1
|
Wan X, Holyoak M, Yan C, Le Maho Y, Dirzo R, Krebs CJ, Stenseth NC, Zhang Z. Broad-scale climate variation drives the dynamics of animal populations: a global multi-taxa analysis. Biol Rev Camb Philos Soc 2022; 97:2174-2194. [PMID: 35942895 DOI: 10.1111/brv.12888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 01/07/2023]
Abstract
Climate is a major extrinsic factor affecting the population dynamics of many organisms. The Broad-Scale Climate Hypothesis (BSCH) was proposed by Elton to explain the large-scale synchronous population cycles of animals, but the extent of support and whether it differs among taxa and geographical regions is unclear. We reviewed publications examining the relationship between the population dynamics of multiple taxa worldwide and the two most commonly used broad-scale climate indices, El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO). Our review and synthesis (based on 561 species from 221 papers) reveals that population changes of mammals, birds and insects are strongly affected by major oceanic shifts or irregular oceanic changes, particularly in ENSO- and NAO-influenced regions (Pacific and Atlantic, respectively), providing clear evidence supporting Elton's BSCH. Mammal and insect populations tended to increase during positive ENSO phases. Bird populations tended to increase in positive NAO phases. Some species showed dual associations with both positive and negative phases of the same climate index (ENSO or NAO). These findings indicate that some taxa or regions are more or less vulnerable to climate fluctuations and that some geographical areas show multiple weather effects related to ENSO or NAO phases. Beyond confirming that animal populations are influenced by broad-scale climate variation, we document extensive patterns of variation among taxa and observe that the direct biotic and abiotic mechanisms for these broad-scale climate factors affecting animal populations are very poorly understood. A practical implication of our research is that changes in ENSO or NAO can be used as early signals for pest management and wildlife conservation. We advocate integrative studies at both broad and local scales to unravel the omnipresent effects of climate on animal populations to help address the challenge of conserving biodiversity in this era of accelerated climate change.
Collapse
Affiliation(s)
- Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, California, Davis, 95616, USA
| | - Chuan Yan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yvon Le Maho
- Institut Pluridisciplinaire Hubert Curien (IPHC), Centre National de la Recherche Scientifique (CNRS), Université de Strasbourg, Strasbourg, 67000, France.,Centre Scientifique de Monaco, Monaco, 98000, Monaco
| | - Rodolfo Dirzo
- Department of Biology and Woods Institute for the Environment, Stanford University, Stanford, California, 94305, USA
| | - Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, N-0316, Norway
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Pepi A, Grof-Tisza P, Holyoak M, Karban R. Hilltopping influences spatial dynamics in a patchy population of tiger moths. Proc Biol Sci 2022; 289:20220505. [PMID: 35673863 PMCID: PMC9174710 DOI: 10.1098/rspb.2022.0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dispersal is a key driver of spatial population dynamics. Dispersal behaviour may be shaped by many factors, such as mate-finding, the spatial distribution of resources, or wind and currents, yet most models of spatial dynamics assume random dispersal. We examined the spatial dynamics of a day-flying moth species (Arctia virginalis) that forms mating aggregations on hilltops (hilltopping) based on long-term adult and larval population censuses. Using time-series models, we compared spatial population dynamics resulting from empirically founded hilltop-based connectivity indices and modelled the interactive effects of temperature, precipitation and density dependence. Model comparisons supported hilltop-based connectivity metrics including hilltop elevation over random connectivity, suggesting an effect of hilltopping behaviour on dynamics. We also found strong interactive effects of temperature and precipitation on dynamics. Simulations based on fitted time-series models showed lower patch occupancy and regional synchrony, and higher colonization and extinction rates when hilltopping was included, with potential implications for the probability of persistence of the patch network. Overall, our results show the potential for dispersal behaviour to have important effects on spatial population dynamics and persistence, and we advocate the inclusion of such non-random dispersal in metapopulation models.
Collapse
Affiliation(s)
- Adam Pepi
- Department of Entomology and Nematology, University of California Davis, CA, USA,Department of Biology, Tufts University, MA, USA
| | | | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Richard Karban
- Department of Entomology and Nematology, University of California Davis, CA, USA
| |
Collapse
|
3
|
|
4
|
Filazzola A, Matter SF, Roland J. Inclusion of trophic interactions increases the vulnerability of an alpine butterfly species to climate change. GLOBAL CHANGE BIOLOGY 2020; 26:2867-2877. [PMID: 32196868 DOI: 10.1111/gcb.15068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Climate change is expected to have significant and complex impacts on ecological communities. In addition to direct effects of climate on species, there can also be indirect effects through an intermediary species, such as in host-plant interactions. Indirect effects are expected to be more pronounced in alpine environments because these ecosystems are sensitive to temperature changes and there are limited areas for migration of both species (i.e. closed systems), and because of simpler trophic interactions. We tested the hypothesis that climate change will reduce the range of an alpine butterfly (Parnassius smintheus) because of indirect effects through its host plant (Sedum sp.). To test for direct and indirect effects, we used the simulations of climate change to assess the distribution of P. smintheus with and without Sedum sp. We also compared the projected ranges of P. smintheus to four other butterfly species that are found in the alpine, but that are generalists feeding on many plant genera. We found that P. smintheus gained distributional area in climate-only models, but these gains were significantly reduced with the inclusion of Sedum sp. and in dry-climate scenarios which resulted in a reduction in net area. When compared to the more generalist butterfly species, P. smintheus exhibited the largest loss in suitable habitat. Our findings support the importance of including indirect effects in modelling species distributions in response to climate change. We highlight the potentially large and still neglected impacts climate change can have on the trophic structure of communities, which can lead to significant losses of biodiversity. In the future, communities will continue to favour species that are generalists as climate change induces asynchronies in the migration of species.
Collapse
Affiliation(s)
| | - Stephen F Matter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jens Roland
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Abstract
Insect declines are being reported worldwide for flying, ground, and aquatic lineages. Most reports come from western and northern Europe, where the insect fauna is well-studied and there are considerable demographic data for many taxonomically disparate lineages. Additional cases of faunal losses have been noted from Asia, North America, the Arctic, the Neotropics, and elsewhere. While this review addresses both species loss and population declines, its emphasis is on the latter. Declines of abundant species can be especially worrisome, given that they anchor trophic interactions and shoulder many of the essential ecosystem services of their respective communities. A review of the factors believed to be responsible for observed collapses and those perceived to be especially threatening to insects form the core of this treatment. In addition to widely recognized threats to insect biodiversity, e.g., habitat destruction, agricultural intensification (including pesticide use), climate change, and invasive species, this assessment highlights a few less commonly considered factors such as atmospheric nitrification from the burning of fossil fuels and the effects of droughts and changing precipitation patterns. Because the geographic extent and magnitude of insect declines are largely unknown, there is an urgent need for monitoring efforts, especially across ecological gradients, which will help to identify important causal factors in declines. This review also considers the status of vertebrate insectivores, reporting bias, challenges inherent in collecting and interpreting insect demographic data, and cases of increasing insect abundance.
Collapse
Affiliation(s)
- David L Wagner
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| |
Collapse
|
6
|
Nice CC, Forister ML, Harrison JG, Gompert Z, Fordyce JA, Thorne JH, Waetjen DP, Shapiro AM. Extreme heterogeneity of population response to climatic variation and the limits of prediction. GLOBAL CHANGE BIOLOGY 2019; 25:2127-2136. [PMID: 30770601 DOI: 10.1111/gcb.14593] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Certain general facets of biotic response to climate change, such as shifts in phenology and geographic distribution, are well characterized; however, it is not clear whether the observed similarity of responses across taxa will extend to variation in other population-level processes. We examined population response to climatic variation using long-term incidence data (collected over 42 years) encompassing 149 butterfly species and considerable habitat diversity (10 sites along an elevational gradient from sea level to over 2,700 m in California). Population responses were characterized by extreme heterogeneity that was not attributable to differences in species composition among sites. These results indicate that habitat heterogeneity might be a buffer against climate change and highlight important questions about mechanisms maintaining interpopulation differences in responses to weather. Despite overall heterogeneity of response, population dynamics were accurately predicted by our model for many species at each site. However, the overall correlation between observed and predicted incidence in a cross validation analysis was moderate (Pearson's r = 0.23, SE 0.01), and 97% of observed data fell within the predicted 95% credible intervals. Prediction was most successful for more abundant species as well as for sites with lower annual turnover. Population-level heterogeneity in response to climate variation and the limits of our predictive power highlight the challenges for a future of increasing climatic variability.
Collapse
Affiliation(s)
- Chris C Nice
- Department of Biology, Population and Conservation Biology Program, Texas State University, San Marcos, Texas
| | - Matthew L Forister
- Department of Biology, Program in Ecology, Evolution and Conservation Biology, University of Nevada, Reno, Nevada
| | | | | | - James A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee
| | - James H Thorne
- Department of Environmental Science and Policy, University of California, Davis, California
| | - David P Waetjen
- Department of Environmental Science and Policy, University of California, Davis, California
| | - Arthur M Shapiro
- Center for Population Biology, University of California, Davis, California
| |
Collapse
|
7
|
Morrison CR, Aubert C, Windsor DM. Variation in Host Plant Usage and Diet Breadth Predict Sibling Preference and Performance in the Neotropical Tortoise Beetle Chelymorpha alternans (Coleoptera: Chrysomelidae: Cassidinae). ENVIRONMENTAL ENTOMOLOGY 2019; 48:382-394. [PMID: 30753405 DOI: 10.1093/ee/nvy194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Indexed: 06/09/2023]
Abstract
Specialized interactions between insects and the plants that they consume are one of the most ubiquitous and consequential ecological associations on the plant. Decades of investigation suggest that a narrow diet favors an individual phytophagous insect's performance relative to a dietary generalist. However, this body of research has tended to approach questions of diet breadth and host usage from the perspective of temperate plant-insect associations. Relationships between diet breadth, host usage, and variation in tropical insect preference and performance remain largely uninvestigated. Here we characterize how variation in diet breadth and host usage affect oviposition preference, development, survival, and gain in mass of a Neotropical tortoise beetle Chelymorpha alternans Boheman 1854 (Coleoptera: Chrysomelidae), using a split-brood, sibling experimental design. Host performance was measured after splitting broods among four no-choice host diets. Groups consuming single hosts varied among themselves in developmental time and survival from larva to adult. Performance did not vary among groups consuming multiple and single hosts. Oviposition preference was measured in choice and no-choice tests. Females displayed preference for the original host in both experiments. Developmental time and survival of offspring sourced from the no-choice experiment was measured for two complete generations to explore correlations with female oviposition preference. Preference for the original host correlated with high survivorship and an intermediate developmental time. Survivorship and time to develop were also high on an alternative host that was less preferred. Departures from predictions of prevailing preference-performance hypotheses suggest that host usage presents C. alternans with fitness trade-offs.
Collapse
Affiliation(s)
- Colin R Morrison
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| | - Clément Aubert
- Département Biologie Écologie, Université de Montpellier, Montpellier, France
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| | - Donald M Windsor
- Smithsonian Tropical Research Institute, Panamá, Republic of Panamá
| |
Collapse
|
8
|
Luz PMC, Specht A, Paula-Moraes SV, Malaquias JV, Ferreira LFM, Otanásio PN, Diniz IR. Owlet moths (Lepidoptera: Noctuoidea) associated with Bt and non- Bt soybean in the brazilian savanna. BRAZ J BIOL 2019; 79:248-256. [PMID: 29995136 DOI: 10.1590/1519-6984.179759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
The use of GMO expressing Bt toxin in soybean production has increased significantly in the last years in Brazil in order to manage the damage caused by lepidopteran pests. In this study, we compared the richness and abundance of owlet moths (Noctuoidea) associated with Bt and non-Bt soybean. We determined the temporal variations as a function of phenology, and correlated the population variations of the most common species with meteorological variables. The research was conducted at the experimental area of Embrapa Cerrados. The collection method used was differentiated being suppressive and absolute. A total of 13 species were collected, of which eight occurred on Bt soybeans. The most representative taxa were Chrysodeixis includens (72.87%), Anticarsia gemmatalis (18.17%) and Spodoptera spp (5.22%). The number of larvae belonging to species targeted by the Bt technology was 10 times lower on Bt than on non-Bt soybeans. Utetheisa ornatrix and Elaphria deltoides were recorded on soybean for the first time, observing larvae of both species in non-Bt soybean and those of U. ornatrix also in Bt soybean. Only A. gemmatalis larvae correlated (p <0.05) negatively with precipitation. This study provided field information on the abundance and species richness of owlet moths on non-Bt soybeans, associated with the effects of Bt soybean. When considering the different levels of infestation between cultivars as a criterion, larvae monitoring is of substantial importance in order to develop the lost control program.
Collapse
Affiliation(s)
- P M C Luz
- Departamento de Zoologia, Instituto de Ciências Biológicas - IB, Universidade de Brasília - UnB, Campus Universitário Darcy Ribeiro, Bairro Asa Norte, CEP 70910-900, Brasília, DF, Brasil
| | - A Specht
- Embrapa Cerrados, Rodovia BR-020, Km 18, CEP 73310-970, Planaltina, DF, Brasil
| | - S V Paula-Moraes
- West Florida Research and Education Center - WFREC, University of Florida - UF, 4253 Experiment Road, Hwy 182, 32565, Jay, Florida, United States
| | - J V Malaquias
- Embrapa Cerrados, Rodovia BR-020, Km 18, CEP 73310-970, Planaltina, DF, Brasil
| | - L F M Ferreira
- União Pioneira de Integração Social - UPIS, Fazenda Lagoa Bonita, BR 02, Km 12, CEP 70390-125, Planaltina, DF, Brasil
| | - P N Otanásio
- Faculdade de Planaltina - FUP, Universidade de Brasília - UnB, Área Universitária, 01, Vila Nossa Senhora de Fátima, CEP 73300-000, Planaltina, DF, Brasil
| | - I R Diniz
- Departamento de Zoologia, Instituto de Ciências Biológicas - IB, Universidade de Brasília - UnB, Campus Universitário Darcy Ribeiro, Bairro Asa Norte, CEP 70910-900, Brasília, DF, Brasil
| |
Collapse
|
9
|
Jones LC, Foster BJ, Rafter MA, Walter GH. Tiny insects against the weather-flight and foraging patterns of Frankliniella schultzei (Thripidae) not altered by onset of rainfall. INSECT SCIENCE 2018; 25:1119-1127. [PMID: 28605128 DOI: 10.1111/1744-7917.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 03/26/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
To survive in nature, organisms may need to take direct action to mitigate specific dangers from their environmental surroundings. Tiny flying insects are thought to be at particular risk from rainfall that would be of negligible concern to larger animals. The study species Frankliniella schultzei is a thrips that inhabits flowers and feeds mostly on petal tissue and pollen. While found to respond in the laboratory to decreases in atmospheric pressure associated with cyclonic conditions (rather than merely heavy rainfall), their responses to conditions preceding rainfall have not been tested in the field. Initial field sampling investigated the relationship between floral development and sites at which male, female, and larval thrips were generally present on sunny days. We then designed a sampling strategy to test if these thrips can anticipate imminent rainfall or storms and so seek shelter deep within flowers, by sampling host flowers (in sections) on multiple days with different weather conditions. Sticky traps were used to intercept thrips in flight, thus providing a measure of flight behavior across different days. The initial sampling found adult thrips primarily at the petal apex of anthesis-stage flowers where pollen is distributed. We subsequently found that rainfall, atmospheric pressure change, temperature, humidity and wind had no effect on flight behavior of F. schultzei, or on their positions within flowers. These findings suggest rainfall is not a serious hazard for them. Perhaps thrips can survive raindrop collisions during flight, as impacts with water droplets are not expected to break the surface tension.
Collapse
Affiliation(s)
- Lachlan C Jones
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Brodie J Foster
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Michelle A Rafter
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Lancaster J, Downes BJ. Aquatic versus Terrestrial Insects: Real or Presumed Differences in Population Dynamics? INSECTS 2018; 9:insects9040157. [PMID: 30388810 PMCID: PMC6315690 DOI: 10.3390/insects9040157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 01/28/2023]
Abstract
The study of insect populations is dominated by research on terrestrial insects. Are aquatic insect populations different or are they just presumed to be different? We explore the evidence across several topics. (1) Populations of terrestrial herbivorous insects are constrained most often by enemies, whereas aquatic herbivorous insects are constrained more by food supplies, a real difference related to the different plants that dominate in each ecosystem. (2) Population outbreaks are presumed not to occur in aquatic insects. We report three examples of cyclical patterns; there may be more. (3) Aquatic insects, like terrestrial insects, show strong oviposition site selection even though they oviposit on surfaces that are not necessarily food for their larvae. A novel outcome is that density of oviposition habitat can determine larval densities. (4) Aquatic habitats are often largely 1-dimensional shapes and this is presumed to influence dispersal. In rivers, drift by insects is presumed to create downstream dispersal that has to be countered by upstream flight by adults. This idea has persisted for decades but supporting evidence is scarce. Few researchers are currently working on the dynamics of aquatic insect populations; there is scope for many more studies and potentially enlightening contrasts with terrestrial insects.
Collapse
Affiliation(s)
- Jill Lancaster
- School of Geography, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Barbara J Downes
- School of Geography, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
11
|
Blum AG, Kanno Y, Letcher BH. Seasonal streamflow extremes are key drivers of Brook Trout young‐of‐the‐year abundance. Ecosphere 2018. [DOI: 10.1002/ecs2.2356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Annalise G. Blum
- Department of Civil and Environmental Engineering Tufts University 200 College Avenue Medford Massachusetts 02155 USA
- U.S. Geological Survey 12201 Sunrise Valley Drive Reston Virginia 20192 USA
| | - Yoichiro Kanno
- Department of Fish, Wildlife, and Conservation Biology, and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado 80523 USA
| | - Benjamin H. Letcher
- Leetown Science Center S. O. Conte Anadromous Fish Research Center U.S. Geological Survey One Migratory Way, Turners Falls Massachusetts 01376 USA
| |
Collapse
|
12
|
Forister ML, Fordyce JA, Nice CC, Thorne JH, Waetjen DP, Shapiro AM. Impacts of a millennium drought on butterfly faunal dynamics. ACTA ACUST UNITED AC 2018. [DOI: 10.1186/s40665-018-0039-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Forister ML, Cousens B, Harrison JG, Anderson K, Thorne JH, Waetjen D, Nice CC, De Parsia M, Hladik ML, Meese R, van Vliet H, Shapiro AM. Increasing neonicotinoid use and the declining butterfly fauna of lowland California. Biol Lett 2017; 12:rsbl.2016.0475. [PMID: 27531159 DOI: 10.1098/rsbl.2016.0475] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/25/2016] [Indexed: 11/12/2022] Open
Abstract
The butterfly fauna of lowland Northern California has exhibited a marked decline in recent years that previous studies have attributed in part to altered climatic conditions and changes in land use. Here, we ask if a shift in insecticide use towards neonicotinoids is associated with butterfly declines at four sites in the region that have been monitored for four decades. A negative association between butterfly populations and increasing neonicotinoid application is detectable while controlling for land use and other factors, and appears to be more severe for smaller-bodied species. These results suggest that neonicotinoids could influence non-target insect populations occurring in proximity to application locations, and highlights the need for mechanistic work to complement long-term observational data.
Collapse
Affiliation(s)
| | - Bruce Cousens
- Western Purple Martin Foundation, Nanaimo, British Columbia, Canada
| | | | | | - James H Thorne
- Department of Environmental Science and Policy, University of California, Davis, USA
| | - Dave Waetjen
- Department of Environmental Science and Policy, University of California, Davis, USA
| | - Chris C Nice
- Department of Biology, Texas State University, San Marcos, TX, USA
| | - Matthew De Parsia
- US Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - Michelle L Hladik
- US Geological Survey, California Water Science Center, Sacramento, CA, USA
| | - Robert Meese
- Department of Environmental Science and Policy, University of California, Davis, USA
| | - Heidi van Vliet
- Biology Department, York University, Toronto, Ontario, Canada
| | - Arthur M Shapiro
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, USA
| |
Collapse
|
14
|
Campos FA, Morris WF, Alberts SC, Altmann J, Brockman DK, Cords M, Pusey A, Stoinski TS, Strier KB, Fedigan LM. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species. GLOBAL CHANGE BIOLOGY 2017; 23:4907-4921. [PMID: 28589633 DOI: 10.10.1111/gcb.13754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 05/21/2023]
Abstract
Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.
Collapse
Affiliation(s)
- Fernando A Campos
- Department of Anthropology, Tulane University, New Orleans, LA, USA
- Department of Anthropology, University of Calgary, Calgary, AB, Canada
| | | | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jeanne Altmann
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Diane K Brockman
- Department of Anthropology, University of North Carolina, Charlotte, NC, USA
| | - Marina Cords
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Anne Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tara S Stoinski
- The Dian Fossey Gorilla Fund International, Atlanta, GA, USA
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda M Fedigan
- Department of Anthropology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Campos FA, Morris WF, Alberts SC, Altmann J, Brockman DK, Cords M, Pusey A, Stoinski TS, Strier KB, Fedigan LM. Does climate variability influence the demography of wild primates? Evidence from long-term life-history data in seven species. GLOBAL CHANGE BIOLOGY 2017; 23:4907-4921. [PMID: 28589633 DOI: 10.1111/gcb.13754] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/04/2017] [Indexed: 05/22/2023]
Abstract
Earth's rapidly changing climate creates a growing need to understand how demographic processes in natural populations are affected by climate variability, particularly among organisms threatened by extinction. Long-term, large-scale, and cross-taxon studies of vital rate variation in relation to climate variability can be particularly valuable because they can reveal environmental drivers that affect multiple species over extensive regions. Few such data exist for animals with slow life histories, particularly in the tropics, where climate variation over large-scale space is asynchronous. As our closest relatives, nonhuman primates are especially valuable as a resource to understand the roles of climate variability and climate change in human evolutionary history. Here, we provide the first comprehensive investigation of vital rate variation in relation to climate variability among wild primates. We ask whether primates are sensitive to global changes that are universal (e.g., higher temperature, large-scale climate oscillations) or whether they are more sensitive to global change effects that are local (e.g., more rain in some places), which would complicate predictions of how primates in general will respond to climate change. To address these questions, we use a database of long-term life-history data for natural populations of seven primate species that have been studied for 29-52 years to investigate associations between vital rate variation, local climate variability, and global climate oscillations. Associations between vital rates and climate variability varied among species and depended on the time windows considered, highlighting the importance of temporal scale in detection of such effects. We found strong climate signals in the fertility rates of three species. However, survival, which has a greater impact on population growth, was little affected by climate variability. Thus, we found evidence for demographic buffering of life histories, but also evidence of mechanisms by which climate change could affect the fates of wild primates.
Collapse
Affiliation(s)
- Fernando A Campos
- Department of Anthropology, Tulane University, New Orleans, LA, USA
- Department of Anthropology, University of Calgary, Calgary, AB, Canada
| | | | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC, USA
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jeanne Altmann
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Diane K Brockman
- Department of Anthropology, University of North Carolina, Charlotte, NC, USA
| | - Marina Cords
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Anne Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Tara S Stoinski
- The Dian Fossey Gorilla Fund International, Atlanta, GA, USA
| | - Karen B Strier
- Department of Anthropology, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda M Fedigan
- Department of Anthropology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
16
|
Karban R, Grof-Tisza P, Holyoak M. Wet years have more caterpillars: interacting roles of plant litter and predation by ants. Ecology 2017; 98:2370-2378. [PMID: 28590554 DOI: 10.1002/ecy.1917] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/18/2017] [Accepted: 05/24/2017] [Indexed: 11/12/2022]
Abstract
Climate is widely recognized as an important factor that affects temporal and spatial patterns of occurrence and abundance of herbivorous insects, although the ecological mechanisms responsible are poorly understood. We found that precipitation and standing water were positively correlated with locations and years of high abundance of caterpillars of the ranchman's tiger moth, Platyprepia virginalis. We analyzed 30 years of survey data and found that the number of large rainfall events was a better predictor of caterpillar abundance than total annual accumulation. We considered three ecological mechanisms that could drive this relationship and conducted observations and manipulative experiments to evaluate these mechanisms. (1) Rainfall facilitates more plant growth, although we found no evidence that increased food quality or quantity was causing the positive association between precipitation and caterpillar abundance. (2) Large rainfall events cause predatory ground-nesting ants to be less abundant and we found that the number of ants that recruited to local sites was negatively associated with survival and abundance of caterpillars. (3) We found that litter from wet sites provided a refuge from ant predation; litter from wet sites was not beneficial to caterpillars in the absence of ants. Both abiotic factors (precipitation) and biotic factors (predatory ants) affected the temporal and spatial abundance of caterpillars directly and interactively. Climate models predict that rainfall will become more variable, suggesting that populations of this caterpillar may also become more variable in the future.
Collapse
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Patrick Grof-Tisza
- Department of Entomology and Nematology, University of California, Davis, California, 95616, USA
| | - Marcel Holyoak
- Department of Environmental Science and Policy, University of California, Davis, California, 95616, USA
| |
Collapse
|
17
|
Pardikes NA, Harrison JG, Shapiro AM, Forister ML. Synchronous population dynamics in California butterflies explained by climatic forcing. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170190. [PMID: 28791146 PMCID: PMC5541541 DOI: 10.1098/rsos.170190] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/21/2017] [Indexed: 05/16/2023]
Abstract
A long-standing challenge for population biology has been to understand why some species are characterized by populations that fluctuate in size independently, while populations of other species fluctuate synchronously across space. The effects of climatic variation and dispersal have been invoked to explain synchronous population dynamics, however an understanding of the relative influence of these drivers in natural populations is lacking. Here we compare support for dispersal- versus climate-driven models of interspecific variation in synchrony using 27 years of observations of 65 butterfly species at 10 sites spanning 2750 m of elevation in Northern California. The degree of spatial synchrony exhibited by each butterfly species was used as a response in a unique approach that allowed us to investigate whether interspecific variation in response to climate or dispersal propensity was most predictive of interspecific variation in synchrony. We report that variation in sensitivity to climate explained 50% of interspecific variation in synchrony, whereas variation in dispersal propensity explained 23%. Sensitivity to the El Niño Southern Oscillation, a primary driver of regional climate, was the best predictor of synchrony. Combining sensitivity to climate and dispersal propensity into a single model did not greatly increase model performance, confirming the primacy of climatic sensitivity for driving spatial synchrony in butterflies. Finally, we uncovered a relationship between spatial synchrony and population decline that is consistent with theory, but small in magnitude, which suggests that the degree to which populations fluctuate in synchrony is of limited use for understanding the ongoing decline of the Northern California butterfly fauna.
Collapse
Affiliation(s)
- Nicholas A. Pardikes
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV, USA
- Department of Biology, University of Nevada, Reno, NV, USA
- Authors for correspondence: Nicholas A. Pardikes e-mail:
| | - Joshua G. Harrison
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV, USA
- Department of Biology, University of Nevada, Reno, NV, USA
- Authors for correspondence: Joshua G. Harrison e-mail:
| | - Arthur M. Shapiro
- Center for Population Biology, University of California, Davis, CA, USA
| | - Matthew L. Forister
- Program in Ecology, Evolution, and Conservation Biology, Department of Biology, University of Nevada, Reno, NV, USA
- Department of Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
18
|
Boggs CL. The fingerprints of global climate change on insect populations. CURRENT OPINION IN INSECT SCIENCE 2016; 17:69-73. [PMID: 27720076 DOI: 10.1016/j.cois.2016.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
Synthesizing papers from the last two years, I examined generalizations about the fingerprints of climate change on insects' population dynamics and phenology. Recent work shows that populations can differ in response to changes in climate means and variances. The part of the thermal niche occupied by an insect population, voltinism, plasticity and adaptation to weather perturbations, and interactions with other species can all exacerbate or mitigate responses to climate change. Likewise, land use change or agricultural practices can affect responses to climate change. Nonetheless, our knowledge of effects of climate change is still biased by organism and geographic region, and to some extent by scale of climate parameter.
Collapse
Affiliation(s)
- Carol L Boggs
- School of the Earth, Ocean & Environment, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
19
|
Roland J, Matter SF. Pivotal effect of early‐winter temperatures and snowfall on population growth of alpine
Parnassius smintheus
butterflies. ECOL MONOGR 2016. [DOI: 10.1002/ecm.1225] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jens Roland
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada T6G 2E9
| | - Stephen F. Matter
- Department of Biological Sciences University of Alberta Edmonton Alberta Canada T6G 2E9
- Department of Biological Sciences University of Cincinnati Cincinnati Ohio 45221‐0006 USA
| |
Collapse
|