1
|
Bosco L, Yañez O, Schauer A, Maurer C, Cushman SA, Arlettaz R, Jacot A, Seuberlich T, Neumann P, Schläppi D. Landscape structure affects temporal dynamics in the bumble bee virome: Landscape heterogeneity supports colony resilience. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174280. [PMID: 38942311 DOI: 10.1016/j.scitotenv.2024.174280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Virus spillovers from managed honey bees, Apis mellifera, are thought to contribute to the decline of wild pollinators, including bumble bees. However, data on the impact of such viruses on wild pollinators remain scarce, and the influence of landscape structure on virus dynamics is poorly understood. In this study, we deployed bumble bee colonies in an agricultural landscape and studied changes in the bumble bee virome during field placement under varying habitat composition and configuration using a multiscale analytical framework. We estimated prevalence of viruses and viral loads (i.e. number of viral genomic equivalent copies) in bumble bees before and after placing them in the field using next generation sequencing and quantitative PCR. The results show that viral loads and number of different viruses present increased during placement in the field and that the virus composition of the colonies shifted from an initial dominance of honey bee associated viruses to a higher number (in both viral loads and number of viruses present) of bumble bee associated viruses. Especially DWV-B, typical for honey bees, drastically decreased after the time in the field. Viral loads prior to placing colonies in the field showed no effect on colony development, suggesting low impacts of these viruses in field settings. Notably, we further demonstrate that increased habitat diversity results in a lower number of different viruses present in Bombus colonies, while colonies in areas with well-connected farmland patches decreased in their total viral load after field placement. Our results emphasize the importance of landscape heterogeneity and connectivity for wild pollinator health and that these influences predominate at fine spatial scales.
Collapse
Affiliation(s)
- Laura Bosco
- LUOMUS - Finnish Museum of Natural History, PL 17 - P.O. Box 17, 00014, University of Helsinki, Finland; Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Alexandria Schauer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Corina Maurer
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Agroecology and Environment, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland; Ecosystems Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland.
| | - Samuel A Cushman
- Wildlife Conservation Research Unit, Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Raphaël Arlettaz
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland.
| | - Alain Jacot
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland; Swiss Ornithological Institute, Regional Office Valais, 1950 Sion, Switzerland.
| | - Torsten Seuberlich
- Division of Neurological Sciences, University of Bern, Bern, Switzerland.
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland.
| | - Daniel Schläppi
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; School of Biological Sciences, University of Bristol, Life Science Building, 24 Tyndall Avenue, BS8 1TQ Bristol, United Kingdom.
| |
Collapse
|
2
|
Eldridge DS, Khalil A, Moulton JK, Russo L. Do local and landscape context affect the attractiveness of flower gardens to bees? PLoS One 2024; 19:e0309000. [PMID: 39231092 PMCID: PMC11373812 DOI: 10.1371/journal.pone.0309000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/02/2024] [Indexed: 09/06/2024] Open
Abstract
Planting floral resources is a common strategy for increasing the abundance and diversity of beneficial flower-visiting insects in human-modified systems. However, the context of the local area and surrounding landscape may affect the attractiveness of these floral resource provisioning plots. We compared the relative effects of local floral resources and surrounding urban land-use on the abundance of bees on flowering plants in common gardens in eastern Tennessee, USA. We planted four types of common garden plots at each of five different landscapes representing a variety of surrounding land use: 1) Urban Garden, 2) Forage Grassland, 3) Mixed Agriculture, 4) Forest, and 5) Organic Farm. Each common garden plot type had a fixed plant community representing one of three plant families (Asteraceae, Fabaceae, Lamiaceae) or a mix of all three, and all four common gardens were replicated at all the sites. We concurrently sampled bees in the garden plots and in a 50 m radius (local area) around the garden plots. We found that the size of the floral display (i.e. the visual display size of flowers) and diversity of flowers in the local area did not affect bee abundance or species richness in the garden plots. Although there was a significant positive association between developed land use in a 2 km radius and bee abundance in the gardens, the effect was small, and there was no relationship between land use and bee abundance or species richness in the local area. There were significant differences in the composition of the bee community between the local area and garden plots, but the largest determinants of bee community composition and species richness in the gardens were floral display size and variation in the garden plant species in bloom. This finding is promising for anyone wishing to promote pollinator populations by providing more floral resources.
Collapse
Affiliation(s)
- Devon S Eldridge
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - Amani Khalil
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| | - John K Moulton
- Department of Entomology & Plant Pathology, University of Tennessee, Knoxville, TN, United States of America
| | - Laura Russo
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
3
|
Grossklaus MR, Pilliod DS, Caughlin TT, Robertson IC. Spatial patterns of seed removal by harvester ants in a seed tray experiment. ENVIRONMENTAL ENTOMOLOGY 2024:nvae069. [PMID: 39105609 DOI: 10.1093/ee/nvae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Using a selection of native grass and forb seeds commonly seeded in local restoration projects, we conducted a field experiment to evaluate the effects of seed species, distance of seed patches from nests, and distance between patches on patterns of seed removal by Owyhee harvester ants, Pogonomyrmex salinus (Olsen) (Hymenoptera: Formicidae). To provide context for ants' seed preferences, we evaluated differences in handling time among seed species. In addition, we assessed the influences of cheatgrass, Bromus tectorum (L.) (Poales: Poaceae), and Sandberg bluegrass, Poa secunda (J. Presl) (Poales: Poaceae), cover on seed removal. We found significant differences in removal rates among seed species. In general, seeds placed closer to nests were more vulnerable to predation than those placed farther away, and seeds in closely spaced patches were more vulnerable than seeds in widely spaced patches. However, the strength of these effects differed by seed species. Differences in handling time among seed species may help to explain these findings; the protective effect of from-nest distance was weaker for species that required less time to transport. For 2 of the seed species, there was an interaction between the distance of seed patches from nests and the distance between patches such that the protective effect of distance between patches decreased as the distance from nests increased. Cheatgrass and bluegrass cover both had small protective effects on seeds. Taken together, these results offer insight into the spatial ecology of harvester ant foraging and may provide context for the successful implementation of restoration efforts where harvester ants are present.
Collapse
Affiliation(s)
- Michaela R Grossklaus
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID 83702, USA
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - David S Pilliod
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID 83702, USA
| | - T Trevor Caughlin
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| | - Ian C Robertson
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA
| |
Collapse
|
4
|
Feigs JT, Huang S, Holzhauer SIJ, Brunet J, Diekmann M, Hedwall P, Kramp K, Naaf T. Bumblebees mediate landscape effects on a forest herb's population genetic structure in European agricultural landscapes. Ecol Evol 2024; 14:e70078. [PMID: 39055773 PMCID: PMC11269766 DOI: 10.1002/ece3.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Spatially isolated plant populations in agricultural landscapes exhibit genetic responses not only to habitat fragmentation per se but also to the composition of the landscape matrix between habitat patches. These responses can only be understood by examining how the landscape matrix influences among-habitat movements of pollinators and seed vectors, which act as genetic linkers among populations. We studied the forest herb Polygonatum multiflorum and its associated pollinator and genetic linker, the bumblebee Bombus pascuorum, in three European agricultural landscapes. We aimed to identify which landscape features affect the movement activity of B. pascuorum between forest patches and to assess the relative importance of these features in explaining the forest herb's population genetic structure. We applied microsatellite markers to estimate the movement activity of the bumblebee as well as the population genetic structure of the forest herb. We modelled the movement activity as a function of various landscape metrics. Those metrics found to explain the movement activity best were then used to explain the population genetic structure of the forest herb. The bumblebee movement activity was affected by the cover of maize fields and semi-natural grasslands on a larger spatial scale and by landscape heterogeneity on a smaller spatial scale. For some measures of the forest herb's population genetic structure, that is, allelic richness, observed heterozygosity and the F-value, the combinations of landscape metrics, which explained the linker movement activity best, yielded lower AICc values than 95% of the models including all possible combinations of landscape metrics. Synthesis: The genetic linker, B. pascuorum, mediates landscape effects on the population genetic structure of the forest herb P. multiflorum. Our study indicates, that the movement of the genetic linker among forest patches, and thus the pollen driven gene flow of the herb, depends on the relative value of floral resources in the specific landscape setting. Noteworthy, the population genetic structure of the long-lived, clonal forest herb species correlated with recent land-use types such as maize, which have been existing for not more than a few decades within these landscapes. This underscores the short time in which land-use changes can influence the evolutionary potential of long-lived wild plants.
Collapse
Affiliation(s)
- Jannis Till Feigs
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
| | - Siyu Huang
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
| | - Stephanie I. J. Holzhauer
- Thünen Institute of Biodiversity, Johann Heinrich von Thünen Institute, Forestry and Fisheries, Federal Research Institute for Rural AreasBraunschweigGermany
| | - Jörg Brunet
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB 2University of BremenBremenGermany
| | - Per‐Ola Hedwall
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesAlnarpSweden
| | - Katja Kramp
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
| | - Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF) e.VMünchebergGermany
| |
Collapse
|
5
|
Gilgenreiner M, Kurze C. Age dominates flight distance and duration, while body size shapes flight speed in Bombus terrestris L. (Hymenoptera: Apidae). Proc Biol Sci 2024; 291:20241001. [PMID: 39079662 PMCID: PMC11288671 DOI: 10.1098/rspb.2024.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
Flight plays a crucial role in the fitness of insect pollinators, such as bumblebees. Despite their relatively large body size compared with their wings, bumblebees can fly under difficult ambient conditions, such as cooler temperatures. While their body size is often positively linked to their foraging range and flight ability, the influence of age remains less explored. Here, we studied the flight performance (distance, duration and speed) of ageing bumblebee workers using tethered flight mills. Additionally, we measured their intertegular distance and dry mass as proxies for their body size. We found that the flight distance and duration were predominantly influenced by age, challenging assumptions that age does not play a key role in foraging and task allocation. From the age of 7 to 14 days, flight distance and duration increased sixfold and fivefold, respectively. Conversely, the body size primarily impacted the maximum and average flight speed of workers. Our findings indicate that age substantially influences the flight distance and duration in bumblebee workers, affecting foraging performance and potentially altering task allocation strategies. This underscores the importance of considering individual age and physiological changes alongside body size/mass in experiments involving bumblebee workers.
Collapse
Affiliation(s)
- Milena Gilgenreiner
- Institute for Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| | - Christoph Kurze
- Institute for Zoology and Evolutionary Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Dong Z, Bian Z, Jin W, Guo X, Zhang Y, Liu X, Wang C, Guan D. An integrated approach to prioritizing ecological restoration of abandoned mine lands based on cost-benefit analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171579. [PMID: 38460691 DOI: 10.1016/j.scitotenv.2024.171579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
How to increase the usable land area by adhering to environmentally friendly ecological restoration of mines with limited funds is a challenge that many cities are currently facing. Cost-benefit analysis (CBA) can provide efficient and effective restoration decisions for abandoned mine land (AML) ecological restoration with limited financial resources. Thus, this study proposes an integrated approach for coupling ecological benefits and restoration costs, including hotspots/coldspots analysis based on five ecosystem services (ESs), landscape connectivity analysis based on graph theory model, hidden costs, and project implementation costs to prioritize AML restoration. The study was conducted on 54 abandoned mine lands (AMLs) in Chaoyang city, the ecological security barrier of China's northern sand prevention belt (NSPB). The comprehensive analysis prioritized the restoration of AMLs into four levels, of which 9 mines were in priority I, where restoration was recommended as a priority, and 22 mines were in priority II, where restoration could be carried out within the affordability of funds. In addition, our model indicates areas with high ecological benefits, in which the ecological source area (7423.66 km2) and the ecosystem service hotspots area (2028.44 km2) are mostly distributed in the southwestern part of Chaoyang city, the two mountain ranges of Songling mountain and Nuruerhu mountain. This study provides scientific spatial guidance to ensure that the AMLs realizes effective restoration and management.
Collapse
Affiliation(s)
- Zhichao Dong
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| | - Zhenxing Bian
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China.
| | - Wenjuan Jin
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| | - Xiaoyu Guo
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| | - Yufei Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| | - Xiaochen Liu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| | - Chuqiao Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| | - Deyang Guan
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, China; Key Laboratory of Cultivated Land System Protection, Department of Natural Resources of Liaoning Province, Shenyang 110866, China
| |
Collapse
|
7
|
Torresani M, Rocchini D, Ceola G, de Vries JPR, Feilhauer H, Moudrý V, Bartholomeus H, Perrone M, Anderle M, Gamper HA, Chieffallo L, Guatelli E, Gatti RC, Kleijn D. Grassland vertical height heterogeneity predicts flower and bee diversity: an UAV photogrammetric approach. Sci Rep 2024; 14:809. [PMID: 38191639 PMCID: PMC10774354 DOI: 10.1038/s41598-023-50308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024] Open
Abstract
The ecosystem services offered by pollinators are vital for supporting agriculture and ecosystem functioning, with bees standing out as especially valuable contributors among these insects. Threats such as habitat fragmentation, intensive agriculture, and climate change are contributing to the decline of natural bee populations. Remote sensing could be a useful tool to identify sites of high diversity before investing into more expensive field survey. In this study, the ability of Unoccupied Aerial Vehicles (UAV) images to estimate biodiversity at a local scale has been assessed while testing the concept of the Height Variation Hypothesis (HVH). This hypothesis states that the higher the vegetation height heterogeneity (HH) measured by remote sensing information, the higher the vegetation vertical complexity and the associated species diversity. In this study, the concept has been further developed to understand if vegetation HH can also be considered a proxy for bee diversity and abundance. We tested this approach in 30 grasslands in the South of the Netherlands, where an intensive field data campaign (collection of flower and bee diversity and abundance) was carried out in 2021, along with a UAV campaign (collection of true color-RGB-images at high spatial resolution). Canopy Height Models (CHM) of the grasslands were derived using the photogrammetry technique "Structure from Motion" (SfM) with horizontal resolution (spatial) of 10 cm, 25 cm, and 50 cm. The accuracy of the CHM derived from UAV photogrammetry was assessed by comparing them through linear regression against local CHM LiDAR (Light Detection and Ranging) data derived from an Airborne Laser Scanner campaign completed in 2020/2021, yielding an [Formula: see text] of 0.71. Subsequently, the HH assessed on the CHMs at the three spatial resolutions, using four different heterogeneity indices (Rao's Q, Coefficient of Variation, Berger-Parker index, and Simpson's D index), was correlated with the ground-based flower and bee diversity and bee abundance data. The Rao's Q index was the most effective heterogeneity index, reaching high correlations with the ground-based data (0.44 for flower diversity, 0.47 for bee diversity, and 0.34 for bee abundance). Interestingly, the correlations were not significantly influenced by the spatial resolution of the CHM derived from UAV photogrammetry. Our results suggest that vegetation height heterogeneity can be used as a proxy for large-scale, standardized, and cost-effective inference of flower diversity and habitat quality for bees.
Collapse
Affiliation(s)
- Michele Torresani
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano/Bozen, Piazza Universitá/Universitätsplatz 1, 39100, Bolzano/Bozen, Italy
| | - Duccio Rocchini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy.
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic.
| | - Giada Ceola
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - Jan Peter Reinier de Vries
- Plant Ecology and Nature Conservation Group, Wageningen University, Droevendaalsesteeg 3a, Wageningen, 6708PB, The Netherlands
| | - Hannes Feilhauer
- Remote Sensing Centre for Earth System Research (RSC4Earth), Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Remote Sensing, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318, Leipzig, Germany
| | - Vítězslav Moudrý
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic
| | - Harm Bartholomeus
- Laboratory of Geo-Information Science and Remote Sensing, Wageningen University and Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Michela Perrone
- Department of Spatial Sciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha - Suchdol, 16500, Czech Republic
| | - Matteo Anderle
- Eurac Research, Inst. for Alpine Environment, Bolzano, Italy
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Hannes Andres Gamper
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bolzano/Bozen, Piazza Universitá/Universitätsplatz 1, 39100, Bolzano/Bozen, Italy
| | - Ludovico Chieffallo
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | | | - Roberto Cazzolla Gatti
- BIOME Lab, Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, via Irnerio 42, 40126, Bologna, Italy
| | - David Kleijn
- Plant Ecology and Nature Conservation Group, Wageningen University, Droevendaalsesteeg 3a, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
8
|
Cecchetto F, Villalba A, Vazquez ND, Ramirez CL, Maggi MD, Miglioranza KSB. Occurrence of chlorpyrifos and organochlorine pesticides in a native bumblebee (Bombus pauloensis) living under different land uses in the southeastern Pampas, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167117. [PMID: 37717766 DOI: 10.1016/j.scitotenv.2023.167117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Pollinators such as Apidae bees are vital for ecosystems and food security. Unfortunately, their populations have declined due to several factors including pesticide use. Among them, the organophosphate insecticide chlorpyrifos, poses a global threat, while legacy compounds like organochlorine pesticides (OCPs) easily bioaccumulate, increasing the concern. Bombus pauloensis, a widely distributed native bee in Argentina, is used for commercial pollination; however, information regarding their health status is scarce. This study assessed chlorpyrifos and OCP levels in B. pauloensis (workers and males) and related environmental matrices living from three different land uses schemes, by means of GC-ECD and GC-MS. The ornamental horticulture field (OP) showed the highest total pesticide concentrations in workers (13.1 ng/g), flowers and soils, whereas the organic agriculture field (OA) exhibited the lowest. Chlorpyrifos was the most abundant compound, accounting for at least 20 % of pesticide load across all matrices. The food production horticulture field (FH) had the highest chlorpyrifos concentration in workers, males and soils (5.0, 4.4 and 3.3 ng/g, respectively), suggesting a local greater usage, whereas OA showed the lowest. Regarding OCPs groups, Drins and DDTs were predominant in most matrices, with FH males registering the highest levels (4.0 and 2.5 ng/g, respectively), closely followed by OP. However, metabolites' contribution indicated historical use and atmospheric inputs in all sites. Multivariate analyses confirmed the significance of site and bumblebee sex to explain pesticide composition. Males from all sites exhibited higher chlorpyrifos levels than workers and this trend was similar for some OCP groups. Overall, OA differed from FH and OP, indicating a correlation between production modes and pesticide profiles. This study demonstrates the value of B. pauloensis as a pesticide biomonitor but also offers insights into its populations' health in the area. In this sense, this information could be useful towards the preservation of this crucial pollinator.
Collapse
Affiliation(s)
- Franco Cecchetto
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina.
| | - Agustina Villalba
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina; Centro de Investigación en Abejas Sociales (CIAS), Laboratorio de Artrópodos - Grupo Acarología y Entomología, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Instituto de Investigación en Sanidad, Producción y Ambiente (IIPROSAM), Funes 3350, Mar del Plata, Argentina
| | - Nicolas D Vazquez
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina; Laboratorio de Biología de Cnidarios, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina
| | - Cristina L Ramirez
- Departamento de Química, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Química Analítica y Modelado Molecular (QUIAMM), Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), CONICET, Funes 3350, Mar del Plata, Argentina
| | - Matias D Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Laboratorio de Artrópodos - Grupo Acarología y Entomología, FCEyN, UNMdP, Funes 3350, Mar del Plata, Argentina; Instituto de Investigación en Sanidad, Producción y Ambiente (IIPROSAM), Funes 3350, Mar del Plata, Argentina
| | - Karina S B Miglioranza
- Laboratorio de Ecotoxicología y Contaminación Ambiental, Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Mar del Plata, Argentina; Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3350, Mar del Plata, Argentina
| |
Collapse
|
9
|
Ronca S, Ford CS, Allanguillaume J, Szabo C, Kipling R, Wilkinson MJ. The value of twinned pollinator-pollen metabarcoding: bumblebee pollination service is weakly partitioned within a UK grassland community. Sci Rep 2023; 13:18016. [PMID: 37865658 PMCID: PMC10590402 DOI: 10.1038/s41598-023-44822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/12/2023] [Indexed: 10/23/2023] Open
Abstract
Predicting ecological impact of declining bumblebee (Bombus) populations requires better understanding of interactions between pollinator partitioning of floral resources and plant partitioning of pollinator resources. Here, we combine Cytochrome Oxidase 1 (CO1) barcoding for bumblebee identification and rbcL metabarcoding of pollen carried by bees in three species-rich UK pastures. CO1 barcoding assigned 272 bees to eight species, with 33 individuals belonging to the cryptic Bombus lucorum complex (16 B. lucorum and 17 B. cryptarum). Seasonal bias in capture rates varied by species, with B. pratorum found exclusively in June/July and B. pascuorum more abundant in August. Pollen metabarcoding coupled with PERMANOVA and NMDS analyses revealed all bees carried several local pollen species and evidence of pollen resource partitioning between some species pairings, with Bombus pratorum carrying the most divergent pollen load. There was no evidence of resource partitioning between the two cryptic species present, but significantly divergent capture rates concorded with previous suggestions of separation on the basis of foraging behaviour being shaped by local/temporal differences in climatic conditions. Considering the bee carriage profile of pollen species revealed no significant difference between the nine most widely carried plant species. However, there was a sharp, tipping point change in community pollen carriage across all three sites that occurred during the transition between late July and early August. This transition resulted in a strong divergence in community pollen carriage between the two seasonal periods in both years. We conclude that the combined use of pollen and bee barcoding offers several benefits for further study of plant-pollinator interactions at the landscape scale.
Collapse
Affiliation(s)
- Sandra Ronca
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Caroline S Ford
- Wales Veterinary Science Centre, Y Buarth, Aberystwyth, SY23 1ND, Ceredigion, UK
| | - Joël Allanguillaume
- Department of Biological, Biomedical and Analytical Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Claudia Szabo
- School of Computer Science, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Richard Kipling
- The Sustainable Food Trust, 38 Richmond Street, Totterdown, Bristol, BS3 4TQ, UK
| | - Mike J Wilkinson
- Department of Life Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK.
| |
Collapse
|
10
|
Boone ML, Portman ZM, Lane I, Rao S. Occupancy of Bombus affinis (Hymenoptera: Apidae) in Minnesota is highest in developed areas when standardized surveys are employed. ENVIRONMENTAL ENTOMOLOGY 2023; 52:918-938. [PMID: 37681665 DOI: 10.1093/ee/nvad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Mounting evidence of bumble bee declines and the listing of the rusty patched bumble bee (Bombus affinis Cresson) as federally endangered in the United States in 2017 and Canada in 2012 has stimulated an interest in monitoring and conservation. Understanding the influence of land use on occupancy patterns of imperiled species is crucial to successful recovery planning. Using detection data from community surveys, we assessed land use associations for 7 bumble bee species in Minnesota, USA, including B. affinis. We used multispecies occupancy models to assess the effect of 3 major land use types (developed, agricultural, and natural) within 0.5 and 1.5 km on occupancy of 7 Bombus (Hymenoptera: Apidae) species, while accounting for detection uncertainty. We found that B. affinis occupancy and detection were highest in developed landscapes and lowest in agricultural landscapes, representing an inverse relationship with the relative landcover ratios of these landscapes in Minnesota. Occupancy of 2 bumble bee species had strong positive associations with natural landscapes within 1.5 km and 2 species had strong negative associations with agricultural landscapes within 1.5 km. Our results suggest that best practices for imperiled Bombus monitoring and recovery planning depends upon the surrounding major land use patterns. We provide recommendations for urban planning to support B. affinis based on conservation success in the metropolitan areas of Minneapolis-St. Paul. We also encourage substantial survey effort be employed in agricultural and natural regions of the state historically occupied by B. affinis to determine the current occupancy state.
Collapse
Affiliation(s)
- Michelle L Boone
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN 55108, USA
| | - Zachary M Portman
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN 55108, USA
| | - Ian Lane
- U.S. Fish and Wildlife Service, National Wildlife Refuge Program, 5600 American Boulevard W #990, Bloomington, MN 55437, USA
| | - Sujaya Rao
- Department of Entomology, University of Minnesota, 1980 Folwell Avenue, St. Paul, MN 55108, USA
| |
Collapse
|
11
|
Hemberger J, Bernauer OM, Gaines-Day HR, Gratton C. Landscape-scale floral resource discontinuity decreases bumble bee occurrence and alters community composition. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2907. [PMID: 37602909 DOI: 10.1002/eap.2907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023]
Abstract
Agricultural practices and intensification during the past two centuries have dramatically altered the abundance and temporal continuity of floral resources that support pollinating insects such as bumble bees. Long-term trends among bumble bees within agricultural regions suggest that intensive agricultural conditions have created inhospitable conditions for some species, while other species have maintained their relative abundances despite landscape-level changes in flower availability. Bumble bee responses to spatiotemporal resource heterogeneity have been explored at the colony and behavioral level, but we have yet to understand whether these conditions drive community structure and ultimately explain the diverging patterns in long-term species trends. To explore the relationship between landscape-level floral resource continuity and the likelihood of bumble bee occurrence, we mapped the relative spatial and temporal availability of floral resources within an intensive agricultural region in the US Upper Midwest and related this resource availability with bumble bee species relative abundance. Across the bee community, we found that relative bumble bee occurrence increases in landscapes containing more abundant and more temporally continuous floral resources. Declining species, such as Bombus terricola, exhibited the strongest, positive responses to resource abundance and continuity whereas common, stable species, such as Bombus impatiens, showed no statistical relationship to either. Together with existing experimental evidence, this work suggests that efforts to increase spatiotemporal flower availability, along with overall flower abundance at landscape scales may have positive effects on bumble bee communities in the US Upper Midwest.
Collapse
Affiliation(s)
- Jeremy Hemberger
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Olivia M Bernauer
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hannah R Gaines-Day
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Claudio Gratton
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Chandra Ghimire K, Pandey A, Roka I, Adhikari JN, Bhusal DR. Community dynamics of bumblebee across elevation gradients and habitat mosaics in Chitwan Annapurna Landscape, Nepal. Heliyon 2023; 9:e17076. [PMID: 37484416 PMCID: PMC10361243 DOI: 10.1016/j.heliyon.2023.e17076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
The species composition of bumblebees (Bombus species) across the elevation gradients in Chitwan-Annapurna Landscape (CHAL) was studied from April to November 2019. We performed opportunistic surveys to collect the bumblebee specimens. The walking transects were followed in the accessible places along the Kaligandaki, Marshyandi, and Budhigandaki river basins in different habitats (e.g., agricultural, forest, grassland and home garden). We identified 16 Bombus species from the sampling areas. The highest relative abundance was of B. haemorrhoidalis (20%), followed by B. festivus (20%) and B. eximius (19%). The least abundant species were B. branickii, B. miniatus, B. novus, and B. pressus with 1% relative abundance of each. We examined the effects of elevation on bumblebee richness and found a significant relationship. The Highest species richness was detected in the mid-elevation. Likewise, the highest species richness and diversity were found in the forest habitat in Gorkha site (n = 12, Shannon index H' = 2.18) followed by the grassland habitat of the Mustang site (n = 11, Shannon index H' = 2.10). Whereas, comparatively, species diversity was higher in habitats of the Gorkha site comparing Manang and Mustang. The elevation gradients create immense variations in microclimatic conditions and vegetation dynamics, which influence bumblebee abundance, species richness and diversities in different habitats in the study area. The mid-elevation range (2000-3000 m asl) of CHAL exhibited the highest species richness probably due to the higher availability of pollinator-dependent flowering plants in this range. The landcover composition and anthropogenic activities along the elevation gradient is the governing factor for the species composition, distribution and diversity of bumblebees in CHAL. We recommend to decision-makers for formulating their conservation strategies under a socio-ecological framework.
Collapse
Affiliation(s)
- Kishor Chandra Ghimire
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
- Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, Nepal
| | - Anjeela Pandey
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| | - Ichha Roka
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| | - Jagan Nath Adhikari
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
- Birendra Multiple Campus, Tribhuvan University, Bharatpur, Chitwan, Nepal
| | - Daya Ram Bhusal
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
13
|
Gratton EM, McNeil DJ, Grozinger CM, Hines HM. Local habitat type influences bumble bee pathogen loads and bee species distributions. ENVIRONMENTAL ENTOMOLOGY 2023:7150786. [PMID: 37133965 DOI: 10.1093/ee/nvad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/26/2023] [Accepted: 03/30/2023] [Indexed: 05/04/2023]
Abstract
Bumble bees (Hymenoptera: Apidae, Bombus Latreille) perform important ecological services in both managed and natural ecosystems. Anthropogenically induced change has altered floral resources, climate, and insecticide exposure, factors that impact health and disease levels in these bees. Habitat management presents a solution for improving bee health and biodiversity, but this requires better understanding of how different pathogens and bee species respond to habitat conditions. We take advantage of the washboard of repeated ridges (forested) and valleys (mostly developed) in central Pennsylvania to examine whether local variation in habitat type and other landscape factors influence bumble bee community composition and levels of 4 leading pathogens in the common eastern bumble bee, Bombus impatiens Cresson. Loads of viruses (DWV and BQCV) were found to be lowest in forest habitats, whereas loads of a gut parasite, Crithidia bombi, were highest in forests. Ridgetop forests hosted the most diverse bumble bee communities, including several habitat specialists. B. impatiens was most abundant in valleys, and showed higher incidence in areas of greater disturbance, including more developed, unforested, and lower floral resource sites, a pattern which mirrors its success in the face of anthropogenic change. Additionally, DNA barcoding revealed that B. sandersoni is much more common than is apparent from databases. Our results provide evidence that habitat type can play a large role in pathogen load dynamics, but in ways that differ by pathogen type, and point to a need for consideration of habitat at both macro-ecological and local spatial scales.
Collapse
Affiliation(s)
- Elena M Gratton
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Darin J McNeil
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY, USA
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Heather M Hines
- Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Pindar A, Raine NE. Safeguarding pollinators requires specific habitat prescriptions and substantially more land area than suggested by current policy. Sci Rep 2023; 13:1040. [PMID: 36944669 PMCID: PMC10030592 DOI: 10.1038/s41598-022-26872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/21/2022] [Indexed: 03/23/2023] Open
Abstract
Habitat loss and fragmentation are major drivers of global pollinator declines, yet even after recent unprecedented periods of anthropogenic land-use intensification the amount of habitat needed to support insect pollinators remains unknown. Here we use comprehensive pan trap bee survey datasets from Ontario, Canada, to determine which habitat types are needed and at what spatial scales to support wild bee communities. Safeguarding wild bee communities in a Canadian landscape requires 11.6-16.7% land-cover from a diverse range of habitats (~ 2.6-3.7 times current policy guidelines) to provide targeted habitat prescriptions for different functional guilds over a variety of spatial scales, irrespective of whether conservation aims are enhancing bee species richness or abundance. Sensitive and declining habitats, like tallgrass woodlands and wetlands, were important predictors of bee biodiversity. Conservation strategies that under-estimate the extent of habitat, spatial scale and specific habitat needs of functional guilds are unlikely to protect bee communities and the essential pollination services they provide to both crops and wild plants.
Collapse
Affiliation(s)
- Alana Pindar
- School of Science and Techonology, Cape Breton University, Sydney, NS, B1P 6L2, Canada.
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
15
|
Garratt MPD, O'Connor RS, Carvell C, Fountain MT, Breeze TD, Pywell R, Redhead JW, Kinneen L, Mitschunas N, Truslove L, Xavier e Silva C, Jenner N, Ashdown C, Brittain C, McKerchar M, Butcher C, Edwards M, Nowakowski M, Sutton P, Potts SG. Addressing pollination deficits in orchard crops through habitat management for wild pollinators. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2743. [PMID: 36107148 PMCID: PMC10078601 DOI: 10.1002/eap.2743] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
There is increasing evidence that farmers in many areas are achieving below maximum yields due to insufficient pollination. Practical and effective approaches are needed to maintain wild pollinator populations within agroecosystems so they can deliver critical pollination services that underpin crop production. We established nesting and wildflower habitat interventions in 24 UK apple orchards and measured effects on flower-visiting insects and the pollination they provide, exploring how this was affected by landscape context. We quantified the extent of pollination deficits and assessed whether the management of wild pollinators can reduce deficits and deliver improved outcomes for growers over 3 years. Wildflower interventions increased solitary bee numbers visiting apple flowers by over 20%, but there was no effect of nesting interventions. Other pollinator groups were influenced by both local and landscape-scale factors, with bumblebees and hoverflies responding to the relative proportion of semi-natural habitat at larger spatial scales (1000 m), while honeybees and other flies responded at 500 m or less. By improving fruit number and quality, pollinators contributed more than £16 k per hectare. However, deficits (where maximum potential was not being reached due to a lack of pollination) were recorded and the extent of these varied across orchards, and from year to year, with a 22% deficit in output in the worst (equivalent to ~£14 k/ha) compared to less than 3% (equivalent to ~£2 k/ha) in the best year. Although no direct effect of our habitat interventions on deficits in gross output was observed, initial fruit set and seed set deficits were reduced by abundant bumblebees, and orchards with a greater abundance of solitary bees saw lower deficits in fruit size. The abundance of pollinators in apple orchards is influenced by different local and landscape factors that interact and vary between years. Consequently, pollination, and the extent of economic output deficits, also vary between orchards and years. We highlight how approaches, including establishing wildflower areas and optimizing the ratio of cropped and non-cropped habitats can increase the abundance of key apple pollinators and improve outcomes for growers.
Collapse
Affiliation(s)
| | - Rory S. O'Connor
- Centre for Agri‐Environmental Research, University of ReadingReadingUK
| | | | | | - Tom D. Breeze
- Centre for Agri‐Environmental Research, University of ReadingReadingUK
| | | | | | - Lois Kinneen
- Centre for Agri‐Environmental Research, University of ReadingReadingUK
| | | | - Louise Truslove
- Centre for Agri‐Environmental Research, University of ReadingReadingUK
| | | | | | | | - Claire Brittain
- Syngenta, Jealotts Hill International Research CentreBracknellUK
| | | | | | - Mike Edwards
- Edwards Ecological and Data Services LtdMidhurstUK
| | | | - Peter Sutton
- Syngenta, Jealotts Hill International Research CentreBracknellUK
| | - Simon G. Potts
- Centre for Agri‐Environmental Research, University of ReadingReadingUK
| |
Collapse
|
16
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
17
|
Ilves A, Kaljund K, Sild E, Münzbergová Z. High genetic variation of Trifolium alpestre at the northern margin: but for how long? CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Pull CD, Petkova I, Watrobska C, Pasquier G, Perez Fernandez M, Leadbeater E. Ecology dictates the value of memory for foraging bees. Curr Biol 2022; 32:4279-4285.e4. [PMID: 35987212 PMCID: PMC9616731 DOI: 10.1016/j.cub.2022.07.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/22/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
"Ecological intelligence" hypotheses posit that animal learning and memory evolve to meet the demands posed by foraging and, together with social intelligence and cognitive buffer hypotheses, provide a key framework for understanding cognitive evolution.1-5 However, identifying the critical environments where cognitive investment reaps significant benefits has proved challenging.6-8 Here, we capitalize upon seasonal variation in forage availability for a social insect model (Bombus terrestris audax) to establish how the benefits of short-term memory, assayed using a radial arm maze (RAM), vary with resource availability. Following a staggered design over 2 years, whereby bees from standardized colonies at identical life-history stages underwent cognitive testing before foraging in the wild, we found that RAM performance predicts foraging efficiency-a key determinant of colony fitness-in plentiful spring foraging conditions but that this relationship is reversed during the summer floral dearth. Our results suggest that the selection for enhanced cognitive abilities is unlikely to be limited to harsh environments where food is hard to find or extract,5,9-11 highlighting instead that the challenges of rich and plentiful environments, which present multiple options in short succession, could be a broad driver in the evolution of certain cognitive traits. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Christopher D. Pull
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK,Corresponding author
| | - Irina Petkova
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Cecylia Watrobska
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Grégoire Pasquier
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Marta Perez Fernandez
- Department of Geography, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Ellouise Leadbeater
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
19
|
Hart AF, Verbeeck J, Ariza D, Cejas D, Ghisbain G, Honchar H, Radchenko VG, Straka J, Ljubomirov T, Lecocq T, Dániel-Ferreira J, Flaminio S, Bortolotti L, Karise R, Meeus I, Smagghe G, Vereecken N, Vandamme P, Michez D, Maebe K. Signals of adaptation to agricultural stress in the genomes of two European bumblebees. Front Genet 2022; 13:993416. [PMID: 36276969 PMCID: PMC9579324 DOI: 10.3389/fgene.2022.993416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Human-induced environmental impacts on wildlife are widespread, causing major biodiversity losses. One major threat is agricultural intensification, typically characterised by large areas of monoculture, mechanical tillage, and the use of agrochemicals. Intensification leads to the fragmentation and loss of natural habitats, native vegetation, and nesting and breeding sites. Understanding the adaptability of insects to these changing environmental conditions is critical to predicting their survival. Bumblebees, key pollinators of wild and cultivated plants, are used as model species to assess insect adaptation to anthropogenic stressors. We investigated the effects of agricultural pressures on two common European bumblebees, Bombus pascuorum and B. lapidarius. Restriction-site Associated DNA Sequencing was used to identify loci under selective pressure across agricultural-natural gradients over 97 locations in Europe. 191 unique loci in B. pascuorum and 260 in B. lapidarius were identified as under selective pressure, and associated with agricultural stressors. Further investigation suggested several candidate proteins including several neurodevelopment, muscle, and detoxification proteins, but these have yet to be validated. These results provide insights into agriculture as a stressor for bumblebees, and signal for conservation action in light of ongoing anthropogenic changes.
Collapse
Affiliation(s)
- Alex F. Hart
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Jaro Verbeeck
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Daniel Ariza
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Diego Cejas
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Guillaume Ghisbain
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Hanna Honchar
- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Vladimir G. Radchenko
- Institute for Evolutionary Ecology, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Jakub Straka
- Charles University, Faculty of Science, Department of Zoology, Praha, Czech Republic
| | - Toshko Ljubomirov
- Institute of Biodiversity and Ecosystem Research—Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Thomas Lecocq
- Université de Lorraine, INRAE, URAFPA, Nancy, France
| | | | - Simone Flaminio
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Bologna, Italy
| | - Laura Bortolotti
- Council for Agricultural Research and Economics, Research Centre for Agriculture and Environment, Bologna, Italy
| | - Reet Karise
- Estonian University of Life Sciences, Institute of Agricultural and Environmental Sciences, Tartu, Estonia
| | - Ivan Meeus
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Guy Smagghe
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
| | - Nicolas Vereecken
- Agroecology Lab, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Kevin Maebe
- Ghent University, Faculty of Bioscience Engineering, Department of Plants and Crops, Lab of Agrozoology, Ghent, Belgium
- *Correspondence: Kevin Maebe,
| |
Collapse
|
20
|
Feigs JT, Holzhauer SIJ, Huang S, Brunet J, Diekmann M, Hedwall PO, Kramp K, Naaf T. Pollinator movement activity influences genetic diversity and differentiation of spatially isolated populations of clonal forest herbs. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.908258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In agricultural landscapes, forest herbs live in small, spatially isolated forest patches. For their long-term survival, their populations depend on animals as genetic linkers that provide pollen- or seed-mediated gene flow among different forest patches. However, whether insect pollinators serve as genetic linkers among spatially isolated forest herb populations in agricultural landscapes remains to be shown. Here, we used population genetic methods to analyze: (A) the genetic diversity and genetic differentiation of populations of two common, slow-colonizing temperate forest herb species [Polygonatum multiflorum (L.) All. and Anemone nemorosa L.] in spatially isolated populations within three agricultural landscapes in Germany and Sweden and (B) the movement activity of their most relevant associated pollinator species, i.e., the bumblebee Bombus pascuorum (Scopoli, 1,763) and the hoverfly Melanostoma scalare (Fabricus, 1,794), respectively, which differ in their mobility. We tested whether the indicated pollinator movement activity affected the genetic diversity and genetic differentiation of the forest herb populations. Bumblebee movement indicators that solely indicated movement activity between the forest patches affected both genetic diversity and genetic differentiation of the associated forest herb P. multiflorum in a way that can be explained by pollen-mediated gene flow among the forest herb populations. In contrast, movement indicators reflecting the total movement activity at a forest patch (including within-forest patch movement activity) showed unexpected effects for both plant-pollinator pairs that might be explained by accelerated genetic drift due to enhanced sexual reproduction. Our integrated approach revealed that bumblebees serve as genetic linkers of associated forest herb populations, even if they are more than 2 km apart from each other. No such evidence was found for the forest associated hoverfly species which showed significant genetic differentiation among forest patches itself. Our approach also indicated that a higher within-forest patch movement activity of both pollinator species might enhance sexual recruitment and thus diminishes the temporal buffer that clonal growth provides against habitat fragmentation effects.
Collapse
|
21
|
Lindström SA, Rundlöf M, Herbertsson L. Simple and farmer-friendly bumblebee conservation: straw bales as nest sites in agricultural landscapes. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Simplício VDS, Abot AR, Shimbori EM, Garcia FRM, Carolina Onody H, Castro Torres L, Zazycki LCF, de Souza MM, Rodrigues ME. Natural Areas of Cerrado Foster Wasp (Hymenoptera) Diversity in Human Modified Landscapes. ENVIRONMENTAL ENTOMOLOGY 2022; 51:370-377. [PMID: 35149874 DOI: 10.1093/ee/nvac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Indexed: 06/14/2023]
Abstract
Land use changes from native vegetation to agriculture, livestock grazing, and urban development are among the main problems related to biodiversity loss worldwide. In this paper we evaluate how land use changes (eucalypt plantation and pasture) affect the richness and assemblage of wasps (Braconidae, Ichneumonidae, Pompilidae, and Vespidae), in comparison with nearby areas with native vegetation in the Cerrado. Specimens were collected at six points, with two Malaise traps at each location. The collections were performed monthly for 10 d, for 12 mo. A total of 773 hymenopterans of the selected groups were collected, representing 253 species or morphospecies. Richness of the families Ichneumonidae and Pompilidae between the areas did not present significant differences. For the families Braconidae and Vespidae, the richness was greater in the eucalypt plantation and pasture areas compared to the native area. Species composition in the native habitat was different from either of the managed habitats in the studied environment. Furthermore, the composition of wasps in native areas varied less throughout the sampling campaigns when compared with the pasture and eucalyptus sites. In native areas, 85 exclusive morphospecies were found. Thus, changes in land use may cause changes in the composition of wasp species, since areas with native vegetation presented more heterogeneous and stable environments than the other land uses. The maintenance of native areas, even if close to planted forest and/or pasture areas, could be the best way to combine forest productivity with biodiversity conservation.
Collapse
Affiliation(s)
- Viviane Dos Santos Simplício
- Universidade Federal de Pelotas, Instituto de Biologia, Depto. de Ecologia, Zoologia e Genética, Lab. de Ecologia de Insetos, Caixa-postal: 354, 96010900, Pelotas, RS, Brazil
| | - Alfredo Raúl Abot
- Universidade Estadual de Mato Grosso do Sul, Rodovia Graziela Maciel Barroso, Km 12 Zona Rural, Aquidauana, MS, Brazil
| | - Eduardo Mitio Shimbori
- Departamento de Entomologia e Acarologia, Escola Superior de Agricultura 'Luiz de Queiroz'(ESALQ), Universidade de São Paulo (USP), Avenida Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil
| | - Flávio Roberto Mello Garcia
- Universidade Federal de Pelotas, Instituto de Biologia, Depto. de Ecologia, Zoologia e Genética, Lab. de Ecologia de Insetos, Caixa-postal: 354, 96010900, Pelotas, RS, Brazil
| | - Helena Carolina Onody
- Universidade Estadual do Piauí, Avenida Joaquina Nogueira de Oliveira, s/n, Aeroporto, CEP 64.980-00.0, Corrente, PI, Brazil
| | - Lucas Castro Torres
- Universidade Católica Dom Bosco, Avenida Tamandaré, Jardim Seminário, 79117-900, Campo Grande, MS, Brazil
| | | | - Marcos Magalhaes de Souza
- Instituto de Educação, Ciência e Tecnologia do Sul de Minas Gerais - Campus Inconfidentes, Rua Alonso Troyse, 1B, Centro, CEP 37576000, Inconfidentes, MG, Brazil
| | - Marciel Elio Rodrigues
- Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil
| |
Collapse
|
23
|
Fountain MT. Impacts of Wildflower Interventions on Beneficial Insects in Fruit Crops: A Review. INSECTS 2022; 13:304. [PMID: 35323602 PMCID: PMC8955123 DOI: 10.3390/insects13030304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 11/17/2022]
Abstract
Integrated pest management (IPM) has been practiced by the fruit industry for at least 30 years. Naturally occurring beneficial insects have been encouraged to thrive alongside introduced predatory insects. However, Conservation Biological Control (CBC) and augmented biocontrol through the release of large numbers of natural enemies is normally only widely adopted when a pest has become resistant to available conventional pesticides and control has begun to break down. In addition, the incorporation of wild pollinator management, essential to fruit production, has, in the past, not been a priority but is now increasingly recognized through integrated pest and pollinator management (IPPM). This review focuses on the impacts on pest regulation and pollination services in fruit crops through the delivery of natural enemies and pollinating insects by provisioning areas of fruiting crops with floral resources. Most of the studies in this review highlighted beneficial or benign impacts of floral resource prevision to fruit crops. However, placement in the landscape and spill-over of beneficial arthropods into the crop can be influential and limiting. This review also highlights the need for longer-term ecological studies to understand the impacts of changing arthropod communities over time and the opportunity to tailor wildflower mixes to specific crops for increased pest control and pollination benefits, ultimately impacting fruit growers bottom-line with less reliance on pesticides.
Collapse
|
24
|
Conflitti IM, Arshad Imrit M, Morrison B, Sharma S, Colla SR, Zayed A. Bees in the six: Determinants of bumblebee habitat quality in urban landscapes. Ecol Evol 2022; 12:e8667. [PMID: 35356573 PMCID: PMC8935973 DOI: 10.1002/ece3.8667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/02/2022] Open
Abstract
With growing urbanization, it is becoming increasingly important to design cities in a manner that sustains and enhances biodiversity and ecosystem services. Native bees are critical pollinators that have experienced substantive declines over the past several decades. These declines have captured the attention of the public, particularly urbanites, prompting a large interest in protecting pollinators and their habitats in cities across North America and Europe. Unfortunately, we currently lack research about specific features of urban environments that can enhance the fitness of pollinators. We carried out an intensive study of Bombus impatiens, the Common Eastern Bumblebee, in the city of Toronto (Canada's largest city), to better understand landscape parameters that provide high-quality habitat for this species and likely other generalist bees. We divided the city into 270 grid cells and sampled a large number of worker bees, which were then genotyped at twelve hypervariable microsatellite loci. The genetic data allowed us to quantify the effective number of colonies and foraging distance for bumblebees in our study area. We then asked how the city's landscape and human population demography and income are associated with the availability of high-quality habitat for B. impatiens. Several aspects of Toronto's landscape influenced colony density and foraging range. Urbanization had a clear effect on both colony density and foraging distance of workers. On the other hand, functional (i.e., not cosmetic) green space was often associated with higher quality habitats for bumblebees. Our study suggests several planning strategies to enhance habitat quality for bumblebees and other pollinators in cities.
Collapse
Affiliation(s)
| | | | | | - Sapna Sharma
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Sheila R. Colla
- Faculty of Environmental & Urban ChangeYork UniversityTorontoOntarioCanada
| | - Amro Zayed
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
25
|
Carvell C, Mitschunas N, McDonald R, Hulmes S, Hulmes L, O'Connor RS, Garratt MP, Potts SG, Fountain MT, Sadykova D, Edwards M, Nowakowski M, Pywell RF, Redhead JW. Establishment and management of wildflower areas for insect pollinators in commercial orchards. Basic Appl Ecol 2022; 58:2-14. [PMID: 35115899 PMCID: PMC8752464 DOI: 10.1016/j.baae.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022]
Abstract
Sown wildflower areas are increasingly recommended as an agri-environmental intervention measure, but evidence for their success is limited to particular insect groups or hampered by the challenges of establishing seed mixes and maintaining flower abundance over time. We conducted a replicated experiment to establish wildflower areas to support insect pollinators in apple orchards. Over three years, and across 23 commercial UK orchards with and without sown wildflowers, we conducted 828 transect surveys across various non-crop habitats. We found that the abundance of flower-visiting solitary bees, bumblebees, honeybees, and beetles was increased in sown wildflower areas, compared with existing non-crop habitats in control orchards, from the second year following floral establishment. Abundance of hoverflies and other non-syrphid flies was increased in wildflower areas from the first year. Beyond the effect of wildflower areas, solitary bee abundance was also positively related to levels of floral cover in other local habitats within orchards, but neither local nor wider landscape-scale context affected abundance of other studied insect taxa within study orchards. There was a change in plant community composition on the sown wildflower areas between years, and in patterns of flowering within and between years, showing a succession from unsown weedy species towards a dominance of sown species over time. We discuss how the successful establishment of sown wildflower areas and delivery of benefits for different insect taxa relies on appropriate and reactive management practices as a key component of any such agri-environment scheme.
Collapse
|
26
|
Glück M, Geue JC, Thomassen HA. Environmental differences explain subtle yet detectable genetic structure in a widespread pollinator. BMC Ecol Evol 2022; 22:8. [PMID: 35105300 PMCID: PMC8808969 DOI: 10.1186/s12862-022-01963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The environment is a strong driver of genetic structure in many natural populations, yet often neglected in population genetic studies. This may be a particular problem in vagile species, where subtle structure cannot be explained by limitations to dispersal. Consequently, these species might falsely be considered quasi-panmictic and hence potentially mismanaged. A species this might apply to, is the buff-tailed bumble bee (Bombus terrestris), an economically important and widespread pollinator, which is considered to be quasi-panmictic at mainland continental scales. Here we aimed to (i) quantify genetic structure in 21+ populations of the buff-tailed bumble bee, sampled throughout two Eastern European countries, and (ii) analyse the degree to which structure is explained by environmental differences, habitat permeability and geographic distance. Using 12 microsatellite loci, we characterised populations of this species with Fst analyses, complemented by discriminant analysis of principal components and Bayesian clustering approaches. We then applied generalized dissimilarity modelling to simultaneously assess the informativeness of geographic distance, habitat permeability and environmental differences among populations in explaining divergence. RESULTS Genetic structure of the buff-tailed bumble bee quantified by means of Fst was subtle and not detected by Bayesian clustering. Discriminant analysis of principal components suggested insignificant but still noticeable structure that slightly exceeded estimates obtained through Fst analyses. As expected, geographic distance and habitat permeability were not informative in explaining the spatial pattern of genetic divergence. Yet, environmental variables related to temperature, vegetation and topography were highly informative, explaining between 33 and 39% of the genetic variation observed. CONCLUSIONS In contrast to previous studies reporting quasi-panmixia in continental populations of this species, we demonstrated the presence of subtle population structure related to environmental heterogeneity. Environmental data proved to be highly useful in unravelling the drivers of genetic structure in this vagile and opportunistic species. We highlight the potential of including these data to obtain a better understanding of population structure and the processes driving it in species considered to be quasi-panmictic.
Collapse
Affiliation(s)
- Marcel Glück
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany.
| | - Julia C Geue
- Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden
| | - Henri A Thomassen
- Comparative Zoology, Institute of Evolution and Ecology, Tübingen University, Tübingen, Germany
| |
Collapse
|
27
|
Naaf T, Feigs JT, Huang S, Brunet J, Cousins SAO, Decocq G, De Frenne P, Diekmann M, Govaert S, Hedwall PO, Lenoir J, Liira J, Meeussen C, Plue J, Vangansbeke P, Vanneste T, Verheyen K, Holzhauer SIJ, Kramp K. Context matters: the landscape matrix determines the population genetic structure of temperate forest herbs across Europe. LANDSCAPE ECOLOGY 2021; 37:1365-1384. [PMID: 35571363 PMCID: PMC9085688 DOI: 10.1007/s10980-021-01376-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/21/2021] [Indexed: 06/15/2023]
Abstract
CONTEXT Plant populations in agricultural landscapes are mostly fragmented and their functional connectivity often depends on seed and pollen dispersal by animals. However, little is known about how the interactions of seed and pollen dispersers with the agricultural matrix translate into gene flow among plant populations. OBJECTIVES We aimed to identify effects of the landscape structure on the genetic diversity within, and the genetic differentiation among, spatially isolated populations of three temperate forest herbs. We asked, whether different arable crops have different effects, and whether the orientation of linear landscape elements relative to the gene dispersal direction matters. METHODS We analysed the species' population genetic structures in seven agricultural landscapes across temperate Europe using microsatellite markers. These were modelled as a function of landscape composition and configuration, which we quantified in buffer zones around, and in rectangular landscape strips between, plant populations. RESULTS Landscape effects were diverse and often contrasting between species, reflecting their association with different pollen- or seed dispersal vectors. Differentiating crop types rather than lumping them together yielded higher proportions of explained variation. Some linear landscape elements had both a channelling and hampering effect on gene flow, depending on their orientation. CONCLUSIONS Landscape structure is a more important determinant of the species' population genetic structure than habitat loss and fragmentation per se. Landscape planning with the aim to enhance the functional connectivity among spatially isolated plant populations should consider that even species of the same ecological guild might show distinct responses to the landscape structure. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10980-021-01376-7.
Collapse
Affiliation(s)
- Tobias Naaf
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374 Müncheberg, Germany
| | - Jannis Till Feigs
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374 Müncheberg, Germany
| | - Siyu Huang
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374 Müncheberg, Germany
| | - Jörg Brunet
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Sara A. O. Cousins
- Landscapes, Environment and Geomatics, Department of Physical Geography, Stockholm University, 10691 Stockholm, Sweden
| | - Guillaume Decocq
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS), Université de Picardie Jules Verne, 1 Rue des Louvels, 80037 Amiens, France
| | - Pieter De Frenne
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode-Melle, Belgium
| | - Martin Diekmann
- Vegetation Ecology and Conservation Biology, Institute of Ecology, FB2, University of Bremen, Leobener Str., 28359 Bremen, Germany
| | - Sanne Govaert
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode-Melle, Belgium
| | - Per-Ola Hedwall
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Box 190, 234 22 Lomma, Sweden
| | - Jonathan Lenoir
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, UMR 7058 CNRS), Université de Picardie Jules Verne, 1 Rue des Louvels, 80037 Amiens, France
| | - Jaan Liira
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Camille Meeussen
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode-Melle, Belgium
| | - Jan Plue
- IVL Swedish Environmental Institute, Valhallavägen 81, 10031 Stockholm, Sweden
| | - Pieter Vangansbeke
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode-Melle, Belgium
| | - Thomas Vanneste
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode-Melle, Belgium
| | - Kris Verheyen
- Forest and Nature Lab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Geraardsbergsesteenweg 267, 9090 Gontrode-Melle, Belgium
| | - Stephanie I. J. Holzhauer
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374 Müncheberg, Germany
| | - Katja Kramp
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Strasse 84, 15374 Müncheberg, Germany
| |
Collapse
|
28
|
Rhodes MW, Bennie JJ, Spalding A, Ffrench-Constant RH, Maclean IMD. Recent advances in the remote sensing of insects. Biol Rev Camb Philos Soc 2021; 97:343-360. [PMID: 34609062 DOI: 10.1111/brv.12802] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/31/2022]
Abstract
Remote sensing has revolutionised many aspects of ecological research, enabling spatiotemporal data to be collected in an efficient and highly automated manner. The last two decades have seen phenomenal growth in capabilities for high-resolution remote sensing that increasingly offers opportunities to study small, but ecologically important organisms, such as insects. Here we review current applications for using remote sensing within entomological research, highlighting the emerging opportunities that now arise through advances in spatial, temporal and spectral resolution. Remote sensing can be used to map environmental variables, such as habitat, microclimate and light pollution, capturing data on topography, vegetation structure and composition, and luminosity at spatial scales appropriate to insects. Such data can also be used to detect insects indirectly from the influences that they have on the environment, such as feeding damage or nest structures, whilst opportunities for directly detecting insects are also increasingly available. Entomological radar and light detection and ranging (LiDAR), for example, are transforming our understanding of aerial insect abundance and movement ecology, whilst ultra-high spatial resolution drone imagery presents tantalising new opportunities for direct observation. Remote sensing is rapidly developing into a powerful toolkit for entomologists, that we envisage will soon become an integral part of insect science.
Collapse
Affiliation(s)
- Marcus W Rhodes
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, U.K
| | - Jonathan J Bennie
- Centre for Geography and Environmental Science, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, U.K
| | - Adrian Spalding
- Spalding Associates (Environmental) Ltd, 10 Walsingham Place, Truro, Cornwall, TR1 2RP, U.K
| | - Richard H Ffrench-Constant
- Centre for Ecology and Conservation, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, U.K
| | - Ilya M D Maclean
- Environment and Sustainability Institute, University of Exeter Penryn Campus, Penryn, Cornwall, TR10 9FE, U.K
| |
Collapse
|
29
|
Larkin M, Stanley DA. Impacts of management at a local and landscape scale on pollinators in semi‐natural grasslands. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michelle Larkin
- Botany and Plant Science School of Natural Sciences and Ryan Institute National University of Ireland Galway Galway Ireland
| | - Dara A. Stanley
- Botany and Plant Science School of Natural Sciences and Ryan Institute National University of Ireland Galway Galway Ireland
- School of Agriculture and Food Science University College Dublin Dublin 4 Ireland
| |
Collapse
|
30
|
Reinula I, Träger S, Hernández‐Agramonte IM, Helm A, Aavik T. Landscape genetic analysis suggests stronger effects of past than current landscape structure on genetic patterns of
Primula veris. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Iris Reinula
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Sabrina Träger
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
- Institute of Biology/Geobotany and Botanical Garden Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany
| | | | - Aveliina Helm
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| | - Tsipe Aavik
- Department of Botany Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
| |
Collapse
|
31
|
Gardner E, Breeze TD, Clough Y, Smith HG, Baldock KCR, Campbell A, Garratt MPD, Gillespie MAK, Kunin WE, McKerchar M, Potts SG, Senapathi D, Stone GN, Wäckers F, Westbury DB, Wilby A, Oliver TH. Field boundary features can stabilise bee populations and the pollination of mass‐flowering crops in rotational systems. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Emma Gardner
- School of Biological Sciences University of Reading Reading UK
- Centre for Agri‐Environmental Research University of Reading Reading UK
| | - Tom D. Breeze
- Centre for Agri‐Environmental Research University of Reading Reading UK
| | - Yann Clough
- Centre for Environmental and Climate Research and Department Biology Lund University Lund Sweden
| | - Henrik G. Smith
- Centre for Environmental and Climate Research and Department Biology Lund University Lund Sweden
| | - Katherine C. R. Baldock
- School of Biological Sciences University of Bristol Bristol UK
- Cabot Institute University of Bristol Bristol UK
- Department of Geographical and Environmental Sciences Northumbria University Newcastle upon Tyne UK
| | | | | | - Mark A. K. Gillespie
- School of Biology University of Leeds Leeds UK
- Department of Environmental Sciences Western Norway University of Applied Sciences Sogndal Norway
| | | | - Megan McKerchar
- School of Science and the Environment University of Worcester UK
| | - Simon G. Potts
- Centre for Agri‐Environmental Research University of Reading Reading UK
| | - Deepa Senapathi
- Centre for Agri‐Environmental Research University of Reading Reading UK
| | - Graham N. Stone
- Institute of Evolutionary Biology University of Edinburgh Edinburgh UK
| | - Felix Wäckers
- Lancaster Environment Centre Lancaster University Lancaster UK
| | | | - Andrew Wilby
- Lancaster Environment Centre Lancaster University Lancaster UK
| | - Tom H. Oliver
- School of Biological Sciences University of Reading Reading UK
| |
Collapse
|
32
|
Kenna D, Pawar S, Gill RJ. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daniel Kenna
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Samraat Pawar
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Richard J. Gill
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| |
Collapse
|
33
|
Gruver A, CaraDonna P. Chicago Bees: Urban Areas Support Diverse Bee Communities but With More Non-Native Bee Species Compared to Suburban Areas. ENVIRONMENTAL ENTOMOLOGY 2021; 50:982-994. [PMID: 34114612 DOI: 10.1093/ee/nvab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Urbanization is rapidly growing worldwide, yet we still do not fully understand how it affects many organisms. This may be especially true for wild bees that require specific nesting and floral resources and have been threatened by habitat loss. Our study explores the response of wild bee communities to an urbanization gradient in the Chicagoland region of Illinois. Specifically, we explored how both landscape scale impervious surface and local floral diversity across an urbanization gradient influenced 1) the composition of local bee communities, 2) the richness of native and non-native bees, and 3) the composition of bee functional traits. Over the course of our study, we documented 2,331 bees belonging to 83 different species, 13 of which were not native to North America. We found that impervious surface influenced the overall composition of bee communities. In particular, highly urban areas were composed of more non-native bee species and fewer native bee species. Additionally, bee richness and native bee richness responded positively to floral resources. Bee functional trait responses were variable, with floral diverse sites supporting greater richness of ground nesting, eusocial, and generalist bees regardless of landscape-level impervious surface. Importantly, our study provides evidence that urban areas can support diverse bee communities, but urban and suburban bee communities do differ in composition. Thus, bee conservation efforts in urban areas should focus on creating floral diverse habitats to help support more bee species, specifically native bee species, while also considering which bees are best supported by these conservation efforts.
Collapse
Affiliation(s)
- Andrea Gruver
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL 60208
| | - Paul CaraDonna
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, IL 60022
- Program in Plant Biology and Conservation, Northwestern University, Evanston, IL 60208
| |
Collapse
|
34
|
Pugesek G, Crone EE. Contrasting effects of land cover on nesting habitat use and reproductive output for bumble bees. Ecosphere 2021. [DOI: 10.1002/ecs2.3642] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Genevieve Pugesek
- Department of Biology Tufts University 200 College Avenue Medford Massachusetts02155USA
| | - Elizabeth E. Crone
- Department of Biology Tufts University 200 College Avenue Medford Massachusetts02155USA
| |
Collapse
|
35
|
Piko J, Keller A, Geppert C, Batáry P, Tscharntke T, Westphal C, Hass AL. Effects of three flower field types on bumblebees and their pollen diets. Basic Appl Ecol 2021. [DOI: 10.1016/j.baae.2021.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Nicholson CC, J-M Hayes J, Connolly S, Ricketts TH. Corridors through time: Does resource continuity impact pollinator communities, populations, and individuals? ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02260. [PMID: 33185959 DOI: 10.1002/eap.2260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/28/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Spatial aspects of connectivity have received considerable attention from ecologists and conservationists, yet temporal connectivity, the periodic linking of habitats, plays an equally important, but largely overlooked role. Different biological and biophysical attributes of ecosystems underpin temporal connectivity, but here we focus on resource continuity, the uninterrupted availability of foraging sites. We test the response of pollinators to resource continuity at community, population, and individual levels using a novel natural experiment consisting of farms with either single or sequential cropping systems. We found significant effects at the population level; colony density of an important crop pollinator (Bombus impatiens L.) was greater when crop floral resources were continuously available. However, we did not find significant effects at the community or individual level; wild bee abundance, diversity and body size did not respond to resource continuity. Raspberry farms with greater early season resources provided by blueberry had greater bumble bee populations, suggesting beneficial effects on resource availability due to crop diversity. Better understanding the impact of resource continuity via crop diversity on broader patterns of biodiversity is essential for the co-management of biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Charlie C Nicholson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Jen J-M Hayes
- Department of Horticulture, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Samantha Connolly
- Department of Computer Science, University of Vermont, Burlington, Vermont, 05405, USA
| | - Taylor H Ricketts
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, 05405, USA
- Gund Institute for Environment, University of Vermont, Burlington, Vermont, 05405, USA
| |
Collapse
|
37
|
Kesoju SR, Kramer M, Brunet J, Greene SL, Jordan A, Martin RC. Gene flow in commercial alfalfa (Medicago sativa subsp. sativa L.) seed production fields: Distance is the primary but not the sole influence on adventitious presence. PLoS One 2021; 16:e0248746. [PMID: 33765070 PMCID: PMC7993763 DOI: 10.1371/journal.pone.0248746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 11/18/2022] Open
Abstract
In insect-pollinated crops, gene flow is affected by numerous factors including crop characteristics, mating system, life history, pollinators, and planting management practices. Previous studies have concentrated on the impact of distance between genetically engineered (GE) and conventional fields on adventitious presence (AP) which represents the unwanted presence of a GE gene. Variables other than distance, however, may affect AP. In addition, some AP is often present in the parent seed lots used to establish conventional fields. To identify variables that influence the proportion of AP in conventional alfalfa fields, we performed variable selection regression analyses. Analyses based on a sample-level and a field-level analysis gave similar, though not identical results. For the sample-level model, distance from the GE field explained 66% of the variance in AP, confirming its importance in affecting AP. The area of GE fields within the pollinator foraging range explained an additional 30% of the variation in AP in the model. The density of alfalfa leafcutting bee domiciles influenced AP in both models. To minimize AP in conventional alfalfa seed fields, management practices should focus on optimizing isolation distances while also considering the size of the GE pollen pool within the pollinator foraging range, and the foraging behavior of pollinators.
Collapse
Affiliation(s)
- Sandya R. Kesoju
- Department of Agriculture, Columbia Basin College, Pasco, Washington, United States of America
| | - Matthew Kramer
- Statistics Group, Beltsville Agricultural Research Center, USDA Agricultural Research Service, Beltsville, Maryland, United States of America
| | - Johanne Brunet
- Vegetable Crops Research Unit, USDA, Agricultural Research Service, Madison, Wisconsin, United States of America
| | - Stephanie L. Greene
- Agricultural Genetic Resources Preservation Research Unit, USDA, Agricultural Research Service, Fort Collins, Colorado, United States of America
| | - Amelia Jordan
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington, United States of America
| | - Ruth C. Martin
- Forage Seed and Cereal Research, USDA, Agricultural Research Service, Corvallis, Oregon, United States of America
| |
Collapse
|
38
|
Krichilsky E, Centrella M, Eitzer B, Danforth B, Poveda K, Grab H. Landscape Composition and Fungicide Exposure Influence Host-Pathogen Dynamics in a Solitary Bee. ENVIRONMENTAL ENTOMOLOGY 2021; 50:107-116. [PMID: 33247307 DOI: 10.1093/ee/nvaa138] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Indexed: 06/12/2023]
Abstract
Both ecosystem function and agricultural productivity depend on services provided by bees; these services are at risk from bee declines which have been linked to land use change, pesticide exposure, and pathogens. Although these stressors often co-occur in agroecosystems, a majority of pollinator health studies have focused on these factors in isolation, therefore limiting our ability to make informed policy and management decisions. Here, we investigate the combined impact of altered landscape composition and fungicide exposure on the prevalence of chalkbrood disease, caused by fungi in the genus Ascosphaera Olive and Spiltoir 1955 (Ascosphaeraceae: Onygenales), in the introduced solitary bee, Osmia cornifrons (Radoszkowski 1887) (Megachilidae: Hymenoptera). We used both field studies and laboratory assays to evaluate the potential for interactions between altered landscape composition, fungicide exposure, and Ascosphaera on O. cornifrons mortality. Chalkbrood incidence in larval O. cornifrons decreased with high open natural habitat cover, whereas Ascosphaera prevalence in adults decreased with high urban habitat cover. Conversely, high fungicide concentration and high forest cover increased chalkbrood incidence in larval O. cornifrons and decreased Ascosphaera incidence in adults. Our laboratory assay revealed an additive effect of fungicides and fungal pathogen exposure on the mortality of a common solitary bee. Additionally, we utilized phylogenetic methods and identified four species of Ascosphaera with O. cornifrons, both confirming previous reports and shedding light on new associates. Our findings highlight the impact of fungicides on bee health and underscore the importance of studying interactions among factors associated with bee decline.
Collapse
Affiliation(s)
| | - Mary Centrella
- Pesticide Management Education Program, Cornell University, Ithaca, NY
| | - Brian Eitzer
- The Connecticut Agricultural Experiment Station, Department of Analytical Chemistry, Johnson-Horsfall Laboratory, New Haven, CT
| | - Bryan Danforth
- Department of Entomology, Cornell University, Ithaca, NY
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, NY
| | - Heather Grab
- Department of Entomology, Cornell University, Ithaca, NY
| |
Collapse
|
39
|
Emel SL, Wang S, Metz RP, Spigler RB. Type and intensity of surrounding human land use, not local environment, shape genetic structure of a native grassland plant. Mol Ecol 2021; 30:639-655. [PMID: 33245827 DOI: 10.1111/mec.15753] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 11/01/2020] [Accepted: 11/13/2020] [Indexed: 12/28/2022]
Abstract
Landscape heterogeneity can shape genetic structure and functional connectivity of populations. When this heterogeneity imposes variable costs of moving across the landscape, populations can be structured according to a pattern of "isolation by resistance" (IBR). At the same time, divergent local environmental filters can limit gene flow, creating an alternative pattern of "isolation by environment" (IBE). Here, we evaluate IBR and IBE in the insect-pollinated, biennial plant Sabatia angularis (L.) Pursh (Gentianaceae) across serpentine grasslands in the fragmented landscape of SE Pennsylvania, USA using ~4500 neutral SNP loci. Specifically, we test the extent to which radical alteration of the landscape matrix by humans has fundamentally altered the cost of movement, imprinting a pattern of IBR dictated by land use type and intensity, and the potential for IBE in relation to a gradient of heavy metal concentrations found in serpentine soil. We reveal a strong signal of IBR and a weak signal of IBE across sites, indicating the greater importance of the landscape matrix in shaping genetic structure of S. angularis populations in the study region. Based on Circuitscape and least cost path approaches, we find that both low- and high-intensity urbanization resist gene flow by orders of magnitude greater than "natural" habitats, although resistance to low-intensity urbanization weakens at larger spatial scales. While cropland presents a substantially lower barrier than urban development, cumulative human land use surrounding populations predicts within-population genetic diversity and inbreeding in S. angularis. Our results emphasize the role of forest buffers and corridors in facilitating gene flow between serpentine grassland patches and averting local extinction of plant populations.
Collapse
Affiliation(s)
- Sarah L Emel
- Department of Biology, Temple University, Philadelphia, PA, USA.,Department of Biology, Indiana University of Pennsylvania, Indiana, PA, USA
| | - Shichen Wang
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, TX, USA
| | - Richard P Metz
- Genomics and Bioinformatics Service, Texas A&M AgriLife Research, TX, USA
| | | |
Collapse
|
40
|
Baird E, Tichit P, Guiraud M. The neuroecology of bee flight behaviours. CURRENT OPINION IN INSECT SCIENCE 2020; 42:8-13. [PMID: 32818691 DOI: 10.1016/j.cois.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
By combining functional, ecological and evolutionary perspectives, neuroecology can provide key insights into understanding how behaviour and the underlying sensory and neural processes are shaped by ecology and evolutionary history. Bees are an ideal system for neuroecological studies because they represent a numerous and diverse insect group that inhabit a broad range of environments. Flight is central to the evolutionary success of bees and is the key to their survival and fitness but this review of recent work on fundamental flight behaviours in different species - landing, collision avoidance and speed control - reveals striking differences. We discuss the potential ecological and evolutionary drivers behind this variation but argue that to understand their adaptive value future work should include multidisciplinary approaches that integrate neuroscience, ecology, phylogeny and behaviour.
Collapse
Affiliation(s)
- Emily Baird
- Department of Zoology, Stockholm University, Sweden; Department of Biology, Lund University, Sweden.
| | | | | |
Collapse
|
41
|
Domestic Gardens Mitigate Risk of Exposure of Pollinators to Pesticides—An Urban-Rural Case Study Using a Red Mason Bee Species for Biomonitoring. SUSTAINABILITY 2020. [DOI: 10.3390/su12229427] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Domestic gardens supply pollinators with valuable habitats, but the risk of exposure to pesticides has been little investigated. Artificial nesting shelters of a red mason bee species (Osmia bicornis) were placed in two suburban gardens and two commercial fruit orchards to determine the contamination of forage sources by pesticides. Larval pollen provisions were collected from a total of 14 nests. They consisted mainly of pollen from oaks (65–100% weight/sample), Brassicaceae (≤34% w/s) and fruit trees (≤1.6% w/s). Overall, 30 pesticides were detected and each sample contained a mixture of 11–21 pesticide residues. The pesticide residues were significantly lower in garden samples than in orchard samples. The difference was attributed mainly to the abundant fungicides pyrimethanil and boscalid, which were sprayed in fruit orchards and were present on average at 1004 ppb and 648 ppb in orchard samples, respectively. The results suggested that pollinators can benefit from domestic gardens by foraging from floral sources less contaminated by pesticides than in adjacent croplands.
Collapse
|
42
|
Cavigliasso P, Phifer CC, Adams EM, Flaspohler D, Gennari GP, Licata JA, Chacoff NP. Spatio-temporal dynamics of landscape use by the bumblebee Bombus pauloensis (Hymenoptera: Apidae) and its relationship with pollen provisioning. PLoS One 2020; 15:e0216190. [PMID: 32639984 PMCID: PMC7343142 DOI: 10.1371/journal.pone.0216190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/09/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how bees use resources at a landscape scale is essential for developing meaningful management plans that sustain populations and the pollination services they provide. Bumblebees are important pollinators for many wild and cultivated plants, and have experienced steep population declines worldwide. Bee foraging behavior can be influenced by resource availability and bees’ lifecycle stage. To better understand these relationships, we studied the habitat selection of Bombus pauloensis by tracking 17 queen bumblebees with radio telemetry in blueberry fields in Entre Ríos province, Argentina. To evaluate land use and floral resources used by bumblebees, we tracked bees before and after nest establishment and estimated home ranges using minimum convex polygons and kernel density methods. We also classified the pollen on their bodies to identify the floral resources they used from the floral species available at that time. We characterized land use for each bee as the relative proportion of GPS points inside of each land use. Bumblebees differed markedly in their movement behavior in relation to pre and post nest establishment. Bees moved over larger areas, and mostly within blueberry fields, before nest establishment. In contrast, after establishing the nest, the bees preferred the edges near forest plantations and they changed the nutritional resources to prefer wild floral species. Our study is the first to track queen bumblebee movements in an agricultural setting and relate movement changes across time and space with pollen resource availability. This study provides insight into the way bumblebee queens use different habitat elements at crucial periods in their lifecycle, showing the importance of mass flowering crops like blueberry in the first stages of queen’s lifecycle, and how diversified landscapes help support bee populations as their needs changes during different phases of their lifecycle.
Collapse
Affiliation(s)
- Pablo Cavigliasso
- Programa Nacional Apícola, Instituto Nacional de Tecnología Agropecuaria, Concordia, Entre Ríos, Buenos Aires, Argentina
- * E-mail:
| | - Colin C. Phifer
- School of Forest Resources and Environmental Science, Michigan Technological University. Houghton, Michigan, United States of America
| | - Erika M. Adams
- School of Forest Resources and Environmental Science, Michigan Technological University. Houghton, Michigan, United States of America
| | - David Flaspohler
- School of Forest Resources and Environmental Science, Michigan Technological University. Houghton, Michigan, United States of America
| | - Gerardo P. Gennari
- Programa Nacional Apícola, Instituto Nacional de Tecnología Agropecuaria, Famaillá, Tucumán, Argentina
| | - Julian A. Licata
- Programa Nacional Apícola, Instituto Nacional de Tecnología Agropecuaria, Concordia, Entre Ríos, Buenos Aires, Argentina
| | - Natacha P. Chacoff
- Instituto de Ecología Regional, CONICET-Universidad Nacional de Tucumán, Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| |
Collapse
|
43
|
Gervais A, Courtois È, Fournier V, Bélisle M. Landscape composition and local floral resources influence foraging behavior but not the size of Bombus impatiens Cresson (Hymenoptera: Apidae) workers. PLoS One 2020; 15:e0234498. [PMID: 32584843 PMCID: PMC7316238 DOI: 10.1371/journal.pone.0234498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/27/2020] [Indexed: 11/19/2022] Open
Abstract
Bumble bee communities are strongly disrupted worldwide through the population decline of many species; a phenomenon that has been generally attributed to landscape modification, pesticide use, pathogens, and climate change. The mechanisms by which these causes act on bumble bee colonies are, however, likely to be complex and to involve many levels of organization spanning from the community down to the least understood individual level. Here, we assessed how the morphology, weight and foraging behavior of individual workers are affected by their surrounding landscape. We hypothesized that colonies established in landscapes showing high cover of intensive crops and low cover of flowering crops, as well as low amounts of local floral resources, would produce smaller workers, which would perform fewer foraging trips and collect pollen loads less constant in species composition. We tested these predictions with 80 colonies of commercially reared Bombus impatiens Cresson placed in 20 landscapes spanning a gradient of agricultural intensification in southern Québec, Canada. We estimated weekly rate at which workers entered and exited colonies and captured eight workers per colony over a period of 14 weeks during the spring and summer of 2016. Captured workers had their wing, thorax, head, tibia, and dry weight measured, as well as their pollen load extracted and identified to the lowest possible taxonomic level. We did not detect any effect of landscape habitat composition on worker morphology or body weight, but found that foraging activity decreased with intensive crops. Moreover, higher diversity of local floral resources led to lower pollen constancy in intensively cultivated landscapes. Finally, we found a negative correlation between the size of workers and the diversity of their pollen load. Our results provide additional evidence that conservation actions regarding pollinators in arable landscapes should be made at the landscape rather than at the farm level.
Collapse
Affiliation(s)
- Amélie Gervais
- Département de Phytologie, Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Canada
| | - Ève Courtois
- Département de Biologie, Centre d’Étude de la Forêt (CEF), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Valérie Fournier
- Département de Phytologie, Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Canada
| | - Marc Bélisle
- Département de Biologie, Centre d’Étude de la Forêt (CEF), Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
44
|
Mola JM, Miller MR, O'Rourke SM, Williams NM. Wildfire reveals transient changes to individual traits and population responses of a native bumble bee Bombus vosnesenskii. J Anim Ecol 2020; 89:1799-1810. [PMID: 32358976 DOI: 10.1111/1365-2656.13244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Fire-induced changes in the abundance and distribution of organisms, especially plants, can alter resource landscapes for mobile consumers driving bottom-up effects on their population sizes, morphologies and reproductive potential. We expect these impacts to be most striking for obligate visitors of plants, like bees and other pollinators, but these impacts can be difficult to interpret due to the limited information provided by forager counts in the absence of survival or fitness proxies. Increased bumble bee worker abundance is often coincident with the pulses of flowers that follow recent fire. However, it is unknown if observed postfire activity is due to underlying population growth or a stable pool of colonies recruiting more foragers to abundant resource patches. This distinction is necessary for determining the net impact of disturbance on bumble bees: are there population-wide responses or do just a few colonies reap the rewards? We estimated colony abundance before and after fire in burned and unburned areas using a genetic mark-recapture framework. We paired colony abundance estimates with measures of body size, counts of queens, and estimates of foraging and dispersal to assess changes in worker size, reproductive output, and landscape-scale movements. Higher floral abundance following fire not only increased forager abundance but also the number of colonies from which those foragers came. Importantly, despite a larger population size, we also observed increased mean worker size. Two years following fire, queen abundance was higher in both burned and unburned sites, potentially due to the dispersal of queens from burned into unburned areas. The effects of fire were transient; within two growing seasons, worker abundance was substantially reduced across the entire sampling area and body sizes were similar between burned and unburned sites. Our results reveal how disturbance can temporarily release populations from resource limitation, boosting the genetic diversity, body size, and reproductive output of populations. Given that the effects of fire on bumble bees acted indirectly through pulsed resource availability, it is likely our results are generalizable to other situations, such as habitat restorations, where resource density is enhanced within the landscape.
Collapse
Affiliation(s)
- John M Mola
- Fort Collins Science Center, U.S. Geological Survey, Ft Collins, CO, USA.,Graduate Group in Ecology, University of California, Davis, CA, USA
| | - Michael R Miller
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Animal Science, University of California, Davis, CA, USA
| | - Sean M O'Rourke
- Department of Animal Science, University of California, Davis, CA, USA
| | - Neal M Williams
- Graduate Group in Ecology, University of California, Davis, CA, USA.,Department of Entomology, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Maurer C, Bosco L, Klaus E, Cushman SA, Arlettaz R, Jacot A. Habitat amount mediates the effect of fragmentation on a pollinator's reproductive performance, but not on its foraging behaviour. Oecologia 2020; 193:523-534. [PMID: 32333093 DOI: 10.1007/s00442-020-04658-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
Agricultural intensification, with its associated habitat loss and fragmentation, is among the most important drivers of the ongoing pollination crisis. In this quasi-experimental study, conducted in intensively managed vineyards in southwestern Switzerland, we tested the separate and interdependent effects of habitat amount and fragmentation on the foraging activity and reproductive performance of bumblebee Bombus t. terrestris colonies. Based on a factorial design, we selected a series of spatially replicated study sites across a dual gradient of habitat amount (area of ground-vegetated vineyards) and fragmentation (density of ground-vegetated vineyard fields) in a landscape predominantly consisting of vineyards with bare grounds. The foraging activity of individual bumblebees was measured using the radio frequency identification (RFID) technology, and we assessed final colony size to measure reproductive performance. We found an interactive effect of habitat amount and fragmentation on colony size. More specifically, the degree of fragmentation had a negative effect on bumblebee colony size when the amount of habitat was low, while it had a weak positive effect on colony size in landscapes with high amounts of habitat. At the level of individual vineyard fields, ground vegetation cover exerted a positive effect on bumblebee colony size. Fragmentation, but not habitat amount, significantly influenced foraging activity, with more foraging trips in sites with lower degrees of fragmentation. Our results emphasise the importance of studying the separate and interdependent effects of habitat amount and fragmentation to understand their influence on pollinators, providing guidance for optimising the spatial configuration of agricultural landscapes from a biodiversity viewpoint.
Collapse
Affiliation(s)
- Corina Maurer
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.
| | - Laura Bosco
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.,Swiss Ornithological Institute, Valais Field Station, 1950, Sion, Switzerland
| | - Elisabeth Klaus
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Samuel A Cushman
- USDA Forest Service, Rocky Mountain Research Station, 2500 S Pine Knoll Dr, Flagstaff, AZ, 89001, USA
| | - Raphaël Arlettaz
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Alain Jacot
- Division of Conservation Biology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland.,Swiss Ornithological Institute, Valais Field Station, 1950, Sion, Switzerland
| |
Collapse
|
46
|
Predicting changes in bee assemblages following state transitions at North American dryland ecotones. Sci Rep 2020; 10:708. [PMID: 31959812 PMCID: PMC6971228 DOI: 10.1038/s41598-020-57553-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/26/2019] [Indexed: 11/11/2022] Open
Abstract
Drylands worldwide are experiencing ecosystem state transitions: the expansion of some ecosystem types at the expense of others. Bees in drylands are particularly abundant and diverse, with potential for large compositional differences and seasonal turnover across ecotones. To better understand how future ecosystem state transitions may influence bees, we compared bee assemblages and their seasonality among sites at the Sevilleta National Wildlife Refuge (NM, USA) that represent three dryland ecosystem types (and two ecotones) of the southwestern U.S. (Plains grassland, Chihuahuan Desert grassland, and Chihuahuan Desert shrubland). Using passive traps, we caught bees during two-week intervals from March–October, 2002–2014. The resulting dataset included 302 bee species and 56 genera. Bee abundance, composition, and diversity differed among ecosystems, indicating that future state transitions could alter bee assemblage composition in our system. We found strong seasonal bee species turnover, suggesting that bee phenological shifts may accompany state transitions. Common species drove the observed trends, and both specialist and generalist bee species were indicators of ecosystem types or months; these species could be sentinels of community-wide responses to future shifts. Our work suggests that predicting the consequences of global change for bee assemblages requires accounting for both within-year and among-ecosystem variation.
Collapse
|
47
|
Abstract
Bumble bees (Bombus) are unusually important pollinators, with approximately 260 wild species native to all biogeographic regions except sub-Saharan Africa, Australia, and New Zealand. As they are vitally important in natural ecosystems and to agricultural food production globally, the increase in reports of declining distribution and abundance over the past decade has led to an explosion of interest in bumble bee population decline. We summarize data on the threat status of wild bumble bee species across biogeographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, operating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality. We distinguish between correlational and causal results, underscoring the importance of expanding experimental research beyond the study of two commercially available species to identify causal factors affecting the diversity of wild species.
Collapse
Affiliation(s)
- Sydney A Cameron
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA;
| |
Collapse
|
48
|
Lu ZX, Xie ZH, Zhao JW, Chen YQ. Scale-Dependent Waylaying Effect of Pollinators and Pollination of Mass-Flowering Plants. NEOTROPICAL ENTOMOLOGY 2019; 48:717-728. [PMID: 31062186 DOI: 10.1007/s13744-019-00688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Pollinators foraging for food resources can be waylaid by mass-flowering plants located in their foraging pathway in landscapes. The waylaying effect of pollinators is often studied at a single spatial scale; to date, little is known about the best spatial extent at which waylaying effect of pollinators can be measured. In this study, we selected a landscape with mass-flowering tufted vetches to determine the spatial scale of waylaying effect of honey bees as well as the consequence of waylaying effect on vetch pollination service. The spatial scale of waylaying effect was determined by the strongest association between honey bee density and distance, selected from a gradient of nested circular buffers centering on apiaries in three different locations. Linear models were used to predict the influence of flower visitor densities on pollination service. For our landscape, honey bee densities were best associated with distances at spatial scales of 500 m, 1150 m, and 1400 m respectively for the three locations of apiaries. Honey bee was the only pollinator whose density displayed a positive relationship with pollination service. At the scales of effect, honey bee density and pollination service declined along the distance. Our findings suggest that the waylaying effect of pollinators needs to be examined at a specific spatial scale and farmers who use honey bees to pollinate their mass-flowering crops need to consider the spatial scale of waylaying effect of pollinators in order to maximize pollination service within agricultural ecosystems.
Collapse
Affiliation(s)
- Z X Lu
- Dept of Environmental Entomology, Research Institute of Insect Resources, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Z H Xie
- Dept of Environmental Entomology, Research Institute of Insect Resources, Chinese Academy of Forestry, Kunming, Yunnan, China.
| | - J W Zhao
- Dept of Environmental Entomology, Research Institute of Insect Resources, Chinese Academy of Forestry, Kunming, Yunnan, China
| | - Y Q Chen
- Dept of Environmental Entomology, Research Institute of Insect Resources, Chinese Academy of Forestry, Kunming, Yunnan, China.
| |
Collapse
|
49
|
Galbraith SM, Cane JH, Moldenke AR, Rivers JW. Wild bee diversity increases with local fire severity in a fire‐prone landscape. Ecosphere 2019. [DOI: 10.1002/ecs2.2668] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Sara M. Galbraith
- Department of Forest Ecosystems and Society, 321 Richardson Hall Oregon State University Corvallis Oregon 97331 USA
| | - James H. Cane
- USDA‐ARS Pollinating Insects Research Unit BNR 257 Old Main Hill, Utah State University Logan Utah 84322 USA
| | - Andrew R. Moldenke
- Department of Botany and Plant Pathology 2082 Cordley Hall, Oregon State University Corvallis Oregon 97331 USA
| | - James W. Rivers
- Department of Forest Ecosystems and Society, 321 Richardson Hall Oregon State University Corvallis Oregon 97331 USA
| |
Collapse
|
50
|
Toivonen M, Herzon I, Rajanen H, Toikkanen J, Kuussaari M. Late flowering time enhances insect pollination of turnip rape. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjaana Toivonen
- Biodiversity CentreFinnish Environment Institute (SYKE) Helsinki Finland
| | - Irina Herzon
- Department of Agricultural SciencesUniversity of Helsinki Helsinki Finland
| | - Hanne Rajanen
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | - Jenni Toikkanen
- Biodiversity CentreFinnish Environment Institute (SYKE) Helsinki Finland
| | - Mikko Kuussaari
- Biodiversity CentreFinnish Environment Institute (SYKE) Helsinki Finland
| |
Collapse
|