1
|
Saito VS, Kratina P, Barbosa G, Ferreira FC, Leal JB, Zemelka G, Sarmento H, Perkins DM. Untangling the complex food webs of tropical rainforest streams. J Anim Ecol 2024; 93:1022-1035. [PMID: 38847240 DOI: 10.1111/1365-2656.14121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 08/09/2024]
Abstract
Food webs depict the tangled web of trophic interactions associated with the functioning of an ecosystem. Understanding the mechanisms providing stability to these food webs is therefore vital for conservation efforts and the management of natural systems. Here, we first characterised a tropical stream meta-food web and five individual food webs using a Bayesian Hierarchical approach unifying three sources of information (gut content analysis, literature compilation and stable isotope data). With data on population-level biomass and individually measured body mass, we applied a bioenergetic model and assessed food web stability using a Lotka-Volterra system of equations. We then assessed the resilience of the system to individual species extinctions using simulations and investigated the network patterns associated with systems with higher stability. The model resulted in a stable meta-food web with 307 links among the 61 components. At the regional scale, 70% of the total energy flow occurred through a set of 10 taxa with large variation in body masses. The remaining 30% of total energy flow relied on 48 different taxa, supporting a significant dependency on a diverse community. The meta-food web was stable against individual species extinctions, with a higher resilience in food webs harbouring omnivorous fish species able to connect multiple food web compartments via weak, non-specialised interactions. Moreover, these fish species contributed largely to the spatial variation among individual food webs, suggesting that these species could operate as mobile predators connecting different streams and stabilising variability at the regional scale. Our results outline two key mechanisms of food web stability operating in tropical streams: (i) the diversity of species and body masses buffering against random and size-dependent disturbances and (ii) high regional diversity and weak omnivorous interactions of predators buffering against local stochastic variation in species composition. These mechanisms rely on high local and regional biodiversity in tropical streams, which is known to be strongly affected by human impacts. Therefore, an urgent challenge is to understand how the ongoing systematic loss of diversity jeopardises the stability of stream food webs in human-impacted landscapes.
Collapse
Affiliation(s)
- Victor S Saito
- Environmental Sciences Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Pavel Kratina
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Gedimar Barbosa
- Graduate Program in Ecology, Evolution and Biodiversity, São Paulo State University, Rio Claro, SP, Brazil
| | - Fabio Cop Ferreira
- Marine Sciences Department, Federal University of São Paulo, Santos, SP, Brazil
| | - Jean Barbosa Leal
- Undergraduate Course in Environmental Analysis and Management, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Gabriela Zemelka
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Geography, Environment and Planning, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Hugo Sarmento
- Hydrobiology Department, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Daniel M Perkins
- School of Life and Health Sciences, University of Roehampton, London, UK
| |
Collapse
|
2
|
Ospina-Bautista F, Srivastava DS, Realpe E, Fernández AM. Environmental heterogeneity at two spatial scales affects litter diversity-decomposition relationships. Ecology 2024; 105:e4280. [PMID: 38566463 DOI: 10.1002/ecy.4280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
The effects of biodiversity on ecological processes have been experimentally evaluated mainly at the local scale under homogeneous conditions. To scale up experimentally based biodiversity-functioning relationships, there is an urgent need to understand how such relationships are affected by the environmental heterogeneity that characterizes larger spatial scales. Here, we tested the effects of an 800-m elevation gradient (a large-scale environmental factor) and forest habitat (a fine-scale factor) on litter diversity-decomposition relationships. To better understand local and landscape scale mechanisms, we partitioned net biodiversity effects into complementarity, selection, and insurance effects as applicable at each scale. We assembled different litter mixtures in aquatic microcosms that simulated natural tree holes, replicating mixtures across blocks nested within forest habitats (edge, interior) and elevations (low, mid, high). We found that net biodiversity and complementarity effects increased over the elevation gradient, with their strength modified by forest habitat and the identity of litter in mixtures. Complementarity effects at local and landscape scales were greatest for combinations of nutrient-rich and nutrient-poor litters, consistent with nutrient transfer mechanisms. By contrast, selection effects were consistently weak and negative at both scales. Selection effects at the landscape level were due mainly to nonrandom overyielding rather than spatial insurance effects. Our findings demonstrate that the mechanisms by which litter diversity affects decomposition are sensitive to environmental heterogeneity at multiple scales. This has implications for the scaling of biodiversity-ecosystem function relationships and suggests that future shifts in environmental conditions due to climate change or land use may impact the functioning of aquatic ecosystems.
Collapse
Affiliation(s)
- Fabiola Ospina-Bautista
- Department of Biological Sciences, University of the Andes, Bogotá, Colombia
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| | - Diane S Srivastava
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emilio Realpe
- Department of Biological Sciences, University of the Andes, Bogotá, Colombia
| | - Ana María Fernández
- Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia
| |
Collapse
|
3
|
Pérez J, Cornejo A, Alonso A, Guerra A, García G, Nieto C, Correa-Araneda F, Rojo D, Boyero L. Warming overrides eutrophication effects on leaf litter decomposition in stream microcosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 332:121966. [PMID: 37290635 DOI: 10.1016/j.envpol.2023.121966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Several human activities often result in increased nitrogen (N) and phosphorus (P) inputs to running waters through runoff. Although headwater streams are less frequently affected by these inputs than downstream reaches, the joint effects of moderate eutrophication and global warming can affect the functioning of these ecosystems, which represent two thirds of total river length and thus are of major global relevance. In a microcosm study representing streams from a temperate area (northern Spain), we assessed the combined effects of increased water temperature (10.0, 12.5, and 15.0 °C) and nutrient enrichment (control, high N, high P, and high N + P concentrations) on the key process of leaf litter decomposition (mediated by microorganisms and detritivores) and associated changes in different biological compartments (leaf litter, aquatic hyphomycetes and detritivores). While warming consistently enhanced decomposition rates and associated variables (leaf litter microbial conditioning, aquatic hyphomycete sporulation rates and taxon richness, and detritivore growth and nutrient contents), effects of eutrophication were weaker and more variable: P addition inhibited decomposition, addition of N + P promoted leaf litter conditioning, and detritivore stoichiometry was affected by the addition of both nutrients separately or together. In only a few cases (variables related to detritivore performance, but not microbial performance or leaf litter decomposition) we found interactions between warming and eutrophication, which contrasts with other experiments reporting synergistic effects. Our results suggest that both stressors can importantly alter the functioning of stream ecosystems even when occurring in isolation, although non-additive effects should not be neglected and might require exploring an array of ecosystem processes (not just leaf litter decomposition) in order to be detected.
Collapse
Affiliation(s)
- Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama.
| | - Aydeé Cornejo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama; National Research System of Panama, Panama
| | - Alberto Alonso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alisson Guerra
- Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama
| | - Gabriela García
- Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama
| | - Carlos Nieto
- Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama
| | - Francisco Correa-Araneda
- Climate Change and Environment Unit, IberoAmerican Institute for Sustainable Development, Autonomous University of Chile, Temuco, Chile
| | - Diana Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; Ecology and Aquatic Ecotoxicology Laboratory. Research Center for Emerging and Zoonotic Diseases, Gorgas Memorial Institute of Health Studies, 0816-02593. Divisa, Veraguas province, Panama; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
4
|
Firmino VC, Martins RT, Brasil LS, Cunha EJ, Pinedo-Garcia RB, Hamada N, Juen L. Do microplastics and climate change negatively affect shredder invertebrates from an amazon stream? An ecosystem functioning perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121184. [PMID: 36736567 DOI: 10.1016/j.envpol.2023.121184] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Pollution and climate change are among the main threats to the biodiversity of freshwater ecosystems in the 21st century. We experimentally tested the effects of microplastic and climate change (i.e., increase in temperature and CO2) on the survival and consumption by an Amazonian-stream shredder invertebrate. We tested three hypotheses. (1) Increased microplastic concentrations and climate change reduce shredder survival. We assumed that the combined stressors would increase toxic stress. (2) Increased concentrations of microplastics have negative effects on shredder food consumption. We assumed that blockage of the digestive tract by microplastics would lead to reduced ability to digest food. In addition, increased temperature and CO2 would lead to an increase in metabolic cost and reduced consumption. (3) The interaction between microplastics and climate change have greater negative effects on survival and consumption than either alone. We combined different concentrations of microplastic and climate change scenarios to simulate in real-time increases in temperature and CO2 forecast for 2100 for Amazonia. We found that both stressors had lethal effects, increasing mortality risk, but there was no interaction effect. Shredder consumption was negatively affected only by climate change. The interaction of microplastics and climate change on shredder consumption was dose-dependent and more intense in the extreme climate scenario, leading to reduced consumption. Our results indicate that microplastic and climate change may have strong effects on the consumption and/or survival of insect shredders in Amazonian streams. In addition, microplastic and climate change effects may affect not only populations but also ecosystem functioning (e.g., nutrient cycling). Integrative approaches to better understand and mitigate the effects of both stressors are necessary because plastic pollution and climate change co-occur in environments.
Collapse
Affiliation(s)
- Viviane Caetano Firmino
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Instituto de Ciências Biológicas, Rua Augusto Corrêa, 1, Guamá, Belém, PA, CEP: 66075-110, Brazil; Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Guamá, Belém, PA, CEP: 66075-110, Brazil.
| | - Renato Tavares Martins
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, CEP: 69067-375, Brazil
| | - Leandro Schlemmer Brasil
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Instituto de Ciências Biológicas, Rua Augusto Corrêa, 1, Guamá, Belém, PA, CEP: 66075-110, Brazil; Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Campus Araguaia, Avenida Universitária, 3,500, Pontal do Araguaia, MT, CEP: 78.698-000, Brazil
| | - Erlane José Cunha
- Instituto Tecnológico Vale, R. Boaventura da Silva, 955, Nazaré, Belém, PA, CEP: 66055-090, Brazil
| | - Raul Bismarck Pinedo-Garcia
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, CEP: 69067-375, Brazil
| | - Neusa Hamada
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, CEP: 69067-375, Brazil
| | - Leandro Juen
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Pará, Instituto de Ciências Biológicas, Rua Augusto Corrêa, 1, Guamá, Belém, PA, CEP: 66075-110, Brazil; Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa, 1, Guamá, Belém, PA, CEP: 66075-110, Brazil
| |
Collapse
|
5
|
Camelo FRB, Tonin AM, Salgueiro L, Sena G, Braga I, Medeiros AO, Gonçalves Júnior JF. Tropical stream microcosms of isolated fungal species suggest nutrient enrichment does not accelerate decomposition but might inhibit fungal biomass production. FEMS Microbiol Lett 2022; 369:6843576. [PMID: 36416839 DOI: 10.1093/femsle/fnac113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/06/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Terrestrial leaf litter is an essential energy source in forest streams and in many tropical streams, including Cerrado, litter undergoes biological decomposition mainly by fungi. However, there is a limited understanding of the contribution of isolated fungal species to in-stream litter decomposition in the tropics. Here we set a full factorial microcosms experiment using four fungal species (Aquanectria penicillioides, Lunulospora curvula, Pestalotiopsis submerses, and Pestalotiopsis sp.) incubated in isolation, two litter types (rapid and slow decomposing litter) and two nutrient levels (natural and enriched), all characteristics of Cerrado streams, to elucidate the role of isolated fungal species on litter decomposition. We found that all fungal species promoted litter mass loss but with contributions that varied from 1% to 8% of the initial mass. The fungal species decomposed 1.5 times more the slow decomposing litter and water nutrient enrichment had no effect on their contribution to mass loss. In contrast, fungal biomass was reduced by nutrient enrichment and was different among fungal species. We showed fungal contribution to decomposition depends on fungal identity and litter type, but not on water nutrients. These findings suggest that the identity of fungal species and litter types may have more important repercussions to in-stream decomposition than moderate nutrient enrichment in the tropics.
Collapse
Affiliation(s)
| | - Alan M Tonin
- Department of Ecology, Institute of Biological Sciences, University of Brasília (UnB) 70910-900, Brasília, Brazil
| | - Laís Salgueiro
- Department of Ecology, Institute of Biological Sciences, University of Brasília (UnB) 70910-900, Brasília, Brazil
| | - Guilherme Sena
- Department of Ecology, Institute of Biological Sciences, University of Brasília (UnB) 70910-900, Brasília, Brazil
| | - Isabela Braga
- Department of Ecology, Institute of Biological Sciences, University of Brasília (UnB) 70910-900, Brasília, Brazil
| | - Adriana Oliveira Medeiros
- Laboratório de Microbiologia Ambiental Instituto de Biologia, Universidade Federal da Bahia 40170-115, Campus Ondina, Salvador, Brazil
| | | |
Collapse
|
6
|
Abstract
One of the most investigated patterns in species diversity is the so-called latitudinal gradient, that is, a decrease in species richness from the equator to the poles. However, few studies investigated this pattern in insects at a global scale because of insufficient taxonomic and biogeographical information. Using estimates of earwig species richness at country level, their latitudinal diversity gradient was modelled globally and for the two hemispheres separately after correcting for differences in country areas. Separate analyses were also conducted for mainland and island countries. All analyses clearly indicated the existence of latitudinal gradients. The most plausible explanation for the observed pattern is the so-called tropical conservatism hypothesis, which postulates (1) a tropical origin of many extant clades, (2) a longer time for cladogenesis in tropical environments thanks to their environmental stability, and (3) a limited ability of historically tropical lineages to adapt to temperate climates. Earwigs probably evolved on Gondwana and secondarily colonized the Northern Hemisphere. This colonization was hampered by both geographical and climatic factors. The Himalayan orogenesis obstructed earwig dispersal into the Palearctic region. Additionally, earwig preferences for warm/hot and humid climates hampered the colonization of temperate regions. Pleistocene glaciation further contributed to reducing diversity at northern latitudes.
Collapse
|
7
|
Xiang H, Li K, Cao L, Zhang Z, Yang H. Global patterns and drivers of coniferous leaf-litter decomposition in streams and rivers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.940254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many streams and rivers are heterotrophic ecosystems that are highly dependent on cross-ecosystem subsidies such as leaf litter (LL). Terrestrial LL can be consumed by macroinvertebrates and microbes to fuel the detrital-based food webs in freshwaters. To date, our knowledge of LL decomposition in freshwaters is largely based on broadleaved LL, while the patterns and drivers of coniferous leaf-litter (CLL) decomposition in streams and rivers remain poorly understood. Here, we present a global investigation of CLL decomposition in streams and rivers by collecting data from 35 publications. We compared LL breakdown rates in this study with other global-scale studies (including conifers and broadleaved species), between evergreen and deciduous conifers, and between native and invasive conifers. We also investigated the climatic, geographic (latitude and altitude), stream physicochemical characteristics, and experimental factors (e.g., mesh size and experimental duration) in influencing CLL decomposition. We found that the following: (1) LL breakdown rates in this study were 18.5–28.8 and 4.9–16.8% slower than those in other global-scale studies when expressed as per day and per degree day, respectively. Conifer LL in coarse mesh bags, for evergreen and invasive conifers, decomposed 13.6, 10.3, and 10.8% faster than in fine mesh bags, for deciduous and native conifers, respectively; (2) CLL traits, stream physicochemical characteristics, and experimental factors explained higher variations in CLL decomposition than climatic and geographic factors; (3) CLL nutritional quality (N and P), water temperature, and experimental duration were better predictors of CLL decomposition than other predictors in categories of LL traits, stream physicochemical characteristics, and experimental factors, respectively; and (4) total and microbial-mediated CLL breakdown rates showed linear relationships with latitude, altitude, mean annual temperature, and mean annual precipitation. Our results imply that the replacement of native forests by conifer plantation would impose great impacts on adjacent freshwaters by retarding the LL processing rate. Moreover, future climate warming which is very likely to happen in mid- and high-latitude areas according to the IPCC 6th report would accelerate LL decomposition, with a potential consequence of food depletion for detritivores in freshwaters during hot summers.
Collapse
|
8
|
Catchment scale deforestation increases the uniqueness of subtropical stream communities. Oecologia 2022; 199:671-683. [PMID: 35833985 DOI: 10.1007/s00442-022-05215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/19/2022] [Indexed: 10/17/2022]
Abstract
Local communities and individual species jointly contribute to the overall beta diversity in metacommunities. However, it is mostly unknown whether the local contribution (LCBD) and the species contribution (SCBD) to beta diversity can be predicted by local and regional environmental characteristics and by species traits and taxonomic relatedness, respectively. We investigated the LCBD and SCBD of stream benthic diatoms and insects along a gradient of land use intensification, ranging from streams in pristine forests to agricultural catchments in southeast subtropical Brazil. We expected that the LCBD would be negatively related to forest cover and positively related to the most unique streams in terms of environmental characteristics and land use (hereafter environmental and land use uniqueness, respectively). We also expected that species with a high SCBD would occur at sites with reduced forest cover. We found that the LCBD of diatoms and insects was negatively related to forest cover. The LCBD of insects was also positively related to environmental and land use uniqueness. As forest cover was negatively related to uniqueness in land use, biologically unique streams were those that deviated from the typical regional land cover. We also found that diatom traits, insect traits, and taxonomic relatedness partly explained SCBD. Furthermore, the SCBD of diatoms was positively correlated with forest cover, but the inverse was found for insects. We showed that deforestation creates novel and unique communities in subtropical streams and that species that contribute the most to beta diversity can occur at opposite ends of a land use gradient.
Collapse
|
9
|
Yue K, De Frenne P, Van Meerbeek K, Ferreira V, Fornara DA, Wu Q, Ni X, Peng Y, Wang D, Heděnec P, Yang Y, Wu F, Peñuelas J. Litter quality and stream physicochemical properties drive global invertebrate effects on instream litter decomposition. Biol Rev Camb Philos Soc 2022; 97:2023-2038. [PMID: 35811333 DOI: 10.1111/brv.12880] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.
Collapse
Affiliation(s)
- Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Belgium
| | - Pieter De Frenne
- Forest & Nature Lab, Ghent University, Geraardsbergsesteenweg 267, 9090, Gontrode, Belgium
| | - Koenraad Van Meerbeek
- Department of Earth and Environmental Sciences, KU Leuven, Celestijnenlaan 200E, 3001, Leuven, Belgium
| | - Verónica Ferreira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Dario A Fornara
- Davines Group-Rodale Institute European Regenerative Organic Center (EROC), Via Don Angelo Calzolari 55/a, 43126, Parma, Italy
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, China
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China.,Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, 1958, Denmark
| | - Dingyi Wang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.,Agritec Plant Research Ltd., Zemědělská 16, Šumperk, 78701, Czech Republic
| | - Yusheng Yang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Josep Peñuelas
- CREAF, E08193, Cerdanyola del Vallès, Catalonia, Spain.,CSIC, Global Ecology Unit, CREAF-CSIC-UAB, E08193, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
10
|
Marzolf NS, Baca DM, Bruce TK, Vega‐Gómez M, Watson CD, Ganong CN, Ramírez A, Pringle CM, Ardón M. Do experimental
pH
increases alter the structure and function of a lowland tropical stream? Ecosphere 2022. [DOI: 10.1002/ecs2.4097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nicholas S. Marzolf
- Department of Forestry and Environmental Resources North Carolina State University Raleigh North Carolina USA
| | - Dominic M. Baca
- Department of Earth and Atmospheric Sciences Metropolitan State University of Denver Denver Colorado USA
| | | | - Mariely Vega‐Gómez
- Department of Applied Ecology North Carolina State University Raleigh North Carolina USA
| | | | - Carissa N. Ganong
- Department of Biology Missouri Western State University St. Joseph Missouri USA
| | - Alonso Ramírez
- Department of Applied Ecology North Carolina State University Raleigh North Carolina USA
| | | | - Marcelo Ardón
- Department of Forestry and Environmental Resources North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
11
|
Calderón‐Sanou I, Zinger L, Hedde M, Martinez‐Almoyna C, Saillard A, Renaud J, Gielly L, Khedim N, Lionnet C, Ohlmann M, Consortium O, Münkemüller T, Thuiller W. Energy and physiological tolerance explain multi‐trophic soil diversity in temperate mountains. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Irene Calderón‐Sanou
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Lucie Zinger
- Département de biologie Institut de Biologie de l’ENS (IBENS) École normale supérieure CNRS INSERM Université PSL Paris France
| | - Mickael Hedde
- Eco&Sols Univ Montpellier CIRAD INRA IRD Montpellier SupAgro Montpellier France
| | - Camille Martinez‐Almoyna
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Amelie Saillard
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Julien Renaud
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Ludovic Gielly
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Norine Khedim
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
- Univ. Savoie Mont‐Blanc Univ. Grenoble Alpes CNRS EDYTEM Chambéry France
| | - Clement Lionnet
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Marc Ohlmann
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | | | - Tamara Münkemüller
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - Wilfried Thuiller
- Laboratoire d’Ecologie Alpine Univ. Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| |
Collapse
|
12
|
Plant Litter from Rare Species Increases Functional Diversity and Decomposition of Species Mixtures. Ecosystems 2022. [DOI: 10.1007/s10021-022-00740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Cornejo A, Pérez J, López-Rojo N, García G, Pérez E, Guerra A, Nieto C, Boyero L. Litter decomposition can be reduced by pesticide effects on detritivores and decomposers: Implications for tropical stream functioning. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117243. [PMID: 33962306 DOI: 10.1016/j.envpol.2021.117243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Understanding which factors affect the process of leaf litter decomposition is crucial if we are to predict changes in the functioning of stream ecosystems as a result of human activities. One major activity with known consequences on streams is agriculture, which is of particular concern in tropical regions, where forests are being rapidly replaced by crops. While pesticides are potential drivers of reduced decomposition rates observed in agricultural tropical streams, their specific effects on the performance of decomposers and detritivores are mostly unknown. We used a microcosm experiment to examine the individual and joint effects of an insecticide (chlorpyrifos) and a fungicide (chlorothalonil) on survival and growth of detritivores (Anchytarsus, Hyalella and Lepidostoma), aquatic hyphomycetes (AH) sporulation rate, taxon richness, assemblage structure, and leaf litter decomposition rates. Our results revealed detrimental effects on detritivore survival (which were mostly due to the insecticide and strongest for Hyalella), changes in AH assemblage structure, and reduced sporulation rate, taxon richness and microbial decomposition (mostly in response to the fungicide). Total decomposition was reduced especially when the pesticides were combined, suggesting that they operated differently and their effects were additive. Importantly, effects on decomposition were greater for single-species detritivore treatments than for the 3-species mixture, indicating that detritivore species loss may exacerbate the consequences of pesticides of stream ecosystem functioning.
Collapse
Affiliation(s)
- Aydeé Cornejo
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama.
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Gabriela García
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Edgar Pérez
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Alisson Guerra
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Carlos Nieto
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
14
|
Giraldo LP, Blanco-Libreros JF, Chará J. Controles extrínsecos e intrínsecos en la descomposición de hojas de tres especies de árboles pioneros comunes en quebradas de bajo orden en los Andes Centrales de Colombia. NEOTROPICAL BIODIVERSITY 2021. [DOI: 10.1080/23766808.2021.1964913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Lina Paola Giraldo
- Instituto De Biología. Universidad De Antioquia, Medellín, Colombia
- Centro Para La Investigación En Sistemas Sostenibles De Producción Agropecuaria-CIPAV, Cali, Colombia
| | | | - Julián Chará
- Centro Para La Investigación En Sistemas Sostenibles De Producción Agropecuaria-CIPAV, Cali, Colombia
| |
Collapse
|
15
|
Wilmot OJ, Hood JM, Huryn AD, Benstead JP. Decomposing decomposition: isolating direct effects of temperature from other drivers of detrital processing. Ecology 2021; 102:e03467. [PMID: 34236706 DOI: 10.1002/ecy.3467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 11/16/2020] [Accepted: 03/15/2021] [Indexed: 11/09/2022]
Abstract
Understanding the observed temperature dependence of decomposition (i.e., its "apparent" activation energy) requires separation of direct effects of temperature on consumer metabolism (i.e., the "inherent" activation energy) from those driven by indirect seasonal patterns in phenology and biomass, and by longer-term, climate-driven shifts in acclimation, adaptation, and community assembly. Such parsing is important because studies that relate temperature to decomposition usually involve multi-season data and/or spatial proxies for long-term shifts, and so incorporate these indirect factors. The various effects of such factors can obscure the inherent temperature dependence of detrital processing. Separating the inherent temperature dependence of decomposition from other drivers is important for accurate prediction of the contribution of detritus-sourced greenhouse gases to climate warming and requires novel approaches to data collection and analysis. Here, we present breakdown rates of red maple litter incubated in coarse- and fine-mesh litterbags (the latter excluding macroinvertebrates) for serial approximately one-month increments over one year in nine streams along a natural temperature gradient (mean annual: 12.8°-16.4°C) from north Georgia to central Alabama, USA. We analyzed these data using distance-based redundancy analysis and generalized additive mixed models to parse the dependence of decomposition rates on temperature, seasonality, and shredding macroinvertebrate biomass. Microbial decomposition in fine-mesh bags was significantly influenced by both temperature and seasonality. Accounting for seasonality corrected the temperature dependence of decomposition rate from 0.25 to 0.08 eV. Shredder assemblage structure in coarse-mesh bags was related to temperature across both sites and seasons, shifting from "cold" stonefly-dominated communities to "warm" communities dominated by snails or crayfish. Shredder biomass was not a significant predictor of either coarse-mesh or macroinvertebrate-mediated (i.e., coarse- minus fine-mesh) breakdown rates, which were also jointly influenced by temperature and seasonality. Unlike fine-mesh bags, however, temperature dependence of litter breakdown did not differ between models with and without seasonality for either coarse-mesh (0.36 eV) or macroinvertebrate-mediated (0.13 eV) rates. We conclude that indirect (non-thermal) seasonal and site-level effects play a variable and potentially strong role in shaping the apparent temperature dependence of detrital breakdown. Such effects should be incorporated into studies designed to estimate inherent temperature dependence of slow ecological processes.
Collapse
Affiliation(s)
- Oliver J Wilmot
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, 43212, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, 35487, USA
| |
Collapse
|
16
|
Boyero L, López-Rojo N, Tonin AM, Pérez J, Correa-Araneda F, Pearson RG, Bosch J, Albariño RJ, Anbalagan S, Barmuta LA, Basaguren A, Burdon FJ, Caliman A, Callisto M, Calor AR, Campbell IC, Cardinale BJ, Jesús Casas J, Chará-Serna AM, Chauvet E, Ciapała S, Colón-Gaud C, Cornejo A, Davis AM, Degebrodt M, Dias ES, Díaz ME, Douglas MM, Encalada AC, Figueroa R, Flecker AS, Fleituch T, García EA, García G, García PE, Gessner MO, Gómez JE, Gómez S, Gonçalves JF, Graça MAS, Gwinn DC, Hall RO, Hamada N, Hui C, Imazawa D, Iwata T, Kariuki SK, Landeira-Dabarca A, Laymon K, Leal M, Marchant R, Martins RT, Masese FO, Maul M, McKie BG, Medeiros AO, Erimba CMM, Middleton JA, Monroy S, Muotka T, Negishi JN, Ramírez A, Richardson JS, Rincón J, Rubio-Ríos J, Dos Santos GM, Sarremejane R, Sheldon F, Sitati A, Tenkiano NSD, Tiegs SD, Tolod JR, Venarsky M, Watson A, Yule CM. Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics. Nat Commun 2021; 12:3700. [PMID: 34140471 PMCID: PMC8211652 DOI: 10.1038/s41467-021-23930-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/25/2021] [Indexed: 11/29/2022] Open
Abstract
The relationship between detritivore diversity and decomposition can provide information on how biogeochemical cycles are affected by ongoing rates of extinction, but such evidence has come mostly from local studies and microcosm experiments. We conducted a globally distributed experiment (38 streams across 23 countries in 6 continents) using standardised methods to test the hypothesis that detritivore diversity enhances litter decomposition in streams, to establish the role of other characteristics of detritivore assemblages (abundance, biomass and body size), and to determine how patterns vary across realms, biomes and climates. We observed a positive relationship between diversity and decomposition, strongest in tropical areas, and a key role of abundance and biomass at higher latitudes. Our results suggest that litter decomposition might be altered by detritivore extinctions, particularly in tropical areas, where detritivore diversity is already relatively low and some environmental stressors particularly prevalent. It is unclear whether stream detritivore diversity enhances decomposition across climates. Here the authors manipulate litter diversity and examine detritivore assemblages in a globally distributed stream litterbag experiment, finding a positive diversity-decomposition relationship stronger in tropical streams, where detritivore diversity is lower.
Collapse
Affiliation(s)
- Luz Boyero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain. .,IKERBASQUE, Bilbao, Spain.
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alan M Tonin
- Department of Ecology, University of Brasília (UnB), Brasília, Brazil
| | - Javier Pérez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Richard G Pearson
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Jaime Bosch
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University, Mieres, Spain.,Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Ricardo J Albariño
- INIBIOMA (Universidad Nacional del Comahue - CONICET), Bariloche, Argentina
| | | | - Leon A Barmuta
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Ana Basaguren
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Francis J Burdon
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Adriano Caliman
- Department of Ecology, Federal University of Rio Grande do Norte (UFRN), Rio Grande do Norte, Brazil
| | - Marcos Callisto
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adolfo R Calor
- Instituto de Biologia, Universidade Federal da Bahia, Bahia, Brazil
| | | | - Bradley J Cardinale
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, USA
| | - J Jesús Casas
- Department of Biology and Geology, University of Almería, Almería, Spain
| | - Ana M Chará-Serna
- Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV), Cali, Colombia.,Illinois River Biological Station, University of Illinois Urbana-Champaign, Havana, IL, USA
| | - Eric Chauvet
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Szymon Ciapała
- Faculty of Tourism and Leisure, University of Physical Education, Kraków, Poland
| | - Checo Colón-Gaud
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Aydeé Cornejo
- Freshwater Macroinvertebrate Laboratory Gorgas Memorial Institute for Health Studies (COZEM-ICGES), Panama City, Panama
| | - Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
| | - Monika Degebrodt
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Emerson S Dias
- Graduate Program in Ecology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil
| | - María E Díaz
- Departamento de Ciencias Ambientales, Universidad Católica de Temuco, Temuco, Chile.,Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Michael M Douglas
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Andrea C Encalada
- Instituto BIOSFERA, Universidad San Francisco de Quito, Quito, Ecuador.,Department of Life Sciences and Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
| | - Ricardo Figueroa
- Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Tadeusz Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Erica A García
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, NT, Australia
| | - Gabriela García
- Water Laboratory and Physicochemical Services (LASEF), Autonomous University of Chiriqui, David City, Panama
| | - Pavel E García
- Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala City, Guatemala.,Organismal Biology, Ecology and Evolution (OBEE) program, University of Montana, Montana, MO, USA
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany.,Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Jesús E Gómez
- Departamento de Ciencias Ambientales, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Sergio Gómez
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jose F Gonçalves
- Department of Ecology, University of Brasília (UnB), Brasília, Brazil
| | - Manuel A S Graça
- Department of Life Sciences and Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
| | | | - Robert O Hall
- Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Neusa Hamada
- Instituto Nacional de Pesquisas da Amazônia-INPA, Coordenação de Biodiversidade-COBIO, Manaus, Amazonas, Brazil
| | - Cang Hui
- Department of Mathematical Sciences, Stellenbosch University, Matieland, South Africa.,Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Daichi Imazawa
- Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, University of Yamanashi, Kofu, Japan
| | - Tomoya Iwata
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | | | - Andrea Landeira-Dabarca
- Instituto BIOSFERA, Universidad San Francisco de Quito, Quito, Ecuador.,Biometric Research, South Fremantle, WA, Australia
| | - Kelsey Laymon
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - María Leal
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Universidad del Zulia, Maracaibo, Venezuela
| | - Richard Marchant
- Department of Entomology, Museums Victoria, Melbourne, VIC, Australia
| | - Renato T Martins
- Instituto Nacional de Pesquisas da Amazônia-INPA, Coordenação de Biodiversidade-COBIO, Manaus, Amazonas, Brazil
| | - Frank O Masese
- Department of Fisheries and Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Megan Maul
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | - Jen A Middleton
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Silvia Monroy
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Timo Muotka
- INRAE, UR-RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
| | - Junjiro N Negishi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Alonso Ramírez
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - John S Richardson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - José Rincón
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan Rubio-Ríos
- Department of Biology and Geology, University of Almería, Almería, Spain
| | - Gisele M Dos Santos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Departamento de Ecologia, Universidade Federal de Goiás (UFG), Goiânia, Goiás, Brazil
| | - Romain Sarremejane
- INRAE, UR-RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne Cedex, France
| | - Fran Sheldon
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Augustine Sitati
- Department of Fisheries and Aquatic Science, University of Eldoret, Eldoret, Kenya
| | | | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Janine R Tolod
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Michael Venarsky
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Anne Watson
- Biological Sciences, School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Catherine M Yule
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| |
Collapse
|
17
|
Peralta-Maraver I, Stubbington R, Arnon S, Kratina P, Krause S, de Mello Cionek V, Leite NK, da Silva ALL, Thomaz SM, Posselt M, Milner VS, Momblanch A, Moretti MS, Nóbrega RLB, Perkins DM, Petrucio MM, Reche I, Saito V, Sarmento H, Strange E, Taniwaki RH, White J, Alves GHZ, Robertson AL. The riverine bioreactor: An integrative perspective on biological decomposition of organic matter across riverine habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145494. [PMID: 33581537 DOI: 10.1016/j.scitotenv.2021.145494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Riverine ecosystems can be conceptualized as 'bioreactors' (the riverine bioreactor) which retain and decompose a wide range of organic substrates. The metabolic performance of the riverine bioreactor is linked to their community structure, the efficiency of energy transfer along food chains, and complex interactions among biotic and abiotic environmental factors. However, our understanding of the mechanistic functioning and capacity of the riverine bioreactor remains limited. We review the state of knowledge and outline major gaps in the understanding of biotic drivers of organic matter decomposition processes that occur in riverine ecosystems, across habitats, temporal dimensions, and latitudes influenced by climate change. We propose a novel, integrative analytical perspective to assess and predict decomposition processes in riverine ecosystems. We then use this model to analyse data to demonstrate that the size-spectra of a community can be used to predict decomposition rates by analysing an illustrative dataset. This modelling methodology allows comparison of the riverine bioreactor's performance across habitats and at a global scale. Our integrative analytical approach can be applied to advance understanding of the functioning and efficiency of the riverine bioreactor as hotspots of metabolic activity. Application of insights gained from such analyses could inform the development of strategies that promote the functioning of the riverine bioreactor across global ecosystems.
Collapse
Affiliation(s)
- Ignacio Peralta-Maraver
- Departamento de Ecología, Universidad de Granada, Granada, Spain; Department of Life Sciences, Roehampton University, London, UK.
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Pavel Kratina
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Vivian de Mello Cionek
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, Santa Catarina, Brazil
| | - Nei Kavaguichi Leite
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aurea Luiza Lemes da Silva
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Malte Posselt
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | | | - Andrea Momblanch
- Cranfield Water Science Institute, Cranfield University, Cranfield, UK
| | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, Universidade Vila Velha, Vila Velha, Espírito Santo, Brazil
| | - Rodolfo L B Nóbrega
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | | | - Mauricio M Petrucio
- Department of Ecology and Zoology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Isabel Reche
- Departamento de Ecología, Universidad de Granada, Granada, Spain
| | - Victor Saito
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Hugo Sarmento
- Department of Hydrobiology, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Emily Strange
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Ricardo Hideo Taniwaki
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas, Universidade Federal do ABC, Santo André, São Paulo, Brazil
| | - James White
- River Restoration Centre, Cranfield University, Cranfield, Bedfordshire, UK
| | | | | |
Collapse
|
18
|
Affiliation(s)
- André Frainer
- Department of Ecology and Environmental Science Umeå University Umeå Sweden
- Faculty of Biosciences, Fisheries and Economics UiT The Arctic University of Norway Tromsø Norway
- Norwegian Institute for Nature Research (NINA) Fram Centre Tromsø Norway
| | - Brendan G. McKie
- Department of Aquatic Sciences and Assessment Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
19
|
Pearson RG, Connolly NM, Davis AM, Brodie JE. Fresh waters and estuaries of the Great Barrier Reef catchment: Effects and management of anthropogenic disturbance on biodiversity, ecology and connectivity. MARINE POLLUTION BULLETIN 2021; 166:112194. [PMID: 33690082 DOI: 10.1016/j.marpolbul.2021.112194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/27/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
We review the literature on the ecology, connectivity, human impacts and management of freshwater and estuarine systems in the Great Barrier Reef catchment (424,000 km2), on the Australian east coast. The catchment has high biodiversity, with substantial endemicity (e.g., lungfish). Freshwater and estuarine ecosystems are closely linked to the land and are affected by human disturbance, including climate change, flow management, land clearing, habitat damage, weed invasion, and excessive sediments, nutrients and pesticides. They require holistic integrated management of impacts, interactions, and land-sea linkages. This requirement is additional to land management aimed at reducing pollutant delivery to reef waters. Despite advances in research and management over recent decades, there are substantial deficiencies that need addressing, including understanding of physical and biological processes and impacts in ground waters, large rivers and estuaries; ecological effects of pesticides; management and mitigation for invasive species and climate change; and explicit protection of non-marine waters.
Collapse
Affiliation(s)
- Richard G Pearson
- TropWater and College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia.
| | - Niall M Connolly
- Queensland Department of Agriculture and Fisheries, Townsville, Queensland 4814, Australia.
| | - Aaron M Davis
- TropWater, James Cook University, Townsville, Queensland 4811, Australia.
| | - Jon E Brodie
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
20
|
Cornejo A, Encina-Montoya F, Correa-Araneda F, Rovira D, García G, Nieto C, Villarreal V, Jaramillo N, Pérez E, Valderrama A, Pérez J, Boyero L. High sensitivity of invertebrate detritivores from tropical streams to different pesticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112226. [PMID: 33848739 DOI: 10.1016/j.ecoenv.2021.112226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Freshwater organisms are often sensitive to pesticides, but their sensitivity varies across different taxa and with pesticide type and action mode, as shown by multiple acute toxicity tests. Such variability hampers predictions about how freshwater ecosystems may be altered by pesticide toxicity, which is especially critical for understudied areas of the world such as the tropics. Furthermore, there is little information about the sensitivity of some organisms that are key components of stream food webs; this is the case of litter-feeding detritivorous invertebrates, which contribute to the fundamental process of litter decomposition. Here, we examined the sensitivity of three common detritivores [Anchytarsus sp. (Coleoptera: Ptilodactylidae), Hyalella sp. (Amphipoda: Hyalellidae) and Lepidostoma sp. (Trichoptera: Lepidostomatidae)] to three pesticides commonly used (the insecticides bifenthrin and chlorpyrifos and the fungicide chlorothalonil) using acute (48 or 96 h) toxicity tests. Our study demonstrates that common-use pesticides provoke the mortality of half their populations at concentrations of 0.04-2.7 μg L-1. We found that all species were sensitive to the three pesticides, with the highest sensitivity found for chlorpyrifos. Additionally, we used the approach of species sensitivity distributions (SSD) to compare our study species with Daphnia magna and other temperate and tropical invertebrates. We found that the study species were among the most sensitive species to chlorpyrifos and chlorothalonil. Our results suggest that tropical detritivores merit special attention in ecological risk assessment of pesticides and highlight the need for accurate ecotoxicological information from ecologically relevant species in the tropics.
Collapse
Affiliation(s)
- Aydeé Cornejo
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593 Panama City, Panama.
| | - Francisco Encina-Montoya
- Núcleo de Estudios Ambientales, Departamento de Ciencias Ambientales, Facultad de Recursos Naturales, Universidad Católica de Temuco, 4780000 Temuco, Chile
| | - Francisco Correa-Araneda
- Unidad de Cambio Climático y Medio Ambiente (UCCMA), Instituto Iberoamericano de Desarrollo Sostenible (IIDS), Universidad Autónoma de Chile, Temuco, Chile
| | - Dalys Rovira
- Water Laboratory and Physicochemical Services (LASEF), Autonomous University of Chiriqui, David City, Panama
| | - Gabriela García
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593 Panama City, Panama
| | - Carlos Nieto
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593 Panama City, Panama
| | - Víctor Villarreal
- Water Laboratory and Physicochemical Services (LASEF), Autonomous University of Chiriqui, David City, Panama
| | - Nicomedes Jaramillo
- Research Center for Natural Products and Biotechnology (CIPNABIOT), Autonomous University of Chiriqui, David City, Panama
| | - Edgar Pérez
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593 Panama City, Panama
| | - Anayansi Valderrama
- Aquatic Ecology and Ecotoxicology Laboratory, Zoological Collection Eustorgio Mendez, Gorgas Memorial Institute of Health Studies, (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593 Panama City, Panama
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
21
|
Boyero L, Pérez J, López-Rojo N, Tonin AM, Correa-Araneda F, Pearson RG, Bosch J, Albariño RJ, Anbalagan S, Barmuta LA, Beesley L, Burdon FJ, Caliman A, Callisto M, Campbell IC, Cardinale BJ, Casas JJ, Chará-Serna AM, Ciapała S, Chauvet E, Colón-Gaud C, Cornejo A, Davis AM, Degebrodt M, Dias ES, Díaz ME, Douglas MM, Elosegi A, Encalada AC, de Eyto E, Figueroa R, Flecker AS, Fleituch T, Frainer A, França JS, García EA, García G, García P, Gessner MO, Giller PS, Gómez JE, Gómez S, Gonçalves JF, Graça MAS, Hall RO, Hamada N, Hepp LU, Hui C, Imazawa D, Iwata T, Junior ESA, Kariuki S, Landeira-Dabarca A, Leal M, Lehosmaa K, M'Erimba C, Marchant R, Martins RT, Masese FO, Camden M, McKie BG, Medeiros AO, Middleton JA, Muotka T, Negishi JN, Pozo J, Ramírez A, Rezende RS, Richardson JS, Rincón J, Rubio-Ríos J, Serrano C, Shaffer AR, Sheldon F, Swan CM, Tenkiano NSD, Tiegs SD, Tolod JR, Vernasky M, Watson A, Yegon MJ, Yule CM. Latitude dictates plant diversity effects on instream decomposition. SCIENCE ADVANCES 2021; 7:eabe7860. [PMID: 33771867 PMCID: PMC7997509 DOI: 10.1126/sciadv.abe7860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
Running waters contribute substantially to global carbon fluxes through decomposition of terrestrial plant litter by aquatic microorganisms and detritivores. Diversity of this litter may influence instream decomposition globally in ways that are not yet understood. We investigated latitudinal differences in decomposition of litter mixtures of low and high functional diversity in 40 streams on 6 continents and spanning 113° of latitude. Despite important variability in our dataset, we found latitudinal differences in the effect of litter functional diversity on decomposition, which we explained as evolutionary adaptations of litter-consuming detritivores to resource availability. Specifically, a balanced diet effect appears to operate at lower latitudes versus a resource concentration effect at higher latitudes. The latitudinal pattern indicates that loss of plant functional diversity will have different consequences on carbon fluxes across the globe, with greater repercussions likely at low latitudes.
Collapse
Affiliation(s)
- Luz Boyero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain.
- IKERBASQUE, Bilbao, Spain
| | - Javier Pérez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alan M Tonin
- Limnology-Aquaripária Lab, University of Brasília (UnB), Brasília, Brazil
| | | | - Richard G Pearson
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
- College of Marine and Environmental Sciences, James Cook University, Townsville, QLD, Australia
| | - Jaime Bosch
- Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University, Mieres, Spain
- Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain
| | - Ricardo J Albariño
- INIBIOMA, Universidad Nacional del Comahue-CONICET, Bariloche, Argentina
| | | | - Leon A Barmuta
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Leah Beesley
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Francis J Burdon
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Adriano Caliman
- Department of Ecology, Federal University of Rio Grande do Norte, Brazil
| | - Marcos Callisto
- Laboratório de Ecologia de Bentos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Bradley J Cardinale
- Department of Ecosystem Science and Management, Penn State University, University Park, PA, USA
| | - J Jesús Casas
- Department of Biology and Geology, University of Almería, Almería, Spain
| | - Ana M Chará-Serna
- Centro para la Investigación en Sistemas Sostenibles de Producción Agropecuaria (CIPAV), Cali, Colombia
- Illinois River Biological Station, University of Illinois Urbana-Champaign, Havana, IL, USA
| | - Szymon Ciapała
- Faculty of Tourism and Leisure, University of Physical Education, Kraków, Poland
| | - Eric Chauvet
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse-CNRS, Toulouse, France
| | - Checo Colón-Gaud
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Aydeé Cornejo
- Freshwater Macroinvertebrate Laboratory, Gorgas Memorial Institute for Health Studies (COZEM-ICGES), Panama City, Panama
| | - Aaron M Davis
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University, Townsville, QLD, Australia
| | - Monika Degebrodt
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Emerson S Dias
- Department of Ecology, Federal University of Rio Grande do Norte, Brazil
| | - María E Díaz
- Laboratorio de Limnología y Recursos Hídricos, Universidad Católica de Temuco, Temuco, Chile
| | - Michael M Douglas
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andrea C Encalada
- Instituto BIOSFERA, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Ricardo Figueroa
- Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción, Chile
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Tadeusz Fleituch
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - André Frainer
- Norwegian Institute for Nature Research (NINA), Tromsø, Norway
- Faculty of Biosciences, Fisheries and Economics, The Arctic University of Norway (UiT), Tromsø, Norway
| | - Juliana S França
- Programa de Capacitação Institucional (PCI/INMA), National Institute of the Atlantic Forest, Santa Teresa, Espírito Santo, Brazil
| | - Erica A García
- Research Institute for the Environment and Livelihoods, Charles Darwin University, NT, Australia
| | - Gabriela García
- Water Laboratory and Physicochemical Services (LASEF), Autonomous University of Chiriqui, David City, Panama
| | - Pavel García
- Escuela de Biología, Universidad de San Carlos de Guatemala, Guatemala
- Organismal Biology, Ecology and Evolution (OBEE) program, University of Montana, MO, USA
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Paul S Giller
- School of Biological, Earth and Environmental Sciences, University College Cork, Ireland
| | - Jesús E Gómez
- Departamento de Ciencias Ambientales, Universidad de Puerto Rico, San Juan, Puerto Rico
| | - Sergio Gómez
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Jose F Gonçalves
- Limnology-Aquaripária Lab, University of Brasília (UnB), Brasília, Brazil
| | - Manuel A S Graça
- Department of Life Sciences and Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
| | - Robert O Hall
- Flathead Lake Biological Station, University of Montana, MO, USA
| | - Neusa Hamada
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Luiz U Hepp
- Universidade Federal de Mato Grosso do Sul, Campus Três Lagoas, Mato Grosso do Sul, Brazil
| | - Cang Hui
- Department of Mathematical Sciences, Stellenbosch University, Matieland, South Africa
- Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Daichi Imazawa
- Integrated Graduate School of Medicine, Engineering and Agricultural Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Tomoya Iwata
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Yamanashi, Japan
| | - Edson S A Junior
- Instituto de Biologia, Universidade Federal da Bahia, Bahia, Brazil
| | | | - Andrea Landeira-Dabarca
- Department of Life Sciences and Marine and Environmental Sciences Centre (MARE), University of Coimbra, Coimbra, Portugal
- Instituto BIOSFERA-USFQ, Universidad San Francisco de Quito, Quito, Ecuador
| | - María Leal
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Universidad del Zulia, Venezuela
| | - Kaisa Lehosmaa
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | - Richard Marchant
- Department of Entomology, Museums Victoria, Melbourne, VIC, Australia
| | - Renato T Martins
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Frank O Masese
- Department of Fisheries and Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Megan Camden
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Jen A Middleton
- School of Biological Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Junjiro N Negishi
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Jesús Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alonso Ramírez
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Renan S Rezende
- Program of Postgraduate in Environmental Science, Communitarian University of Chapecó Region, Santa Catarina, Brazil
| | - John S Richardson
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada
| | - José Rincón
- Laboratorio de Contaminación Acuática y Ecología Fluvial, Universidad del Zulia, Venezuela
| | - Juan Rubio-Ríos
- Department of Biology and Geology, University of Almería, Almería, Spain
| | - Claudia Serrano
- Instituto BIOSFERA, Universidad San Francisco de Quito, Quito, Ecuador
| | - Angela R Shaffer
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
| | - Fran Sheldon
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Christopher M Swan
- Department of Geography and Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
| | | | - Scott D Tiegs
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Janine R Tolod
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Michael Vernasky
- Australian Rivers Institute, Griffith University, Nathan, QLD, Australia
| | - Anne Watson
- School of Natural Sciences, University of Tasmania, Hobart, TAS, Australia
| | - Mourine J Yegon
- Department of Fisheries and Aquatic Science, University of Eldoret, Eldoret, Kenya
| | - Catherine M Yule
- School of Science and Engineering, University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
22
|
|
23
|
Organic Matter Decomposition and Ecosystem Metabolism as Tools to Assess the Functional Integrity of Streams and Rivers–A Systematic Review. WATER 2020. [DOI: 10.3390/w12123523] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Streams and rivers provide important services to humans, and therefore, their ecological integrity should be a societal goal. Although ecological integrity encompasses structural and functional integrity, stream bioassessment rarely considers ecosystem functioning. Organic matter decomposition and ecosystem metabolism are prime candidate indicators of stream functional integrity, and here we review each of these functions, the methods used for their determination, and their strengths and limitations for bioassessment. We also provide a systematic review of studies that have addressed organic matter decomposition (88 studies) and ecosystem metabolism (50 studies) for stream bioassessment since the year 2000. Most studies were conducted in temperate regions. Bioassessment based on organic matter decomposition mostly used leaf litter in coarse-mesh bags, but fine-mesh bags were also common, and cotton strips and wood were frequent in New Zealand. Ecosystem metabolism was most often based on the open-channel method and used a single-station approach. Organic matter decomposition and ecosystem metabolism performed well at detecting environmental change (≈75% studies), with performances varying between 50 and 100% depending on the type of environmental change; both functions were sensitive to restoration practices in 100% of the studies examined. Finally, we provide examples where functional tools are used to complement the assessments of stream ecological integrity. With this review, we hope to facilitate the widespread incorporation of ecosystem processes into bioassessment programs with the broader aim of more effectively managing stream and river ecosystems.
Collapse
|
24
|
Zúñiga-Sarango W, Gaona FP, Reyes-Castillo V, Iñiguez-Armijos C. Disrupting the Biodiversity–Ecosystem Function Relationship: Response of Shredders and Leaf Breakdown to Urbanization in Andean Streams. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.592404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Larrañaga A, de Guzmán I, Solagaistua L. A small supply of high quality detritus stimulates the consumption of low quality materials, but creates subtle effects on the performance of the consumer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 726:138397. [PMID: 32320871 DOI: 10.1016/j.scitotenv.2020.138397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Aitor Larrañaga
- Laboratory or Stream Ecology, Dept. of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, PO Box 644, 48080 Bilbao, Spain.
| | - Ioar de Guzmán
- Laboratory or Stream Ecology, Dept. of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, PO Box 644, 48080 Bilbao, Spain
| | - Libe Solagaistua
- Laboratory or Stream Ecology, Dept. of Plant Biology and Ecology, University of the Basque Country, UPV/EHU, PO Box 644, 48080 Bilbao, Spain
| |
Collapse
|
26
|
Ramulifho PA, Foord SH, Rivers‐Moore NA. The role of hydro-environmental factors in Mayfly (Ephemeroptera, Insecta) community structure: Identifying threshold responses. Ecol Evol 2020; 10:6919-6928. [PMID: 32760502 PMCID: PMC7391557 DOI: 10.1002/ece3.6333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Freshwater organisms are threatened by changes in stream flow and water temperature regimes due to global climate change and anthropogenic activities. Threats include the disappearance of narrow-tolerance species and loss of favorable thermal conditions for cold-adapted organisms. Mayflies are an abundant and diverse indicator of river health that performs important functional roles. The relative importance of key hydro-environmental factors such as water temperature and flow volumes in structuring these communities has rarely been explored in the tropical regions of Africa. Here, we investigate the response of mayfly species diversity to these factors in the Luvuvhu catchment, a strategic water source area in the arid northeastern region of South Africa. Mayfly larvae were sampled monthly in stones-in-current biotopes across 23 sites over a one-year period. The relationship between these environmental drivers and mayfly diversity was modeled using linear mixed effects models (LMMs) and a model-based multivariate approach. Threshold Indicator Taxa Analysis (TITAN) was used to model the response of mayfly species to important gradients and identify thresholds of change. Site-specific characteristic were the most important predictor of mayfly diversity, and there was considerable variation over time, with mayfly diversity peaking during winter. Along this, gradient temperature was the best predictor of assemblage structure, with five out of six reliable indicator species being cold-adapted, and a community threshold response at 19°C. Results support laboratory-based thresholds of temperature for mayfly species survival and development, extending empirical evidence to include field-based observations. Increased global (climate change) and local (riparian vegetation removal, impoundments) changes are predicted to have negative impacts on mayfly diversity and ultimately on ecosystem function.
Collapse
Affiliation(s)
- Pfananani A. Ramulifho
- SARChI‐Chair in Biodiversity Value and ChangeUniversity of VendaThohoyandouSouth Africa
- Department of Zoology and Centre for Invasion BiologyUniversity of VendaThohoyandouSouth Africa
| | - Stefan H. Foord
- SARChI‐Chair in Biodiversity Value and ChangeUniversity of VendaThohoyandouSouth Africa
- Department of Zoology and Centre for Invasion BiologyUniversity of VendaThohoyandouSouth Africa
| | - Nick A. Rivers‐Moore
- Centre for Water Resources ResearchUniversity of KwaZulu‐NatalScottsvilleSouth Africa
| |
Collapse
|
27
|
Flemming A, Page LM. Life History of the Swamp Darter, Etheostoma fusiforme, in Florida. SOUTHEAST NAT 2020. [DOI: 10.1656/058.019.0222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Adania Flemming
- University of Florida, Florida Museum of Natural History, Gainesville, FL 32611
| | - Lawrence M. Page
- University of Florida, Florida Museum of Natural History, Gainesville, FL 32611
| |
Collapse
|
28
|
Cornejo A, Pérez J, Alonso A, López-Rojo N, Monroy S, Boyero L. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110425. [PMID: 32179487 DOI: 10.1016/j.jenvman.2020.110425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/24/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Fungicides can reach streams through runoff or adhered to leaf litter, and have the potential to adversely affect processes such as litter decomposition and associated communities. This study investigated the effects of chlorothalonil, a widely used fungicide, on litter decomposition, detritivorous invertebrates (larvae of the insect Sericostoma pyrenaicum) and aquatic hyphomycetes (AHs), using stream microcosms. We considered the single and combined effects of two exposure modes: waterborne fungicide (at two concentrations: 0.125 μg L-1 and 1.25 μg L-1) and litter previously sprayed with the fungicide (i.e., pre-treated litter, using the application dose concentration of 1250 μg L-1). We also assessed whether fungicide effects on invertebrates, AHs and decomposition varied among litter types (i.e., different plant species), and whether plant diversity mitigated any of those effects. Invertebrate survival and AH sporulation rate and taxon richness were strongly reduced by most combinations of fungicide exposure modes; however, invertebrates were not affected by the low waterborne concentration, whereas AHs suffered the highest reduction at this concentration. Total decomposition was slowed down by both exposure modes, and microbial decomposition was reduced by litter pre-treatment, while the waterborne fungicide had different effects depending on plant species. In general, with the exception of microbial decomposition, responses varied little among litter types. Moreover, and contrary to our expectation, plant diversity did not modulate the fungicide effects. Our results highlight the severity of fungicide inputs to streams through effects on invertebrate and microbial communities and ecosystem functioning, even in streams with well-preserved, diverse riparian vegetation.
Collapse
Affiliation(s)
- Aydeé Cornejo
- Freshwater Macroinvertebrate Laboratory. Zoological Collection Dr. Eustorgio Mendez, Gorgas Memorial Institute for Health Studies (COZEM-ICGES), Ave. Justo Arosemena and Calle 35, 0816-02593, Panama City, Panama; Doctoral Program in Natural Sciences with emphasis in Entomology, University of Panama, Panama City, Panama.
| | - Javier Pérez
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Alberto Alonso
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Naiara López-Rojo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Silvia Monroy
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Bilbao, Spain
| |
Collapse
|
29
|
Srivastava DS, Céréghino R, Trzcinski MK, MacDonald AAM, Marino NAC, Mercado DA, Leroy C, Corbara B, Romero GQ, Farjalla VF, Barberis IM, Dézerald O, Hammill E, Atwood TB, Piccoli GCO, Ospina-Bautista F, Carrias JF, Leal JS, Montero G, Antiqueira PAP, Freire R, Realpe E, Amundrud SL, de Omena PM, Campos ABA. Ecological response to altered rainfall differs across the Neotropics. Ecology 2020; 101:e02984. [PMID: 31958151 DOI: 10.1002/ecy.2984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/17/2019] [Accepted: 11/12/2019] [Indexed: 11/07/2022]
Abstract
There is growing recognition that ecosystems may be more impacted by infrequent extreme climatic events than by changes in mean climatic conditions. This has led to calls for experiments that explore the sensitivity of ecosystems over broad ranges of climatic parameter space. However, because such response surface experiments have so far been limited in geographic and biological scope, it is not clear if differences between studies reflect geographic location or the ecosystem component considered. In this study, we manipulated rainfall entering tank bromeliads in seven sites across the Neotropics, and characterized the response of the aquatic ecosystem in terms of invertebrate functional composition, biological stocks (total invertebrate biomass, bacterial density) and ecosystem fluxes (decomposition, carbon, nitrogen). Of these response types, invertebrate functional composition was the most sensitive, even though, in some sites, the species pool had a high proportion of drought-tolerant families. Total invertebrate biomass was universally insensitive to rainfall change because of statistical averaging of divergent responses between functional groups. The response of invertebrate functional composition to rain differed between geographical locations because (1) the effect of rainfall on bromeliad hydrology differed between sites, and invertebrates directly experience hydrology not rainfall and (2) the taxonomic composition of some functional groups differed between sites, and families differed in their response to bromeliad hydrology. These findings suggest that it will be difficult to establish thresholds of "safe ecosystem functioning" when ecosystem components differ in their sensitivity to climatic variables, and such thresholds may not be broadly applicable over geographic space. In particular, ecological forecast horizons for climate change may be spatially restricted in systems where habitat properties mediate climatic impacts, and those, like the tropics, with high spatial turnover in species composition.
Collapse
Affiliation(s)
- Diane S Srivastava
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Régis Céréghino
- Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, UPS, INPT, Université de Toulouse, Toulouse, 21941-901, France
| | - M Kurtis Trzcinski
- Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, UPS, INPT, Université de Toulouse, Toulouse, 21941-901, France
| | - A Andrew M MacDonald
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Ecolab, Laboratoire Ecologie Fonctionnelle et Environnement, CNRS, UPS, INPT, Université de Toulouse, Toulouse, 21941-901, France
| | - Nicholas A C Marino
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil.,Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| | - Dimaris Acosta Mercado
- Department of Biology, University of Puerto Rico Mayaguez Campus, Mayaguez, 00681, Puerto Rico, USA
| | - Céline Leroy
- AMAP, IRD, CIRAD, CNRS, INRA, Université Montpellier, Montpellier, CEDEX-5, 34095, France.,ECOFOG (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), 97379, Kourou, France
| | - Bruno Corbara
- CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Gustavo Q Romero
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Vinicius F Farjalla
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| | - Ignacio M Barberis
- Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR-CONICET-UNR, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Olivier Dézerald
- ECOFOG (AgroParisTech, CIRAD, CNRS, INRA, Université de Guyane, Université des Antilles), 97379, Kourou, France.,Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC)-CNRS UMR 7360, Université de Lorraine, Campus Bridoux, 57070, Metz, France.,INRA, Agrocampus-Ouest, Ecology and Ecosystem Health, 65 rue de Saint-Brieuc, F-35042, Rennes, France
| | - Edd Hammill
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.,Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, 84322, USA
| | - Trisha B Atwood
- Department of Watershed Sciences and the Ecology Center, Utah State University, Logan, 84322, USA.,Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Gustavo C O Piccoli
- Department of Zoology and Botany, University of São Paulo State (UNESP/IBILCE), 15054 - 000, São José do Rio Preto, SP, Brazil
| | - Fabiola Ospina-Bautista
- Department of Biological Sciences, Andes University, Bogotá, 111711, Colombia.,Departamento de Ciencias Biológicas, Universidad de Caldas, Caldas, 170001, Colombia
| | - Jean-François Carrias
- CNRS, LMGE (Laboratoire Microorganismes: Génome et Environnement), Université Clermont-Auvergne, F-63000, Clermont-Ferrand, France
| | - Juliana S Leal
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| | - Guillermo Montero
- Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR-CONICET-UNR, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Pablo A P Antiqueira
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Rodrigo Freire
- Facultad de Ciencias Agrarias, Instituto de Investigaciones en Ciencias Agrarias de Rosario, IICAR-CONICET-UNR, Universidad Nacional de Rosario, S2125ZAA, Zavalla, Argentina
| | - Emilio Realpe
- Department of Biological Sciences, Andes University, Bogotá, 111711, Colombia
| | - Sarah L Amundrud
- Departmetn of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Paula M de Omena
- Laboratory of Multitrophic Interactions and Biodiversity, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), 13083-862, Campinas, SP, Brazil
| | - Alice B A Campos
- Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Ilha do Fundão, 68020, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Dos Reis Oliveira PC, Kraak MHS, Pena-Ortiz M, van der Geest HG, Verdonschot PFM. Responses of macroinvertebrate communities to land use specific sediment food and habitat characteristics in lowland streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135060. [PMID: 31757549 DOI: 10.1016/j.scitotenv.2019.135060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The input of land use specific organic matter into lowland streams may impact sediment characteristics in terms of food resources and habitat structure, resulting in differences in macroinvertebrate community composition. Therefore, we investigated to what extent land use specific sediment food and habitat characteristics structure macroinvertebrate communities. To this purpose linear multiple regression models were constructed, in which macroinvertebrate biotic indices were considered as response variables and sediment characteristics as predictor variables, analysed in 20 stream stretches running through five different land use types. Sediment characteristics and macroinvertebrate community composition were land use specific. The carbon/nitrogen (C/N) ratio, woody debris substrate cover and the origin of fatty acids influenced macroinvertebrate community composition. Shannon-Wiener diversity was better explained by fatty acids origin, such as in grassland streams, where a higher relative content of plant derived fatty acids related to a higher macroinvertebrate diversity. In cropland and wastewater treatment plant (WWTP) streams with a low C/N ratio and dominated by microbial derived fatty acids, higher abundances of Oligochaeta and Chironomus sp. were observed. Ephemeroptera, Plecoptera, and Trichoptera (EPT) richness was positively related to woody debris substrate cover, which only occurred in forest streams. Hence, macroinvertebrate community composition was influenced by the origin of the organic material, being either allochthonous or autochthonous and when autochthonous being either autotrophic or heterotrophic. It is therefore concluded that sediment food and habitat characteristics are key ecological filters.
Collapse
Affiliation(s)
- Paula C Dos Reis Oliveira
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands.
| | - Michiel H S Kraak
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Michelle Pena-Ortiz
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Harm G van der Geest
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Piet F M Verdonschot
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands; Freshwater Ecology Group, Wageningen Environmental Research, Wageningen UR, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
31
|
Stoler AB, Relyea RA. Reviewing the role of plant litter inputs to forested wetland ecosystems: leafing through the literature. ECOL MONOGR 2020. [DOI: 10.1002/ecm.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Aaron B. Stoler
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York 12180 USA
| | - Rick A. Relyea
- Department of Biological Sciences Darrin Fresh Water Institute Rensselaer Polytechnic Institute Troy New York 12180 USA
| |
Collapse
|
32
|
Marks JC. Revisiting the Fates of Dead Leaves That Fall into Streams. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2019. [DOI: 10.1146/annurev-ecolsys-110218-024755] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As terrestrial leaf litter decomposes in rivers, its constituent elements follow multiple pathways. Carbon leached as dissolved organic matter can be quickly taken up by microbes, then respired before it can be transferred to the macroscopic food web. Alternatively, this detrital carbon can be ingested and assimilated by aquatic invertebrates, so it is retained longer in the stream and transferred to higher trophic levels. Microbial growth on litter can affect invertebrates through three pathways, which are not mutually exclusive. First, microbes can facilitate invertebrate feeding, improving food quality by conditioning leaves and making them more palatable for invertebrates. Second, microbes can be prey for invertebrates. Third, microbes can compete with invertebrates for resources bound within litter and may produce compounds that retard carbon and nitrogen fluxes to invertebrates. As litter is broken down into smaller particles, there are many opportunities for its elements to reenter the stream food web. Here, I describe a conceptual framework for evaluating how traits of leaf litter will affect its fate in food webs and ecosystems that is useful for predicting how global change will alter carbon fluxes into and out of streams.
Collapse
Affiliation(s)
- Jane C. Marks
- Department of Biological Sciences and Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
33
|
Patterns of litter inputs, hyphomycetes and invertebrates in a Brazilian savanna stream: a process of degradative succession. JOURNAL OF TROPICAL ECOLOGY 2019. [DOI: 10.1017/s0266467419000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractLitter breakdown is an important ecological process at the bottom of food webs in streams. Previous studies have been based only on a temporal interval of a single season, thus ignoring seasonal variation in litter input and community structure. We investigated organic matter input in a Brazilian savanna stream and the influence of its associated hyphomycetes on the invertebrate community. Organic matter input was sampled monthly and the leaves submitted to decomposition experiments. There were lower breakdown rates and higher invertebrate species richness and abundance during the dry season, which reached their maximum in July due to low stream discharge. Invertebrate composition was best explained by hyphomycetes (mainly byFlagellospora curvulaandAnguillospora filiformis). Hyphomycetes have the capacity to degrade complex compounds of litter and to rapidly absorb nutrients by growing branched filaments, thus making the leaves more favourable for consumption by invertebrates. Shredder abundance was negatively related to litter richness, indicating possible species-specific relationships. We observed a sequential process with increased leaf litter input promoting an increase in hyphomycetes biomass, which in turn favoured invertebrate density.
Collapse
|
34
|
Urban Stream and Wetland Restoration in the Global South—A DPSIR Analysis. SUSTAINABILITY 2019. [DOI: 10.3390/su11184975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In many countries of the Global South, aquatic ecosystems such as streams, rivers, lakes, and wetlands are severely impacted by several simultaneous environmental stressors, associated with accelerated urban development, and extreme climate. However, this problem receives little attention. Applying a DPSIR approach (Drivers, Pressures, State, Impacts, Responses), we analyzed the environmental impacts and their effects on urban hydrosystems (including stagnant waters), and suggest possible solutions from a series of case studies worldwide. We find that rivers in the Global South, with their distinctive geographical and socio-political setting, display significant differences from the Urban Stream Syndrome described so far in temperate zones. We introduce the term of ‘Southern Urban Hydrosystem Syndrome’ for the biophysical problems as well as the social interactions, including the perception of water bodies by the urbanites, the interactions of actors (e.g., top-down, bottom-up), and the motivations that drive urban hydrosystem restoration projects of the Global South. Supported by a synthesis of case studies (with a focus on Brazilian restoration projects), this paper summarizes the state of the art, highlights the currently existing lacunae for research, and delivers examples of practical solutions that may inform UNESCO’s North–South–South dialogue to solve these urgent problems. Two elements appear to be specifically important for the success of restoration projects in the Global South, namely the broad acceptance and commitment of local populations beyond merely ‘ecological’ justifications, e.g., healthy living environments and ecosystems with cultural linkages (‘River Culture’). To make it possible implementable/practical solutions must be extended to (often poor) people having settled along river banks and wetlands.
Collapse
|
35
|
Seena S, Bärlocher F, Sobral O, Gessner MO, Dudgeon D, McKie BG, Chauvet E, Boyero L, Ferreira V, Frainer A, Bruder A, Matthaei CD, Fenoglio S, Sridhar KR, Albariño RJ, Douglas MM, Encalada AC, Garcia E, Ghate SD, Giling DP, Gonçalves V, Iwata T, Landeira-Dabarca A, McMaster D, Medeiros AO, Naggea J, Pozo J, Raposeiro PM, Swan CM, Tenkiano NSD, Yule CM, Graça MAS. Biodiversity of leaf litter fungi in streams along a latitudinal gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:306-315. [PMID: 30677678 DOI: 10.1016/j.scitotenv.2019.01.122] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 05/20/2023]
Abstract
Global patterns of biodiversity have emerged for soil microorganisms, plants and animals, and the extraordinary significance of microbial functions in ecosystems is also well established. Virtually unknown, however, are large-scale patterns of microbial diversity in freshwaters, although these aquatic ecosystems are hotspots of biodiversity and biogeochemical processes. Here we report on the first large-scale study of biodiversity of leaf-litter fungi in streams along a latitudinal gradient unravelled by Illumina sequencing. The study is based on fungal communities colonizing standardized plant litter in 19 globally distributed stream locations between 69°N and 44°S. Fungal richness suggests a hump-shaped distribution along the latitudinal gradient. Strikingly, community composition of fungi was more clearly related to thermal preferences than to biogeography. Our results suggest that identifying differences in key environmental drivers, such as temperature, among taxa and ecosystem types is critical to unravel the global patterns of aquatic fungal diversity.
Collapse
Affiliation(s)
- Sahadevan Seena
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Felix Bärlocher
- Department of Biology, Mt. Allison University, Sackville, NB E4L 1G7, Canada
| | - Olímpia Sobral
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal; Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775 Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587 Berlin, Germany; Berlin Brandenburg Institute of Advanced Biodiversity Research (BBIB), Altensteinstraße 34, 14195 Berlin, Germany
| | - David Dudgeon
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-75007 Uppsala, Sweden
| | - Eric Chauvet
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Luz Boyero
- Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain; College of Science and Engineering, James Cook University, Townsville, Qld, Australia
| | - Verónica Ferreira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - André Frainer
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, 9037 Tromsø, Norway; Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037 Tromsø, Norway
| | - Andreas Bruder
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Stefano Fenoglio
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria I-15121, Italy
| | - Kandikere R Sridhar
- Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India
| | | | - Michael M Douglas
- School of Earth and Environment, University of Western Australia, Perth, WA 6009, Australia; Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Andrea C Encalada
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal; Laboratorio de Ecología Acuática, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, 17-1200-841 Quito, Ecuador
| | - Erica Garcia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Sudeep D Ghate
- Department of Biosciences, Mangalore University, Mangalagangotri, Mangalore 574 199, Karnataka, India; Yenepoya Research Center, Yenepoya (Deemed to Be University), Deralakatte, Mangalore 575018, Karnataka, India
| | - Darren P Giling
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775 Stechlin, Germany; Institute of Ecology and Evolution, Friedrich-Schiller University Jena, Dornburger Str. 15, 07743 Jena, Germany
| | - Vítor Gonçalves
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Pólo dos Açores & Departamento de Biologia da, Universidade dos Açores, Ponta Delgada, Açores, Portugal
| | - Tomoya Iwata
- Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda, Kofu 400-8510, Japan
| | - Andrea Landeira-Dabarca
- Laboratorio de Ecología Acuática, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, 17-1200-841 Quito, Ecuador
| | - Damien McMaster
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia
| | - Adriana O Medeiros
- Laboratório de Microbiologia Ambiental Departamento de Botânica, Instituto de Biologia, Universidade Federal da Bahia, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Josheena Naggea
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia
| | - Jesús Pozo
- Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Pedro M Raposeiro
- Centro de Investigação em Biodiversidade e Recursos Genéticos, CIBIO, InBIO Laboratório Associado, Pólo dos Açores & Departamento de Biologia da, Universidade dos Açores, Ponta Delgada, Açores, Portugal
| | - Christopher M Swan
- Department of Geography & Environmental Systems, University of Maryland, Baltimore County, 211 Sondheim Hall, 1000 Hilltop Circle, Baltimore, MD 21250, USA
| | | | - Catherine M Yule
- School of Science, Monash University Malaysia, Bandar Sunway, Selangor 47500, Malaysia; School of Science and Engineering, University of the Sunshine Coast, Queensland, Australia
| | - Manuel A S Graça
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| |
Collapse
|
36
|
de S. Rezende R, Medeiros AO, dos Santos Dahora JA, Tonin AM, Gonçalves JF, Moretto Y. Taxonomic resolution refinement does not improve understanding of invertebrate's role on leaf litter breakdown. COMMUNITY ECOL 2019. [DOI: 10.1556/168.2019.20.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R. de S. Rezende
- Program of Postgraduate in Environmental Science, Communitarian University of Chapecó Region, CEP: 89.809-000, Santa Catarina, Brazil
- Limnology/AquaRiparia Lab., Department of Ecology, IB, University of Brasília (UnB), Asa Norte, 70910-900, Brasília, DF, Brazil
| | - A. O. Medeiros
- Environmental Microbiology Lab. Institute of Biology, Federal University of Bahia, CEP 40170-110 Salvador, Bahia, Brazil
| | - J. A. dos Santos Dahora
- Environmental Microbiology Lab. Institute of Biology, Federal University of Bahia, CEP 40170-110 Salvador, Bahia, Brazil
| | - A. M. Tonin
- Limnology/AquaRiparia Lab., Department of Ecology, IB, University of Brasília (UnB), Asa Norte, 70910-900, Brasília, DF, Brazil
| | - J. F. Gonçalves
- Limnology/AquaRiparia Lab., Department of Ecology, IB, University of Brasília (UnB), Asa Norte, 70910-900, Brasília, DF, Brazil
| | - Y. Moretto
- Program of Postgraduate on Aquaculture and Sustainable Development, Laboratory of Benthic Aquatic Invertebrates, Department of Biodiversity, Federal University of Paraná, CEP: 85950-000, Palotina, Brazil
| |
Collapse
|
37
|
Biasi C, Cogo GB, Hepp LU, Santos S. Shredders prefer soft and fungal-conditioned leaves, regardless of their initial chemical traits. IHERINGIA. SERIE ZOOLOGIA 2019. [DOI: 10.1590/1678-4766e2019004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Through field and laboratory experiments we investigated the effects of leaf traits of two tree species and microbial conditioning on the abundance, biomass, and feeding preference of a typical macroinvertebrate shredder. In the field, we compared the association of Phylloicus (Calamoceratidae, Trichoptera) with two tree species commonly found in riparian zones, which are representative of high and low nutritional quality, respectively: Nectandra megapotamica and Chusquea tenella. In the laboratory, we investigated the feeding preference of Phylloicus using unconditioned leaves and leaves conditioned by aquatic fungi. The same tree species used in the field experiment were used in the laboratory. Initially, C. tenella leaves were proved to be more nutritious and softer, while N. megapotamica leaves were harder and more lignified. The shredders preferred conditioned leaf detritus of reduced toughness (field: C. tenella; laboratory: N. megapotamica, both conditioned for 14 days). These leaf traits seem to be crucial for the choice process of Phylloicus. After 14 days, N. megapotamica leaves showed a decreased toughness associated with the microbial conditioning, which explained its consumption rate by Phylloicus. In both field and laboratory experiments, we found evidence that Phylloicus is a selective feeding shredder, and that the leaf traits, especially leaf structure (e.g., leaf toughness and lignin content), determine its association and preferences.
Collapse
Affiliation(s)
- Cristiane Biasi
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil; Universidade Federal de Santa Maria, Brazil
| | | | - Luiz U. Hepp
- Universidade Regional Integrada do Alto Uruguai e das Missões, Brazil
| | | |
Collapse
|
38
|
Gajdzik L, Bernardi G, Lepoint G, Frédérich B. Genetic diversity mirrors trophic ecology in coral reef fish feeding guilds. Mol Ecol 2018; 27:5004-5018. [DOI: 10.1111/mec.14936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Laura Gajdzik
- Laboratory of Functional and Evolutionary Morphology FOCUS, University of Liège Liège Belgium
| | - Giacomo Bernardi
- Department of Ecology and Evolutionary Biology University of California Santa Cruz Santa Cruz California
| | - Gilles Lepoint
- Laboratory of Oceanology FOCUS, University of Liège Liège Belgium
| | - Bruno Frédérich
- Laboratory of Functional and Evolutionary Morphology FOCUS, University of Liège Liège Belgium
| |
Collapse
|
39
|
Feio MJ, Leite GFM, Rezende RS, Medeiros AO, Cruz LC, Dahora JAS, Calor A, Neres-Lima V, Silva-Araújo M, Callisto M, França J, Martins I, Moretti MS, Rangel JV, Petrucio MM, Lemes-Silva AL, Martins RT, Dias-Silva K, Dantas GPS, Moretto Y, Gonçalves JF. Macro-scale (biomes) differences in neotropical stream processes and community structure. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
40
|
|
41
|
López-Rojo N, Martínez A, Pérez J, Basaguren A, Pozo J, Boyero L. Leaf traits drive plant diversity effects on litter decomposition and FPOM production in streams. PLoS One 2018; 13:e0198243. [PMID: 29813129 PMCID: PMC5973617 DOI: 10.1371/journal.pone.0198243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/16/2018] [Indexed: 11/22/2022] Open
Abstract
Biodiversity loss in riparian forests has the potential to alter rates of leaf litter decomposition in stream ecosystems. However, studies have reported the full range of positive, negative and no effects of plant diversity loss on decomposition, and there is currently no explanation for such inconsistent results. Furthermore, it is uncertain whether plant diversity loss affects other ecological processes related to decomposition, such as fine particulate organic matter production or detritivore growth, which precludes a thorough understanding of how detrital stream food webs are impacted by plant diversity loss. We used a microcosm experiment to examine the effects of plant diversity loss on litter decomposition, fine particulate organic matter production, and growth of a dominant leaf-shredding detritivore, using litter mixtures varying in species composition. We hypothesized that plant diversity loss would decrease the rates of all studied processes, but such effects would depend on the leaf traits present in litter mixtures (both their average values and their variability). Our findings partly supported our hypotheses, showing that plant diversity loss had a consistently negative effect on litter decomposition and fine particulate organic matter production (but not on detritivore growth) across litter mixtures, which was mediated by detritivores. Importantly, the magnitude of the diversity effect and the relative importance of different mechanisms underlying this effect (i.e., complementarity vs. selection) varied depending on the species composition of litter mixtures, mainly because of differences in litter nutritional quality and trait variability. Complementarity was prevalent but varied in size, with positive selection effects also occurring in some mixtures. Our results support the notion that loss of riparian plant species is detrimental to key stream ecosystem processes that drive detrital food webs, but that the magnitude of such effects largely depends on the the order of species loss.
Collapse
Affiliation(s)
- Naiara López-Rojo
- Department of Plant Biology and Ecology, Laboratory of Stream Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- * E-mail:
| | - Aingeru Martínez
- Department of Plant Biology and Ecology, Laboratory of Stream Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Javier Pérez
- Department of Plant Biology and Ecology, Laboratory of Stream Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ana Basaguren
- Department of Plant Biology and Ecology, Laboratory of Stream Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Jesús Pozo
- Department of Plant Biology and Ecology, Laboratory of Stream Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Luz Boyero
- Department of Plant Biology and Ecology, Laboratory of Stream Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- College of Science and Engineering, James Cook University, Townsville, Australia
| |
Collapse
|
42
|
de Souza Rezende R, Leite GFM, Ramos K, Torres I, Tonin AM, Gonçalves Júnior JF. Effects of litter size and quality on processing by decomposers in a tropical savannah stream. Biotropica 2018. [DOI: 10.1111/btp.12547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Renan de Souza Rezende
- Programa de Pós graduação em Ciências Ambientais; Universidade Comunitária Regional de Chapecó - Unochapecó; Chapecó Santa Catarina CEP: 89809-000 Brazil
- AquaRiparia; Departmento de Ecologia; Universidade de Brasília - UnB; Campus Darcy Ribeiro Asa Norte Brasília DF CEP 70910-900 Brazil
| | - Gustavo Figueiredo Marques Leite
- Centro Universitário para Desenvolvimento do Centro Oeste - UNIDESC; Rodovia BR-040 Jardim Flamboyant Luziânia, Goiás 72852-580 Brazil
- Programa de Pós Graduação em Ecologia - UnB; Campus Darcy Ribeiro Asa Norte Bras?lia DF CEP 70910-900 Brazil
| | - Kamilla Ramos
- AquaRiparia; Departmento de Ecologia; Universidade de Brasília - UnB; Campus Darcy Ribeiro Asa Norte Brasília DF CEP 70910-900 Brazil
| | - Isabella Torres
- AquaRiparia; Departmento de Ecologia; Universidade de Brasília - UnB; Campus Darcy Ribeiro Asa Norte Brasília DF CEP 70910-900 Brazil
| | - Alan M. Tonin
- AquaRiparia; Departmento de Ecologia; Universidade de Brasília - UnB; Campus Darcy Ribeiro Asa Norte Brasília DF CEP 70910-900 Brazil
| | - José Francisco Gonçalves Júnior
- AquaRiparia; Departmento de Ecologia; Universidade de Brasília - UnB; Campus Darcy Ribeiro Asa Norte Brasília DF CEP 70910-900 Brazil
| |
Collapse
|
43
|
Rodríguez Pérez H, Borrel G, Leroy C, Carrias JF, Corbara B, Srivastava DS, Céréghino R. Simulated drought regimes reveal community resilience and hydrological thresholds for altered decomposition. Oecologia 2018; 187:267-279. [DOI: 10.1007/s00442-018-4123-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/17/2018] [Indexed: 11/28/2022]
|
44
|
Abstract
Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce ‘syndromes’ resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
Collapse
|
45
|
Follstad Shah JJ, Kominoski JS, Ardón M, Dodds WK, Gessner MO, Griffiths NA, Hawkins CP, Johnson SL, Lecerf A, LeRoy CJ, Manning DWP, Rosemond AD, Sinsabaugh RL, Swan CM, Webster JR, Zeglin LH. Global synthesis of the temperature sensitivity of leaf litter breakdown in streams and rivers. GLOBAL CHANGE BIOLOGY 2017; 23:3064-3075. [PMID: 28039909 DOI: 10.1111/gcb.13609] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 11/26/2016] [Indexed: 05/06/2023]
Abstract
Streams and rivers are important conduits of terrestrially derived carbon (C) to atmospheric and marine reservoirs. Leaf litter breakdown rates are expected to increase as water temperatures rise in response to climate change. The magnitude of increase in breakdown rates is uncertain, given differences in litter quality and microbial and detritivore community responses to temperature, factors that can influence the apparent temperature sensitivity of breakdown and the relative proportion of C lost to the atmosphere vs. stored or transported downstream. Here, we synthesized 1025 records of litter breakdown in streams and rivers to quantify its temperature sensitivity, as measured by the activation energy (Ea , in eV). Temperature sensitivity of litter breakdown varied among twelve plant genera for which Ea could be calculated. Higher values of Ea were correlated with lower-quality litter, but these correlations were influenced by a single, N-fixing genus (Alnus). Ea values converged when genera were classified into three breakdown rate categories, potentially due to continual water availability in streams and rivers modulating the influence of leaf chemistry on breakdown. Across all data representing 85 plant genera, the Ea was 0.34 ± 0.04 eV, or approximately half the value (0.65 eV) predicted by metabolic theory. Our results indicate that average breakdown rates may increase by 5-21% with a 1-4 °C rise in water temperature, rather than a 10-45% increase expected, according to metabolic theory. Differential warming of tropical and temperate biomes could result in a similar proportional increase in breakdown rates, despite variation in Ea values for these regions (0.75 ± 0.13 eV and 0.27 ± 0.05 eV, respectively). The relative proportions of gaseous C loss and organic matter transport downstream should not change with rising temperature given that Ea values for breakdown mediated by microbes alone and microbes plus detritivores were similar at the global scale.
Collapse
Affiliation(s)
- Jennifer J Follstad Shah
- Environmental and Sustainability Studies/Department of Geography, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Watershed Sciences, Utah State University, Logan, UT, 84322, USA
| | - John S Kominoski
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Marcelo Ardón
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Walter K Dodds
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Stechlin, Germany
- Department of Ecology, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Natalie A Griffiths
- Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Charles P Hawkins
- Department of Watershed Sciences, Utah State University, Logan, UT, 84322, USA
| | - Sherri L Johnson
- Pacific Northwest Research Station, US Forest Service, Corvallis, OR, 97331, USA
| | - Antoine Lecerf
- Université de Toulouse, UPS, INP, CNRS, EcoLab (Laboratoire d'Écologie Fonctionnelle et Environnement), 31062, Toulouse, France
| | - Carri J LeRoy
- Environmental Studies Program, The Evergreen State College, Olympia, WA, 98505, USA
| | - David W P Manning
- School of Environment and Natural Resources, Ohio State University, Columbus, OH, 43210, USA
| | - Amy D Rosemond
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - Robert L Sinsabaugh
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Christopher M Swan
- Department of Geography and Environmental Systems, University of Maryland-Baltimore County, Baltimore, MD, 21250, USA
| | - Jackson R Webster
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lydia H Zeglin
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
46
|
Mosele Tonin A, Ubiratan Hepp L, Gonçalves JF. Spatial Variability of Plant Litter Decomposition in Stream Networks: from Litter Bags to Watersheds. Ecosystems 2017. [DOI: 10.1007/s10021-017-0169-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Correa-Araneda F, Basaguren A, Abdala-Díaz RT, Tonin AM, Boyero L. Resource-allocation tradeoffs in caddisflies facing multiple stressors. Ecol Evol 2017; 7:5103-5110. [PMID: 28770050 PMCID: PMC5528245 DOI: 10.1002/ece3.3094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 05/06/2017] [Accepted: 05/10/2017] [Indexed: 11/16/2022] Open
Abstract
The replacement of native forests by exotic tree monocultures, such as those of Eucalyptus, decreases the quality of leaf litter inputs to streams and often reduces riparian cover, which can elevate water temperature. The combined effects of these stressors on the survival and performance of detritivores may be important, as detritivore species loss leads to reduced litter breakdown, a key ecosystem process. Potential loss of cased caddisfly larvae is of particular concern because they are the predominant detritivores in many streams, they are sensitive to warming, and they expend energy on building and carrying their cases, which may be an added burden under times of stress. In a microcosm experiment, we tested whether (i) poor‐quality Eucalyptus globulus litter impaired case construction by larvae of Sericostoma pyrenaicum (due to preferential allocation of the scarcer available energy to larval fitness) compared to high‐quality Alnus glutinosa litter; (ii) whether this effect was enhanced by higher temperatures (15 vs. 10°C) resulting in faster metabolism and greater energy expenditure; but (iii) reduced in the presence of chemical cues from a predatory fish (due to greater investment in more protective cases). We found that Eucalyptus had lethal and sublethal effects on larval caddisflies, increasing mortality, reducing growth, and impairing case construction, compared to larvae fed Alnus. Temperature did not reinforce the effects of exotic litter on case construction, but predator chemical cues triggered the construction of more protective cases (i.e., longer and better cemented) despite the lower resource quality, providing evidence for environmentally mediated resource‐allocation tradeoffs.
Collapse
Affiliation(s)
- Francisco Correa-Araneda
- Laboratory of Ecotoxicology Department of Zoology Faculty of Natural and Oceanographic Sciences University of Concepción Concepción Chile
| | - Ana Basaguren
- Department of Plant Biology and Ecology Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | | | - Alan Mosele Tonin
- Department of EcologyI B Universidade de Brasília Brasília, Distrito Federal Brazil
| | - Luz Boyero
- Department of Plant Biology and Ecology Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain.,IKERBASQUE Basque Foundation for Science Bilbao Spain.,College of Science and Engineering James Cook University Townsville QLD Australia
| |
Collapse
|
48
|
Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, Alexandrou MA, Graça MAS, Cardinale BJ, Albariño RJ, Arunachalam M, Barmuta LA, Boulton AJ, Bruder A, Callisto M, Chauvet E, Death RG, Dudgeon D, Encalada AC, Ferreira V, Figueroa R, Flecker AS, Gonçalves JF, Helson J, Iwata T, Jinggut T, Mathooko J, Mathuriau C, M'Erimba C, Moretti MS, Pringle CM, Ramírez A, Ratnarajah L, Rincon J, Yule CM. Biotic and abiotic variables influencing plant litter breakdown in streams: a global study. Proc Biol Sci 2017; 283:rspb.2015.2664. [PMID: 27122551 DOI: 10.1098/rspb.2015.2664] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 04/01/2016] [Indexed: 11/12/2022] Open
Abstract
Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.
Collapse
Affiliation(s)
- Luz Boyero
- Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain College of Marine and Environmental Sciences and TropWater, James Cook University, Townsville, Queensland 4811, Australia
| | - Richard G Pearson
- College of Marine and Environmental Sciences and TropWater, James Cook University, Townsville, Queensland 4811, Australia
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa African Institute for Mathematical Sciences, Muizenburg 7945, South Africa
| | - Mark O Gessner
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775 Stechlin, Germany Department of Ecology, Berlin Institute of Technology (TU Berlin), 10587 Berlin, Germany
| | - Javier Pérez
- Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Markos A Alexandrou
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | - Manuel A S Graça
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal
| | - Bradley J Cardinale
- School of Natural Resources and Environment, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ricardo J Albariño
- Laboratorio de Fotobiologia, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, 8400 Bariloche, Argentina
| | - Muthukumarasamy Arunachalam
- Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412 Tamil Nadu, India
| | - Leon A Barmuta
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Andrew J Boulton
- Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351, Australia
| | - Andreas Bruder
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, 8600 Dübendorf, Switzerland Institute of Integrative Biology (IBZ), ETH Zurich, 8092 Zurich, Switzerland
| | - Marcos Callisto
- Laboratório de Ecologia de Bentos, Departamento de Biologia Geral, ICB, Universidade Federal de Minas Gerais, 30161-970 Belo Horizonte, MG, Brazil
| | - Eric Chauvet
- UPS, INPT; EcoLab, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse, France EcoLab, CNRS, 31062 Toulouse, France
| | - Russell G Death
- Institute of Agriculture and Environment-Ecology, Massey University, 4442 Palmerston North, New Zealand
| | - David Dudgeon
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
| | - Andrea C Encalada
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal Laboratorio de Ecología Acuatica, Colegio de Ciencias Biologicas y Ambientales, Universidad de San Francisco de Quito, Campus Cumbayá, PO Box 17, 1200841 Quito, Ecuador
| | - Verónica Ferreira
- MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, University of Coimbra, 3001-456 Coimbra, Portugal
| | - Ricardo Figueroa
- Faculty of Environmental Science and Water Research Center for Agriculture and Mining, University of Concepción, Box 160-C, Concepción, Chile
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - José F Gonçalves
- Laboratório de Limnologia/AquaRiparia, Departamento de Ecologia, ECL/IB, Universidade de Brasilia, 70910-900 Brasilia, Distrito Federal, Brazil
| | - Julie Helson
- Surface and Groundwater Ecology Research Group, Department of Biological Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4
| | - Tomoya Iwata
- Department of Environmental Sciences, University of Yamanashi, Kofu, Yamanashi 400-8510, Japan
| | - Tajang Jinggut
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Jude Mathooko
- Department of Biological Sciences, Egerton University, PO Box 536, Egerton, Kenya
| | - Catherine Mathuriau
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Ciudad de México 04510, DF, México
| | - Charles M'Erimba
- Department of Biological Sciences, Egerton University, PO Box 536, Egerton, Kenya
| | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, University of Vila Velha, Vila Velha 29 102-920, Brazil
| | | | - Alonso Ramírez
- Department of Environmental Science, University of Puerto Rico, Rio Piedras, San Juan 00919, Puerto Rico
| | - Lavenia Ratnarajah
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia Institute for Marine and Antarctic Studies and Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - José Rincon
- Laboratorio de Contaminación Acuática y Contaminación Fluvial, Departamento de Biología, Facultad de Ciencias, Universidad del Zulia, Apartado Postal 526, Maracaibo, Venezuela Programa Prometeo, Senescyt, Escuela de Biología, Ecología y Gestión, Universidad del Azuay, Apartado 981, Cuenca, Ecuador
| | - Catherine M Yule
- School of Science, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
49
|
Ferreira WR, Hepp LU, Ligeiro R, Macedo DR, Hughes RM, Kaufmann PR, Callisto M. Partitioning taxonomic diversity of aquatic insect assemblages and functional feeding groups in neotropical savanna headwater streams. ECOLOGICAL INDICATORS 2017; 72:365-373. [PMID: 38264148 PMCID: PMC10805237 DOI: 10.1016/j.ecolind.2016.08.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Biological diversity can be divided into: alpha (α, local), beta (β, difference in assemblage composition among locals), and gamma (γ, total diversity). We assessed the partitioning of taxonomic diversity of Ephemeroptera, Plecoptera and Trichoptera (EPT) and of functional feeding groups (FFG) in neotropical savanna (southeastern Brazilian cerrado) streams. To do so, we considered three diversity components: stream site (α), among stream sites (β1), and among hydrologic units (β2). We also evaluated the association of EPT genera composition with heterogeneity in land use, instream physical habitat structure, and instream water quality variables. The percentage of EPT taxonomic α diversity (20.7%) was smaller than the β1 and β2 diversity percentages (53.1% and 26.2%, respectively). The percentage of EPT FFG collector-gatherer α diversity (26.5%) was smaller than that of β1 diversity (55.8%) and higher than the β2 (17.7%) diversity. The collector-gatherer FFG was predominant and had the greatest β diversity percentage among stream sites (β1, 55.8%). Our findings support the need for implementing regional scale conservation strategies in the cerrado biome, which has been degraded by anthropogenic activities.
Collapse
Affiliation(s)
- W R Ferreira
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Laboratório de Ecologia de Bentos, Av. Presidente Antônio Carlos 6627, CP 486, CEP 30161-970, Belo Horizonte, Minas Gerais, Brasil
| | - L U Hepp
- Universidade Regional Integrada do Alto Uruguai e das Missões (URI), Av. Sete de Setembro, 1621, CEP 99709-910, Erechim, Rio Grande do Sul, Brasil
| | - R Ligeiro
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Ecologia e Conservação, Rua Augusto Corrêa, 01, CEP 66075-110, Belém, Pará, Brasil
| | - D R Macedo
- Universidade Federal de Minas Gerais, Instituto de Geociências, Departamento de Geografia, Av. Presidente Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - R M Hughes
- Amnis Opes Institute and Department of Fisheries & Wildlife, Oregon State University, 97331-4501, Corvallis, OR, USA
| | - P R Kaufmann
- U.S. Environmental Protection Agency, Office of Research & Development, National Health & Environmental Effects Lab., Western Ecology Division, 200 SW 35th Street, 97333 Corvallis, OR, USA
| | - M Callisto
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Laboratório de Ecologia de Bentos, Av. Presidente Antônio Carlos 6627, CP 486, CEP 30161-970, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
50
|
Nicholson DB, Holroyd PA, Valdes P, Barrett PM. Latitudinal diversity gradients in Mesozoic non-marine turtles. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160581. [PMID: 28018649 PMCID: PMC5180147 DOI: 10.1098/rsos.160581] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/24/2016] [Indexed: 05/26/2023]
Abstract
The latitudinal biodiversity gradient (LBG)-the pattern of increasing taxonomic richness with decreasing latitude-is prevalent in the structure of the modern biota. However, some freshwater taxa show peak richness at mid-latitudes; for example, extant Testudines (turtles, terrapins and tortoises) exhibit their greatest diversity at 25° N, a pattern sometimes attributed to recent bursts of climatically mediated species diversification. Here, we test whether this pattern also characterizes the Mesozoic distribution of turtles, to determine whether it was established during either their initial diversification or as a more modern phenomenon. Using global occurrence data for non-marine testudinate genera, we find that subsampled richness peaks at palaeolatitudes of 15-30° N in the Jurassic, 30-45° N through the Cretaceous to the Campanian, and from 30° to 60° N in the Maastrichtian. The absence of a significant diversity peak in southern latitudes is consistent with results from climatic models and turtle niche modelling that demonstrate a dearth of suitable turtle habitat in Gondwana during the Jurassic and Late Cretaceous. Our analyses confirm that the modern testudinate LBG has a deep-time origin and further demonstrate that LBGs are not always expressed as a smooth, equator-to-pole distribution.
Collapse
Affiliation(s)
- David B. Nicholson
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Patricia A. Holroyd
- Museum of Paleontology, University of California, 1101 Valley Life Sciences Building, Berkeley, CA 94720, USA
| | - Paul Valdes
- School of Geographical Sciences, University of Bristol, University Road, Bristol BS8 1SS, UK
| | - Paul M. Barrett
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|