1
|
de Souza AC, Pires AS, Donohue K, de Mattos EA. Will climate change constrain the altitudinal range of threatened species? Experimental evidence from a biodiversity hotspot. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:172-184. [PMID: 39531521 DOI: 10.1111/plb.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 09/25/2024] [Indexed: 11/16/2024]
Abstract
A fundamental goal in ecology and evolution is to explain the factors that shape species' abundance and range limits. Evaluating the performance of early life-stages across an altitudinal gradient can be valuable for understanding what factors shape range limits and for predicting how plant species may respond to climate change. To experimentally evaluate the presence of local adaptation in a threatened palm (Euterpe edulis) at early life-stages, we reciprocally sowed seeds at two contrasting elevations. In addition, to evaluate the effect of seed predation on E. edulis seed germination and seedling establishment, seed addition experiments were conducted at three different elevations. Our results showed no evidence of local adaptation in the early life-stages for the two E. edulis populations. We observed lower germination and seedling performance of both E. edulis populations at the low-elevation site. The exclusion of seed predation increased seedling establishment across all elevations. Seed predation and dry soil conditions were the main factors that constrained seedling establishment at the upper altitudinal limit and at the lower elevation, respectively. Climate change in the study area will result in warmer and drier environmental conditions. The lack of local adaptation and the lower performance of both E. edulis populations in warm and dry conditions, combined with a higher seed predation at the upper altitudinal limit, might cause an altitudinal range contraction, increasing the vulnerability of this threatened species to climate change.
Collapse
Affiliation(s)
- A C de Souza
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| | - A S Pires
- Departamento de Ciências Ambientais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro-UFRRJ, Seropédica, Brazil
| | - K Donohue
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - E A de Mattos
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro-UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Ermitão T, Gouveia CM, Bastos A, Russo AC. Recovery Following Recurrent Fires Across Mediterranean Ecosystems. GLOBAL CHANGE BIOLOGY 2024; 30:e70013. [PMID: 39726993 DOI: 10.1111/gcb.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
In fire-prone regions such as the Mediterranean biome, fire seasons are becoming longer, and fires are becoming more frequent and severe. Post-fire recovery dynamics is a key component of ecosystem resilience and stability. Even though Mediterranean ecosystems can tolerate high exposure to extreme temperatures and recover from fire, changes in climate conditions and fire intensity or frequency might contribute to loss of ecosystem resilience and increase the potential for irreversible changes in vegetation communities. In this study, we assess the recovery rates of burned vegetation after recurrent fires across Mediterranean regions globally, based on remotely sensed Enhanced Vegetation Index (EVI) data, a proxy for vegetation status, from 2001 to 2022. Recovery rates are quantified through a statistical model of EVI time-series. This approach allows resolving recovery dynamics in time and space, overcoming the limitations of space-for-time approaches typically used to study recovery dynamics through remote sensing. We focus on pixels burning repeatedly over the study period and evaluate how fire severity, pre-fire vegetation greenness, and post-fire climate conditions modulate vegetation recovery rates of different vegetation types. We detect large contrasts between recovery rates, mostly explained by regional differences in vegetation type. Particularly, needle-leaved forests tend to recover faster following the second event, contrasting with shrublands that tend to recover faster from the first event. Our results also show that fire severity can promote a faster recovery across forested ecosystems. An important modulating role of pre-fire fuel conditions on fire severity is also detected, with pixels with higher EVI before the fire resulting in stronger relative greenness loss. In addition, post-fire climate conditions, particularly air temperature and precipitation, were found to modulate recovery speed across all regions, highlighting how direct impacts of fire can compound with impacts from climate anomalies in time and likely destabilise ecosystems under changing climate conditions.
Collapse
Affiliation(s)
- Tiago Ermitão
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
- Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal
| | - Célia M Gouveia
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
- Instituto Português do Mar e da Atmosfera, IPMA, Lisbon, Portugal
| | - Ana Bastos
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany
| | - Ana C Russo
- Faculdade de Ciências, Instituto Dom Luiz, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory TERRA, CEF - Forest Research Centre, School of Agriculture, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
3
|
Zhan L, He J, Ding L, Storey KB, Zhang J, Yu D. Comparison of Mitochondrial Genome Expression Differences among Four Skink Species Distributed at Different Latitudes under Low-Temperature Stress. Int J Mol Sci 2024; 25:10637. [PMID: 39408966 PMCID: PMC11605214 DOI: 10.3390/ijms251910637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/13/2024] [Accepted: 09/30/2024] [Indexed: 12/01/2024] Open
Abstract
Continual climate change strongly influences temperature conditions worldwide, making ectothermic animals as suitable species for studying the potential impact of climate change on global biodiversity. However, the study of how lizards distributed at different latitudes respond to climate change at the transcriptome level is still insufficient. According to the Climatic Variability Hypothesis (CVH), the range of climate fluctuations experienced by terrestrial animals throughout the year increases with latitude, so individuals at higher latitudes should exhibit greater thermal plasticity to cope with fluctuating environments. Mitochondria, as the energy center of vertebrate cells, may indicate species' plasticity through the sensitivity of gene expression. In this study, we focused on the changes in transcript levels of liver mitochondrial protein-coding genes (PCGs) in skinks from the genus Plestiodon (P. capito and P. elegans) and the genus Scincella (S. modesta and S. reevesii) under low-temperature conditions of 8 °C, compared to the control group at 25 °C. Species within the same genus of skinks exhibit different latitudinal distribution patterns. We found that the two Plestiodon species, P. elegans and P. capito, employ a metabolic depression strategy (decreased transcript levels) to cope with low temperatures. In contrast, the two Scincella species show markedly different patterns: S. modesta exhibits significant increases in the transcript levels of six genes (metabolic compensation), while in S. reevesii, only two mitochondrial genes are downregulated (metabolic depression) compared to the control group. We also found that P. capito and S. modesta, which live at mid-to-high latitudes, exhibit stronger adaptive responses and plasticity at the mitochondrial gene level compared to P. elegans and S. reevesii, which live at lower latitudes. We suggest that this enhanced adaptability corresponds to more significant changes in a greater number of genes (plasticity genes).
Collapse
Affiliation(s)
- Lemei Zhan
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jingyi He
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Lingyi Ding
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S5B6, Canada
| | - Jiayong Zhang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Danna Yu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
4
|
Li WJ, Chen PP, Sui LY, Sun SC. Temporal genetic variation mediated by climate change-induced salinity decline, a study on Artemia (Crustacea: Anostraca) from Kyêbxang Co, a high altitude salt lake on the Qinghai-Tibet Plateau. Gene 2024; 902:148160. [PMID: 38219874 DOI: 10.1016/j.gene.2024.148160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 01/11/2024] [Indexed: 01/16/2024]
Abstract
The Qinghai-Tibet Plateau is one of the areas the richest in salt lakes and Artemia sites. As a result of climate warming and wetting, the areas of salt lakes on the plateau have been increasing, and the salinities have decreased considerably since 1990s. However, the impact of salinity change on the genetic diversity of Artemia is still unknown. Kyêbxang Co is the highest (4620 m above sea level) salt lake currently with commercial harvesting of Artemia resting eggs in the world, and harbors the largest Artemia population on the plateau. Its salinity had dropped from ∼67 ppt in 1998 to ∼39 ppt in 2019. Using 13 microsatellite markers and the mitochondrial cytochrome oxidase submit I (COI) gene, we analyzed the temporal changes of genetic diversity, effective population size and genetic structure of this Artemia population based on samples collected in 1998, 2007 and 2019. Our results revealed a steady decline of genetic diversity and significant genetic differentiation among the sampling years, which may be a consequence of genetic drift and the selection of decreased salinity. A decline of effective population size was also detected, which may be relative to the fluctuation in census population size, skewed sex ratio, and selection of the declined salinity. In 2007 and 2019, the Artemia population showed an excess of heterozygosity and significant deviation from Hardy-Weinberg Equilibrium (p < 0.001), which may be associated with the heterozygote advantage under low salinity. To comprehensively understand the impact of climate warming and wetting on Artemia populations on the plateau, further investigation with broad and intensive sampling are needed.
Collapse
Affiliation(s)
- Wen-Jie Li
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Pan-Pan Chen
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China
| | - Li-Ying Sui
- Asian Regional Artemia Reference Center, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shi-Chun Sun
- Fisheries College, and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266000, China.
| |
Collapse
|
5
|
Rutschmann A, Perry C, Le Galliard JF, Dupoué A, Lourdais O, Guillon M, Brusch G, Cote J, Richard M, Clobert J, Miles DB. Ecological responses of squamate reptiles to nocturnal warming. Biol Rev Camb Philos Soc 2024; 99:598-621. [PMID: 38062628 DOI: 10.1111/brv.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.
Collapse
Affiliation(s)
- Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Constant Perry
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, UMR 7618, IRD, INRAE, Institut d'écologie et des sciences de l'environnement (iEES Paris), Tours 44-45, 4 Place Jussieu, Paris, 75005, France
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, CNRS, UMS 3194, Centre de Recherche en écologie expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, Saint-Pierre-Lès-Nemours, 77140, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, 1625 Rte de Sainte-Anne, Plouzané, 29280, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- School of Life Sciences, Arizona State University, Life Sciences Center Building, 427E Tyler Mall, Tempe, AZ, 85281, USA
| | - Michaël Guillon
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- Cistude Nature, Chemin du Moulinat-33185, Le Haillan, France
| | - George Brusch
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA, 92096, USA
| | - Julien Cote
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, 118 Rte de Narbonne, Toulouse, 31077, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Science Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
6
|
John A, Olden JD, Oldfather MF, Kling MM, Ackerly DD. Topography influences diurnal and seasonal microclimate fluctuations in hilly terrain environments of coastal California. PLoS One 2024; 19:e0300378. [PMID: 38551923 PMCID: PMC10980203 DOI: 10.1371/journal.pone.0300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Understanding the topographic basis for microclimatic variation remains fundamental to predicting the site level effects of warming air temperatures. Quantifying diurnal fluctuation and seasonal extremes in relation to topography offers insight into the potential relationship between site level conditions and changes in regional climate. The present study investigated an annual understory temperature regime for 50 sites distributed across a topographically diverse area (>12 km2) comprised of mixed evergreen-deciduous woodland vegetation typical of California coastal ranges. We investigated the effect of topography and tree cover on site-to-site variation in near-surface temperatures using a combination of multiple linear regression and multivariate techniques. Sites in topographically depressed areas (e.g., valley bottoms) exhibited larger seasonal and diurnal variation. Elevation (at 10 m resolution) was found to be the primary driver of daily and seasonal variations, in addition to hillslope position, canopy cover and northness. The elevation effect on seasonal mean temperatures was inverted, reflecting large-scale cold-air pooling in the study region, with elevated minimum and mean temperature at higher elevations. Additionally, several of our sites showed considerable buffering (dampened diurnal and seasonal temperature fluctuations) compared to average regional conditions measured at an on-site weather station. Results from this study help inform efforts to extrapolate temperature records across large landscapes and have the potential to improve our ecological understanding of fine-scale seasonal climate variation in coastal range environments.
Collapse
Affiliation(s)
- Aji John
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Julian D. Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Meagan F. Oldfather
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, United States of America
| | - Matthew M. Kling
- Department of Integrative Biology, University of California–Berkeley, Berkeley, CA, United States of America
| | - David D. Ackerly
- Department of Integrative Biology, University of California–Berkeley, Berkeley, CA, United States of America
- Department of Environmental Science, Policy and Management, University of California–Berkeley, Berkeley, CA, United States of America
| |
Collapse
|
7
|
Bonanno G, Veneziano V. Rise, fall and hope for the Sicilian endemic plant Muscari gussonei: A story of survival in the face of narrow germination optimum, climate changes, desertification and habitat fragmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169208. [PMID: 38101628 DOI: 10.1016/j.scitotenv.2023.169208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Muscari gussonei is an endangered endemic plant growing on fragmented Mediterranean coastal dunes. This study focused on the germination performance of M. gussonei at two fixed temperatures, 10 and 15 °C, and at an alternating one, 10/20 °C, and on the multi-temporal trends of temperature and rainfall during 1931-2020, as well as on the patterns of desertification and land-cover changes over the last 60 years. High and similar germinability was found for different populations of M. gussonei, in particular, the final germination percentage (FGP) was ≥95 % for the three treatments. The general pattern was the lower the temperature the higher and faster the germination. However, germination speed varied significantly among populations. This intraspecific variability of germination behavior may suggest a certain level of ecophysiological plasticity in M. gussonei, thus raising hopes on the capacity of M. gussonei to respond better to the ongoing severe environmental changes. In the period 1931-2020, indeed, the average temperature rose by 1.5 °C, from 16.8 to 18.3 °C, which is equivalent to the enormous increase of 0.17 °C per decade. Similarly, the average rainfall declined by 100 mm, from 600 to 500 mm. Another serious stressor was desertification, which affects >90 % of the distributional area of M. gussonei. A further factor of ecological degradation is a considerably altered landscape, where the agricultural component accounts for c. 85 %, whereas natural and seminatural areas were only c. 10 %. Increasing temperature and dryness will inevitably reduce the germinability of M. gussonei, characterized by a narrow germination optimum of 10-15 °C. The future of M. gussonei looks even more dramatic if we consider its small and scattered populations distributed in an agricultural matrix affected by high levels of desertification. Only multivariate information at different space-time scales can provide an exhaustive picture for implementing effective conservation strategies.
Collapse
Affiliation(s)
- Giuseppe Bonanno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125 Catania, Italy.
| | - Vincenzo Veneziano
- Department of Biological, Geological and Environmental Sciences, University of Catania, Via Antonino Longo 19, 95125 Catania, Italy
| |
Collapse
|
8
|
Gubry-Rangin C, Aigle A, Herrera-Alsina L, Lancaster LT, Prosser JI. Niche breadth specialization impacts ecological and evolutionary adaptation following environmental change. THE ISME JOURNAL 2024; 18:wrae183. [PMID: 39325971 PMCID: PMC11630254 DOI: 10.1093/ismejo/wrae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/29/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
Ecological theory predicts that organismal distribution and abundance depend on the ability to adapt to environmental change. It also predicts that eukaryotic specialists and generalists will dominate in extreme environments or following environmental change, respectively. This theory has attracted little attention in prokaryotes, especially in archaea, which drive major global biogeochemical cycles. We tested this concept in Thaumarchaeota using pH niche breadth as a specialization factor. Responses of archaeal growth and activity to pH disturbance were determined empirically in manipulated, long-term, pH-maintained soil plots. The distribution of specialists and generalists was uneven over the pH range, with specialists being more limited to the extreme range. Nonetheless, adaptation of generalists to environmental change was greater than that of specialists, except for environmental changes leading to more extreme conditions. The balance of generalism and specialism over longer timescales was further investigated across evolutionary history. Specialists and generalists diversified at similar rates, reflecting balanced benefits of each strategy, but a higher transition rate from generalists to specialists than the reverse was demonstrated, suggesting that metabolic specialism is more easily gained than metabolic versatility. This study provides evidence for a crucial ecological concept in prokaryotes, significantly extending our understanding of archaeal adaptation to environmental change.
Collapse
Affiliation(s)
- Cécile Gubry-Rangin
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - Axel Aigle
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
- Present address: Mexbrain, Villeurbanne, France
| | - Leonel Herrera-Alsina
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - Lesley T Lancaster
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| | - James I Prosser
- School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen AB24 3UU, United Kingdom
| |
Collapse
|
9
|
Blumstein M, Oseguera M, Caso-McHugh T, Des Marais DL. Nonstructural carbohydrate dynamics' relationship to leaf development under varying environments. THE NEW PHYTOLOGIST 2024; 241:102-113. [PMID: 37882355 DOI: 10.1111/nph.19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Leaf-out in temperate forests is a critical transition point each spring and advancing with global change. The mechanism linking phenological variation to external cues is poorly understood. Nonstructural carbohydrate (NSC) availability may be key. Here, we use branch cuttings from northern red oak (Quercus rubra) and measure NSCs throughout bud development in branch tissue. Given genes and environment influence phenology, we placed branches in an arrayed factorial experiment (three temperatures × two photoperiods, eight genotypes) to examine their impact on variation in leaf-out timing and corresponding NSCs. Despite significant differences in leaf-out timing between treatments, NSC patterns were much more consistent, with all treatments and genotypes displaying similar NSC concentrations across phenophases. Notably, the moderate and hot temperature treatments reached the same NSC concentrations and phenophases at the same growing degree days (GDD), but 20 calendar days apart, while the cold treatment achieved only half the GDD of the other two. Our results suggest that NSCs are coordinated with leaf-out and could act as a molecular clock, signaling to cells the passage of time and triggering leaf development to begin. This link between NSCs and budburst is critical for improving predictions of phenological timing.
Collapse
Affiliation(s)
- Meghan Blumstein
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - Miranda Oseguera
- Department of Biology, Saint Joseph's University, 5600 City Avenue, Philadelphia, PA, 19131, USA
| | - Theresa Caso-McHugh
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| | - David L Des Marais
- Civil and Environmental Engineering, Massachusetts Institute of Technology, 15 Vassar St., Cambridge, MA, 02139, USA
| |
Collapse
|
10
|
Wu R, Qi J, Li W, Wang L, Shen Y, Liu J, Teng Y, Roos C, Li M. Landscape genomics analysis provides insights into future climate change-driven risk in rhesus macaque. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165746. [PMID: 37495138 DOI: 10.1016/j.scitotenv.2023.165746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Climate change significantly affects the suitability of wildlife habitats. Thus, understanding how animals adapt ecologically and genetically to climate change is important for targeted species protection. Rhesus macaques (Macaca mulatta) are widely distributed and multi-climatically adapted primates. This study explored how rhesus macaques adapt to climate change by integrating ecological and genetic methods and applying species distribution models (SDMs) and a gradient forest (GF) model. The findings suggested that temperature seasonality primarily affects habitat suitability and indicated that climate change will have a dramatic impact on macaque populations in the future. We also applied genotype-environment association (GEA) analyses and selection signature analyses to identify genes associated with climate change and provide possible explanations for the adaptation of rhesus macaques to climatic environments. The population genomics analyses suggested that the Taihang population has the highest genomic vulnerability with inbreeding and low heterozygosity. Combined with the higher ecological vulnerability, additional conservation strategies are required for this population under higher risk of climate change. Our work measured the impact of climate change and enabled the identification of populations that exhibit high vulnerability to severe climate change. Such information is useful for selecting populations of rhesus macaques as subject of long-term monitoring or evolutionary rescue under future climate change.
Collapse
Affiliation(s)
- Ruifeng Wu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwei Qi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wenbo Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ling Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Shen
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiawen Liu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Teng
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| | - Ming Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
11
|
Lindstrom J, Ahlering M, Hamilton J. Seed sourcing for climate-resilient grasslands: The role of seed source diversity during early restoration establishment. Ecol Evol 2023; 13:e10756. [PMID: 38020697 PMCID: PMC10663101 DOI: 10.1002/ece3.10756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Restoration advocates for the use of local seed in restoration, but theory suggests that diverse seed sources may enhance genetic diversity and longer term evolutionary potential within restored communities. However, few empirical studies have evaluated whether species and genetic diversity within species impacts plant community composition following restoration. The goal of this research is to compare the effects of single and multi-sourced seed mix treatments on plant community diversity following restoration. Species establishment, abundance, and diversity were compared following two restoration seed mix treatments created to include 14 species commonly used in grassland restoration. We compared the application of seed mixes designed using a single population per species with those containing five populations per species across sites in Minnesota and South Dakota, United States. Early plant establishment and richness mostly reflected non-seeded species across both sites, although seeded species established at a slightly higher rate in year two following restoration. At the South Dakota site, community composition largely reflected changes associated with establishment across the growing season as opposed to seed mix treatment. This contrasted with the Minnesota site, where community composition appeared to be strongly influenced by seed mix treatment. While there is some evidence seed mix treatment may be influencing the emergent community across sites, spatial heterogeneity across the Minnesota restoration site likely influenced diversity in early emergence over that of seed mix treatment. Indeed, varying land-use history across both sites likely contributed to differences in species composition observed at this early stage of the restoration. This suggests that seed mix treatment may have limited impact on early post-restoration emergence diversity relative to the importance of land-use history. However, future monitoring will be needed to evaluate whether the impact of seed mix treatment on community composition changes over time.
Collapse
Affiliation(s)
- Jessica Lindstrom
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
| | | | - Jill Hamilton
- Department of Biological SciencesNorth Dakota State UniversityFargoNorth DakotaUSA
- Department of Ecosystem Science and ManagementPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
12
|
Su Y, Liu L, Deng Q, Lü Z, Wang Z, He Z, Wang T. Epigenetic architecture of Pseudotaxus chienii: Revealing the synergistic effects of climate and soil variables. Ecol Evol 2023; 13:e10511. [PMID: 37701023 PMCID: PMC10493196 DOI: 10.1002/ece3.10511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Whether conifers can withstand environmental changes especially temperature fluctuations has been controversial. Epigenetic analysis may provide new perspectives for solving the issue. Pseudotaxus chienii is an endangered gymnosperm species endemic to China. In this study, we have examined the genetic and epigenetic variations in its natural populations aiming to disentangle the synergistic effects of climate and soil on its population (epi)genetic differentiation by using amplified fragment length polymorphism (AFLP) and methylation-sensitive AFLP (MSAP) techniques. We identified 23 AFLP and 26, 7, and 5 MSAP outliers in P. chienii. Twenty-one of the putative adaptive AFLP loci were found associated with climate and/or soil variables including precipitation, temperature, K, Fe, Zn, and Cu, whereas 21, 7, and 4 MSAP outliers were significantly related to precipitation of wettest month (Bio13), precipitation driest of month (Bio14), percent tree cover (PTC), and soil Fe, Mn, and Cu compositions. Total precipitation and precipitation in the driest seasons were the most influential factors for genetic and epigenetic variation, respectively. In addition, a high full-methylation level and a strong correlation between genetic and epigenetic variation were detected in P. chienii. Climate is found of greater importance than soil in shaping adaptive (epi)genetic differentiation, and the synergistic effects of climate and climate-soil variables were also observed. The identified climate and soil variables should be considered when applying ex situ conservation.
Collapse
Affiliation(s)
- Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
| | - Li Liu
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Qi Deng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- School of MedicineGuangxi University of Science and TechnologyLiuzhouChina
| | - Zhuyan Lü
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Zhen Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ziqing He
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Ting Wang
- Research Institute of Sun Yat‐sen University in ShenzhenShenzhenChina
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
13
|
Folk RA, Gaynor ML, Engle-Wrye NJ, O’Meara BC, Soltis PS, Soltis DE, Guralnick RP, Smith SA, Grady CJ, Okuyama Y. Identifying Climatic Drivers of Hybridization with a New Ancestral Niche Reconstruction Method. Syst Biol 2023; 72:856-873. [PMID: 37073863 PMCID: PMC10405357 DOI: 10.1093/sysbio/syad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/20/2023] Open
Abstract
Applications of molecular phylogenetic approaches have uncovered evidence of hybridization across numerous clades of life, yet the environmental factors responsible for driving opportunities for hybridization remain obscure. Verbal models implicating geographic range shifts that brought species together during the Pleistocene have often been invoked, but quantitative tests using paleoclimatic data are needed to validate these models. Here, we produce a phylogeny for Heuchereae, a clade of 15 genera and 83 species in Saxifragaceae, with complete sampling of recognized species, using 277 nuclear loci and nearly complete chloroplast genomes. We then employ an improved framework with a coalescent simulation approach to test and confirm previous hybridization hypotheses and identify one new intergeneric hybridization event. Focusing on the North American distribution of Heuchereae, we introduce and implement a newly developed approach to reconstruct potential past distributions for ancestral lineages across all species in the clade and across a paleoclimatic record extending from the late Pliocene. Time calibration based on both nuclear and chloroplast trees recovers a mid- to late-Pleistocene date for most inferred hybridization events, a timeframe concomitant with repeated geographic range restriction into overlapping refugia. Our results indicate an important role for past episodes of climate change, and the contrasting responses of species with differing ecological strategies, in generating novel patterns of range contact among plant communities and therefore new opportunities for hybridization. The new ancestral niche method flexibly models the shape of niche while incorporating diverse sources of uncertainty and will be an important addition to the current comparative methods toolkit. [Ancestral niche reconstruction; hybridization; paleoclimate; pleistocene.].
Collapse
Affiliation(s)
- Ryan A Folk
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Michelle L Gaynor
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Nicholas J Engle-Wrye
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Brian C O’Meara
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Biodiversity Institute, University of Florida, Gainesville, FL, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Charles J Grady
- Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Yudai Okuyama
- Tsukuba Botanical Garden, National Museum of Nature and Science, Tsukuba, Japan
| |
Collapse
|
14
|
Turbek SP, Funk WC, Ruegg KC. Where to draw the line? Expanding the delineation of conservation units to highly mobile taxa. J Hered 2023; 114:300-311. [PMID: 36815497 DOI: 10.1093/jhered/esad011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 02/21/2023] [Indexed: 02/24/2023] Open
Abstract
Conservation units (CUs) are an essential tool for maximizing evolutionary potential and prioritizing areas across a species' range for protection when implementing conservation and management measures. However, current workflows for identifying CUs on the basis of neutral and adaptive genomic variation largely ignore information contained in patterns of isolation by distance (IBD), frequently the primary signal of population structure in highly mobile taxa, such as birds, bats, and marine organisms with pelagic larval stages. While individuals located on either end of a species' distribution may exhibit clear genetic, phenotypic, and ecological differences, IBD produces subtle changes in allele frequencies across space, making it difficult to draw clear boundaries for conservation purposes in the absence of discrete population structure. Here, we highlight potential pitfalls that arise when applying common methods for delineating CUs to continuously distributed organisms and review existing methods for detecting subtle breakpoints in patterns of IBD that can indicate barriers to gene flow in highly mobile taxa. In addition, we propose a new framework for identifying CUs in all organisms, including those characterized by continuous genomic differentiation, and suggest several possible ways to harness the information contained in patterns of IBD to guide conservation and management decisions.
Collapse
Affiliation(s)
- Sheela P Turbek
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - W Chris Funk
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Huang JF, Li SQ, Xu R, Peng YQ. East‒West genetic differentiation across the Indo-Burma hotspot: evidence from two closely related dioecious figs. BMC PLANT BIOLOGY 2023; 23:321. [PMID: 37322436 DOI: 10.1186/s12870-023-04324-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Understanding biodiversity patterns and their underlying mechanisms is of interest to ecologists, biogeographers and conservationists and is critically important for conservation efforts. The Indo-Burma hotspot features high species diversity and endemism, yet it also faces significant threats and biodiversity losses; however, few studies have explored the genetic structure and underlying mechanisms of Indo-Burmese species. Here, we conducted a comparative phylogeographic analysis of two closely related dioecious Ficus species, F. hispida and F. heterostyla, based on wide and intensive population sampling across Indo-Burma ranges, using chloroplast (psbA-trnH, trnS-trnG) and nuclear microsatellite (nSSR) markers, as well as ecological niche modeling. RESULTS The results indicated large numbers of population-specific cpDNA haplotypes and nSSR alleles in the two species. F. hispida showed slightly higher chloroplast diversity but lower nuclear diversity than F. heterostyla. Low-altitude mountainous areas of northern Indo-Burma were revealed to have high genetic diversity and high habitat suitability, suggesting potential climate refugia and conservation priority areas. Strong phylogeographic structure and a marked east‒west differentiation pattern were observed in both species, due to the interactions between biotic and abiotic factors. Interspecific dissimilarities at fine-scale genetic structure and asynchronized historical dynamics of east‒west differentiation between species were also detected, which were attributed to different species-specific traits. CONCLUSIONS We confirm hypothesized predictions that interactions between biotic and abiotic factors largely determine the patterns of genetic diversity and phylogeographic structure of Indo-Burmese plants. The east‒west genetic differentiation pattern observed in two targeted figs can be generalized to some other Indo-Burmese plants. The results and findings of this work will contribute to the conservation of Indo-Burmese biodiversity and facilitate targeted conservation efforts for different species.
Collapse
Affiliation(s)
- Jian-Feng Huang
- CAS Key Laboratory of Tropical Forest Ecoloy, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Shu-Qiong Li
- CAS Key Laboratory of Tropical Forest Ecoloy, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Xu
- Yunnan Academy of Biodiversity/College of Biodiversity and Conservation, Southwest Forestry University, Kunming, China
| | - Yan-Qiong Peng
- CAS Key Laboratory of Tropical Forest Ecoloy, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China.
| |
Collapse
|
16
|
Rossi AJ, Klinger RC, Hellwig EC, Van Vuren DH. Niches of three sympatric montane ground-dwelling squirrels: Relative importance of climate, topography, and landcover. Ecol Evol 2023; 13:e9949. [PMID: 37013103 PMCID: PMC10065979 DOI: 10.1002/ece3.9949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 04/03/2023] Open
Abstract
Species with different ecological niches will likely exhibit distinct responses to a changing environment. Differences in the magnitude of niche specialization may also indicate which species may be more vulnerable to environmental change, as many life-history characteristics are known to affect climate change vulnerability. We characterized the niche space of three sympatric high-elevation ground-dwelling squirrels, yellow-bellied marmot (Marmota flaviventer), Belding's ground squirrel (Urocitellus beldingi), and golden-mantled ground squirrel (Callospermophilus lateralis), in the alpine and upper subalpine regions of the Sierra Nevada in California. We used 5879 observations of individual squirrels, collected from 4 years (2009-2012) of transect survey data, to quantify which ecogeographical variable types (climate, topography, or landcover) were most important in defining the niche of each species. We conducted Ecological Niche Factor Analysis to quantify the niche and generate indices of "marginality" (magnitude of selection) and "specialization" (narrowness of niche space). All three species demonstrated differential use of niche space when compared to the available niche space. Moreover, the relative importance of the variables shaping the niche differed among these species. For example, the presence of meadows was important in defining the niche for U. beldingi and M. flaviventer, but the presence of conifers was important to C. lateralis. Precipitation was important in defining the niche for all three species, positively so for U. beldingi, and negatively for the other two species. The niche breadth of these three species was also positively associated with geographic range size. Mammals in high-elevation mountain systems often are perceived as vulnerable to climate shifts, but our results underscore the importance of also including non-climate-based factors in defining the niche. The overall magnitude of niche selection for all three species was driven by a combination of topographic, climatic, and landcover factors; thus, efforts to forecast areas where these species can persist in the future need to evaluate from more than just a climatic perspective.
Collapse
Affiliation(s)
- Aviva J. Rossi
- Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisOne Shields AvenueDavisCalifornia95616USA
| | - Robert C. Klinger
- Western Ecological Research CenterU.S. Geological Survey2761 Glenbrook WayBishopCalifornia93514USA
| | - Elise C. Hellwig
- Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisOne Shields AvenueDavisCalifornia95616USA
| | - Dirk H. Van Vuren
- Department of Wildlife, Fish, & Conservation BiologyUniversity of California, DavisOne Shields AvenueDavisCalifornia95616USA
| |
Collapse
|
17
|
He P, Li Y, Huo T, Meng F, Peng C, Bai M. Priority planting area planning for cash crops under heavy metal pollution and climate change: A case study of Ligusticum chuanxiong Hort. FRONTIERS IN PLANT SCIENCE 2023; 14:1080881. [PMID: 36818883 PMCID: PMC9928953 DOI: 10.3389/fpls.2023.1080881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Soil pollution by heavy metals and climate change pose substantial threats to the habitat suitability of cash crops. Discussing the suitability of cash crops in this context is necessary for the conservation and management of species. We developed a comprehensive evaluation system that is universally applicable to all plants stressed by heavy metal pollution. METHODS The MaxEnt model was used to simulate the spatial distribution of Ligusticum chuanxiong Hort within the study area (Sichuan, Shaanxi, and Chongqing) based on current and future climate conditions (RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios). We established the current Cd pollution status in the study area using kriging interpolation and kernel density. Additionally, the three scenarios were used in prediction models to simulate future Cd pollution conditions based on current Cd pollution data. The current and future priority planting areas for L. chuanxiong were determined by overlay analysis, and two levels of results were obtained. RESULTS The results revealed that the current first- and secondary-priority planting areas for L. chuanxiong were 2.06 ×103 km2 and 1.64 ×104 km2, respectively. Of these areas, the seven primary and twelve secondary counties for current L. chuanxiong cultivation should be given higher priority; these areas include Meishan, Qionglai, Pujiang, and other regions. Furthermore, all the priority zones based on the current and future scenarios were mainly concentrated on the Chengdu Plain, southeastern Sichuan and northern Chongqing. Future planning results indicated that Renshou, Pingwu, Meishan, Qionglai, Pengshan, and other regions are very important for L. chuanxiong planting, and a pessimistic scenario will negatively impact this potential planting. The spatial dynamics of priority areas in 2050 and 2070 clearly fluctuated under different prediction scenarios and were mainly distributed in northern Sichuan and western Chongqing. DISCUSSION Given these results, taking reasonable measures to replan and manage these areas is necessary. This study provides. not only a useful reference for the protection and cultivation of L. chuanxiong, but also a framework for analyzing other cash crops.
Collapse
Affiliation(s)
- Ping He
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yunfeng Li
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Chengde Medical University, Chengde, China
| | - Tongtong Huo
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Fanyun Meng
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
McCulloch GA, Waters JM. Rapid adaptation in a fast-changing world: Emerging insights from insect genomics. GLOBAL CHANGE BIOLOGY 2023; 29:943-954. [PMID: 36333958 PMCID: PMC10100130 DOI: 10.1111/gcb.16512] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 05/31/2023]
Abstract
Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.
Collapse
|
19
|
Ara SR, Zarrintab M, Rajabizadeh M, Kami HG. Ecological niche modeling uncovered that Holocene warming is responsible for disjoint distribution of Zamenis persicus (Werner, 1913) (Squamata: Colubridae). ZOOLOGY IN THE MIDDLE EAST 2022. [DOI: 10.1080/09397140.2022.2145793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sahar Roshan Ara
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Zarrintab
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mahdi Rajabizadeh
- Department of Biodiversity, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
- Inria Startup Studio, AI.Nature Team, Paris, France
| | - Haji Gholi Kami
- Department of Biology, Faculty of Sciences, Golestan University, Gorgan, Iran
| |
Collapse
|
20
|
Liu M, Sun W, Ma Z, Guo C, Chen J, Wu Q, Wang X, Chen H. Integrated network analyses identify MYB4R1 neofunctionalization in the UV-B adaptation of Tartary buckwheat. PLANT COMMUNICATIONS 2022; 3:100414. [PMID: 35923114 PMCID: PMC9700134 DOI: 10.1016/j.xplc.2022.100414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
A hallmark of adaptive evolution is innovation in gene function, which is associated with the development of distinct roles for genes during plant evolution; however, assessing functional innovation over long periods of time is not trivial. Tartary buckwheat (Fagopyrum tataricum) originated in the Himalayan region and has been exposed to intense UV-B radiation for a long time, making it an ideal species for studying novel UV-B response mechanisms in plants. Here, we developed a workflow to obtain a co-functional network of UV-B responses using data from more than 10,000 samples in more than 80 projects with multi-species and multi-omics data. Dissecting the entire network revealed that flavonoid biosynthesis was most significantly related to the UV-B response. Importantly, we found that the regulatory factor MYB4R1, which resides at the core of the network, has undergone neofunctionalization. In vitro and in vivo experiments demonstrated that MYB4R1 regulates flavonoid and anthocyanin accumulation in response to UV-B in buckwheat by binding to L-box motifs in the FtCHS, FtFLS, and FtUFGT promoters. We used deep learning to develop a visual discrimination model of buckwheat flavonoid content based on natural populations exposed to global UV-B radiation. Our study highlights the critical role of gene neofunctionalization in UV-B adaptation.
Collapse
Affiliation(s)
- Moyang Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjun Sun
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Zhaotang Ma
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China; State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Key Laboratory of Major Crop Diseases and Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Chaocheng Guo
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiahao Chen
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiyin Wang
- School of Life Science, North China University of Science and Technology, Tangshan 063210, China.
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, China.
| |
Collapse
|
21
|
Plant conservation in the Mesoamerican biodiversity hotspot: a case study on the Piper genus in Veracruz (Mexico). Trop Ecol 2022. [DOI: 10.1007/s42965-022-00271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Strader ME, Wolak ME, Simon OM, Hofmann GE. Genetic variation underlies plastic responses to global change drivers in the purple sea urchin, Strongylocentrotus purpuratus. Proc Biol Sci 2022; 289:20221249. [PMID: 36043281 PMCID: PMC9428524 DOI: 10.1098/rspb.2022.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity and adaptive evolution enable population persistence in response to global change. However, there are few experiments that test how these processes interact within and across generations, especially in marine species with broad distributions experiencing spatially and temporally variable temperature and pCO2. We employed a quantitative genetics experiment with the purple sea urchin, Strongylocentrotus purpuratus, to decompose family-level variation in transgenerational and developmental plastic responses to ecologically relevant temperature and pCO2. Adults were conditioned to controlled non-upwelling (high temperature, low pCO2) or upwelling (low temperature, high pCO2) conditions. Embryos were reared in either the same conditions as their parents or the crossed environment, and morphological aspects of larval body size were quantified. We find evidence of family-level phenotypic plasticity in response to different developmental environments. Among developmental environments, there was substantial additive genetic variance for one body size metric when larvae developed under upwelling conditions, although this differed based on parental environment. Furthermore, cross-environment correlations indicate significant variance for genotype-by-environment interactive effects. Therefore, genetic variation for plasticity is evident in early stages of S. purpuratus, emphasizing the importance of adaptive evolution and phenotypic plasticity in organismal responses to global change.
Collapse
Affiliation(s)
- Marie E. Strader
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Matthew E. Wolak
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Olivia M. Simon
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Gretchen E. Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
23
|
Turriago JL, Tejedo M, Hoyos JM, Bernal MH. The effect of thermal microenvironment in upper thermal tolerance plasticity in tropical tadpoles. Implications for vulnerability to climate warming. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:746-759. [PMID: 35674344 DOI: 10.1002/jez.2632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/09/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Current climate change is generating accelerated increase in extreme heat events and organismal plastic adjustments in upper thermal tolerances, (critical thermal maximum -CTmax ) are recognized as the quicker mitigating mechanisms. However, current research casts doubt on the actual mitigating role of thermal acclimation to face heat impacts, due to its low magnitude and weak environmental signal. Here, we examined these drawbacks by first estimating maximum extent of thermal acclimation by examining known sources of variation affecting CTmax expression, such as daily thermal fluctuation and heating rates. Second, we examined whether the magnitude and pattern of CTmax plasticity is dependent of the thermal environment by comparing the acclimation responses of six species of tropical amphibian tadpoles inhabiting thermally contrasting open and shade habitats and, finally, estimating their warming tolerances (WT = CTmax - maximum temperatures) as estimator of heating risk. We found that plastic CTmax responses are improved in tadpoles exposed to fluctuating daily regimens. Slow heating rates implying longer duration assays determined a contrasting pattern in CTmax plastic expression, depending on species environment. Shade habitat species suffer a decline in CTmax whereas open habitat tadpoles greatly increase it, suggesting an adaptive differential ability of hot exposed species to quick hardening adjustments. Open habitat tadpoles although overall acclimate more than shade habitat species, cannot capitalize this beneficial increase in CTmax, because the maximum ambient temperatures are very close to their critical limits, and this increase may not be large enough to reduce acute heat stress under the ongoing global warming.
Collapse
Affiliation(s)
- Jorge L Turriago
- Department of Biology, Grupo de Herpetología, Eco-Fisiología & Etología, Universidad del Tolima, Tolima, Colombia
- Programa de Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Julio M Hoyos
- Department of Biology, Grupo UNESIS, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Manuel H Bernal
- Department of Biology, Grupo de Herpetología, Eco-Fisiología & Etología, Universidad del Tolima, Tolima, Colombia
| |
Collapse
|
24
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
25
|
Speciation in a metapopulation model upon environmental changes. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Cornille A, Tiret M, Salcedo A, Huang HR, Orsucci M, Milesi P, Kryvokhyzha D, Holm K, Ge XJ, Stinchcombe JR, Glémin S, Wright SI, Lascoux M. The relative role of plasticity and demographic history in Capsella bursa-pastoris: a common garden experiment in Asia and Europe. AOB PLANTS 2022; 14:plac011. [PMID: 35669442 PMCID: PMC9162126 DOI: 10.1093/aobpla/plac011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/28/2022] [Indexed: 05/15/2023]
Abstract
The colonization success of a species depends on the interplay between its phenotypic plasticity, adaptive potential and demographic history. Assessing their relative contributions during the different phases of a species range expansion is challenging, and requires large-scale experiments. Here, we investigated the relative contributions of plasticity, performance and demographic history to the worldwide expansion of the shepherd's purse, Capsella bursa-pastoris. We installed two large common gardens of the shepherd's purse, a young, self-fertilizing, allopolyploid weed with a worldwide distribution. One common garden was located in Europe, the other in Asia. We used accessions from three distinct genetic clusters (Middle East, Europe and Asia) that reflect the demographic history of the species. Several life-history traits were measured. To explain the phenotypic variation between and within genetic clusters, we analysed the effects of (i) the genetic clusters, (ii) the phenotypic plasticity and its association to fitness and (iii) the distance in terms of bioclimatic variables between the sampling site of an accession and the common garden, i.e. the environmental distance. Our experiment showed that (i) the performance of C. bursa-pastoris is closely related to its high phenotypic plasticity; (ii) within a common garden, genetic cluster was a main determinant of phenotypic differences; and (iii) at the scale of the experiment, the effect of environmental distance to the common garden could not be distinguished from that of genetic clusters. Phenotypic plasticity and demographic history both play important role at different stages of range expansion. The success of the worldwide expansion of C. bursa-pastoris was undoubtedly influenced by its strong phenotypic plasticity.
Collapse
Affiliation(s)
| | | | | | | | - Marion Orsucci
- Department of Plant Biology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Pascal Milesi
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
- Science for Life Laboratory, 752 37 Uppsala, Sweden
| | - Dmytro Kryvokhyzha
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Karl Holm
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236 Uppsala, Sweden
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - John R Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, M5S 3B2 Toronto, ON, Canada
| | | | | | | |
Collapse
|
27
|
A Review on Climate Change Impacts on Forest Ecosystem Services in the Mediterranean Basin. JOURNAL OF LANDSCAPE ECOLOGY 2022. [DOI: 10.2478/jlecol-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The Mediterranean Basin covers more than 2 million square kilometres and is surrounded by three continents: Africa, Asia and Europe. The Basin that is rich in biodiversity has tilted towards warmer and drier conditions over the last decades. The emerging climatic conditions particularly the increase in the number of climate extremes are bringing new threats and risks that will exacerbate existing pressures. The present study thoroughly reviewed the recent scientific literature and synthesized existing body of knowledge on the impacts (direct and indirect) of climate change on forest ecosystem services in the Mediterranean Basin. Despite many uncertainties about climate change in the Basin, there appears to be a consensus among a number of studies that climate change is having and will continue to have mostly negative impacts on the Mediterranean forest ecosystem services (wood and non-wood forest products, water resources, carbon storage and recreation and tourism) with possible substantial impacts in the future. Further, evidence is mounting that climate-induced natural disturbances (fires, insect pests, and pathogenic diseases) are becoming frequent and severe. The Mediterranean plants are known for their resilience to natural disturbances. However, the novel climatic conditions may exceed their resilience and alter the ecosystem services. Therefore, there is the need to mitigate the challenges posed by climate change and adapt forest management practices to impending changes to sustain the forest ecosystem services.
Collapse
|
28
|
Nauer F, Oliveira MC, Plastino EM, Yokoya NS, Fujii MT. Coping with heatwaves: How a key species of seaweed responds to heat stress along its latitudinal gradient. MARINE ENVIRONMENTAL RESEARCH 2022; 177:105620. [PMID: 35472571 DOI: 10.1016/j.marenvres.2022.105620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/19/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Marine heatwaves (MHWs) frequency and intensity are increasing around the globe, affecting marine ecosystems' structure and functioning. Understanding how key marine species respond to these short-term extreme events is urgent for predicting damage to coastal ecosystems. Hypnea pseudomusciformis presents distribution in different floristic provinces on the Brazilian coast: tropical, transition and warm-temperate. Here, we evaluate the effects of simulated heatwaves on H. pseudomusciformis populations by measuring the changes in algal growth, pigment content, and photosynthesis. Based on data for the last four decades, we characterized the MHW patterns for each of the three collection sites. Perturbation levels were identified as average intensity heatwave (Δ +2 °C), maximum intensity heatwave (Δ +4 °C) and extreme intensity heatwave (Δ +6 °C), with an average duration of seven days. Based on growth rate data, corroborated with measurements of photosynthesis fluorescence and pigment contents. H. pseudomusciformis populations exhibit distinct tolerance and physiological responses to MHWs. The tropical and transition specimens were affected by Δ + 4 °C and Δ + 6 °C MHW scenarios, while the warm-temperate specimens was the only one to recover in all the MHW scenarios tested. These data are worrisome under a global warming scenario and an increase in MHWs, indicating that tropical and transition specimens of H. pseudomusciformis may be at risk of local extinction. This knowledge will be fundamental in driving any future management intervention or policy change for the conservation of marine ecosystems.
Collapse
Affiliation(s)
- Fabio Nauer
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil.
| | - Mariana Cabral Oliveira
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Estela Maria Plastino
- Department of Botany, Institute of Biosciences, University of São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Nair S Yokoya
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| | - Mutue Toyota Fujii
- Biodiversity Conservation Center, Environmental Research Institute, Av. Miguel Estéfano 3687, 04301-902, São Paulo, Brazil
| |
Collapse
|
29
|
Love NLR, Mazer SJ. Geographic variation in offspring size: Long- and short-term climate affect mean seed mass of Streptanthus populations. Ecology 2022; 103:e3698. [PMID: 35352825 PMCID: PMC9287029 DOI: 10.1002/ecy.3698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 11/24/2022]
Abstract
Offspring size is a key functional trait that can affect subsequent life history stages; in many species, it exhibits both local adaptation and phenotypic plasticity. Variation among populations in offspring size may be explained by various factors, including local climatic conditions. However, geographic variation in climate may be partitioned into long‐term and interannual sources of variation, which may differ in their effects on population mean offspring size. To assess environmental correlates of offspring size, we evaluated geographic variation in seed mass among 88 populations representing 6 species of Streptanthus (Brassicaceae) distributed across a broad climatic gradient in California. We examined the effects of temperature‐mediated growing season length and precipitation on population mean seed mass to determine whether it is best explained by (1) long‐term mean climatic conditions; (2) interannual climate anomalies (i.e., deviations in climate from long‐term means) during the year of seed development, or (3) interactions between climate variables. Both long‐term mean climate and climate anomalies in the year of collection were associated with population mean seed mass, but their effects differed in direction and magnitude. Relatively large seeds were produced at chronically wet sites but also during drier‐than‐average years. This contrast indicates that these associations may be generated by different mechanisms (i.e., adaptive evolution vs. phenotypic plasticity) and may be evidence of countergradient plasticity in seed mass. In addition, populations occurring in locations characterized by relatively long growing seasons produced comparatively large seeds, particularly among chronically dry sites. This study highlights the need to consider that the responses of seed mass to long‐term versus recent climatic conditions may differ and that climate variables may interact to predict seed mass. Such considerations are especially important when using these patterns to forecast the long‐ and short‐term responses of seed mass to climate change. The results presented here also contribute to our broader understanding of how climate drives long‐term (e.g., local adaptation) and short‐term (e.g., phenotypic plasticity) variation in functional traits, such as offspring size across landscapes.
Collapse
Affiliation(s)
- Natalie L R Love
- Biological Sciences Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, USA.,Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
30
|
Mu Q, Guo T, Li X, Yu J. Phenotypic plasticity in plant height shaped by interaction between genetic loci and diurnal temperature range. THE NEW PHYTOLOGIST 2022; 233:1768-1779. [PMID: 34870847 DOI: 10.1111/nph.17904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Phenotypic plasticity is observed widely in plants and often studied with reaction norms for adult plant or end-of-season traits. Uncovering genetic, environmental and developmental patterns behind the observed phenotypic variation under natural field conditions is needed. Using a sorghum (Sorghum bicolor) genetic population evaluated for plant height in seven natural field conditions, we investigated the major pattern that differentiated these environments. We then examined the physiological relevance of the identified environmental index by investigating the developmental trajectory of the population with multistage height measurements in four additional environments and conducting crop growth modelling. We found that diurnal temperature range (DTR) during the rapid growth period of sorghum development was an effective environmental index. Three genetic loci (Dw1, Dw3 and qHT7.1) were consistently detected for individual environments, reaction-norm parameters across environments and growth-curve parameters through the season. Their genetic effects changed dynamically along the environmental gradient and the developmental stage. A conceptual model with three-dimensional reaction norms was proposed to showcase the interconnecting components: genotype, environment and development. Beyond genomic and environmental analyses, further integration of development and physiology at the whole-plant and molecular levels into complex trait dissection would enhance our understanding of mechanisms underlying phenotypic variation.
Collapse
Affiliation(s)
- Qi Mu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Tingting Guo
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Xianran Li
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
31
|
Hein NT, Impa SM, Wagner D, Bheemanahalli R, Kumar R, Tiwari M, Prasad PVV, Tilley M, Wu X, Neilsen M, Jagadish SVK. Grain micronutrient composition and yield components in field‐grown wheat are negatively impacted by high night‐time temperature. Cereal Chem 2022. [DOI: 10.1002/cche.10523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nathan T. Hein
- Department of Agronomy Kansas State University Manhattan Kansas USA
| | | | - Dan Wagner
- Department of Computer Science Kansas State University Manhattan Kansas USA
| | | | - Ritesh Kumar
- Department of Agronomy Kansas State University Manhattan Kansas USA
| | - Manish Tiwari
- Department of Agronomy Kansas State University Manhattan Kansas USA
| | | | - Michael Tilley
- Grain Quality and Structure Research Unit CGAHR USDA‐ARS Manhattan Kansas USA
| | - Xiaorong Wu
- Grain Quality and Structure Research Unit CGAHR USDA‐ARS Manhattan Kansas USA
| | - Mitchell Neilsen
- Department of Computer Science Kansas State University Manhattan Kansas USA
| | | |
Collapse
|
32
|
Blonder B, Ray CA, Walton JA, Castaneda M, Chadwick KD, Clyne MO, Gaüzère P, Iversen LL, Lusk M, Strimbeck GR, Troy S, Mock KE. Cytotype and genotype predict mortality and recruitment in Colorado quaking aspen (Populus tremuloides). ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02438. [PMID: 34374163 DOI: 10.1002/eap.2438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/27/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Species responses to climate change depend on environment, genetics, and interactions among these factors. Intraspecific cytotype (ploidy level) variation is a common type of genetic variation in many species. However, the importance of intraspecific cytotype variation in determining demography across environments is poorly known. We studied quaking aspen (Populus tremuloides), which occurs in diploid and triploid cytotypes. This widespread tree species is experiencing contractions in its western range, which could potentially be linked to cytotype-dependent drought tolerance. We found that interactions between cytotype and environment drive mortality and recruitment across 503 plots in Colorado. Triploids were more vulnerable to mortality relative to diploids and had reduced recruitment on more drought-prone and disturbed plots relative to diploids. Furthermore, there was substantial genotype-dependent variation in demography. Thus, cytotype and genotype variation are associated with decline in this foundation species. Future assessment of demographic responses to climate change will benefit from knowledge of how genetic and environmental mosaics interact to determine species' ecophysiology and demography.
Collapse
Affiliation(s)
- Benjamin Blonder
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, 81224, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720, USA
| | - Courtenay A Ray
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, 81224, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, 94720, USA
| | - James A Walton
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, 84322-5230, USA
| | - Marco Castaneda
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, 81224, USA
- East Los Angeles College, Monterey Park, California, 91754, USA
| | - K Dana Chadwick
- Department of Earth System Science, Stanford University, Stanford, California, 94305, USA
- Climate and Ecosystems Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Michael O Clyne
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281, USA
| | - Pierre Gaüzère
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281, USA
| | - Lars L Iversen
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281, USA
| | - Madison Lusk
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85281, USA
| | - G Richard Strimbeck
- Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Savannah Troy
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, 81224, USA
| | - Karen E Mock
- Department of Wildland Resources and Ecology Center, Utah State University, Logan, Utah, 84322-5230, USA
| |
Collapse
|
33
|
Vahsen ML, Gentile RM, Summers JL, Kleiner HS, Foster B, McCormack RM, James EW, Koch RA, Metts DL, Saunders C, Megonigal JP, Blum MJ, McLachlan JS. Accounting for variability when resurrecting dormant propagules substantiates their use in eco-evolutionary studies. Evol Appl 2021; 14:2831-2847. [PMID: 34950232 PMCID: PMC8674891 DOI: 10.1111/eva.13316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
There has been a steady rise in the use of dormant propagules to study biotic responses to environmental change over time. This is particularly important for organisms that strongly mediate ecosystem processes, as changes in their traits over time can provide a unique snapshot into the structure and function of ecosystems from decades to millennia in the past. Understanding sources of bias and variation is a challenge in the field of resurrection ecology, including those that arise because often-used measurements like seed germination success are imperfect indicators of propagule viability. Using a Bayesian statistical framework, we evaluated sources of variability and tested for zero-inflation and overdispersion in data from 13 germination trials of soil-stored seeds of Schoenoplectus americanus, an ecosystem engineer in coastal salt marshes in the Chesapeake Bay. We hypothesized that these two model structures align with an ecological understanding of dormancy and revival: zero-inflation could arise due to failed germinations resulting from inviability or failed attempts to break dormancy, and overdispersion could arise by failing to measure important seed traits. A model that accounted for overdispersion, but not zero-inflation, was the best fit to our data. Tetrazolium viability tests corroborated this result: most seeds that failed to germinate did so because they were inviable, not because experimental methods failed to break their dormancy. Seed viability declined exponentially with seed age and was mediated by seed provenance and experimental conditions. Our results provide a framework for accounting for and explaining variability when estimating propagule viability from soil-stored natural archives which is a key aspect of using dormant propagules in eco-evolutionary studies.
Collapse
Affiliation(s)
- Megan L. Vahsen
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Rachel M. Gentile
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Jennifer L. Summers
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Helena S. Kleiner
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Benjamin Foster
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Regina M. McCormack
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Evan W. James
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Rachel A. Koch
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Dailee L. Metts
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Colin Saunders
- Southeast Environmental Research CenterFlorida International UniversityMiamiFloridaUSA
| | | | - Michael J. Blum
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennesseeUSA
| | - Jason S. McLachlan
- Department of Biological SciencesUniversity of Notre DameNotre DameIndianaUSA
| |
Collapse
|
34
|
Duffy GA, Kuyucu AC, Hoskins JL, Hay EM, Chown SL. Adequate sample sizes for improved accuracy of thermal trait estimates. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Grant A. Duffy
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Arda C. Kuyucu
- Department of Biology Hacettepe University Ankara Turkey
| | | | - Eleanor M. Hay
- School of Biological Sciences Monash University Clayton Vic. Australia
| | - Steven L. Chown
- School of Biological Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
35
|
Souther S, McGraw JB, Souther JD, Waller DM. Effects of altered climates on American ginseng population dynamics. POPUL ECOL 2021. [DOI: 10.1002/1438-390x.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara Souther
- Center for Adaptable Western Landscapes School of Earth and Sustainability Northern Arizona University Flagstaff Arizona USA
| | - James B. McGraw
- Department of Biology West Virginia University Morgantown West Virginia USA
| | - John D. Souther
- Coconino National Forest United States Forest Service Flagstaff Arizona USA
| | - Donald M. Waller
- Nelson Institute of Environmental Studies University of Wisconsin—Madison Madison Wisconsin USA
| |
Collapse
|
36
|
Zhao W, Wang X, Li L, Li J, Yin H, Zhao Y, Chen X. Evaluation of environmental factors affecting the genetic diversity, genetic structure, and the potential distribution of Rhododendron aureum Georgi under changing climate. Ecol Evol 2021; 11:12294-12306. [PMID: 34594500 PMCID: PMC8462154 DOI: 10.1002/ece3.7803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/19/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022] Open
Abstract
Understanding genetic variation and structure, adaptive genetic variation, and its relationship with environmental factors is of great significance to understand how plants adapt to climate change and design effective conservation and management strategies. The objective of this study was to (I) investigate the genetic diversity and structure by AFLP markers in 36 populations of R. aureum from northeast China, (Ⅱ) reveal the relative contribution of geographical and environmental impacts on the distribution and genetic differentiation of R. aureum, (Ⅲ) identify outlier loci under selection and evaluate the association between outlier loci and environmental factors, and (Ⅳ) exactly calculate the development trend of population of R. aureum, as it is confronted with severe climate change and to provide information for designing effective conservation and management strategies. We found high genetic variation (I = 0.584) and differentiation among populations (ΦST = 0.703) and moderate levels of genetic diversity within populations of R. aureum. A significant relationship between genetic distance and environmental distance was identified, which suggested that the differentiation of different populations was caused by environmental factors. Using BayeScan and Dfdist, 42 outlier loci are identified and most of the outlier loci are associated with climate or relief factors, suggesting that these loci are linked to genes that are involved in the adaptability of R. aureum to the environment. Species distribution models (SDMs) showed that climate warming will cause a significant reduction in suitable areas for R. aureum, especially under the RCP 85 scenario. Our results help to understand the potential response of R. aureum to climatic changes and provide new perspectives for R. aureum resource management and conservation strategies.
Collapse
Affiliation(s)
- Wei Zhao
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and CultivationJilin UniversityChangchunChina
- School of Life ScienceJilin UniversityChangchunChina
| | - Xiaolong Wang
- Medical Technology DepartmentQiqihar Medical UniversityQiqiharChina
| | - Lin Li
- Medical Technology DepartmentQiqihar Medical UniversityQiqiharChina
| | - Jiangnan Li
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and CultivationJilin UniversityChangchunChina
- School of Life ScienceJilin UniversityChangchunChina
| | - Hang Yin
- Jilin Provincial Joint Key Laboratory of Changbai Mountain Biocoenosis and BiodiversityAntuChina
- Academy of Sciences of Changbai MountainChangbaishanChina
| | - Ying Zhao
- Jilin Provincial Joint Key Laboratory of Changbai Mountain Biocoenosis and BiodiversityAntuChina
- Academy of Sciences of Changbai MountainChangbaishanChina
| | - Xia Chen
- National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and CultivationJilin UniversityChangchunChina
- School of Life ScienceJilin UniversityChangchunChina
| |
Collapse
|
37
|
Rainha RN, Martinez PA, Moraes LJCL, Castro KMSA, Réjaud A, Fouquet A, Leite RN, Rodrigues MT, Werneck FP. Subtle environmental variation affects phenotypic differentiation of shallow divergent treefrog lineages in Amazonia. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
Amazonia harbours a vast biotic and ecological diversity, enabling investigation of the effects of microevolutionary processes and environmental variation on species diversification. Integrative approaches combining phenotypic and genetic variation can improve our knowledge on diversification processes in megadiverse regions. Here, we investigate the influence of environmental and geographic variation on the genetic and morphological differentiation in the Amazonian Boana calcarata-fasciata (Anura: Hylidae) species complex. We analysed the variation of one mtDNA gene from individuals of different forest environments, and assessed their phylogenetic relationships and species limits to define the lineages to perform a phenotypic-environmental approach. We collected morphological data (head shape and size) using 3D models and investigated the phylogenetic signal, evolutionary model and influence of environmental variables on morphology. We verified associations between environmental and geographical distances with morphological and genetic variation using distance-based redundancy analyses and Mantel tests. We found an even higher cryptic diversity than already recognized within the species complex. Body size and head shape varied among specimens, but did not present phylogenetic signal, diverging under a selective evolutionary model. Our results show that diverse factors have influenced morphological and genetic variation, but environmental conditions such as vegetation cover, precipitation and climate change velocity influenced morphological diversification. Possible population-level mechanisms such as parallel morphological evolution or plastic responses to similar environments could account for such patterns in these typical Amazonian treefrogs.
Collapse
Affiliation(s)
- Raíssa N Rainha
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| | - Pablo A Martinez
- Laboratorio de Pesquisas Integrativas em Biodiversidade, Departamento de Biologia, Universidade Federal de Sergipe, Avenida Marechal Rondon, Aracaju, Sergipe, Brazil
| | - Leandro J C L Moraes
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| | - Kathleen M S A Castro
- Laboratorio de Pesquisas Integrativas em Biodiversidade, Departamento de Biologia, Universidade Federal de Sergipe, Avenida Marechal Rondon, Aracaju, Sergipe, Brazil
| | - Alexandre Réjaud
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, Bâtiment, CNRS, IRD, Toulouse, France
| | - Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université Paul Sabatier, Bâtiment, CNRS, IRD, Toulouse, France
| | - Rafael N Leite
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| | - Miguel T Rodrigues
- Departamento de Zoologia, Universidade de São Paulo Instituto de Biociências, Rua do Matão, travessa, nº. São Paulo, São Paulo, Brazil
| | - Fernanda P Werneck
- Programa de Pós-Graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Avenida André Araújo, Manaus, Amazonas, Brazil
| |
Collapse
|
38
|
Li A, Li L, Zhang Z, Li S, Wang W, Guo X, Zhang G. Noncoding variation and transcriptional plasticity promote thermal adaptation in oysters by altering energy metabolism. Mol Biol Evol 2021; 38:5144-5155. [PMID: 34390581 PMCID: PMC8557435 DOI: 10.1093/molbev/msab241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genetic variation and phenotypic plasticity are both important to adaptive evolution. However, how they act together on particular traits remains poorly understood. Here, we integrated phenotypic, genomic, and transcriptomic data from two allopatric but closely related congeneric oyster species, Crassostrea angulata from southern/warm environments and Crassostrea gigas from northern/cold environments, to investigate the roles of genetic divergence and plasticity in thermal adaptation. Reciprocal transplantation experiments showed that both species had higher fitness in their native habitats than in nonnative environments, indicating strong adaptive divergence. The southern species evolved higher transcriptional plasticity, and the plasticity was adaptive, suggesting that increased plasticity is important for thermal adaptation to warm climates. Genome-wide comparisons between the two species revealed that genes under selection tended to respond to environmental changes and showed higher sequence divergence in noncoding regions. All genes under selection and related to energy metabolism exhibited habitat-specific expression with genes involved in ATP production and lipid catabolism highly expressed in warm/southern habitats, and genes involved in ATP consumption and lipid synthesis were highly expressed in cold/northern habitats. The gene for acyl-CoA desaturase, a key enzyme for lipid synthesis, showed strong selective sweep in the upstream noncoding region and lower transcription in the southern species. These results were further supported by the lower free fatty acid (FFA) but higher ATP content in southern species and habitat, pointing to significance of ATP/FFA trade-off. Our findings provide evidence that noncoding variation and transcriptional plasticity play important roles in shaping energy metabolism for thermal adaptation in oysters.
Collapse
Affiliation(s)
- Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ziyan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shiming Li
- BGI Genomics, BGI-Shenzhen, China Shenzhen.,BGI-Argo Seed Service (Wuhan) Co., Ltd, Wuhan, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, Port Norris, NJ, USA
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,National & Local Joint Engineering Key Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
39
|
Chen W, Wang L, Wang J, Joshi S, Xiang S, Tariq A, Liu X, Liao Y, Wu Y. Divergent Responses of Floral Traits of Lonicera nervosa to Altitudinal Gradients at the Eastern Margin of Hengduan Mountains. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.719838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Understanding phenotypic responses is crucial for predicting and managing the effects of environmental change on native species. Color and display size are typically used to evaluate the utilization value of ornamental plants, which are also important ornamental characters of Lonicera nervosa Maxim. (L. nervosa). However, there is limited documentation of its floral environmental adaptation. The environmental conditions for the development of an organism changes with altitudinal variation. The aim of this research was to find flower trait variability maintenance and the tradeoff among the organs in five different populations of L. nervosa growing at distinct altitudes. We investigated the distribution patterns of floral color, floral display, and biomass tradeoff along a 700-m altitude gradient from 2,950 to 3,650 m. One-way ANOVA analysis was performed to assess the variability of flower traits and floral color across different altitudes. Moreover, correlations and tradeoffs between flowers and vegetative organs were also observed at different altitude ranges. The results indicated that L. nervosa flowers had a strong adaptability along the elevation and divergent altitude-range-specific patterns, which was divided by an altitude breakpoint at around 3,300 m. Below 3,300 m, petal lightness (petal L) decreased, but total floral display area (TFDA), individual floral dry mass (IFDM), and total floral dry mass (TFDM) increased with an increase in altitude. Whereas, above 3,300 m no significant difference was observed in petal L, TFDA, IFDM, and TFDM decreased slightly with an increase in altitude. The responsibility for the selection on floral color at a lower altitude was stronger than that at a higher altitude, while the selection agents on floral biomass had significant effects within the entire altitude range. However, the effects on floral biomass were opposite on both sides of 3,300 m. Thus, floral trait and floral color can be useful indicators for the domestication of horticultural plants and help to evaluate and initiate management and conservation actions.
Collapse
|
40
|
Blumstein M, Hopkins R. Adaptive variation and plasticity in non-structural carbohydrate storage in a temperate tree species. PLANT, CELL & ENVIRONMENT 2021; 44:2494-2505. [PMID: 33244757 DOI: 10.1111/pce.13959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 06/11/2023]
Abstract
Trees' total amount of non-structural carbohydrate (NSC) stores and the proportion of these stores residing as insoluble starch are vital traits for individuals living in variable environments. However, our understanding of how stores vary in response to environmental stress is poorly understood as the genetic component of storage is rarely accounted for in studies. Here, we quantified variation in NSC traits in branch samples taken from over 600 clonally transplanted black cottonwood (Populus trichocarpa) trees grown in two common gardens. We found heritable variation in both total NSC stores and the proportion of stores in starch (H2TNC = 0.19, H2PropStarch = 0.31), indicating a substantial genetic component of variation. In addition, we found high amounts of plasticity in both traits in response to cold temperatures and significant genotype-by-environment (GxE) interactions in the total amount of NSC stored (54% of P is GxE). This finding of high GxE indicates extensive variation across trees in their response to environment, which may explain why previous studies of carbohydrate stores' responses to stress have failed to converge on a consistent pattern. Overall, we found high amounts of environmental and genetic variation in NSC storage concentrations, which may bolster species against future climate change.
Collapse
Affiliation(s)
- Meghan Blumstein
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Robin Hopkins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
- The Arnold Arboretum, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Blum MJ, Saunders CJ, McLachlan JS, Summers J, Craft C, Herrick JD. A century-long record of plant evolution reconstructed from a coastal marsh seed bank. Evol Lett 2021; 5:422-431. [PMID: 34367666 PMCID: PMC8327947 DOI: 10.1002/evl3.242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 04/30/2021] [Accepted: 05/20/2021] [Indexed: 11/12/2022] Open
Abstract
Evidence is mounting that climate-driven shifts in environmental conditions can elicit organismal evolution, yet there are sparingly few long-term records that document the tempo and progression of responses, particularly for plants capable of transforming ecosystems. In this study, we "resurrected" cohorts of a foundational coastal marsh sedge (Schoenoplectus americanus) from a time-stratified seed bank to reconstruct a century-long record of heritable variation in response to salinity exposure. Common-garden experiments revealed that S. americanus exhibits heritable variation in phenotypic traits and biomass-based measures of salinity tolerance. We found that responses to salinity exposure differed among the revived cohorts, with plants from the early 20th century exhibiting greater salinity tolerance than those from the mid to late 20th century. Fluctuations in salinity tolerance could reflect stochastic variation but a congruent record of genotypic variation points to the alternative possibility that the loss and gain in functionality are driven by selection, with comparisons to historical rainfall and paleosalinity records suggesting that selective pressures vary according to shifting estuarine conditions. Because salinity tolerance in S. americanus is tightly coupled to primary productivity and other vital ecosystem attributes, these findings indicate that organismal evolution merits further consideration as a factor shaping coastal marsh responses to climate change.
Collapse
Affiliation(s)
- Michael J. Blum
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee37996
| | - Colin J. Saunders
- Southeast Environmental Research CenterFlorida International UniversityMiamiFlorida33199
| | - Jason S. McLachlan
- Department of Biological SciencesUniversity of Notre DameSouth BendIndiana46556
| | - Jennifer Summers
- Department of Ecology & Evolutionary BiologyUniversity of TennesseeKnoxvilleTennessee37996
| | - Christopher Craft
- School of Public and Environmental AffairsIndiana UniversityBloomingtonIndiana47405
| | - Jeffrey D. Herrick
- U.S Environmental Protection AgencyOffice of Research and DevelopmentResearch Triangle ParkNorth Carolina27711
| |
Collapse
|
42
|
Steiner KC, Graboski LE, Berkebile JL, Fei S, Leites LP. Uncertainty in the modelled mortality of two tree species (
Fraxinus
) under novel climatic regimes. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Kim C. Steiner
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
| | - Lake E. Graboski
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
| | - Jennifer L. Berkebile
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
- Pennsylvania Certified Organic Spring Mills PA USA
| | - Songlin Fei
- Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
| | - Laura P. Leites
- Department of Ecosystem Science and Management The Pennsylvania State University University Park PA USA
| |
Collapse
|
43
|
Asaduzzaman M, Koetz E, Wu H, Hopwood M, Shephard A. Fate and adaptive plasticity of heterogeneous resistant population of Echinochloa colona in response to glyphosate. Sci Rep 2021; 11:14858. [PMID: 34290336 PMCID: PMC8295337 DOI: 10.1038/s41598-021-94370-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the fate of heterogenous herbicide resistant weed populations in response to management practices can help towards overcoming the resistance issues. We selected one pair of susceptible (S) and resistant (R) phenotypes (2B21-R vs 2B21-S and 2B37-R vs 2B37-S) separately from two glyphosate resistant heterogeneous populations (2B21 and 2B37) of Echinochloa colona and their fate and adaptive plasticity were evaluated after glyphosate application. Our study revealed the glyphosate concentration required to cause a 50% plant mortality (LD50) was 1187, 200, 3064, and 192 g a. e. ha-1 for the four phenotypes 2B21-R, 2B21-S, 2B37-R, and 2B37-S respectively. Both S phenotypes accumulated more biomass than the R phenotypes at the lower application rates (34 and 67.5 g a. e. ha-1) of glyphosate. However, the R phenotypes generally produced more biomass at rates of glyphosate higher than 100 g a. e. ha-1 throughout the growth period. Plants from the R phenotypes of 2B21 and 2B37 generated 32% and 38% fewer spikesplant-1 than their respective S counterparts in the absence of glyphosate respectively. The spike and seed numbersplant-1 significantly higher in R than S phenotypes at increased rates of glyphosate and these relationships were significant. Our research suggests that glyphosate-resistant E. colona plants will be less fit than susceptible plants (from the same population) in the absence of glyphosate. But in the presence of glyphosate, the R plants may eventually dominate in the field. The use of glyphosate is widespread in field, would favour the selection towards resistant individuals.
Collapse
Affiliation(s)
- Md Asaduzzaman
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia.
| | - Eric Koetz
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Hanwen Wu
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Michael Hopwood
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| | - Adam Shephard
- NSW Department of Primary Industries, Pine Gully Road, Wagga Wagga, NSW, 2650, Australia
| |
Collapse
|
44
|
Jeplawy JR, Cooper HF, Marks J, Lindroth RL, Andrews MI, Compson ZG, Gehring C, Hultine KR, Grady K, Whitham TG, Allan GJ, Best RJ. Plastic responses to hot temperatures homogenize riparian leaf litter, speed decomposition, and reduce detritivores. Ecology 2021; 102:e03461. [PMID: 34236702 DOI: 10.1002/ecy.3461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/12/2021] [Accepted: 05/13/2021] [Indexed: 01/10/2023]
Abstract
Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.
Collapse
Affiliation(s)
- Joann R Jeplawy
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Tetra Tech, Inc., Denver, Colorado, 80202, USA
| | - Hillary F Cooper
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Jane Marks
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Richard L Lindroth
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, 53706, USA
| | - Morgan I Andrews
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Zacchaeus G Compson
- Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, Denton, Texas, 76203, USA
| | - Catherine Gehring
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Kevin R Hultine
- Department of Research, Conservation and Collections, Desert Botanical Garden, Phoenix, Arizona, 85008, USA
| | - Kevin Grady
- Department of Forestry, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Thomas G Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Gerard J Allan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, 86011, USA.,Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| | - Rebecca J Best
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, Arizona, 86011, USA
| |
Collapse
|
45
|
Impa SM, Raju B, Hein NT, Sandhu J, Prasad PVV, Walia H, Jagadish SVK. High night temperature effects on wheat and rice: Current status and way forward. PLANT, CELL & ENVIRONMENT 2021; 44:2049-2065. [PMID: 33576033 DOI: 10.1111/pce.14028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 01/31/2021] [Indexed: 05/25/2023]
Abstract
Rapid increases in minimum night temperature than in maximum day temperature is predicted to continue, posing significant challenges to crop productivity. Rice and wheat are two major staples that are sensitive to high night-temperature (HNT) stress. This review aims to (i) systematically compare the grain yield responses of rice and wheat exposed to HNT stress across scales, and (ii) understand the physiological and biochemical responses that affect grain yield and quality. To achieve this, we combined a synthesis of current literature on HNT effects on rice and wheat with information from a series of independent experiments we conducted across scales, using a common set of genetic materials to avoid confounding our findings with differences in genetic background. In addition, we explored HNT-induced alterations in physiological mechanisms including carbon balance, source-sink metabolite changes and reactive oxygen species. Impacts of HNT on grain developmental dynamics focused on grain-filling duration, post-flowering senescence, changes in grain starch and protein composition, starch metabolism enzymes and chalk formation in rice grains are summarized. Finally, we highlight the need for high-throughput field-based phenotyping facilities for improved assessment of large-diversity panels and mapping populations to aid breeding for increased resilience to HNT in crops.
Collapse
Affiliation(s)
- Somayanda M Impa
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | | | - Nathan T Hein
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Jaspreet Sandhu
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - P V Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - S V Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
- Sustainable Impact Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| |
Collapse
|
46
|
Schaarschmidt S, Lawas LMF, Kopka J, Jagadish SVK, Zuther E. Physiological and molecular attributes contribute to high night temperature tolerance in cereals. PLANT, CELL & ENVIRONMENT 2021; 44:2034-2048. [PMID: 33764557 DOI: 10.1111/pce.14055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 05/24/2023]
Abstract
Asymmetric warming resulting in a faster increase in night compared to day temperatures affects crop yields negatively. Physiological characterization and agronomic findings have been complemented more recently by molecular biology approaches including transcriptomic, proteomic, metabolomic and lipidomic investigations in crops exposed to high night temperature (HNT) conditions. Nevertheless, the understanding of the underlying mechanisms causing yield decline under HNT is still limited. The discovery of significant differences between HNT-tolerant and HNT-sensitive cultivars is one of the main research directions to secure continuous food supply under the challenge of increasing climate change. With this review, we provide a summary of current knowledge on the physiological and molecular basis of contrasting HNT tolerance in rice and wheat cultivars. Requirements for HNT tolerance and the special adaptation strategies of the HNT-tolerant rice cultivar Nagina-22 (N22) are discussed. Putative metabolite markers for HNT tolerance useful for marker-assisted breeding are suggested, together with future research directions aimed at improving food security under HNT conditions.
Collapse
Affiliation(s)
| | | | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
47
|
Xu J, Misra G, Sreenivasulu N, Henry A. What happens at night? Physiological mechanisms related to maintaining grain yield under high night temperature in rice. PLANT, CELL & ENVIRONMENT 2021; 44:2245-2261. [PMID: 33715176 DOI: 10.1111/pce.14046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 05/25/2023]
Abstract
High night temperature (HNT) causes substantial yield loss in rice (Oryza sativa L.). In this study, the physiological processes related to flag leaf dark respiration (Rn) and grain filling under HNT were explored in a multi-parent advanced generation intercross population developed for heat tolerance (MAGICheat ) along with selected high temperature tolerant breeding lines developed with heat-tolerant parents. Within a subset of lines, flag leaf Rn under HNT treatment was related to lower spikelet number per panicle and thus reduced yield. HNT enhanced the nighttime reduction of non-structural carbohydrates (NSC) in stem tissue, but not in leaves, and stem nighttime NSC reduction was negatively correlated with yield. Between heading and harvest, the major difference in NSC concentration was found for starch, but not for soluble sugar. HNT weakened the relationship between NSC remobilization and harvest index at both the phenotypic and genetic level. By using genome-wide association studies, an invertase inhibitor, MADS box transcription factors and a UDP-glycosyltransferase that were identified as candidate genes orchestrating stem NSC remobilization in the control treatment were lost under HNT. With the identification of physiological and genetic components related to rice HNT response, this study offers promising prebreeding materials and trait targets to sustain yield stability under climate change.
Collapse
Affiliation(s)
- Jiemeng Xu
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Gopal Misra
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Nese Sreenivasulu
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| | - Amelia Henry
- Strategic Innovation Platform, International Rice Research Institute, Los Baños, Philippines
| |
Collapse
|
48
|
Hällfors MH, Pöyry J, Heliölä J, Kohonen I, Kuussaari M, Leinonen R, Schmucki R, Sihvonen P, Saastamoinen M. Combining range and phenology shifts offers a winning strategy for boreal Lepidoptera. Ecol Lett 2021; 24:1619-1632. [PMID: 34101328 DOI: 10.1111/ele.13774] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 04/14/2021] [Indexed: 01/01/2023]
Abstract
Species can adapt to climate change by adjusting in situ or by dispersing to new areas, and these strategies may complement or enhance each other. Here, we investigate temporal shifts in phenology and spatial shifts in northern range boundaries for 289 Lepidoptera species by using long-term data sampled over two decades. While 40% of the species neither advanced phenology nor moved northward, nearly half (45%) used one of the two strategies. The strongest positive population trends were observed for the minority of species (15%) that both advanced flight phenology and shifted their northern range boundaries northward. We show that, for boreal Lepidoptera, a combination of phenology and range shifts is the most viable strategy under a changing climate. Effectively, this may divide species into winners and losers based on their propensity to capitalize on this combination, with potentially large consequences on future community composition.
Collapse
Affiliation(s)
- Maria H Hällfors
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Life-history Evolution Research Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Juha Pöyry
- Biodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Janne Heliölä
- Biodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Ilmari Kohonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Mikko Kuussaari
- Biodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, Finland
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, Kajaani, Finland
| | | | - Pasi Sihvonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Marjo Saastamoinen
- Research Centre for Environmental Change, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Life-history Evolution Research Group, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Ma G, Bai C, Rudolf VHW, Ma C. Night warming alters mean warming effects on predator–prey interactions by modifying predator demographics and interaction strengths. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | - Chun‐Ming Bai
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
50
|
Manriquez B, Muller D, Prigent-Combaret C. Experimental Evolution in Plant-Microbe Systems: A Tool for Deciphering the Functioning and Evolution of Plant-Associated Microbial Communities. Front Microbiol 2021; 12:619122. [PMID: 34025595 PMCID: PMC8137971 DOI: 10.3389/fmicb.2021.619122] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/22/2022] Open
Abstract
In natural environments, microbial communities must constantly adapt to stressful environmental conditions. The genetic and phenotypic mechanisms underlying the adaptive response of microbial communities to new (and often complex) environments can be tackled with a combination of experimental evolution and next generation sequencing. This combination allows to analyse the real-time evolution of microbial populations in response to imposed environmental factors or during the interaction with a host, by screening for phenotypic and genotypic changes over a multitude of identical experimental cycles. Experimental evolution (EE) coupled with comparative genomics has indeed facilitated the monitoring of bacterial genetic evolution and the understanding of adaptive evolution processes. Basically, EE studies had long been done on single strains, allowing to reveal the dynamics and genetic targets of natural selection and to uncover the correlation between genetic and phenotypic adaptive changes. However, species are always evolving in relation with other species and have to adapt not only to the environment itself but also to the biotic environment dynamically shaped by the other species. Nowadays, there is a growing interest to apply EE on microbial communities evolving under natural environments. In this paper, we provide a non-exhaustive review of microbial EE studies done with systems of increasing complexity (from single species, to synthetic communities and natural communities) and with a particular focus on studies between plants and plant-associated microorganisms. We highlight some of the mechanisms controlling the functioning of microbial species and their adaptive responses to environment changes and emphasize the importance of considering bacterial communities and complex environments in EE studies.
Collapse
Affiliation(s)
| | | | - Claire Prigent-Combaret
- UMR 5557 Ecologie Microbienne, VetAgro Sup, CNRS, INRAE, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|