1
|
Lizama-Schmeisser N, de Castro ES, Espinoza-Carniglia M, Herrera Y, Silva-de La Fuente MC, Lareschi M, Moreno L. Are Rattus rattus fleas invasive? Evaluation of flea communities in invasive and native rodents in Chile. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:599-613. [PMID: 38958518 DOI: 10.1111/mve.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Co-invasion, characterized by the simultaneous introduction of hosts and parasites with the latter establishing themselves in native hosts, is a phenomenon of ecological concern. Rattus rattus, a notorious invasive species, has driven the extinction and displacement of numerous avian and mammalian species and serves as a key vector for diseases affecting both humans and wildlife. Among the parasites hosted by R. rattus are fleas, which exhibit obligate parasitic behaviour, a generalist nature and high prevalence, increasing the likelihood of flea invasion. Simultaneously, invasive species can serve as hosts for native parasites, leading to potential amplification or dilution of parasite populations in the environment. In Chile, R. rattus has been present since the 17th century because of the arrival of the Spanish colonizers through the ports and has spread throughout urban, rural and wild Chilean territories. This study aims to evaluate whether co-invasion of native fleas of invasive rats occurs on native rodents in Chile and to determine whether black rats have acquired flea native to Chile during their invasion. For this, we captured 1132 rodents from 26 localities (20° S-53° S). Rattus rattus was found coexisting with 11 native rodent species and two species of introduced rodents. Among the native rodents, Abrothrix olivacea and Oligoryzomys longicaudatus exhibited more extensive sympatry with R. rattus. We identified 14 flea species associated with R. rattus, of which only three were native to rats: Xenopsylla cheopis, Leptopsylla segnis and Nosopsyllus fasciatus. These three species presented a higher parasite load in black rats compared to native fleas. Leptopsylla segnis and N. fasciatus were also found associated with native rodent species that cohabit with R. rattus. The remaining species associated with R. rattus were fleas of native rodents, although they were less abundant compared to those associated with native rodents, except for Neotyphloceras pardinasi and Sphinctopsylla ares. Although there has been evidence of flea transmission from rats to native species, the prevalence and abundance were relatively low. Therefore, it cannot be definitively concluded that these fleas have established themselves in native rodent populations, and hence, they cannot be classified as invasive fleas. This study underscores R. rattus' adaptability to diverse environmental and geographical conditions in Chile, including its capacity to acquire fleas from native rodents. This aspect has critical implications for public health, potentially facilitating the spread of pathogens across various habitats where these rats are found.
Collapse
Affiliation(s)
- Nicol Lizama-Schmeisser
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Elaine Serafin de Castro
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Mario Espinoza-Carniglia
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET CCT-La Plata-UNLP), La Plata, Argentina
| | - Yessica Herrera
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | | | - Marcela Lareschi
- Centro de Estudios Parasitológicos y de Vectores CEPAVE (CONICET CCT-La Plata-UNLP), La Plata, Argentina
| | - Lucila Moreno
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Chaibi R, Mimoune N, Benaceur F, Stambouli L, Hamida L, Khedim R, Saidi R, Benaissa MH, Gouzi H, Neffar S, Chenchouni H. Extrinsic and intrinsic drivers of prevalence and abundance of hard-bodied ticks (Acari: Ixodidae) in one-humped camel ( Camelus dromedarius). Parasite Epidemiol Control 2024; 27:e00387. [PMID: 39507770 PMCID: PMC11539347 DOI: 10.1016/j.parepi.2024.e00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
Background Ticks are ectoparasites and can be vectors of a wide range of pathogens, posing significant health risks to livestock. In the Sahara Desert of Algeria, particularly among one-humped camels (Camelus dromedarius), there is a need to better understand the factors influencing tick infestation patterns to improve livestock management and health outcomes. Objectives This study aimed to investigate the prevalence, intensity, and abundance of hard-bodied ticks (Acari: Ixodidae) among dromedaries, examining both intrinsic factors (sex, age, coat color) and extrinsic variables (farming systems, vegetation types, climate zones, and elevation) that might influence tick infestation in this region. Methods Ticks were collected from 286 dromedaries across nine sites in the pre-Saharan regions of Algeria, with elevations ranging from 736 m to 980 m. The sampled camels, which ranged in age from 6 days to 21 years, were examined for tick infestations. The ticks were identified through macroscopic and microscopic methods, and their abundance was analyzed in relation to the camels' characteristics and environmental factors. Three breeding systems were recognized: extensive, intensive, and mixed. Results A total of 980 ticks were collected, with Hyalomma dromedarii Koch, 1844 being the most abundant species (553 specimens), followed by Hyalomma impeltatum Schulze & Schlottke, 1930 (393 specimens), and Hyalomma excavatum Koch, 1844 (34 specimens). H. dromedarii showed a preference for parasitizing brown-coated dromedaries and exhibited significantly higher infestation levels during spring (p < 0.001). No significant association was observed between tick infestation and the camels' age or sex (p > 0.05). However, the farming system had a significant impact on tick abundance, with extensive and mixed systems showing higher tick burdens compared to intensive systems (p < 0.01). Additionally, the vegetation type, climate zone, and foraging habitat elevation were found to significantly influence tick densities and prevalence. Conclusion This study provides essential insights into the tick infestation dynamics in dromedaries in drylands of Algeria. It highlights the influence of coat color, seasonality, and farming practices on tick burden, with brown-coated camels being more susceptible during the spring. The findings underline the importance of considering both intrinsic and extrinsic factors when developing effective tick control strategies, especially for camels raised in extensive or mixed farming systems in diverse arid rangelands. Future research should expand the scope to cover other arid regions in North Africa for a comprehensive understanding of tick-host dynamics.
Collapse
Affiliation(s)
- Rachid Chaibi
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Nora Mimoune
- Animal Health and Production Laboratory, Higher National Veterinary School, Algiers, Algeria
- Institute of Veterinary Sciences, LBRA, University of Blida 1, 09000 Blida, Algeria
| | - Farouk Benaceur
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Latifa Stambouli
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Lamine Hamida
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
- Aflou University Center, 03001 Aflou, Laghouat, Algeria
| | - Rabah Khedim
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
| | - Radhwane Saidi
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
- Department of Agronomy, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
| | - Mohammed Hocine Benaissa
- Scientific and Technical Research Centre for Arid Areas (CRSTRA), Biophysical Station, 30010 Nezla, Touggourt, Algeria
| | - Hicham Gouzi
- Department of Biology, Faculty of Sciences, University of Laghouat, 03000 Laghouat, Algeria
- Laboratory of Biological and Agronomic Sciences ‘LBAS’, University of Laghouat, 03000 Laghouat, Algeria
| | - Souad Neffar
- Department of Nature and Life Sciences, Faculty of Exact Sciences and Nature and Life Sciences, University of Tebessa, 12002 Tebessa, Algeria
- Laboratory “Water and Environment”, University of Tebessa, 12002 Tebessa, Algeria
| | - Haroun Chenchouni
- Laboratory of Algerian Forests and Climate Change 'LAFCC', Higher National School of Forests, 40000 Khenchela, Algeria
- Laboratory of Natural Resources and Management of Sensitive Environments ‘RNAMS’, University of Oum-El-Bouaghi, 04000 Oum-El-Bouaghi, Algeria
| |
Collapse
|
3
|
MacAulay S, Cable J. Gyrodactylus in the spotlight: how exposure to light impacts disease and the feeding behavior of the freshwater tropical guppy (Poecilia reticulata). JOURNAL OF FISH BIOLOGY 2024; 105:682-690. [PMID: 38828698 DOI: 10.1111/jfb.15816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
Artificial light at night (ALAN) negatively impacts organisms in many ways, from their feeding behaviors to their response and ability to deal with disease. Our knowledge of ALAN is focused on hosts, but we must also consider their parasites, which constitute half of all described animal species. Here, we assessed the impact of light exposure on a model host-parasite system (Poecilia reticulata and the ectoparasitic monogenean Gyrodactylus turnbulli). First, parasite-free fish were exposed to 12:12 h light:dark (control) or 24:0 h light:dark (ALAN) for 21 days followed by experimental infection. Second, naturally acquired G. turnbulli infections were monitored for 28 days during exposure of their hosts to a specified light regime (6:18 h, 12:12 h, or 24:0 h light:dark). Experimentally infected fish exposed to constant light had, on average, a greater maximum parasite burden than controls, but no other measured parasite metrics were impacted. Host feeding behavior was also significantly affected: fish under ALAN fed faster and took more bites than controls, whilst fish exposed to reduced light fed slower. Thus, ALAN can impact parasite burdens, even in the short term, and altering light conditions will impact fish feeding behavior. Such responses could initiate disease outbreaks or perturb food-webs with wider ecological impacts.
Collapse
Affiliation(s)
| | - Jo Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
4
|
Dumendiak S, Halajian A, Mekonnen Y, Aschenborn O, Camacho G, Schuster R, Mackenstedt U, Romig T, Wassermann M. Hidden diversity of cestodes in wild African carnivores: I. Non-taeniid cyclophyllideans. Int J Parasitol Parasites Wildl 2024; 24:100929. [PMID: 38601058 PMCID: PMC11002657 DOI: 10.1016/j.ijppaw.2024.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/24/2024] [Accepted: 03/24/2024] [Indexed: 04/12/2024]
Abstract
Our knowledge of parasites in wildlife remains limited, primarily due to restricted access to samples, especially of parasites from protected species. This present study contributes to the comprehension of the enigmatic world of helminths of African wild mammals and cestode biodiversity by combining both molecular and morphological analysis. Cestode samples were opportunistically collected from 77 individual definitive hosts in South Africa, Namibia and Ethiopia, encompassing 15 different species of wild African carnivores and additionally domestic cats. The analysis revealed 32 different cyclophyllidean species of which 21 (65.6 %) represent previously unknown genetic entities. They belong to the families Mesocestoididae, Hymenolepididae, Dipylidiidae and Taeniidae. Here we cover the non-taeniid cestodes, while the taeniids will be addressed in a separate publication. Three of the non-taeniid species uncovered in this study could be assigned to the genus Mesocestoides and were isolated from servals and domestic cats. The white-tailed mongoose was found to be a suitable host for a species belonging to the Hymenolepididae, which was identified as Pseudandrya cf. mkuzii. Both feline and canine genotypes of Dipylidium caninum were detected in domestic cats, the canine genotype also in an African wolf. In addition to these, a novel species of Dipylidium was discovered in an aardwolf. Lastly, four distinct species of Joyeuxiella were found in this study, revealing a cryptic species complex and emphasizing the need for a taxonomic reassessment of this genus. Despite the limited scope of our study in terms of geography and sample size, the results highlight that biodiversity of cestodes in African wild mammals is grossly under-researched and follow-up studies are urgently required, in particular linking morphology to gene sequences.
Collapse
Affiliation(s)
- S. Dumendiak
- University of Hohenheim, Department of Parasitology, Stuttgart, Germany
| | - A. Halajian
- Research Administration and Development, and 2-DSI-NRF SARChI Chair (Ecosystem health), Department of Biodiversity, University of Limpopo, South Africa
| | - Y.T. Mekonnen
- Haramaya University, College of Veterinary Medicine, PO Box 138, Dire Dawa, Ethiopia
- Alma Mater Studiorum University of Bologna, Department of Veterinary Medical Sciences, Bologna, Italy
| | - O. Aschenborn
- Leibniz Institute for Zoo and Wildlife Research, Department of Evolutionary Ecology, Berlin, Germany
| | - G.J. Camacho
- Mpumalanga Tourism & Parks Agency, Nelspruit, South Africa
| | - R.K. Schuster
- Central Veterinary Research Laboratory, PO Box 597, Dubai, United Arab Emirates
| | - U. Mackenstedt
- University of Hohenheim, Department of Parasitology, Stuttgart, Germany
| | - T. Romig
- University of Hohenheim, Department of Parasitology, Stuttgart, Germany
- University of Hohenheim, Center of Biodiversity and Integrative Taxonomy, Stuttgart, Germany
| | - M. Wassermann
- University of Hohenheim, Department of Parasitology, Stuttgart, Germany
- University of Hohenheim, Center of Biodiversity and Integrative Taxonomy, Stuttgart, Germany
| |
Collapse
|
5
|
González-Bernardo E, Moreno-Rueda G, Camacho C, Martínez-Padilla J, Potti J, Canal D. Environmental conditions influence host-parasite interactions and host fitness in a migratory passerine. Integr Zool 2024. [PMID: 38978458 DOI: 10.1111/1749-4877.12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The study of host-parasite co-evolution is a central topic in evolutionary ecology. However, research is still fragmented and the extent to which parasites influence host life history is debated. One reason for this incomplete picture is the frequent omission of environmental conditions in studies analyzing host-parasite dynamics, which may influence the exposure to or effects of parasitism. To contribute to elucidating the largely unresolved question of how environmental conditions are related to the prevalence and intensity of infestation and their impact on hosts, we took advantage of 25 years of monitoring of a breeding population of pied flycatchers, Ficedula hypoleuca, in a Mediterranean area of central Spain. We investigated the influence of temperature and precipitation during the nestling stage at a local scale on the intensity of blowfly (Protocalliphora azurea) parasitism during the nestling stage. In addition, we explored the mediating effect of extrinsic and intrinsic factors and blowfly parasitism on breeding success (production of fledglings) and offspring quality (nestling mass on day 13). The prevalence and intensity of blowfly parasitism were associated with different intrinsic (host breeding date, brood size) and extrinsic (breeding habitat, mean temperature) factors. Specifically, higher average temperatures during the nestling phase were associated with lower intensities of parasitism, which may be explained by changes in blowflies' activity or larval developmental success. In contrast, no relationship was found between the prevalence of parasitism and any of the environmental variables evaluated. Hosts that experienced high parasitism intensities in their broods produced more fledglings as temperature increased, suggesting that physiological responses to severe parasitism during nestling development might be enhanced in warmer conditions. The weight of fledglings was, however, unrelated to the interactive effect of parasitism intensity and environmental conditions. Overall, our results highlight the temperature dependence of parasite-host interactions and the importance of considering multiple fitness indicators and climate-mediated effects to understand their complex implications for avian fitness and population dynamics.
Collapse
Affiliation(s)
- Enrique González-Bernardo
- Department of Zoology, Faculty of Sciences, University of Granada, Granada, Spain
- University of Oviedo, Oviedo, Asturias, Spain
| | | | - Carlos Camacho
- Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - Jesús Martínez-Padilla
- Department of Biological Conservation and Ecosystem Restoration, Pyrenean Institute of Ecology (IPE-CSIC), Jaca, Spain
| | - Jaime Potti
- Department of Ecology and Evolution, Estación Biológica de Doñana (EBD-CSIC), Seville, Spain
| | - David Canal
- Department of Evolutionary Ecology, National Museum of Natural Sciences (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
6
|
Grover EN, Crooks JL, Carlton EJ, Paull SH, Allshouse WB, Jervis RH, James KA. Investigating the relationship between extreme weather and cryptosporidiosis and giardiasis in Colorado: A multi-decade study using distributed-lag nonlinear models. Int J Hyg Environ Health 2024; 260:114403. [PMID: 38830305 DOI: 10.1016/j.ijheh.2024.114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Environmentally-mediated protozoan diseases like cryptosporidiosis and giardiasis are likely to be highly impacted by extreme weather, as climate-related conditions like temperature and precipitation have been linked to their survival, distribution, and overall transmission success. Our aim was to investigate the relationship between extreme temperature and precipitation and cryptosporidiosis and giardiasis infection using monthly weather data and case reports from Colorado counties over a twenty-one year period. Data on reportable diseases and weather among Colorado counties were collected using the Colorado Electronic Disease Reporting System (CEDRS) and the Daily Surface Weather and Climatological Summaries (Daymet) Version 3 dataset, respectively. We used a conditional Poisson distributed-lag nonlinear modeling approach to estimate the lagged association (between 0 and 12-months) between relative temperature and precipitation extremes and the risk of cryptosporidiosis and giardiasis infection in Colorado counties between 1997 and 2017, relative to the risk found at average values of temperature and precipitation for a given county and month. We found distinctly different patterns in the associations between temperature extremes and cryptosporidiosis, versus temperature extremes and giardiasis. When maximum or minimum temperatures were high (90th percentile) or very high (95th percentile), we found a significant increase in cryptosporidiosis risk, but a significant decrease in giardiasis risk, relative to risk at the county and calendar-month mean. Conversely, we found very similar relationships between precipitation extremes and both cryptosporidiosis and giardiasis, which highlighted the prominent role of long-term (>8 months) lags. Our study presents novel insights on the influence that extreme temperature and precipitation can have on parasitic disease transmission in real-world settings. Additionally, we present preliminary evidence that the standard lag periods that are typically used in epidemiological studies to assess the impacts of extreme weather on cryptosporidiosis and giardiasis may not be capturing the entire relevant period.
Collapse
Affiliation(s)
- Elise N Grover
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA.
| | - James L Crooks
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Rachel H Jervis
- Colorado Department of Public Health and the Environment, Denver, USA
| | - Katherine A James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA; Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, USA
| |
Collapse
|
7
|
Shamsi S, Banfield A, Francis N, Barton DP, McLellan M. Characterisation of Nematoda and Digenea in selected Australian freshwater snails. J Invertebr Pathol 2024; 204:108116. [PMID: 38679367 DOI: 10.1016/j.jip.2024.108116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Freshwater snails are integral to local ecosystems as a primary food source for various vertebrate species, thereby contributing significantly to ecological food webs. However, their role as intermediate hosts also makes them pivotal in the transmission of parasites. In Australia, research on freshwater snails has predominantly focused on their role as intermediate hosts for livestock parasites, while there has been limited exploration of the impact of these parasites on snail health and population dynamics. The aim of this study was to determine parasitic infection in freshwater snails. This study was conducted in the south-eastern region of Australia, in 2022. A total of 163 freshwater snails from four different species were collected and examined in the Murrumbidgee catchment area in the southeastern part of Australia during the Southern Hemisphere summer and autumn months (February to May). The species included Isidorella hainesii, Glyptophysa novaehollandica, Bullastra lessoni (endemic species), and Physella acuta (an introduced species). Through the analysis of sequence data from the various regions of the nuclear ribosomal DNA, we determined that the Digenea species in this study belonged to three distinct species, including Choanocotyle hobbsi, Petasiger sp. and an unidentified species belonging to Plagiorchioidea. Additionally, analysis of the sequences from Nematoda found in this study, revealed they could be categorized into two separate taxa, including Krefftascaris sp. and an unidentified nematode closely associated with plant and soil nematodes. This research holds significant implications for the future understanding and conservation of Australian freshwater ecosystems. Most parasites found in the present study complete their life cycle in snails and turtles. As many of freshwater snail and turtle species in Australia are endemic and face population threats, exploring the potential adverse impacts of parasitic infections on snail and turtle health, is crucial for advancing our understanding of these ecosystems and also paving the way for future research and conservation efforts. While none of the native snail species in the present study have been listed as endangered or threatened, this may simply be attributed to the absence of regular population surveys.
Collapse
Affiliation(s)
- Shokoofeh Shamsi
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Wagga Wagga, 2678, Australia.
| | - Alice Banfield
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Wagga Wagga, 2678, Australia; Department of Agriculture and Fisheries, Queensland, Australia
| | - Nidhish Francis
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Wagga Wagga, 2678, Australia
| | - Diane P Barton
- School of Agricultural, Environmental and Veterinary Sciences, Gulbali Institute, Charles Sturt University, Wagga Wagga, 2678, Australia
| | - Matthew McLellan
- Fisheries and Aquaculture Management, NSW Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, NSW, 2700, Australia
| |
Collapse
|
8
|
Palumbo EO, Alcalde L, Bonino M, Lescano J, Montes M, Solari A, Inés Diaz J. Closing the knowledge gap: Helminth parasites of freshwater turtles from the Chaco-Pampa Plain, Southern South America. J Helminthol 2024; 98:e30. [PMID: 38584420 DOI: 10.1017/s0022149x24000178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Six species of freshwater turtles dominate the Chaco-Pampa Plain in southern South America and their parasites have been relatively understudied, with most records concentrated in Brazil. Particularly in Argentina, there are only scattered records of parasites for most of the turtles that inhabit the region, leaving a large knowledge gap. The purpose of the present contribution is to increase the knowledge of the internal parasites of six species of freshwater turtles from Argentina, after 15 years of fieldwork, by providing new hosts and additional geographic records for many host-parasite relationships. Some molecular sequences of the studied parasites were provided as a tool for better species identification. We processed 433 stomach and fecal samples from live individuals and visceral and soft tissue samples from 54 dissected turtles collected from a wide range and different ecoregions. We found 6230 helminths belonging to 18 taxa (one cestode, 11 digeneans and six nematodes). Fourteen new parasite-host associations are reported here, and for the first time parasites are recorded for Phrynops williamsi. This work contributes significantly to the knowledge of the parasitofauna in freshwater turtles in Argentina, providing a detailed list of parasites present in each turtle species and reporting molecular characters for future studies.
Collapse
Affiliation(s)
- Ezequiel Oscar Palumbo
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), FCNyM, UNLP, CONICET, Boulevard 120 s/n e/61 y 62 (1900), La Plata, Buenos Aires, Argentina
| | - Leandro Alcalde
- Instituto de Limnología Dr. R. A. Ringuelet (ILPLA), FCNyM, UNLP, CONICET, Boulevard 120 s/n e/60 y 64 (1900), La Plata, Buenos Aires, Argentina
| | - Marcelo Bonino
- Laboratorio de Ecología, Biología Evolutiva y Comportamiento de Herpetozoos (LEBECH) INIBIOMA (CONICET-UNCo). Centro Regional Universitario Bariloche Quintral 1250 (8400), Bariloche, Río Negro, Argentina
| | - Julián Lescano
- Instituto de diversidad y ecología animal (IDEA), CENTRO CIENTIFICO TECNOLOGICO CONICET - CORDOBA (CCT, CORDOBA) (CONICET), Córdoba, Argentina
| | - Martín Montes
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), FCNyM, UNLP, CONICET, Boulevard 120 s/n e/61 y 62 (1900), La Plata, Buenos Aires, Argentina
| | - Agustín Solari
- Instituto de Biología Subtropical (IBS) (CONICET/UNAM) Av. 3 Fronteras 183, Puerto Iguazú, Misiones, Argentina
| | - Julia Inés Diaz
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE), FCNyM, UNLP, CONICET, Boulevard 120 s/n e/61 y 62 (1900), La Plata, Buenos Aires, Argentina
| |
Collapse
|
9
|
Mastick N, Welicky R, Katla A, Odegaard B, Ng V, Wood CL. Opening a can of worms: Archived canned fish fillets reveal 40 years of change in parasite burden for four Alaskan salmon species. Ecol Evol 2024; 14:e11043. [PMID: 38576463 PMCID: PMC10994144 DOI: 10.1002/ece3.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 04/06/2024] Open
Abstract
How has parasitism changed for Alaskan salmon over the past several decades? Parasitological assessments of salmon are inconsistent across time, and though parasite data are sometimes noted when processing fillets for the market, those data are not retained for more than a few years. The landscape of parasite risk is changing for salmon, and long-term data are needed to quantify this change. Parasitic nematodes of the family Anisakidae (anisakids) use salmonid fishes as intermediate or paratenic hosts in life cycles that terminate in marine mammal definitive hosts. Alaskan marine mammals have been protected since the 1970s, and as populations recover, the density of definitive hosts in this region has increased. To assess whether the anisakid burden has changed in salmonids over time, we used a novel data source: salmon that were caught, canned, and thermally processed for human consumption in Alaska, USA. We examined canned fillets of chum (Oncorhynchus keta, n = 42), coho (Oncorhynchus kisutch, n = 22), pink (Oncorhynchus gorbuscha, n = 62), and sockeye salmon (Oncorhynchus nerka, n = 52) processed between 1979 and 2019. We dissected each fillet and quantified the number of worms per gram of salmon tissue. Anisakid burden increased over time in chum and pink salmon, but there was no change in sockeye or coho salmon. This difference may be due to differences in the prey preferences of each species, or to differences in the parasite species detected across hosts. Canned fish serve as a window into the past, providing information that would otherwise be lost, including information on changes over time in the parasite burden of commercially, culturally, and ecologically important fish species.
Collapse
Affiliation(s)
- Natalie Mastick
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Yale Peabody MuseumYale UniversityNew HavenConnecticutUSA
| | - Rachel Welicky
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
- Department of Arts and SciencesNeumann UniversityAstonPennsylvaniaUSA
- Unit for Environmental Sciences and ManagementNorth–West UniversityPotchefstroomSouth Africa
| | - Aspen Katla
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| | | | - Virginia Ng
- Seafood Products AssociationSeattleWashingtonUSA
| | - Chelsea L. Wood
- School of Aquatic and Fishery SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
10
|
Moravec F, Bakenhaster MD, Seyoum S, Tringali MD. Heterocheilus floridensis sp. n. (Nematoda: Heterocheilidae) from the West Indian manatee Trichechus manatus (Trichechidae, Sirenia) in Florida, USA. Folia Parasitol (Praha) 2024; 71:2024.006. [PMID: 38567406 DOI: 10.14411/fp.2024.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 01/30/2024] [Indexed: 04/04/2024]
Abstract
Morphological data are used to describe a new nematode species, Heterocheilus floridensis sp. n. (Heterocheilidae) from the digestive tract of the Florida manatee Trichechus manatus latirostris (Harlan) (Trichechidae, Sirenia) from Florida, USA. Examination by light and scanning electron microscopy revealed that the new species differs from the related Heterocheilus tunicatus Diesing, 1839 mainly by having dentigerous ridges on the inner surface of the lips, a median unpaired papilla located anterior to the cloaca, and a considerably larger body size. Sequence data for subunits I and II of mitochondrial cytochrome oxidase gene, 18S small subunit and 28S ribosomal RNA genes were provided for molecular characterisation of the new species. However, the current unavailability of homologous sequence data for congeneric specimens precluded a molecular assessment of the morphological species hypothesis, and ascaridoid phylogenetic hypotheses could not be advanced. Specimens of Heterocheilus sp. collected from the Antillean manatee Trichechus manatus manatus Linnaeus in Puerto Rico, on loan from the US National Museum of Natural History, were morphologically consistent with the new species, so apparently all congeneric nematodes reported from both subspecies of the West Indian manatee Trichechus manatus Linnaeus and previously identified as H. tunicatus belong rather to H. floridensis sp. n. Heterocheilus hagenbecki (Khalil et Vogelsang, 1932) Sprent 1980 is here considered to be a species inquirenda. A key to valid species of Heterocheilus Diesing, 1839 is provided.
Collapse
Affiliation(s)
- Frantisek Moravec
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Micah D Bakenhaster
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, USA
| | - Seifu Seyoum
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, USA
| | - Michael D Tringali
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, St. Petersburg, Florida, USA
| |
Collapse
|
11
|
Robinson CRP, Dolezal AG, Newton ILG. Host species and geography impact bee-associated RNA virus communities with evidence for isolation by distance in viral populations. ISME COMMUNICATIONS 2024; 4:ycad003. [PMID: 38304079 PMCID: PMC10833078 DOI: 10.1093/ismeco/ycad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Virus symbionts are important mediators of ecosystem function, yet we know little of their diversity and ecology in natural populations. The alarming decline of pollinating insects in many regions of the globe, especially the European honey bee, Apis mellifera, has been driven in part by worldwide transmission of virus pathogens. Previous work has examined the transmission of known honey bee virus pathogens to wild bee populations, but only a handful of studies have investigated the native viromes associated with wild bees, limiting epidemiological predictors associated with viral pathogenesis. Further, variation among different bee species might have important consequences in the acquisition and maintenance of bee-associated virome diversity. We utilized comparative metatranscriptomics to develop a baseline description of the RNA viromes associated with wild bee pollinators and to document viral diversity, community composition, and structure. Our sampling includes five wild-caught, native bee species that vary in social behavior as well as managed honey bees. We describe 26 putatively new RNA virus species based on RNA-dependent RNA polymerase phylogeny and show that each sampled bee species was associated with a specific virus community composition, even among sympatric populations of distinct host species. From 17 samples of a single host species, we recovered a single virus species despite over 600 km of distance between host populations and found strong evidence for isolation by distance in associated viral populations. Our work adds to the small number of studies examining viral prevalence and community composition in wild bees.
Collapse
Affiliation(s)
- Chris R P Robinson
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
12
|
Salido A, Veiga J, Reyes-López JL, Valera F. Context-dependent insect predation pressure on an avian ectoparasite. INSECT SCIENCE 2023; 30:1784-1797. [PMID: 36932947 DOI: 10.1111/1744-7917.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 05/17/2023]
Abstract
Context dependence arises when ecological relationships vary with the conditions under which they are observed. Context dependence of interactions involving parasites is poorly known, even if it is key to understanding host-parasite relationships and food web dynamics. This paper investigates to which extent predation pressure on an avian ectoparasite (Carnus hemapterus) is context-dependent. Based on a predator-exclusion experiment, predation pressure on C. hemapterus pupae in the host's nest for 3 years, and its variation between habitat types are quantified. Variation in precipitation and normalized difference vegetation index (NDVI) is also explored as a likely cause of context dependency. We hypothesize that predation pressure should fluctuate with such surrogates of food availability, so that inter-annual and intra-annual differences may emerge. The number of nests with significant reduction of pupae varied widely among years ranging from 24% to 75%. However, average pupae reduction in nests where a significant reduction occurred did not vary between years. No differences in predation rates between habitat types were detected. Precipitation and NDVI varied widely between years and NDVI was consistently lower around nests on cliffs than around nests on trees and farmhouses. Parallels were found between variation in predation pressure and precipitation/NDVI at a wide scale (highest predation the driest year, and much lower the 2 rainier ones), but not at the nest scale. This paper shows clear context-dependent insect predation pressure on an ectoparasite under natural conditions, and that such interaction changes in signs rather than magnitude between years. The causes for these variations require longer-term studies and/or well-designed, large-scale experiments.
Collapse
Affiliation(s)
- Angela Salido
- Department of Botany, Ecology and Plant Physiology, University of Córdoba, Córdoba, Spain
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | - Jesús Veiga
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- Department of Parasitology, University of Granada, Granada, Spain
- MEMEG, Department of Biology, Lund University, Lund, Sweden
| | | | - Francisco Valera
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| |
Collapse
|
13
|
Ma X, Xing Y, Chen X, Zhong S, Pengsakul T, Qiao Y. Integration of transcriptomic and metabolomic analyses reveal the molecular responses of the mud crab Scylla paramamosain to infection by an undescribed endoparasite Portunion sp. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108978. [PMID: 37544464 DOI: 10.1016/j.fsi.2023.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/08/2023]
Abstract
Portunion is a rare endoparasitic isopod genus, recently observed inhabiting the hemocoel of the commercially important mud crab, Scylla paramamosain. For better understanding of the host-parasite interaction between S. paramamosain and Portunion sp., the metabolomic and transcriptomic changes in the hemolymph of the S. paramamosain were analyzed. We detected a total of 143 and 126 differentially accumulated metabolites in the positive and negative modes, respectively. Pathways related to amino acids and vitamin synthesis, such as Aminoacyl-tRNA biosynthesis, Tyrosine metabolism, Cysteine and methionine metabolism, Vitamin B6 metabolism, and Biotin metabolism were significantly enriched. Based on the transcriptomic data, a total of 942 differentially expressed genes were identified, of which 25 and 36 were significantly related to the immune system and metabolic pathways, respectively. Based on the metabolomic and transcriptomic data, 90 correlated metabolite-gene pairs were selected to build a regulatory network. Common significantly enriched pathways, including Starch and sucrose metabolism, Metabolism of xenobiotics by cytochrome P450, Aminoacyl-tRNA biosynthesis, Nitrogen metabolism, and Galactose metabolism were detected. On the basis of our analysis, the endoparasite Portunion sp. places a heavy metabolic burden on the host, particularly with respect to fundamental resources, such as amino acids, vitamins, carbohydrates, and lipids. In summary, these data provide an overview of the global metabolic and transcriptomic changes of the S. paramamosain resulting from Portunion sp. infection.
Collapse
Affiliation(s)
- Xiaowan Ma
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Yongze Xing
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Xuyang Chen
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China
| | - Shengping Zhong
- Guangxi Key Laboratory of Marine Drugs, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, PR China.
| | - Theerakamol Pengsakul
- Health and Environmental Research Center, Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Ying Qiao
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, PR China.
| |
Collapse
|
14
|
Colombo VC, Lareschi M, Monje LD, Antoniazzi LR, Morand S, Beldomenico PM. Ecological factors shaping the ectoparasite community assembly of the Azara's Grass Mouse, Akodon azarae (Rodentia: Cricetidae). Parasitol Res 2023; 122:2011-2021. [PMID: 37341789 DOI: 10.1007/s00436-023-07901-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
Parasites are integral members of the global biodiversity. They are useful indicators of environmental stress, food web structure and diversity. Ectoparasites have the potential to transmit vector-borne diseases of public health and veterinary importance and to play an important role in the regulation and evolution of host populations. The interlinkages between hosts, parasites and the environment are complex and challenging to study, leading to controversial results. Most previous studies have been focused on one or two parasite groups, while hosts are often co-infected by different taxa. The present study aims to assess the influence of environmental and host traits on the entire ectoparasite community composition of the rodent Akodon azarae. A total of 278 rodents were examined and mites (Mesostigmata), lice (Phthiraptera), ticks (Ixodida) and fleas (Siphonaptera) were determined. A multi-correspondence analysis was performed in order to analyze interactions within the ectoparasite community and the influence of environmental and host variables on this assembly. We found that environmental variables have a stronger influence on the composition of the ectoparasite community of A. azarae than the host variables analyzed. Minimum temperature was the most influential variable among the studied. In addition, we found evidence of agonistic and antagonistic interactions between ticks and mites, lice and fleas. The present study supports the hypothesis that minimum temperature plays a major role in the dynamics that shape the ectoparasite community of A. azarae, probably through both direct and indirect processes. This finding becomes particularly relevant in a climate change scenario.
Collapse
Affiliation(s)
- Valeria Carolina Colombo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina.
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, 2610, Wilrijk, Belgium.
- Servicio de Neurovirosis, INEI-ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, C1282AFF, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Marcela Lareschi
- Centro de Estudios Parasitológicos y de Vectores (CEPAVE) (CONICET-UNLP), Bv. 120 S/N E/ 60 y 61, 1900, La Plata, Argentina
| | - Lucas Daniel Monje
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina
| | - Leandro Raúl Antoniazzi
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina
- Instituto de Bio y Geociencias del NOA (CONICET), 9 de Julio 14, 4405, Rosario de Lerma, Argentina
| | - Serge Morand
- Maladies Infectieuses et Vecteurs: Écologie, Génétique, Évolution et Contrôle (MIVEGEC), Université de Montpellier, CNRS, IRD, 34090, Montpellier, France
| | - Pablo Martín Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET-Litoral), Universidad Nacional del Litoral (UNL) / Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), R.P. Kreder 2805, 3080, Esperanza, Argentina
| |
Collapse
|
15
|
Grabner D, Rothe LE, Sures B. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1946-1959. [PMID: 37283208 DOI: 10.1002/etc.5689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/16/2023] [Accepted: 06/04/2023] [Indexed: 06/08/2023]
Abstract
Parasites can affect their hosts in various ways, and this implies that parasites may act as additional biotic stressors in a multiple-stressor scenario, resembling conditions often found in the field if, for example, pollutants and parasites occur simultaneously. Therefore, parasites represent important modulators of host reactions in ecotoxicological studies when measuring the response of organisms to stressors such as pollutants. In the present study, we introduce the most important groups of parasites occurring in organisms commonly used in ecotoxicological studies ranging from laboratory to field investigations. After briefly explaining their life cycles, we focus on parasite stages affecting selected ecotoxicologically relevant target species belonging to crustaceans, molluscs, and fish. We included ecotoxicological studies that consider the combination of effects of parasites and pollutants on the respective model organism with respect to aquatic host-parasite systems. We show that parasites from different taxonomic groups (e.g., Microsporidia, Monogenea, Trematoda, Cestoda, Acanthocephala, and Nematoda) clearly modulate the response to stressors in their hosts. The combined effects of environmental stressors and parasites can range from additive, antagonistic to synergistic. Our study points to potential drawbacks of ecotoxicological tests if parasite infections of test organisms, especially from the field, remain undetected and unaddressed. If these parasites are not detected and quantified, their physiological effects on the host cannot be separated from the ecotoxicological effects. This may render this type of ecotoxicological test erroneous. In laboratory tests, for example to determine effect or lethal concentrations, the presence of a parasite can also have a direct effect on the concentrations to be determined and thus on the subsequently determined security levels, such as predicted no-effect concentrations. Environ Toxicol Chem 2023;42:1946-1959. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel Grabner
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Louisa E Rothe
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Bernd Sures
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Billet LS, Wuerthner VP, Relyea RA, Hoverman JT, Hua J. Population-level variation in insecticide tolerance across three life stages of the trematode Echinostoma trivolvis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106626. [PMID: 37437313 DOI: 10.1016/j.aquatox.2023.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/18/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Ecotoxicological studies using single test populations may miss the inherent variation of natural systems and limit our understanding of how contaminants affect focal species. Though population-level variation in pesticide tolerance is commonly observed in host taxa, few studies have assessed population-level differences in the tolerance of parasites to different contaminants. We investigated population-level variation in insecticide tolerance of three Echinostoma trivolvis life stages (egg, miracidium, and cercaria) to three insecticides (carbaryl, chlorpyrifos, and diazinon). We tested two relevant metrics of insecticide tolerance-baseline and induced-across up to eight different parasite populations per life stage. Across all life stages, the insecticide treatments tended to reduce survival, but the magnitude of their effects often varied significantly among populations. Surprisingly, we found that exposure to chlorpyrifos increased the hatching success of echinostome eggs relative to the control treatment in three of six tested populations. We also found that cercariae shed from snails previously exposed to a sublethal concentration of chlorpyrifos had a significantly lower mortality rate when subsequently exposed to a lethal concentration of chlorpyrifos relative to individuals from snails that were not previously exposed; this suggests inducible tolerance in cercariae. We found no evidence that insecticide tolerance is correlated across parasite life stages within a population. Together the findings of our study demonstrate that single-population toxicity assays may greatly over- or underestimate the effects of pesticides on the survival of free-living parasite stages, insecticide tolerance levels may not be predictable from one parasite life stage to the next, and insecticides can have both expected and counterintuitive effects on non-target taxa.
Collapse
Affiliation(s)
- Logan S Billet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA; School of the Environment, Yale University, New Haven, CT 06520, USA.
| | - Vanessa P Wuerthner
- Biological Sciences Department, Binghamton University, Binghamton, NY 13902, USA
| | - Rick A Relyea
- Department of Biological Sciences, Darrin Fresh Water Institute, Rensselaer Polytechnic Institute, Troy, NY 12198, USA
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | - Jessica Hua
- Biological Sciences Department, Binghamton University, Binghamton, NY 13902, USA; Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
17
|
Forti LR, Szabo JK, Japyassú HF. Host manipulation by parasites through the lens of Niche Construction Theory. Behav Processes 2023:104907. [PMID: 37352944 DOI: 10.1016/j.beproc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The effect of parasites on host behaviour is generally considered an example of the extended phenotype, implying that parasite genes alter host behaviour to benefit the parasite. While the extended phenotype is a valid perspective supported by empirical examples, this approach was proposed from an evolutionary perspective and it does not fully explain all processes that occur at ecological time scales. For instance, the roles of the ontogenetic environment, memory and learning in forming the host phenotype are not explicitly mentioned. Furthermore, the cumulative effect of diverse populations or communities of parasites on host phenotype cannot be attributed to a particular genotype, much less to a particular gene. Building on the idea that the behaviour of a host is the result of a complex process, which certainly goes beyond a specific parasite gene, we use Niche Construction Theory to describe certain systems that are not generally the main focus in the extended phenotype (EP) model. We introduce three niche construction models with corresponding empirical examples that capture the diversity and complexity of host-parasite interactions, providing predictions that simpler models cannot generate. We hope that this novel perspective will inspire further research on the topic, given the impact of ecological factors on both short-, and long-term effects of parasitism.
Collapse
Affiliation(s)
- Lucas Rodriguez Forti
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; Departamento de Biociências, Universidade Federal Rural do Semi-Árido, Av. Francisco Mota, 572 - Bairro Costa e Silva, 59625-900, Mossoró - Rio Grande do Norte, Brazil.
| | - Judit K Szabo
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; College of Engineering, IT and Environment, Charles Darwin University, Casuarina, Northern Territory 0909, Australia
| | - Hilton F Japyassú
- Instituto de Biologia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, 668 - Campus de Ondina CEP: 40170-115 Salvador - Bahia, Brazil; INCT-INTREE: Instituto Nacional de Ciência e Tecnologia para estudos Interdisciplinares e Transdisciplinares em Ecologia e Evolução, Universidade Federal da Bahia
| |
Collapse
|
18
|
Young BD, Rosales SM, Enochs IC, Kolodziej G, Formel N, Moura A, D'Alonso GL, Traylor-Knowles N. Different disease inoculations cause common responses of the host immune system and prokaryotic component of the microbiome in Acropora palmata. PLoS One 2023; 18:e0286293. [PMID: 37228141 DOI: 10.1371/journal.pone.0286293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Reef-building corals contain a complex consortium of organisms, a holobiont, which responds dynamically to disease, making pathogen identification difficult. While coral transcriptomics and microbiome communities have previously been characterized, similarities and differences in their responses to different pathogenic sources has not yet been assessed. In this study, we inoculated four genets of the Caribbean branching coral Acropora palmata with a known coral pathogen (Serratia marcescens) and white band disease. We then characterized the coral's transcriptomic and prokaryotic microbiomes' (prokaryiome) responses to the disease inoculations, as well as how these responses were affected by a short-term heat stress prior to disease inoculation. We found strong commonality in both the transcriptomic and prokaryiomes responses, regardless of disease inoculation. Differences, however, were observed between inoculated corals that either remained healthy or developed active disease signs. Transcriptomic co-expression analysis identified that corals inoculated with disease increased gene expression of immune, wound healing, and fatty acid metabolic processes. Co-abundance analysis of the prokaryiome identified sets of both healthy-and-disease-state bacteria, while co-expression analysis of the prokaryiomes' inferred metagenomic function revealed infected corals' prokaryiomes shifted from free-living to biofilm states, as well as increasing metabolic processes. The short-term heat stress did not increase disease susceptibility for any of the four genets with any of the disease inoculations, and there was only a weak effect captured in the coral hosts' transcriptomic and prokaryiomes response. Genet identity, however, was a major driver of the transcriptomic variance, primarily due to differences in baseline immune gene expression. Despite genotypic differences in baseline gene expression, we have identified a common response for components of the coral holobiont to different disease inoculations. This work has identified genes and prokaryiome members that can be focused on for future coral disease work, specifically, putative disease diagnostic tools.
Collapse
Affiliation(s)
- Benjamin D Young
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, United States of America
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Stephanie M Rosales
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Ian C Enochs
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Graham Kolodziej
- Cooperative Institute of Marine and Atmospheric Science, Rosenstiel School of Marine Atmospheric, and Earth Science, University of Miami, Miami, Florida, United States of America
- Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, United States of America
| | - Nathan Formel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, United States of America
| | - Amelia Moura
- Coral Restoration Foundation, Tavernier, Florida, United States of America
| | | | - Nikki Traylor-Knowles
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric and Earth Science, University of Miami, Miami, Florida, United States of America
| |
Collapse
|
19
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
20
|
Sures B, Nachev M, Schwelm J, Grabner D, Selbach C. Environmental parasitology: stressor effects on aquatic parasites. Trends Parasitol 2023; 39:461-474. [PMID: 37061443 DOI: 10.1016/j.pt.2023.03.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/17/2023]
Abstract
Anthropogenic stressors are causing fundamental changes in aquatic habitats and to the organisms inhabiting these ecosystems. Yet, we are still far from understanding the diverse responses of parasites and their hosts to these environmental stressors and predicting how these stressors will affect host-parasite communities. Here, we provide an overview of the impacts of major stressors affecting aquatic ecosystems in the Anthropocene (habitat alteration, global warming, and pollution) and highlight their consequences for aquatic parasites at multiple levels of organisation, from the individual to the community level. We provide directions and ideas for future research to better understand responses to stressors in aquatic host-parasite systems.
Collapse
Affiliation(s)
- Bernd Sures
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany.
| | - Milen Nachev
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Jessica Schwelm
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Essen, Germany
| | - Daniel Grabner
- Aquatic Ecology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany
| | - Christian Selbach
- Centre for Water and Environmental Research, University of Duisburg-Essen, Essen, Germany; Freshwater Ecology Group, Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
21
|
Rohner S, Boyi JO, Artemeva V, Zinke O, Kiendl A, Siebert U, Lehnert K. Back from Exile? First Records of Chewing Lice ( Lutridia exilis; Ischnocera; Mallophaga) in Growing Eurasian Otter ( Lutra lutra) Populations from Northern Germany. Pathogens 2023; 12:pathogens12040587. [PMID: 37111473 PMCID: PMC10143350 DOI: 10.3390/pathogens12040587] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Arthropod ectoparasites of aquatic wildlife often have complex relationships with their host species that have developed over long evolutionary time scales. Specialist parasite occurrence might depend on these hosts' distributions. Eurasian otter (Lutra lutra) populations are recovering in Northern German federal states, such as Schleswig-Holstein and Lower Saxony. Chewing lice (Lutridia exilis; Ischnocera; Mallophaga) are considered otter-specific yet rare parasites in their known range. In 2022, they were recorded for the first time on nine otters found dead in Northern Germany. All otters originated from the years 2021-2022 and were dissected during population health monitoring programs in 2022. Females (n = 6) were 0-5.5 years old and showed signs of disease in five cases. Males (n = 3), in contrast, were 0-1.6 years old and showed disease in a single case. Individual lice intensity of infection ranged from 1 to 75 specimens per otter. No direct adverse health effects of chewing lice on the otters were noted. Lutridia exilis morphological characteristics were documented and measurements were taken to study specialized adaptations that allow lice to attach to semi-aquatic otters. In addition, morphology was compared between lice from different geographical regions and specimens from previous reports. A region of the COI mDNA was amplified to molecularly characterize L. exilis for the first time and detect genetic differences between otter lice populations in Germany. It is believed that specialist parasites reduce in numbers even before their host populations decline. Recovering otter populations in Northern Germany could be an example of a reverse effect, where the comeback of a host species results in the return of a specialist parasite, which reflects an ultimate boost in overall species biodiversity.
Collapse
Affiliation(s)
- Simon Rohner
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany
| | - Joy Ometere Boyi
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany
| | - Valentina Artemeva
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany
| | - Olaf Zinke
- Museum der Westlausitz Kamenz, 01717 Kamenz, Germany
| | - Astrid Kiendl
- Aktion Fischotterschutz e.V., Otterzentrum Hankensbüttel, 29386 Hankensbüttel, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstrasse 6, 25761 Buesum, Germany
| |
Collapse
|
22
|
Diversity of Parasitic Animals in Hypersaline Waters: A Review. DIVERSITY 2023. [DOI: 10.3390/d15030409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Hypersaline waters are unique polyextreme habitats, where the salinity limits species richness. There are main patterns of a relationship between salinity and the species richness of free-living aquatic animals, but for parasitic organisms, general regularities have not yet been established. There are quite numerous data on parasites in hypersaline waters worldwide; however, they have not been summarized before. This review tries to fill this gap by summarizing the available data. All parasites, 85 species and forms, found in hypersaline waters belong to five phyla: Platyhelminthes, Nematoda, Acanthocephala, Cnidaria, and Arthropoda. Platyhelminthes are the most diverse phylum with the highest species richness in class Cestoda. Most species were noted in hypersaline waters with a salinity of no more than 100 g·L−1. The total number of parasitic species decreases exponentially with an increase in salinity. The number of free-living animal species inhabiting waters with a salinity from 35 to 210 g·L−1 is approximately 12 times higher than that of parasitic ones in all intervals of this salinity range. Salinity influences parasite richness and composition in two ways—directly and through the availability of hosts. Free-living crustaceans were hosts of most parasite species in hypersaline waters. Artemia spp., the most halotolerant animals, are an intermediate host for 22 species and unidentified forms of parasites.
Collapse
|
23
|
Parasites either reduce or increase host vulnerability to fishing: a case study of a parasitic copepod and its salmonid host. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:10. [PMID: 36809376 DOI: 10.1007/s00114-023-01836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Parasites generally increase host vulnerability to predators via host manipulation for trophic transmission and reduction of host activities. Predators also select prey depending on the parasite infection status. Despite such parasites' roles in prey-predator interactions in wild animals, how parasites affect human hunting probability and resource consumption remains unknown. We examined the effects of the ectoparasitic copepod Salmincola cf. markewitschi on fish vulnerability to angling. We found that infected fish were less vulnerable compared with non-infected fish when the fish body condition was low, which was probably due to reduced foraging activity. On the contrary, infected fish were more vulnerable when the host body condition was high, probably due to the compensation of parasites' negative effects. A Twitter analysis also suggested that people avoided eating fish with parasites and that anglers' satisfaction decreased when captured fish were parasitized. Thus, we should consider how animal hunting is affected by parasites not only for catchability but also for avoiding parasite infection sources in many local regions.
Collapse
|
24
|
Wood CL, Vanhove MPM. Is the world wormier than it used to be? We'll never know without natural history collections. J Anim Ecol 2023; 92:250-262. [PMID: 35959636 DOI: 10.1111/1365-2656.13794] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022]
Abstract
Many disease ecologists and conservation biologists believe that the world is wormier than it used to be-that is, that parasites are increasing in abundance through time. This argument is intuitively appealing. Ecologists typically see parasitic infections, through their association with disease, as a negative endpoint, and are accustomed to attributing negative outcomes to human interference in the environment, so it slots neatly into our worldview that habitat destruction, biodiversity loss and climate change should have the collateral consequence of causing outbreaks of parasites. But surprisingly, the hypothesis that parasites are increasing in abundance through time remains entirely untested for the vast majority of wildlife parasite species. Historical data on parasites are nearly impossible to find, which leaves no baseline against which to compare contemporary parasite burdens. If we want to know whether the world is wormier than it used to be, there is only one major research avenue that will lead to an answer: parasitological examination of specimens preserved in natural history collections. Recent advances demonstrate that, for many specimen types, it is possible to extract reliable data on parasite presence and abundance. There are millions of suitable specimens that exist in collections around the world. When paired with contemporaneous environmental data, these parasitological data could even point to potential drivers of change in parasite abundance, including climate, pollution or host density change. We explain how to use preserved specimens to address pressing questions in parasite ecology, give a few key examples of how collections-based parasite ecology can resolve these questions, identify some pitfalls and workarounds, and suggest promising areas for research. Natural history specimens are 'parasite time capsules' that give ecologists the opportunity to test whether infectious disease is on the rise and to identify what forces might be driving these changes over time. This approach will facilitate major advances in a new sub-discipline: the historical ecology of parasitism.
Collapse
Affiliation(s)
- Chelsea L Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Maarten P M Vanhove
- Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
25
|
Perrin A, Khimoun A, Ollivier A, Richard Y, Pérez-Rodríguez A, Faivre B, Garnier S. Habitat fragmentation matters more than habitat loss: The case of host-parasite interactions. Mol Ecol 2023; 32:951-969. [PMID: 36461661 DOI: 10.1111/mec.16807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
While ecologists agree that habitat loss has a substantial negative effect on biodiversity it is still very much a matter of debate whether habitat fragmentation has a lesser effect and whether this effect is positive or negative for biodiversity. Here, we assess the relative influence of tropical forest loss and fragmentation on the prevalence of vector-borne blood parasites of the genera Plasmodium and Haemoproteus in six forest bird species. We also determine whether habitat loss and fragmentation are associated with a rise or fall in prevalence. We sample more than 4000 individual birds from 58 forest sites in Guadeloupe and Martinique. Considering 34 host-parasite combinations independently and a fine characterization of the amount and spatial configuration of habitat, we use partial least square regressions to disentangle the relative effects of forest loss, forest fragmentation, landscape heterogeneity, and local weather conditions on spatial variability of parasite prevalence. Then we test for the magnitude and the sign of the effect of each environmental descriptor. Strikingly, we show that forest fragmentation explains twice as much of the variance in prevalence as habitat loss or landscape heterogeneity. In addition, habitat fragmentation leads to an overall rise in prevalence in Guadeloupe, but its effect is variable in Martinique. Both habitat loss and landscape heterogeneity exhibit taxon-specific effects. Our results suggest that habitat loss and fragmentation may have contrasting effects between tropical and temperate regions and that inter-specific interactions may not respond in the same way as more commonly used biodiversity metrics such as abundance and diversity.
Collapse
Affiliation(s)
- Antoine Perrin
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France.,Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Aurélie Khimoun
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Anthony Ollivier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Yves Richard
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | | | - Bruno Faivre
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Garnier
- Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
26
|
A reconstruction of parasite burden reveals one century of climate-associated parasite decline. Proc Natl Acad Sci U S A 2023; 120:e2211903120. [PMID: 36623180 PMCID: PMC9934024 DOI: 10.1073/pnas.2211903120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Long-term data allow ecologists to assess trajectories of population abundance. Without this context, it is impossible to know whether a taxon is thriving or declining to extinction. For parasites of wildlife, there are few long-term data-a gap that creates an impediment to managing parasite biodiversity and infectious threats in a changing world. We produced a century-scale time series of metazoan parasite abundance and used it to test whether parasitism is changing in Puget Sound, United States, and, if so, why. We performed parasitological dissection of fluid-preserved specimens held in natural history collections for eight fish species collected between 1880 and 2019. We found that parasite taxa using three or more obligately required host species-a group that comprised 52% of the parasite taxa we detected-declined in abundance at a rate of 10.9% per decade, whereas no change in abundance was detected for parasites using one or two obligately required host species. We tested several potential mechanisms for the decline in 3+-host parasites and found that parasite abundance was negatively correlated with sea surface temperature, diminishing at a rate of 38% for every 1 °C increase. Although the temperature effect was strong, it did not explain all variability in parasite burden, suggesting that other factors may also have contributed to the long-term declines we observed. These data document one century of climate-associated parasite decline in Puget Sound-a massive loss of biodiversity, undetected until now.
Collapse
|
27
|
Giari L, Castaldelli G, Timi JT. Ecology and effects of metazoan parasites of fish in transitional waters. Parasitology 2022; 149:1829-1841. [PMID: 35946119 PMCID: PMC11010487 DOI: 10.1017/s0031182022001068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/29/2022]
Abstract
Given the abundance, heterogeneity and ubiquity of parasitic organisms, understanding how they influence biodiversity, evolution, health and ecosystem functionality is crucial, especially currently when anthropogenic pressures are altering host–parasite balances. This review describes the features, roles and impacts of metazoan parasites of fish occurring in transitional waters (TW). These aquatic ecosystems are highly productive and widespread around the globe and represent most favourable theatres for parasitism given the availability of hosts (invertebrates, fishes and birds) and an increased probability of parasite transmission, especially of those having complex life cycles. Fascinating examples of how parasitism can influence different hierarchical levels of biological systems, from host individuals and populations to entire aquatic communities, through effects on food webs come from this kind of ecosystem. Edible fish of commercial value found in TW can harbour some parasite species, significantly reducing host health, marketability and food safety, with possible economic and public health consequences. Many TW are historically exploited by humans as sources of relevant ecosystem services, including fisheries and aquaculture, and they are highly vulnerable ecosystems. Alteration of TW can be revealed through the study of parasite communities, contributing, as bioindicators, for assessing environmental changes, health and restoration. Fish parasites can provide much information about TW, but this potential appears to be not fully exploited. More studies are necessary to quantify the ecological, economic and medical impacts fish parasites can have on these important ecosystems.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Environment and Prevention Sciences, University of Ferrara, St. L. Borsari 46, 44121 Ferrara, Italy
| | - Juan Tomás Timi
- Laboratorio de Ictioparasitología, Facultad de Ciencias Exactas y Naturales, Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3350, 7600 Mar del Plata, Argentina
| |
Collapse
|
28
|
Erasmus A, Wepener V, Zimmermann S, Nachev M, Hadfield KA, Smit NJ, Sures B. High element concentrations are not always equivalent to a stressful environment: differential responses of parasite taxa to natural and anthropogenic stressors. MARINE POLLUTION BULLETIN 2022; 184:114110. [PMID: 36126479 DOI: 10.1016/j.marpolbul.2022.114110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Environmental parasitology developed as a discipline that addresses the impact of anthropogenic activities related to the occurrence and abundance of parasites, subsequently relating deviations of natural parasite distribution to environmental impact. Metals, often considered pollutants, might occur under natural conditions, where concentrations might be high due to a natural geogenic release rather than anthropogenic activities. We specifically investigated whether naturally occurring high levels of elements might negatively affect the parasite community of the intertidal klipfish, Clinus superciliosus, at different localities along the South African coast. Parasite communities and element concentrations of 55 klipfish (in muscle and liver) were examined. Our results show that parasites can disentangle anthropogenic input of elements from naturally occurring high element concentrations. Acanthocephala, Cestoda and Isopoda were associated with higher concentrations of most elements. Environmental parasitology, applicable to a wide range of systems, is scarcely used on marine ecosystems and can contribute to environmental monitoring programs.
Collapse
Affiliation(s)
- Anja Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Sonja Zimmermann
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Milen Nachev
- Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Kerry A Hadfield
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Bernd Sures
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| |
Collapse
|
29
|
MacKnight NJ, Dimos BA, Beavers KM, Muller EM, Brandt ME, Mydlarz LD. Disease resistance in coral is mediated by distinct adaptive and plastic gene expression profiles. SCIENCE ADVANCES 2022; 8:eabo6153. [PMID: 36179017 PMCID: PMC9524840 DOI: 10.1126/sciadv.abo6153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Infectious diseases are an increasing threat to coral reefs, resulting in altered community structure and hindering the functional contributions of disease-susceptible species. We exposed seven reef-building coral species from the Caribbean to white plague disease and determined processes involved in (i) lesion progression, (ii) within-species gene expression plasticity, and (iii) expression-level adaptation among species that lead to differences in disease risk. Gene expression networks enriched in immune genes and cytoskeletal arrangement processes were correlated to lesion progression rates. Whether or not a coral developed a lesion was mediated by plasticity in genes involved in extracellular matrix maintenance, autophagy, and apoptosis, while resistant coral species had constitutively higher expression of intracellular protein trafficking. This study offers insight into the process involved in lesion progression and within- and between-species dynamics that lead to differences in disease risk that is evident on current Caribbean reefs.
Collapse
Affiliation(s)
- Nicholas J. MacKnight
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Bradford A. Dimos
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Kelsey M. Beavers
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
| | - Erinn M. Muller
- Mote Marine Laboratory, 1600 Ken Thompson Pkwy, Sarasota, FL 34236, USA
| | - Marilyn E. Brandt
- University of the Virgin Islands, 2 John Brewers Bay, St. Thomas, VI 00802, USA
| | - Laura D. Mydlarz
- University of Texas at Arlington, 337 Life Science Building, Arlington, TX 76019, USA
- Corresponding author.
| |
Collapse
|
30
|
Fanton H, Franquet E, Logez M, Cavalli L, Kaldonski N. Acanthocephalan parasites reflect ecological status of freshwater ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156091. [PMID: 35609694 DOI: 10.1016/j.scitotenv.2022.156091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Acanthocephalans' position in food webs, in close interaction with free-living species, could provide valuable information about freshwater ecosystem health through the viability of the parasites' host populations. We explored Pomphorhynchus laevis cystacanths' and adults' intensities of infection, and the prevalence of infected hosts respectively in their Gammarus pulex intermediate hosts and Squalius cephalus definitive hosts in a Mediterranean river. First, we analysed the relationship between P. laevis intensity of infection, its two hosts populations and the other acanthocephalan species found (Pomphorhynchus tereticollis and Polymorphus minutus). Second, we characterised the influence of bacteriological, physicochemical and biological water parameters on these acanthocephalans, and their intermediate and definitive hosts. This research highlights that P. laevis infection was closely related to their two preferential hosts population in the river. Moreover, P. laevis intensity of infection was positively correlated with organic pollution in the river but negatively correlated with biodiversity and with ecological indexes of quality. Pomphorhynchus laevis could thus benefit from moderate freshwater pollution, which promotes their tolerant intermediate and definitive hosts.
Collapse
Affiliation(s)
- Hadrien Fanton
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France.
| | - Evelyne Franquet
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Maxime Logez
- INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, France; INRAE, UR RiverLy, F-69625 Villeurbanne Cedex, France
| | - Laurent Cavalli
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Nicolas Kaldonski
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| |
Collapse
|
31
|
Lemoine M, Cornetti L, Reeh K, Tschirren B. Tick range expansion to higher elevations: does Borrelia burgdorferi sensu lato facilitate the colonisation of marginal habitats? BMC Ecol Evol 2022; 22:104. [PMID: 36028800 PMCID: PMC9414408 DOI: 10.1186/s12862-022-02058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 08/04/2022] [Indexed: 11/10/2022] Open
Abstract
Background Parasites can alter host and vector phenotype and thereby affect ecological processes in natural populations. Laboratory studies have suggested that Borrelia burgdorferi sensu lato, the causative agent of human Lyme borreliosis, may induce physiological and behavioural alterations in its main tick vector in Europe, Ixodes ricinus, which increase the tick’s mobility and survival under challenging conditions. These phenotypic alterations may allow I. ricinus to colonise marginal habitats (‘facilitation hypothesis’), thereby fuelling the ongoing range expansion of I. ricinus towards higher elevations and latitudes induced by climate change. To explore the potential for such an effect under natural conditions, we studied the prevalence of B. burgdorferi s.l. in questing I. ricinus and its variation with elevation in the Swiss Alps. Results We screened for B. burgdorferi s.l. infection in questing nymphs of I. ricinus (N = 411) from 15 sites between 528 and 1774 m.a.s.l to test if B. burgdorferi s.l. prevalence is higher at high elevations (i.e. in marginal habitats). Opposite of what is predicted under the facilitation hypothesis, we found that B. burgdorferi s.l. prevalence in I. ricinus nymphs decreased with increasing elevation and that Borrelia prevalence was 12.6% lower in I. ricinus nymphs collected at the range margin compared to nymphs in the core range. But there was no association between Borrelia prevalence and elevation within the core range of I. ricinus. Therefore the observed pattern was more consistent with a sudden decrease in Borrelia prevalence above a certain elevation, rather than a gradual decline with increasing elevation across the entire tick range. Conclusions In conclusion, we found no evidence that B. burgdorferi s.l.-induced alterations of I. ricinus phenotype observed in laboratory studies facilitate the colonisation of marginal habitats in the wild. Rather, ticks in marginal habitats are substantially less likely to harbour the pathogen. These findings have implications for a better understanding of eco-evolutionary processes in natural host-parasite systems, as well as the assessment of Lyme borreliosis risk in regions where I. ricinus is newly emerging.
Collapse
|
32
|
Machado C, Cuco AP, Cássio F, Wolinska J, Castro BB. Antiparasitic potential of agrochemical fungicides on a non-target aquatic model (Daphnia × Metschnikowia host-parasite system). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155296. [PMID: 35429554 DOI: 10.1016/j.scitotenv.2022.155296] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/29/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Pesticides are a major anthropogenic threat to the biodiversity of freshwater ecosystems, having the potential to affect non-target aquatic organisms and disrupt the processes in which they intervene. Important knowledge gaps have been recognised concerning the ecological effects of synthetic fungicides on non-target symbiotic aquatic fungi and the ecological processes where they intervene. The goal of this work was to assess the influence of three commonly used fungicides (myclobutanil, metalaxyl and cymoxanil), which differ in their mode of action, on a host (the crustacean Daphnia magna) × parasite (the yeast Metschnikowia bicuspidata) experimental model. Using a set of life history experiments, we evaluated the effect of each fungicide on the outcome of this relationship (disease) and on the fitness of both host and parasite. Contrasting results were observed: (i) cymoxanil and metalaxyl were overall innocuous to host and parasite at the tested concentrations, although host reproduction was occasionally reduced in the simultaneous presence of parasite and fungicide; (ii) on the contrary, myclobutanil displayed a clear antifungal effect, decreasing parasite prevalence and alleviating infection signs in the hosts. This antiparasitic effect of myclobutanil was further investigated with a follow-up experiment that manipulated the timing of application of the fungicide, to understand which stage of parasite development was most susceptible: while myclobutanil did not interfere in the early stages of infection, its antifungal activity was clearly observable at a later stage of the disease (by impairing the production of transmission stages of the parasite). More research is needed to understand the broader consequences of this parasite-clearance effect, especially in face of increasing evidence that parasites are ecologically more important than their cryptic nature might suggest.
Collapse
Affiliation(s)
- Cláudia Machado
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Ana P Cuco
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Fernanda Cássio
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Bruno B Castro
- CBMA (Centre of Molecular and Environmental Biology) & Department of Biology, School of Sciences, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences, University of Minho, Braga, Portugal.
| |
Collapse
|
33
|
Erasmus A, Wepener V, Hadfield KA, Sures B, Smit NJ. Metazoan parasite diversity of the endemic South African intertidal klipfish, Clinus superciliosus: Factors influencing parasite community composition. Parasitol Int 2022; 90:102611. [PMID: 35750274 DOI: 10.1016/j.parint.2022.102611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022]
Abstract
The current trend in marine parasitology research, particularly in South Africa, is to focus on a specific parasite taxon and not on the total parasite community of a specific fish host. However, these records do not always reveal the ecological role of parasites in ecosystems. Thus, the present study aimed to determine which factors influence the parasite community composition of the endemic southern African intertidal klipfish, Clinus superciliosus (n = 75). Metazoan parasites were sampled from four localities (two commercial harbours - west coast; and two relatively pristine localities - southeast coast) along the South African coast. A total of 75 klipfish were examined for parasites, where 30 distinct taxa, representing seven taxonomic groups were found: Acanthocephala (4 taxa), Cestoda (2 taxa), Crustacea (5 taxa), Digenea (11 taxa), Hirudinea (2 taxa), Monogenea (1 taxon) and Nematoda (5 taxa). Results indicated that the main driver of diversity was locality, with the highest diversity on the southeast coast, most likely due to higher water temperatures and upwelling compared to the west coast. The parasite community composition of the klipfish was significantly influenced by water temperature and parasite life cycle. These results emphasise the importance of parasitological surveys including all parasite taxa in hosts from multiple localities and seasons, to better comprehend their ecological role.
Collapse
Affiliation(s)
- Anja Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa.
| | - Victor Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Kerry A Hadfield
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Bernd Sures
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa; Department of Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, Essen 45141, Germany
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
34
|
Sarabeev V, Balbuena JA, Desdevises Y, Morand S. Host-parasite relationships in invasive species: macroecological framework. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
da Silva RD, Benicio L, Moreira J, Paschoal F, Pereira FB. Parasite communities and their ecological implications: comparative approach on three sympatric clupeiform fish populations (Actinopterygii: Clupeiformes), off Rio de Janeiro, Brazil. Parasitol Res 2022; 121:1937-1949. [PMID: 35589866 DOI: 10.1007/s00436-022-07550-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Fish parasite communities can be directly influenced by characteristics of host species. However, little is known about the host-parasite relationships in commercially important fish of the southeastern Atlantic. To address this knowledge gap, a comparative analysis of the parasite communities of three sympatric Clupeiformes was conducted. Cetengraulis edentulus (Engraulidae), Opisthonema oglinum (Clupeidae) and Sardinella brasiliensis (Clupeidae) were collected from an estuarine lagoon near Rio de Janeiro, Brazil. Prevalence, abundance and aggregation were estimated for infrapopulations; richness, diversity, evenness and dominance for infracommunities. The three component communities were compared using both quantitative and qualitative components. Canonical discriminant analysis was used to determine if a host population could be characterised by the component community of its parasites. Multivariate models revealed that host species, a proxy for diet and phylogenetic relationships, was the main factor influencing the composition of parasite infracommunities. Diet was found to be the main factor shaping the communities of endoparasites, in which digeneans were dominant and best indicator of host population. Ectoparasites (copepods, isopods and monogeneans) displayed strong host-specificity with some species restricted to a single host population. The similarity of the component communities of the two clupeid populations demonstrated the influence of host phylogeny. Parasite infracommunities exhibited low diversity and high dominance, with many taxa restricted to a single host species (specialists) and few occurring in more than one (generalists). Host phylogeny and by extension, diet, morphology and coevolution with parasites appear to be important factors in determining the host-parasite relationships of clupeiform fish in the southeastern Atlantic.
Collapse
Affiliation(s)
- Richard D da Silva
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil
| | - Luana Benicio
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Juliana Moreira
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Fabiano Paschoal
- Laboratório de Parasitologia Animal, Centro de Estudos e Pesquisas em Biologia, Universidade Castelo Branco, Av. Santa Cruz, 1631, Realengo, CEP, 21710-255, Rio de Janeiro, RJ, Brasil
| | - Felipe B Pereira
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Pampulha, CEP, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
36
|
Brian JI, Reynolds SA, Aldridge DC. Parasitism dramatically alters the ecosystem services provided by freshwater mussels. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua I. Brian
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology University of Cambridge Cambridge United Kingdom
| | - Sam A. Reynolds
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology University of Cambridge Cambridge United Kingdom
| | - David C. Aldridge
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology University of Cambridge Cambridge United Kingdom
- BioRISC, St Catharine’s College Cambridge UK
| |
Collapse
|
37
|
Billet LS, Belskis A, Hoverman JT. Temperature affects the toxicity of pesticides to cercariae of the trematode Echinostoma trivolvis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106102. [PMID: 35151071 DOI: 10.1016/j.aquatox.2022.106102] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Global climate change is predicted to have significant impacts on ecological interactions such as host-parasite relationships. Increased temperatures may also interact with other anthropogenic stressors, such as chemical contaminants, to exacerbate or reduce parasite transmission. However, studies on the effects of pesticides on non-target species are typically conducted at one standard temperature, despite the toxicity of many agrochemicals being temperature-dependent. Furthermore, most studies assessing the effects of temperature on pesticide toxicity have been conducted on host organisms, limiting our understanding of how temperature affects the toxicity of pesticides to free-living parasite stages as they move through the environment in search of a host. Using the free-swimming cercariae stage of the trematode Echinostoma trivolvis, we examined how the toxicities of three different pesticides (a carbamate insecticide, strobilurin fungicide, and triazine herbicide) vary by temperature by monitoring cercarial swimming activity over time. Our three main findings were: 1) a strong main effect of temperature across all pesticide trials - higher temperatures caused cercariae to cease swimming activity earlier, likely due to an increased rate of energy expenditure, 2) atrazine, azoxystrobin, and carbaryl were directly toxic to cercariae to some degree, but not in a predictable dose-dependent manner, and 3) the temperature at which pesticide exposure occurs could affect its toxicity to cercariae. The interaction between pesticide and temperature was most evident in the azoxystrobin exposure; azoxystrobin caused cercariae to cease swimming activity earlier at 30 °C but caused cercariae to maintain swimming activity longer at 18 °C relative to their respective pesticide-free control treatments. These findings highlight the importance of conducting toxicity assays at multiple temperatures and suggest that the combined effects of pesticides and temperature on host-parasite interactions may be difficult to generalize.
Collapse
Affiliation(s)
- Logan S Billet
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| | - Alice Belskis
- Stockton University, Galloway, NJ 08205, United States
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
38
|
Spitzer CA, Anderson TW, Sikkel PC. Habitat associations and impacts on a juvenile fish host by a temperate gnathiid isopod. Int J Parasitol Parasites Wildl 2022; 17:65-73. [PMID: 34984169 PMCID: PMC8693287 DOI: 10.1016/j.ijppaw.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/11/2021] [Accepted: 12/11/2021] [Indexed: 11/30/2022]
Abstract
The distribution and abundance of organisms is typically shaped by multiple biotic and abiotic processes. Micropredators are parasite-like organisms that are smaller than their hosts and/or prey and feed on multiple hosts during a given life stage. Unlike typical parasites, however, they spend much or most of their time free-living, associating only temporarily with hosts. In the ocean, micropredators can impact multiple fish species, and in particular can have significant lethal and sub-lethal effects on newly settled fish. Although gnathiid isopods are abundant and primary micropredators in coral reef ecosystems, their impacts are relatively unexplored within sub-tidal temperate rocky reefs. We investigated the distribution of juvenile gnathiid isopods along sub-tidal temperate rocky reefs and tested trap methodology. We also quantified both the sub-lethal and lethal impacts of feeding-stage juvenile gnathiid isopods on juvenile, post-settlement reef fish, Heterostichus rostratus (giant kelpfish). We were most interested in determining the relationship between gnathiid infestation level and fish swimming performance, in particular swimming metrics relevant to predator avoidance maneuvers. We found that Gnathia tridens was present in rocky reefs rather than embayments along the Southern California coastline and that within rocky reefs, gnathiids occurred in the highest densities in lighted traps. Surprisingly, we observed almost no influence of fish size or gnathiid sub-lethal infestation level on ambient or burst swimming performance metrics. However, burst duration was reduced by gnathiid infestation, which is important in predator avoidance. There were significant differences in survivorship among small fish compared to large fish as a result of gnathiid infestation. Larger fish survived higher numbers of gnathiids than smaller fish, indicating that parasite-induced mortality is greater for smaller fish. Investigations of the effects of micropredators on subsequent predator-mediated mortality, including the susceptibility of fishes and their individual responses to micropredators, can further contribute to our understanding of processes affecting recruitment in resident reef fish populations. Further research, especially within temperate sub-tidal ecosystems, is needed to understand and highlight the overlooked importance of micropredation in shaping fish populations within a reefscape. Gnathiid isopods are more abundant in sub-tidal rocky reef than in bay habitats off southern California. Among the trap designs tested, lighted traps were most effective. Wave height and lunar period also impacted capture rates. For H. rostratus, gnathiids alter fish swimming performance at varying levels of infestation. Mortality rates from gnathiid infestation were inversely related to the size of fish host.
Collapse
Affiliation(s)
- Claire A. Spitzer
- Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA, 92182, USA
- Corresponding author.
| | - Todd W. Anderson
- Department of Biology and Coastal and Marine Institute, San Diego State University, San Diego, CA, 92182, USA
| | - Paul C. Sikkel
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
39
|
Preisser WC, Welicky RL, Leslie KL, Mastick NC, Fiorenza EA, Maslenikov KP, Tornabene L, Kinsella JM, Wood CL. Parasite communities in English Sole ( Parophrys vetulus) have changed in composition but not richness in the Salish Sea, Washington, USA since 1930. Parasitology 2022; 149:1-51. [PMID: 35238289 PMCID: PMC10090603 DOI: 10.1017/s0031182022000233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/06/2022]
Abstract
Earth is rapidly losing free-living species. Is the same true for parasitic species? To reveal temporal trends in biodiversity, historical data are needed, but often such data do not exist for parasites. Here, parasite communities of the past were reconstructed by identifying parasites in fluid-preserved specimens held in natural history collections. Approximately 2500 macroparasites were counted from 109 English Sole (Parophrys vetulus ) collected between 1930 and 2019 in the Salish Sea, Washington, USA. Alpha and beta diversity were measured to determine if and how diversity changed over time. Species richness of parasite infracommunities and community dispersion did not vary over time, but community composition of decadal component communities varied significantly over the study period. Community dissimilarity also varied: prior to the mid-20th century, parasites shifted in abundance in a seemingly stochastic manner and, after this time period, a canalization of community change was observed, where species' abundances began to shift in consistent directions. Further work is needed to elucidate potential drivers of these changes and to determine if these patterns are present in the parasite communities of other fishes of the Salish Sea.
Collapse
Affiliation(s)
- Whitney C. Preisser
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Rachel L. Welicky
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Unit for Environmental Sciences and Management, North–West University, Potchefstroom, South Africa
| | - Katie L. Leslie
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Natalie C. Mastick
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Evan A. Fiorenza
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Katherine P. Maslenikov
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum Ichthyology Collection, University of Washington, Seattle, WA, USA
| | - Luke Tornabene
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
- Burke Museum Ichthyology Collection, University of Washington, Seattle, WA, USA
| | | | - Chelsea L. Wood
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
40
|
Piot N, Smagghe G. Critical View on the Importance of Host Defense Strategies on Virus Distribution of Bee Viruses: What Can We Learn from SARS-CoV-2 Variants? Viruses 2022; 14:503. [PMID: 35336909 PMCID: PMC8951442 DOI: 10.3390/v14030503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
Bees, both wild and domesticated ones, are hosts to a plethora of viruses, with most of them infecting a wide range of bee species and genera. Although viral discovery and research on bee viruses date back over 50 years, the last decade is marked by a surge of new studies, new virus discoveries, and reports on viral transmission in and between bee species. This steep increase in research on bee viruses was mainly initiated by the global reports on honeybee colony losses and the worldwide wild bee decline, where viruses are regarded as one of the main drivers. While the knowledge gained on bee viruses has significantly progressed in a short amount of time, we believe that integration of host defense strategies and their effect on viral dynamics in the multi-host viral landscape are important aspects that are currently still missing. With the large epidemiological dataset generated over the last two years on the SARS-CoV-2 pandemic, the role of these defense mechanisms in shaping viral dynamics has become eminent. Integration of these dynamics in a multi-host system would not only greatly aid the understanding of viral dynamics as a driver of wild bee decline, but we believe bee pollinators and their viruses provide an ideal system to study the multi-host viruses and their epidemiology.
Collapse
Affiliation(s)
- Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
41
|
Honey bees and climate explain viral prevalence in wild bee communities on a continental scale. Sci Rep 2022; 12:1904. [PMID: 35115568 PMCID: PMC8814194 DOI: 10.1038/s41598-022-05603-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 01/10/2023] Open
Abstract
Viruses are omnipresent, yet the knowledge on drivers of viral prevalence in wild host populations is often limited. Biotic factors, such as sympatric managed host species, as well as abiotic factors, such as climatic variables, are likely to impact viral prevalence. Managed and wild bees, which harbor several multi-host viruses with a mostly fecal-oral between-species transmission route, provide an excellent system with which to test for the impact of biotic and abiotic factors on viral prevalence in wild host populations. Here we show on a continental scale that the prevalence of three broad host viruses: the AKI-complex (Acute bee paralysis virus, Kashmir bee virus and Israeli acute paralysis virus), Deformed wing virus, and Slow bee paralysis virus in wild bee populations (bumble bees and solitary bees) is positively related to viral prevalence of sympatric honey bees as well as being impacted by climatic variables. The former highlights the need for good beekeeping practices, including Varroa destructor management to reduce honey bee viral infection and hive placement. Furthermore, we found that viral prevalence in wild bees is at its lowest at the extreme ends of both temperature and precipitation ranges. Under predicted climate change, the frequency of extremes in precipitation and temperature will continue to increase and may hence impact viral prevalence in wild bee communities.
Collapse
|
42
|
Gagne RB, Crooks KR, Craft ME, Chiu ES, Fountain-Jones NM, Malmberg JL, Carver S, Funk WC, VandeWoude S. Parasites as conservation tools. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13719. [PMID: 33586245 DOI: 10.1111/cobi.13719] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.
Collapse
Affiliation(s)
- Roderick B Gagne
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Kevin R Crooks
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | | | - Jennifer L Malmberg
- Department of Veterinary Sciences, Wyoming State Veterinary Laboratory, University of Wyoming, Laramie, Wyoming, USA
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - W Chris Funk
- Graduate Degree Program in Ecology, Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
43
|
Hoy SR, Vucetich LM, Peterson RO, Vucetich JA. Winter Tick Burdens for Moose Are Positively Associated With Warmer Summers and Higher Predation Rates. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.758374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Climate change is expected to modify host-parasite interactions which is concerning because parasites are involved in most food-web links, and parasites have important influences on the structure, productivity and stability of communities and ecosystems. However, the impact of climate change on host–parasite interactions and any cascading effects on other ecosystem processes has received relatively little empirical attention. We assessed host-parasite dynamics for moose (Alces alces) and winter ticks (Dermacentor albipictus) in Isle Royale National Park over a 19-year period. Specifically, we monitored annual tick burdens for moose (estimated from hair loss) and assessed how it covaried with several aspects of seasonal climate, and non-climatic factors, such as moose density, predation on hosts by wolves (Canis lupus) and wolf abundance. Summer temperatures explained half the interannual variance in tick burden with tick burden being greater following hotter summers, presumably because warmer temperatures accelerate the development of tick eggs and increase egg survival. That finding is consistent with the general expectation that warmer temperatures may promote higher parasite burdens. However, summer temperatures are warming less rapidly than other seasons across most regions of North America. Therefore, tick burdens seem to be primarily associated with an aspect of climate that is currently exhibiting a lower rate of change. Tick burdens were also positively correlated with predation rate, which could be due to moose exhibiting risk-sensitive habitat selection (in years when predation risk is high) in such a manner as to increases the encounter rate with questing tick larvae in autumn. However, that positive correlation could also arise if high parasite burdens make moose more vulnerable to predators or because of some other density-dependent process (given that predation rate and moose density are highly correlated). Overall, these results provide valuable insights about interrelationships among climate, parasites, host/prey, and predators.
Collapse
|
44
|
Ocaña FA, Soler-Jiménez LC, Aguirre-Macedo ML, Vidal-Martínez VM. The performance of taxonomic and trait-based approaches in the assessment of dusky flounder parasite communities as indicators of chemical pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117622. [PMID: 34426380 DOI: 10.1016/j.envpol.2021.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/29/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
We assessed the performance of taxonomic and several functional trait-based approaches in the assessment of spatial and temporal patterns of dusky flounder (Syacium papillosum) parasite assemblages along the Yucatan shelf to determine their potential as bioindicators of marine chemical pollution. Fish specimens were collected throughout three research cruises that took place in 2015, 2016 and 2018. In addition to the traditional taxonomic approach, four trait-based approaches were performed including community-weighted means (CWM), functional trait niche (FTN), functional groups (FGs), and Rao's functional diversity (FD). Significant spatial and temporal variations in parasite communities were detected using the taxonomic approach. In general, these variations were also reflected in the four trait-based approaches performed, indicating that changes in taxa composition and abundance also resulted in functional composition shifts. Resemblance matrices of both taxonomic and functional trait approaches were significantly correlated. Variations in taxonomic and trait-based composition using the four approaches were significantly correlated with depth, and at least one chemical pollutant variable. Feeding mode, transmission, life stage and attachment structure displayed spatial variability and significant correlations with predictor variables, which indicates that this set of attributes functions as a good surrogate for assessing variations in the functional composition of flatfish parasite communities in relation to pollution. FTN and CWM were the approaches that best detected spatio-temporal variation. CWM and FD were best suited for detecting pollution gradients. These results reveal the feasibility of using trait-based approaches to assess marine parasite communities as bioindicators of chemical pollution. Functional traits of marine metazoan parasites are as good indicators of the effect of oil pollution as taxonomic diversity. This may be a time-saving and cost-effective approach to performing environmental assessments.
Collapse
Affiliation(s)
- Frank A Ocaña
- Aquatic Pathology Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico; Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México, Tablaje Catastral N°6998, Carretera Mérida-Tetiz Km. 4.5, Ucú, Yucatán, Mexico
| | - Lilia C Soler-Jiménez
- Aquatic Pathology Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico
| | - M Leopoldina Aguirre-Macedo
- Aquatic Pathology Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| | - Víctor M Vidal-Martínez
- Aquatic Pathology Laboratory, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Unidad Mérida, Carretera Antigua a Progreso Km. 6, 97310, Mérida, Yucatán, Mexico.
| |
Collapse
|
45
|
Smart carnivores think twice: Red fox delays scavenging on conspecific carcasses to reduce parasite risk. Appl Anim Behav Sci 2021; 243:105462. [PMID: 34602687 PMCID: PMC8464160 DOI: 10.1016/j.applanim.2021.105462] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023]
Abstract
The recent SARS-CoV-2 epidemic has highlighted the need to prevent emerging and re-emerging diseases, which means that we must approach the study of diseases from a One Health perspective. The study of pathogen transmission in wildlife is challenging, but it is unquestionably key to understand how epidemiological interactions occur at the wildlife-domestic-human interface. In this context, studying parasite avoidance behaviours may provide essential insights on parasite transmission, host-parasite coevolution, and energy flow through food-webs. However, the strategies of avoiding trophically transmitted parasites in mammalian carnivores have received little scientific attention. Here, we explore the behaviour of red foxes (Vulpes vulpes) and other mammalian carnivores at conspecific and heterospecific carnivore carcasses using videos recorded by camera traps. We aim to determine 1) the factors influencing the probability of foxes to practice cannibalism, and 2) whether the scavenging behaviour of foxes differ when facing conspecific vs. heterospecific carcasses. We found that red foxes were generally reluctant to consume mesocarnivore carrion, especially of conspecifics. When recorded, consumption by foxes was delayed several days (heterospecific carcasses) or weeks (conspecific carcasses) after carcass detection. Other mammalian scavengers showed a similar pattern. Also, meat-borne parasite transmission from wild carnivore carcasses to domestic dogs and cats was highly unlikely. Our findings challenge the widespread assumption that cannibalistic or intra-specific scavenging is a major transmission route for Trichinella spp. and other meat-borne parasites, especially for the red fox. Overall, our results suggest that the feeding decisions of scavengers are probably shaped by two main contrasting forces, namely the nutritional reward provided by carrion of phylogenetically similar species and the risk of acquiring meat-borne parasites shared with these species. This study illustrates how the detailed monitoring of carnivore behaviour is essential to assess the epidemiological role of these hosts in the maintenance and dispersion of parasites of public and animal health relevance.
Collapse
|
46
|
Fleischer SR, Bolnick DI, Schreiber SJ. Sick of eating: Eco-evo-immuno dynamics of predators and their trophically acquired parasites. Evolution 2021; 75:2842-2856. [PMID: 34562317 PMCID: PMC8985590 DOI: 10.1111/evo.14353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 05/28/2021] [Indexed: 12/26/2022]
Abstract
When predators consume prey, they risk becoming infected with their prey's parasites, which can then establish the predator as a secondary host. A predator population's diet therefore influences what parasites it is exposed to, as has been repeatedly shown in many species such as threespine stickleback (Gasterosteus aculeatus) (more benthic‐feeding individuals obtain nematodes from oligocheate prey, whereas limnetic‐feeding individuals catch cestodes from copepod prey). These differing parasite encounters, in turn, determine how natural selection acts on the predator's immune system. We might therefore expect that ecoevolutionary dynamics of a predator's diet (as determined by its ecomorphology) should drive correlated evolution of its immune traits. Conversely, the predator's immunity to certain parasites might alter the relative costs and benefits of different prey, driving evolution of its ecomorphology. To evaluate the potential for ecological morphology to drive evolution of immunity, and vice versa, we use a quantitative genetics framework coupled with an ecological model of a predator and two prey species (the diet options). Our analysis reveals fundamental asymmetries in the evolution of ecomorphology and immunity. When ecomorphology rapidly evolves, it determines how immunity evolves, but not vice versa. Weak trade‐offs in ecological morphology select for diet generalists despite strong immunological trade‐offs, but not vice versa. Only weak immunological trade‐offs can explain negative diet‐infection correlations across populations. The analysis also reveals that eco‐evo‐immuno feedbacks destabilize population dynamics when trade‐offs are sufficiently weak and heritability is sufficiently high. Collectively, these results highlight the delicate interplay between multivariate trait evolution and the dynamics of ecological communities.
Collapse
Affiliation(s)
- Samuel R Fleischer
- Graduate Group in Applied Mathematics, University of California, Davis, Davis, California 95616
| | - Daniel I Bolnick
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269
| | - Sebastian J Schreiber
- Department of Evolution and Ecology, University of California, Davis, Davis, California 95616
| |
Collapse
|
47
|
Johnson PT, Haas SE. Why do parasites exhibit reverse latitudinal diversity gradients? Testing the roles of host diversity, habitat and climate. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2021; 30:1810-1821. [PMID: 34539245 PMCID: PMC8447859 DOI: 10.1111/geb.13347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
AIM The latitudinal diversity gradient (LDG) - in which species richness decreases from the equator toward the poles - is among the most fundamental distributional patterns in ecology. Despite the expectation that the diversity of parasites tracks that of their hosts, available evidence suggests that many parasites exhibit reverse latitudinal gradients or no pattern, yet the rarity of large-scale datasets on host-parasite interactions calls into question the robustness of such trends. Here, we collected parasitological data from a host group of conservation importance - lentic-breeding amphibians - to characterize the form and direction of relationships among latitude, parasite richness, and parasite load. LOCATION The contiguous USA. TIME PERIOD 2000 to 2014. MAJOR TAXA STUDIED Lentic-breeding frogs and toads and their helminth parasites. METHODS We collected information on parasite richness and infection load for 846 amphibian populations representing 31 species. We combined these data with environmental and biological data to test for LDGs and potential mechanisms. RESULTS Both parasite richness and abundance increased across 20 degrees of latitude - a reverse LDG. For parasite richness, this pattern was partially explained by latitudinal increases in wetland area, landcover diversity, and the richness of waterbirds - which function as definitive hosts for many amphibian parasites. Host body size also correlated positively with latitude and helminth richness, potentially reflecting increased habitat availability, greater host longevity, or a persistent phylogenetic signal. Parasite abundance associated positively with wetland area and landcover diversity, but negatively with amphibian taxonomic richness. Longitude exhibited non-linear relationships with parasite abundance and richness, which we suggest stem from large-scale variation in host availability (e.g., migratory bird flyways). MAIN CONCLUSIONS With growing interest in the distribution of parasites and pathogens, these results highlight the importance of inverse latitudinal gradients while emphasizing the explanatory influence of host body size, habitat availability, and host diversity.
Collapse
Affiliation(s)
| | - Sarah E. Haas
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Current address: Texas Parks & Wildlife Department, Inland Fisheries Division, Austin, TX, USA
| |
Collapse
|
48
|
McDevitt-Galles T, Carpenter SA, Koprivnikar J, Johnson PTJ. How predator and parasite size interact to determine consumption of infectious stages. Oecologia 2021; 197:551-564. [PMID: 34405300 DOI: 10.1007/s00442-021-05010-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/02/2021] [Indexed: 01/02/2023]
Abstract
Parasites are important players in ecological communities that can shape community structure and influence ecosystem energy flow. Yet beyond their effects on hosts, parasites can also function as an important prey resource for predators. Predators that consume infectious stages in the environment can benefit from a nutrient-rich prey item while concurrently reducing transmission to downstream hosts, highlighting the broad importance of this interaction. Less clear, however, are the specific characteristics of parasites and predators that increase the likelihood of consumption. Here, we determine what combination(s) of predator and parasite morphological traits lead to high parasite consumption. We exposed the infectious stages (cercariae) of five trematode (fluke) taxa to aquatic insect predators with varying foraging strategies and morphologies. Across the 19 predator-parasite combinations tested, damselfly predators in the family Coenagrionidae were, on average, the most effective predators of cercariae, consuming between 13 and 55% of administered cercariae. Large-bodied cercariae of Ribeiroia ondatrae had the highest average vulnerability to predation, with 37-48% of cercariae consumed. The interaction between predator head width and cercariae tail size strongly influenced the probability of consumption: small-bodied predators were the most effective consumers, particularly for larger tailed parasites. Thus, the likelihood of parasite consumption depended strongly on the relative size between predator and parasite. Our study helps establish that predation on free-living parasites largely follows a broader predator-prey framework. This will help to identify which predator and parasite combinations will likely have high consumptive interactions, potentially reducing parasite transmission in natural populations.
Collapse
Affiliation(s)
| | - Sara A Carpenter
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Janet Koprivnikar
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Pieter T J Johnson
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
49
|
Stronen AV, Molnar B, Ciucci P, Darimont CT, Grottoli L, Paquet PC, Sallows T, Smits JEG, Bryan HM. Cross-continental comparison of parasite communities in a wide-ranging carnivore suggests associations with prey diversity and host density. Ecol Evol 2021; 11:10338-10352. [PMID: 34367579 PMCID: PMC8328421 DOI: 10.1002/ece3.7837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/25/2022] Open
Abstract
Parasites are integral to ecosystem functioning yet often overlooked. Improved understanding of host-parasite associations is important, particularly for wide-ranging species for which host range shifts and climate change could alter host-parasite interactions and their effects on ecosystem function.Among the most widely distributed mammals with diverse diets, gray wolves (Canis lupus) host parasites that are transmitted among canids and via prey species. Wolf-parasite associations may therefore influence the population dynamics and ecological functions of both wolves and their prey. Our goal was to identify large-scale processes that shape host-parasite interactions across populations, with the wolf as a model organism.By compiling data from various studies, we examined the fecal prevalence of gastrointestinal parasites in six wolf populations from two continents in relation to wolf density, diet diversity, and other ecological conditions.As expected, we found that the fecal prevalence of parasites transmitted directly to wolves via contact with other canids or their excreta was positively associated with wolf density. Contrary to our expectations, the fecal prevalence of parasites transmitted via prey was negatively associated with prey diversity. We also found that parasite communities reflected landscape characteristics and specific prey items available to wolves.Several parasite taxa identified in this study, including hookworms and coccidian protozoans, can cause morbidity and mortality in canids, especially in pups, or in combination with other stressors. The density-prevalence relationship for parasites with simple life cycles may reflect a regulatory role of gastrointestinal parasites on wolf populations. Our result that fecal prevalence of parasites was lower in wolves with more diverse diets could provide insight into the mechanisms by which biodiversity may regulate disease. A diverse suite of predator-prey interactions could regulate the effects of parasitism on prey populations and mitigate the transmission of infectious agents, including zoonoses, spread via trophic interactions.
Collapse
Affiliation(s)
- Astrid V. Stronen
- Department of BiologyBiotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
- Department of Biotechnology and Life SciencesInsubria UniversityVareseItaly
- Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Barbara Molnar
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Paolo Ciucci
- Department of Biology and BiotechnologiesUniversity of Rome “La Sapienza”RomeItaly
| | - Chris T. Darimont
- Department of GeographyUniversity of VictoriaVictoriaBCCanada
- Raincoast Conservation FoundationDenny IslandBCCanada
- Hakai InstituteHeriot BayBCCanada
| | - Lorenza Grottoli
- Department of Biology and BiotechnologiesUniversity of Rome “La Sapienza”RomeItaly
| | - Paul C. Paquet
- Department of GeographyUniversity of VictoriaVictoriaBCCanada
- Raincoast Conservation FoundationDenny IslandBCCanada
| | - Tim Sallows
- Riding Mountain National ParkWasagamingMBCanada
| | - Judit E. G. Smits
- Department of Ecosystem and Public HealthUniversity of CalgaryCalgaryABCanada
| | - Heather M. Bryan
- Department of GeographyUniversity of VictoriaVictoriaBCCanada
- Raincoast Conservation FoundationDenny IslandBCCanada
- Hakai InstituteHeriot BayBCCanada
| |
Collapse
|
50
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|