UK
| | - Udo Oppermann
- Botnar Research Centre, NIHR Biomedical Research Centre Oxford, University of Oxford, Oxford, OX3 7LD, UK
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
- FRIAS, Freiburg Institute of Advanced Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, 34450, Istanbul, Turkey.
| |
Collapse
|
32
|
Schubert M, Binnewerg B, Voronkina A, Muzychka L, Wysokowski M, Petrenko I, Kovalchuk V, Tsurkan M, Martinovic R, Bechmann N, Ivanenko VN, Fursov A, Smolii OB, Fromont J, Joseph Y, Bornstein SR, Giovine M, Erpenbeck D, Guan K, Ehrlich H. Naturally Prefabricated Marine Biomaterials: Isolation and Applications of Flat Chitinous 3D Scaffolds from Ianthella labyrinthus (Demospongiae: Verongiida). Int J Mol Sci 2019; 20:E5105. [PMID: 31618840 PMCID: PMC6829448 DOI: 10.3390/ijms20205105] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/27/2019] [Accepted: 10/14/2019] [Indexed: 12/16/2022] Open
Abstract
Marine sponges remain representative of a unique source of renewable biological materials. The demosponges of the family Ianthellidae possess chitin-based skeletons with high biomimetic potential. These three-dimensional (3D) constructs can potentially be used in tissue engineering and regenerative medicine. In this study, we focus our attention, for the first time, on the marine sponge Ianthella labyrinthus Bergquist & Kelly-Borges, 1995 (Demospongiae: Verongida: Ianthellidae) as a novel potential source of naturally prestructured bandage-like 3D scaffolds which can be isolated simultaneously with biologically active bromotyrosines. Specifically, translucent and elastic flat chitinous scaffolds have been obtained after bromotyrosine extraction and chemical treatments of the sponge skeleton with alternate alkaline and acidic solutions. For the first time, cardiomyocytes differentiated from human induced pluripotent stem cells (iPSC-CMs) have been used to test the suitability of I. labyrinthus chitinous skeleton as ready-to-use scaffold for their cell culture. Results reveal a comparable attachment and growth on isolated chitin-skeleton, compared to scaffolds coated with extracellular matrix mimetic Geltrex®. Thus, the natural, unmodified I. labyrinthus cleaned sponge skeleton can be used to culture iPSC-CMs and 3D tissue engineering. In addition, I. labyrinthus chitin-based scaffolds demonstrate strong and efficient capability to absorb blood deep into the microtubes due to their excellent capillary effect. These findings are suggestive of the future development of new sponge chitin-based absorbable hemostats as alternatives to already well recognized cellulose-based fabrics.
Collapse
Affiliation(s)
- Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Björn Binnewerg
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine.
| | - Lyubov Muzychka
- V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine.
| | - Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, Vinnytsya, 21018 Vinnytsia, Ukraine.
| | - Mikhail Tsurkan
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany.
| | - Rajko Martinovic
- Institute of Marine Biology, University of Montenegro, 85330 Kotor, Montenegro.
| | - Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Viatcheslav N Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia.
| | - Andriy Fursov
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Oleg B Smolii
- V.P Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Science of Ukraine, Murmanska Str. 1, 02094 Kyiv, Ukraine.
| | - Jane Fromont
- Aquatic Zoology Department, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986, Australia.
| | - Yvonne Joseph
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany.
- Diabetes and Nutritional Sciences Division, King's College London, London WC2R 2LS, UK.
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, Richard-Wagner-Str. 10, 80333 Munich, Germany.
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany.
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany.
| |
Collapse
|
33
|
Resveratrol-mediated inhibition of cyclooxygenase-2 in melanocytes suppresses melanogenesis through extracellular signal-regulated kinase 1/2 and phosphoinositide 3-kinase/Akt signalling. Eur J Pharmacol 2019; 860:172586. [PMID: 31377156 DOI: 10.1016/j.ejphar.2019.172586] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 01/01/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), has been reported to exert a variety of important pharmacological effects including anti-inflammatory, anticancer, and direct inhibition of tyrosinase. This study aimed to examine the expression of melanogenic molecules following down-regulation of cyclooxygenase (COX)-2 expression by resveratrol and the related signal transduction pathways in mouse B16F10 melanoma cells and zebrafish larvae. We report that resveratrol suppressed COX-2 in melanocytes and decreased the expressions of tyrosinase and microphthalmia-associated transcription factor (MITF). Furthermore, inhibition of COX-2 with NS398 enhanced resveratrol-reduced tyrosinase and MITF expression. Resveratrol also induced phosphorylation of extracellular signal-regulated 1/2 (ERK1/2) and phosphoinositide-3 (PI-3)-kinase/Akt. Inhibition of ERK1/2 or PI-3K/Akt by PD98059 and LY294002 restored the decreased tyrosinase activity and MITF expression via resveratrol-mediated down-regulation of COX-2. Additionally, resveratrol inhibited body pigmentation in zebrafish. These results indicated that resveratrol inhibited melanogenesis by down-regulating COX-2 via ERK1/2 and PI-3K/Akt pathways in B16F10 cells.
Collapse
|
34
|
Synthetic 3-alkylpyridine alkaloid analogues as a new scaffold against leukemic cell lines: cytotoxic evaluation and mode of action. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02395-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Elmallah MIY, Micheau O. Epigenetic Regulation of TRAIL Signaling: Implication for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11060850. [PMID: 31248188 PMCID: PMC6627638 DOI: 10.3390/cancers11060850] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
One of the main characteristics of carcinogenesis relies on genetic alterations in DNA and epigenetic changes in histone and non-histone proteins. At the chromatin level, gene expression is tightly controlled by DNA methyl transferases, histone acetyltransferases (HATs), histone deacetylases (HDACs), and acetyl-binding proteins. In particular, the expression level and function of several tumor suppressor genes, or oncogenes such as c-Myc, p53 or TRAIL, have been found to be regulated by acetylation. For example, HATs are a group of enzymes, which are responsible for the acetylation of histone proteins, resulting in chromatin relaxation and transcriptional activation, whereas HDACs by deacetylating histones lead to chromatin compaction and the subsequent transcriptional repression of tumor suppressor genes. Direct acetylation of suppressor genes or oncogenes can affect their stability or function. Histone deacetylase inhibitors (HDACi) have thus been developed as a promising therapeutic target in oncology. While these inhibitors display anticancer properties in preclinical models, and despite the fact that some of them have been approved by the FDA, HDACi still have limited therapeutic efficacy in clinical terms. Nonetheless, combined with a wide range of structurally and functionally diverse chemical compounds or immune therapies, HDACi have been reported to work in synergy to induce tumor regression. In this review, the role of HDACs in cancer etiology and recent advances in the development of HDACi will be presented and put into perspective as potential drugs synergizing with TRAIL's pro-apoptotic potential.
Collapse
Affiliation(s)
- Mohammed I Y Elmallah
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
- Chemistry Department, Faculty of Science, Helwan University, Ain Helwan 11795 Cairo, Egypt.
| | - Olivier Micheau
- INSERM, Université Bourgogne Franche-Comté, LNC UMR1231, F-21079 Dijon, France.
| |
Collapse
|
36
|
Li Z, Hong LL, Gu BB, Sun YT, Wang J, Liu JT, Lin HW. Natural Products from Sponges. SYMBIOTIC MICROBIOMES OF CORAL REEFS SPONGES AND CORALS 2019. [PMCID: PMC7122408 DOI: 10.1007/978-94-024-1612-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sponge is one of the oldest multicellular invertebrates in the world. Marine sponges represent one of the extant metazoans of 700–800 million years. They are classified in four major classes: Calcarea, Demospongiae, Hexactinellida, and Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, and Discodemia have been identified to be the richest source of biologically active compounds. So far, 15,000 species have been described, and among them, more than 6000 species are found in marine and freshwater systems throughout tropical, temperate, and polar regions. More than 5000 different compounds have been isolated and structurally characterized to date, contributing to about 30% of all marine natural products. The chemical diversity of sponge products is high with compounds classified as alkaloids, terpenoids, peptides, polyketides, steroids, and macrolides, which integrate a wide range of biological activities, including antibacterial, anticancer, antifungal, anti-HIV, anti-inflammatory, and antimalarial. There is an open debate whether all natural products isolated from sponges are produced by sponges or are in fact derived from microorganisms that are inhaled though filter-feeding or that live within the sponges. Apart from their origin and chemoecological functions, sponge-derived metabolites are also of considerable interest in drug development. Therefore, development of recombinant microorganisms engineered for efficient production of sponge-derived products is a promising strategy that deserves further attention in future investigations in order to address the limitations regarding sustainable supply of marine drugs.
Collapse
Affiliation(s)
- Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Wong KK, Lawrie CH, Green TM. Oncogenic Roles and Inhibitors of DNMT1, DNMT3A, and DNMT3B in Acute Myeloid Leukaemia. Biomark Insights 2019; 14:1177271919846454. [PMID: 31105426 PMCID: PMC6509988 DOI: 10.1177/1177271919846454] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 12/28/2022] Open
Abstract
Epigenetic alteration has been proposed to give rise to numerous classic hallmarks of cancer. Impaired DNA methylation plays a central role in the onset and progression of several types of malignancies, and DNA methylation is mediated by DNA methyltransferases (DNMTs) consisting of DNMT1, DNMT3A, and DNMT3B. DNMTs are frequently implicated in the pathogenesis and aggressiveness of acute myeloid leukaemia (AML) patients. In this review, we describe and discuss the oncogenic roles of DNMT1, DNMT3A, and DNMT3B in AML. The clinical response predictive roles of DNMTs in clinical trials utilising hypomethylating agents (azacitidine and decitabine) in AML patients are presented. Novel hypomethylating agent (guadecitabine) and experimental DNMT inhibitors in AML are also discussed. In summary, hypermethylation of tumour suppressors mediated by DNMT1 or DNMT3B contributes to the progression and severity of AML (except MLL-AF9 and inv(16)(p13;q22) AML for DNMT3B), while mutation affecting DNMT3A represents an early genetic lesion in the pathogenesis of AML. In clinical trials of AML patients, expression of DNMTs is downregulated by hypomethylating agents while the clinical response predictive roles of DNMT biomarkers remain unresolved. Finally, nucleoside hypomethylating agents have continued to show enhanced responses in clinical trials of AML patients, and novel non-nucleoside DNMT inhibitors have demonstrated cytotoxicity against AML cells in pre-clinical settings.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK.,Oncology Department, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
38
|
Florean C, Kim KR, Schnekenburger M, Kim HJ, Moriou C, Debitus C, Dicato M, Al-Mourabit A, Han BW, Diederich M. Synergistic AML Cell Death Induction by Marine Cytotoxin (+)-1( R), 6( S), 1'( R), 6'( S), 11( R), 17( S)-Fistularin-3 and Bcl-2 Inhibitor Venetoclax. Mar Drugs 2018; 16:md16120518. [PMID: 30572618 PMCID: PMC6316187 DOI: 10.3390/md16120518] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/23/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) patients is still hindered by resistance and relapse, resulting in an overall poor survival rate. Recently, combining specific B-cell lymphoma (Bcl)-2 inhibitors with compounds downregulating myeloid cell leukemia (Mcl)-1 has been proposed as a new effective strategy to eradicate resistant AML cells. We show here that 1(R), 6(S), 1’(R), 6’(S), 11(R), 17(S)-fistularin-3, a bromotyrosine compound of the fistularin family, isolated from the marine sponge Suberea clavata, synergizes with Bcl-2 inhibitor ABT-199 to efficiently kill Mcl-1/Bcl-2-positive AML cell lines, associated with Mcl-1 downregulation and endoplasmic reticulum stress induction. The absolute configuration of carbons 11 and 17 of the fistularin-3 stereoisomer was fully resolved in this study for the first time, showing that the fistularin we isolated from the marine sponge Subarea clavata is in fact the (+)-11(R), 17(S)-fistularin-3 stereoisomer keeping the known configuration 1(R), 6(S), 1’(R), and 6’(S) for the verongidoic acid part. Docking studies and in vitro assays confirm the potential of this family of molecules to inhibit DNA methyltransferase 1 activity.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Cell Line, Tumor
- Cell Survival/drug effects
- Drug Screening Assays, Antitumor
- Drug Synergism
- Endoplasmic Reticulum Stress/drug effects
- HL-60 Cells
- Humans
- Isoxazoles/administration & dosage
- Isoxazoles/chemistry
- Isoxazoles/isolation & purification
- Isoxazoles/pharmacology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Molecular Docking Simulation
- Porifera/chemistry
- Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Sulfonamides/administration & dosage
- Sulfonamides/pharmacology
- Tyrosine/administration & dosage
- Tyrosine/analogs & derivatives
- Tyrosine/chemistry
- Tyrosine/isolation & purification
- Tyrosine/pharmacology
- U937 Cells
Collapse
Affiliation(s)
- Cristina Florean
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Kyung Rok Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea.
| | - Céline Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Cécile Debitus
- LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, 29280 Plouzané, France.
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.
| |
Collapse
|
39
|
Targeting the MYC Oncogene in Burkitt Lymphoma through HSP90 Inhibition. Cancers (Basel) 2018; 10:cancers10110448. [PMID: 30453475 PMCID: PMC6266960 DOI: 10.3390/cancers10110448] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Overexpression of the MYC oncogene is a key feature of many human malignancies including Burkitt lymphoma. While MYC is widely regarded to be a promising therapeutic target, a clinically effective MYC inhibitor is still elusive. Here, we report an alternative strategy, targeting MYC indirectly through inhibition of the HSP90 machinery. We found that inhibition of HSP90 function reduces MYC expression in human Burkitt lymphoma through suppression of MYC transcription and destabilization of MYC protein, thereby diminishing the proliferation of tumor cells. Consistently, treatment of Burkitt lymphoma cell lines with HSP90 inhibitors (17-AAG or 17-DMAG) was accompanied by downregulation of canonical MYC target genes. Combination treatment with 17-DMAG and the proteasome inhibitor, MG-132, led to accumulation of MYC protein, indicating that upon HSP90 inhibition, MYC is degraded by the proteasome. Using co-immunoprecipitation, we furthermore demonstrated a direct interaction between MYC and HSP90, indicating that MYC is an HSP90 client protein in Burkitt lymphoma. Together, we report here the use of HSP90 inhibitors as an alternative approach to target the MYC oncogene and its network in Burkitt lymphoma.
Collapse
|
40
|
Bechmann N, Ehrlich H, Eisenhofer G, Ehrlich A, Meschke S, Ziegler CG, Bornstein SR. Anti-Tumorigenic and Anti-Metastatic Activity of the Sponge-Derived Marine Drugs Aeroplysinin-1 and Isofistularin-3 against Pheochromocytoma In Vitro. Mar Drugs 2018; 16:E172. [PMID: 29783778 PMCID: PMC5983303 DOI: 10.3390/md16050172] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/07/2023] Open
Abstract
Over 10% of pheochromocytoma and paraganglioma (PPGL) patients have malignant disease at their first presentation in the clinic. Development of malignancy and the underlying molecular pathways in PPGLs are poorly understood and efficient treatment strategies are missing. Marine sponges provide a natural source of promising anti-tumorigenic and anti-metastatic agents. We evaluate the anti-tumorigenic and anti-metastatic potential of Aeroplysinin-1 and Isofistularin-3, two secondary metabolites isolated from the marine sponge Aplysina aerophoba, on pheochromocytoma cells. Aeroplysinin-1 diminished the number of proliferating cells and reduced spheroid growth significantly. Beside these anti-tumorigenic activity, Aeroplysinin-1 decreased the migration ability of the cells significantly (p = 0.01), whereas, the invasion capacity was not affected. Aeroplysinin-1 diminished the high adhesion capacity of the MTT cells to collagen (p < 0.001) and, furthermore, reduced the ability to form spheroids significantly. Western Blot and qRT-PCR analysis showed a downregulation of integrin β1 that might explain the lower adhesion and migration capacity after Aeroplysinin-1 treatment. Isofistularin-3 showed only a negligible influence on proliferative and pro-metastatic cell properties. These in vitro investigations show promise for the application of the sponge-derived marine drug, Aeroplysinin-1 as anti-tumorigenic and anti-metastatic agent against PPGLs for the first time.
Collapse
Affiliation(s)
- Nicole Bechmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Hermann Ehrlich
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger 23, 09599 Freiberg, Germany.
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Andre Ehrlich
- BromMarin GmbH, Wernerstraße 1, 09599 Freiberg, Germany.
| | | | - Christian G Ziegler
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| | - Stefan R Bornstein
- Department of Medicine III, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden, Technical University Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
41
|
Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 2018; 36:1563-1585. [PMID: 29729870 DOI: 10.1016/j.biotechadv.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
The diversity of natural compounds is essential for their mechanism of action. The source, structures and structure activity relationship of natural compounds contributed to the development of new classes of chemotherapy agents for over 40 years. The availability of combinatorial chemistry and high-throughput screening has fueled the challenge to identify novel compounds that mimic nature's chemistry and to predict their macromolecular targets. Combining conventional and targeted therapies helped to successfully overcome drug resistance and prolong disease-free survival. Here, we aim to provide an overview of preclinical investigated natural compounds alone and in combination to further improve personalization of cancer treatment.
Collapse
|
42
|
El-Demerdash A, Moriou C, Toullec J, Besson M, Soulet S, Schmitt N, Petek S, Lecchini D, Debitus C, Al-Mourabit A. Bioactive Bromotyrosine-Derived Alkaloids from the Polynesian Sponge Suberea ianthelliformis. Mar Drugs 2018; 16:E146. [PMID: 29702602 PMCID: PMC5983277 DOI: 10.3390/md16050146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023] Open
Abstract
Herein, we describe the isolation and spectroscopic identification of eight new tetrabrominated tyrosine alkaloids 2⁻9 from the Polynesian sponge Suberea ianthelliformis, along with known major compound psammaplysene D (1), N,N-dimethyldibromotyramine, 5-hydroxy xanthenuric acid, and xanthenuric acid. Cytotoxicity and acetylcholinesterase inhibition activities were evaluated for some of the isolated metabolites. They exhibited moderate antiproliferative activity against KB cancer cell lines, but psammaplysene D (1) displayed substantial cytotoxicity as well as acetylcholinesterase inhibition with IC50 values of 0.7 μM and 1.3 μM, respectively.
Collapse
Affiliation(s)
- Amr El-Demerdash
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
- Organic Chemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.
| | - Céline Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| | - Jordan Toullec
- LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, 29280 Plouzané, France.
| | - Marc Besson
- CRIOBE, CNRS, EPHE, UPVD, PSL Research University, 98729 Moorea, French Polynesia.
- Observatoire Océanologique de Banyuls-sur-Mer, Université Pierre et Marie Curie Paris, 66650 Banyuls-sur-Mer, France.
| | - Stéphanie Soulet
- EIO, UPF, ILM, IFREMER, IRD, Faa'a, 98702 Tahiti, French Polynesia.
| | - Nelly Schmitt
- EIO, UPF, ILM, IFREMER, IRD, Faa'a, 98702 Tahiti, French Polynesia.
| | - Sylvain Petek
- LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, 29280 Plouzané, France.
| | - David Lecchini
- CRIOBE, CNRS, EPHE, UPVD, PSL Research University, 98729 Moorea, French Polynesia.
| | - Cécile Debitus
- LEMAR, IRD, UBO, CNRS, IFREMER, IUEM, 29280 Plouzané, France.
| | - Ali Al-Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, University Paris-Sud, University of Paris-Saclay, 1, Avenue de la Terrasse, 91198 Gif-Sur-Yvette, France.
| |
Collapse
|
43
|
Ji S, Lee JY, Schrör J, Mazumder A, Jang DM, Chateauvieux S, Schnekenburger M, Hong CR, Christov C, Kang HJ, Lee Y, Han BW, Kim KW, Shin HY, Dicato M, Cerella C, König GM, Orlikova B, Diederich M. The dialkyl resorcinol stemphol disrupts calcium homeostasis to trigger programmed immunogenic necrosis in cancer. Cancer Lett 2018; 416:109-123. [DOI: 10.1016/j.canlet.2017.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 01/18/2023]
|
44
|
Abstract
Covering: 2016. Previous review: Nat. Prod. Rep., 2017, 34, 235-294This review covers the literature published in 2016 for marine natural products (MNPs), with 757 citations (643 for the period January to December 2016) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1277 in 432 papers for 2016), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | | |
Collapse
|
45
|
Loo SK, Ch'ng ES, Lawrie CH, Muruzabal MA, Gaafar A, Pomposo MP, Husin A, Md Salleh MS, Banham AH, Pedersen LM, Møller MB, Green TM, Wong KK. DNMT1 is predictive of survival and associated with Ki-67 expression in R-CHOP-treated diffuse large B-cell lymphomas. Pathology 2017; 49:731-739. [PMID: 29074044 DOI: 10.1016/j.pathol.2017.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/26/2022]
Abstract
DNMT1 is a target of approved anti-cancer drugs including decitabine. However, the prognostic value of DNMT1 protein expression in R-CHOP-treated diffuse large B-cell lymphomas (DLBCLs) remains unexplored. Here we showed that DNMT1 was expressed in the majority of DLBCL cases (n = 209/230, 90.9%) with higher expression in germinal centre B-cell-like (GCB)-DLBCL subtype. Low and negative DNMT1 expression (20% cut-off, n = 33/230, 14.3%) was predictive of worse overall survival (OS; p < 0.001) and progression-free survival (PFS; p < 0.001). Nonetheless, of the 209 DNMT1 positive patients, 33% and 42% did not achieve 5-year OS and PFS, respectively, indicating that DNMT1 positive patients showed considerably heterogeneous outcomes. Moreover, DNMT1 was frequently expressed in mitotic cells and significantly correlated with Ki-67 or BCL6 expression (r = 0.60 or 0.44, respectively; p < 0.001). We demonstrate that DNMT1 is predictive of DLBCL patients' survival, and suggest that DNMT1 could be a DLBCL therapeutic target due to its significant association with Ki-67.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Ewe Seng Ch'ng
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas, Pulau Pinang, Malaysia
| | - Charles H Lawrie
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oncology Department, Biodonostia Research Institute, San Sebastian, Spain
| | | | - Ayman Gaafar
- Department of Pathology, Hospital Universitario Cruces, Barakaldo, Spain
| | | | - Azlan Husin
- Department of Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Md Salzihan Md Salleh
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Lars M Pedersen
- Department of Haematology, Herlev University Hospital, Copenhagen, Denmark
| | - Michael B Møller
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia.
| |
Collapse
|
46
|
Marine Sponge Natural Products with Anticancer Potential: An Updated Review. Mar Drugs 2017; 15:md15100310. [PMID: 29027954 PMCID: PMC5666418 DOI: 10.3390/md15100310] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/28/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Despite the huge investment into research and the significant effort and advances made in the search for new anticancer drugs in recent decades, cancer cure and treatment continue to be a formidable challenge. Many sources, including plants, animals, and minerals, have been explored in the oncological field because of the possibility of identifying novel molecular therapeutics. Marine sponges are a prolific source of secondary metabolites, a number of which showed intriguing tumor chemopreventive and chemotherapeutic properties. Recently, Food and Drug Administration-approved drugs derived from marine sponges have been shown to reduce metastatic breast cancer, malignant lymphoma, and Hodgkin's disease. The chemopreventive and potential anticancer activity of marine sponge-derived compounds could be explained by multiple cellular and molecular mechanisms, including DNA protection, cell-cycle modulation, apoptosis, and anti-inflammatory activities as well as their ability to chemosensitize cancer cells to traditional antiblastic chemotherapy. The present article aims to depict the multiple mechanisms involved in the chemopreventive and therapeutic effects of marine sponges and critically explore the limitations and challenges associated with the development of marine sponge-based anticancer strategy.
Collapse
|
47
|
Loo SK, Ab Hamid SS, Musa M, Wong KK. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphoma. Pathol Res Pract 2017; 214:134-143. [PMID: 29137822 DOI: 10.1016/j.prp.2017.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 10/18/2022]
Abstract
Dysregulation of DNA (cytosine-5)-methyltransferase 1 (DNMT1) is associated with the pathogenesis of various types of cancer. It has been previously shown that DNMT1 is frequently expressed in diffuse large B-cell lymphoma (DLBCL), however its functions remain to be elucidated in the disease. In this study, we gene expression profiled (GEP) shRNA targeting DNMT1(shDNMT1)-treated germinal center B-cell-like DLBCL (GCB-DLBCL)-derived cell line (i.e. HT) compared with non-silencing shRNA (control shRNA)-treated HT cells. Independent gene set enrichment analysis (GSEA) performed using GEPs of shRNA-treated HT cells and primary GCB-DLBCL cases derived from two publicly-available datasets (i.e. GSE10846 and GSE31312) produced three separate lists of enriched gene sets for each gene sets collection from Molecular Signatures Database (MSigDB). Subsequent Venn analysis identified 268, 145 and six consensus gene sets from analyzing gene sets in C2 collection (curated gene sets), C5 sub-collection [gene sets from gene ontology (GO) biological process ontology] and Hallmark collection, respectively to be enriched in positive correlation with DNMT1 expression profiles in shRNA-treated HT cells, GSE10846 and GSE31312 datasets [false discovery rate (FDR) <0.05]. Cell cycle progression and DNA replication were among the significantly enriched biological processes (FDR <0.05). Expression of genes involved in the activation of cell cycle and DNA replication (e.g. CDK1, CCNA2, E2F2, PCNA, RFC5 and POLD3) were highly correlated (r>0.8) with DNMT1 expression and significantly downregulated (log fold-change <-1.35; p<0.05) following DNMT1 silencing in HT cells. These results suggest the involvement of DNMT1 in the activation of cell cycle and DNA replication in DLBCL cells.
Collapse
Affiliation(s)
- Suet Kee Loo
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Suzina Sheikh Ab Hamid
- Tissue Bank Unit, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mustaffa Musa
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
48
|
Schnekenburger M, Goffin E, Lee JY, Jang JY, Mazumder A, Ji S, Rogister B, Bouider N, Lefranc F, Miklos W, Mathieu V, de Tullio P, Kim KW, Dicato M, Berger W, Han BW, Kiss R, Pirotte B, Diederich M. Discovery and Characterization of R/S-N-3-Cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)urea, a New Histone Deacetylase Class III Inhibitor Exerting Antiproliferative Activity against Cancer Cell Lines. J Med Chem 2017; 60:4714-4733. [PMID: 28475330 DOI: 10.1021/acs.jmedchem.7b00533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new series of N-aryl-N'-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)ureas bearing an alkoxycarbonylamino group at the 6-position were synthesized and examined as putative anticancer agents targeting sirtuins in glioma cells. On the basis of computational docking combined to in vitro sirtuin 1/2 inhibition assays, we selected compound 18 [R/S-N-3-cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1-benzopyran-4-yl)urea] which displays a potent antiproliferative activity on various glioma cell types, assessed by quantitative videomicroscopy, eventually triggering senescence. The impact on normal glial cells was lower with a selectivity index of >10. Furthermore, human U373 and Hs683 glioblastoma cell lines served to demonstrate the inhibitory activity of 18 against histone deacetylase (HDAC) class III sirtuins 1 and 2 (SIRT1/2) by quantifying acetylation levels of histone and non-histone proteins. The translational potential of 18 was validated by an NCI-60 cell line screen and validation of growth inhibition of drug resistant cancer cell models. Eventually, the anticancer potential of 18 was validated in 3D glioblastoma spheroids and in vivo by zebrafish xenografts. In summary, compound 18 is the first representative of a new class of SIRT inhibitors opening new perspectives in the medicinal chemistry of HDAC inhibitors.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg , 9, Rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Eric Goffin
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , 4000 Liège, Belgium
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Jun Young Jang
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Aloran Mazumder
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Seungwon Ji
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Bernard Rogister
- Nervous System Diseases and Treatment, GIGA-Neurosciences, University of Liège , 4000 Liège, Belgium
| | - Nafila Bouider
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , 4000 Liège, Belgium
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Walter Miklos
- Department of Medicine I, Comprehensive Cancer Center and Institute of Cancer Research, Medical University of Vienna , 1090 Vienna, Austria
| | - Véronique Mathieu
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles , 1050 Brussels, Belgium
| | - Pascal de Tullio
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , 4000 Liège, Belgium
| | - Kyu-Won Kim
- SNU-Harvard Neurovascular Protection Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul 151-742, Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg , 9, Rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| | - Walter Berger
- Department of Medicine I, Comprehensive Cancer Center and Institute of Cancer Research, Medical University of Vienna , 1090 Vienna, Austria
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Robert Kiss
- Laboratoire de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles , 1050 Brussels, Belgium
| | - Bernard Pirotte
- Laboratory of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège , 4000 Liège, Belgium
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| |
Collapse
|
49
|
Yin J, Sheng B, Qiu Y, Yang K, Xiao W, Yang H. Role of AhR in positive regulation of cell proliferation and survival. Cell Prolif 2016; 49:554-60. [PMID: 27523394 DOI: 10.1111/cpr.12282] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/29/2016] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is an important nuclear transcription factor that is best known for mediating toxic responses by adjusting numbers of metabolism-related enzymes, including CYP1A1 and CYP1B1. Previous findings have revealed that, in addition to negatively regulating cell proliferation and survival, AhR may also positively regulate these pathways. Here, we review these findings and summarize distinct mechanisms by which AhR promotes cell proliferation and survival, including modulation of receptor expression, growth factor signalling and apoptosis, regulating the cell cycle and promoting cytokine expression. This review will aid better understanding the role of AhR in positive regulation of cell proliferation and survival.
Collapse
Affiliation(s)
- Jiuheng Yin
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Baifa Sheng
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Yuan Qiu
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Kunqiu Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Weidong Xiao
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| | - Hua Yang
- Department of General Surgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
| |
Collapse
|
50
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|