1
|
Mamyrbayev A, Bermagambetova S, Baytenov K, Komekbay Z, Sakebayeva L, Satybaldiyeva U, Yerimbetova G, Zhilisbayeva K. Experimental Investigations of Assessment of Acute Toxicity of Drilling Mud. TOXICS 2024; 12:700. [PMID: 39453120 PMCID: PMC11511316 DOI: 10.3390/toxics12100700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 10/26/2024]
Abstract
At present, the main technological stages of oil production related to drilling operations require the use of a wide variety of drilling mud, which has a complex, multicomponent chemical composition. The drilling mud used and the resulting drilling waste must be safe for human health and the environment. The toxicity and hazard of drilling mud at this point in time remain poorly understood scientific problems and require detailing and studying in toxicological terms. The real degree of hazard and toxicity of drilling mud can only be determined by an experimental method, since its composition, which changes depending on the nature of the technological process and its degree of depletion, is not constant, which can change the toxicological properties. In an experiment conducted on adult male rats, under conditions of a single intragastric injection of drilling mud, new data were obtained regarding the parameters of its toxicity and hazard. The use of a wide variety of methods for determining lethal doses of drilling mud, including the probit analysis method, made it possible not only to substantiate the mean lethal dose of drilling mud but also other parameters of toxicity and survival of animals in the experimental groups. Features of eating behavior and body weight dynamics and the nature of the behavioral reactions revealed by the number and duration of stands and frequency and duration of grooming also indicate the presence of dose-dependent effects.
Collapse
Affiliation(s)
- Arstan Mamyrbayev
- Department of Hygienic Disciplines and Occupational Diseases, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan; (A.M.); (L.S.)
| | - Saule Bermagambetova
- Department of Hygienic Disciplines and Occupational Diseases, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan; (A.M.); (L.S.)
| | - Kuanysh Baytenov
- Department of Histology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan; (K.B.); (Z.K.)
| | - Zhanat Komekbay
- Department of Histology, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan; (K.B.); (Z.K.)
| | - Laura Sakebayeva
- Department of Hygienic Disciplines and Occupational Diseases, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan; (A.M.); (L.S.)
| | - Umit Satybaldiyeva
- Department of Internal Medicine No. 2, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Gulmira Yerimbetova
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| | - Kulyash Zhilisbayeva
- Department of Languages, West Kazakhstan Marat Ospanov Medical University, 68 Maresyev Street, Aktobe 030019, Kazakhstan;
| |
Collapse
|
2
|
Xu C, Gong H, Niu L, Li T, Guo H, Hu C, Sun X, Li L, Liu W. Maternal exposure to dietary uranium causes oxidative stress and thyroid disruption in zebrafish offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115501. [PMID: 37774545 DOI: 10.1016/j.ecoenv.2023.115501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
The contamination of uranium in aquatic ecosystems has raised growing global concern. However, the understanding of its chronic effects on aquatic organisms is limited, particularly with regards to transgenerational toxicity. In this study, we evaluated the maternal transfer risk of uranium using zebrafish. Sexually mature female zebrafish were exposed to 2 and 20 ng/g of uranium-spiked food for 28 days. The induced bioconcentration, thyroid disruption, and oxidative stress in both the adults (F0) and their embryos (F1) were further investigated. Element analysis showed that uranium was present in both F0 and F1, with higher concentrations observed in F1, indicating significant maternal offloading to the offspring. Meanwhile, an increased malformation and decreased swim speed were observed in the F1. Thyroid hormone analysis revealed significant decreases in the levels of triiodothyronine (T3) in both the F0 adults and F1 embryos, but thyroxine (T4) was not significantly affected. Additionally, the activities of antioxidant defenses, including catalase (CAT) and superoxide dismutase (SOD), and the expression of glutathione (GSH) and malondialdehyde (MDA) were significantly altered in the F0 and F1 larvae at 120 hpf. The hypothalamic-pituitary-thyroid (HPT) axis, oxidative stress, and apoptosis-related gene transcription expression were also significantly affected in both generations. Taken together, these findings highlight the importance of considering maternal transfer in uranium risk assessments.
Collapse
Affiliation(s)
- Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Honghong Gong
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Lili Niu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Tianyang Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangqin Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenjian Hu
- Zhejiang Radiation Environment Monitoring Station, Hangzhou 310012, China.
| | - Xiaohui Sun
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Ling Li
- College of Chemical Engineering, Huaqiao University, Xiamen 362021, Fujian, China
| | - Weiping Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Huang L, Sun G, Xu W, Li S, Qin X, An Q, Wang Z, Li J. Uranium uptake is mediated markedly by clathrin-mediated endocytosis and induce dose-dependent toxicity in HK-2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104171. [PMID: 37295740 DOI: 10.1016/j.etap.2023.104171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The objective of this study was to explore the endocytosis mechanisms of uranium uptake in HK-2 cells and its toxic effects. Our results demonstrated that uranium exposure impairs redox homeostasis and increases the permeability of the cell membrane and mitochondrial membrane, which may induce cell apoptosis by cytochrome-c leakage. Alkaline phosphatase activity increased after uranium exposure, which may be involved in the process of intracellular mineralisation of uranium, leading to severe cell necrosis. Furthermore, our findings demonstrated that the clathrin-mediated endocytosis process contributed substantially to uranium uptake in HK-2 cells and the total uranium uptake was highly correlated with cell viability, reaching a high correlation coefficient (r= -0.853) according to Pearson correlation analysis. In conclusion, the uptake of uranium into mammalian cells was mainly facilitated by the clathrin-mediated endocytosis pathway and induced dose-dependent cellular toxicity, including redox homeostasis imbalance, membrane injury, cell apoptosis and necrosis.
Collapse
Affiliation(s)
- Liqun Huang
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ge Sun
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Wenli Xu
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Shufang Li
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiujun Qin
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Quan An
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Zhongwen Wang
- Department of Radiation Safety, China Institute of Atomic Energy, Beijing 102413, China
| | - Jianguo Li
- China Institute for Radiation Protection, Taiyuan 030006, China
| |
Collapse
|
4
|
Han Y, Fu M, Wu J, Zhou S, Qiao Z, Peng C, Zhang W, Liu F, Ye C, Yang J. Polylactic acid microplastics induce higher biotoxicity of decabromodiphenyl ethane on earthworms (Eisenia fetida) compared to polyethylene and polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160909. [PMID: 36526185 DOI: 10.1016/j.scitotenv.2022.160909] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/19/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Decabromodiphenyl ethane (DBDPE) and microplastics (MPs), such as fossil-based polymers polyethylene (PE), polypropylene (PP), and bio-based plastics polylactic acid (PLA) are abundant in e-waste dismantling areas. However, the information on the effects of DBDPE combined with MPs (DBDPE-MPs) on earthworms is still limited. In this study, we explored the impacts of DBDPE-MPs on neurotoxic biomarkers, tissue damage, and transcriptomics of Eisenia fetida by simulating different exposure patterns of 10 mg kg-1 DBDPE and 10 mg kg-1 DBDPE-MPs (PLA, PP, and PE). Results showed that the activities of acetylcholinesterase, Na+/K+-ATPase, Ca2+/Mg2+-ATPase, carboxylate enzyme, and the contents of calcium and glutamate were significantly stimulated. DBDPE-MP co-exposure caused more severe damage to the epidermis, muscles, and tissues. Transcriptomic analysis revealed that differentially expressed genes (DEGs) of DBDPE-MPs were mainly related to inflammation, the immune system, digestive system, endocrine system, and metabolism. DBDPE and PP-MPs had similar influences on immunity and metabolism. However, DBDPE-PLA and DBDPE-PE further affected the endocrine system and signaling pathways. Specific DEGs showed that detoxification systems in the case of MPs were significantly upregulated. The study indicated that MPs exacerbated DBDPE toxicity in the nervous system, epidermis, and gene regulation of E. fetida, helping to assess the ecological risks of e-wastes and microplastics in soil.
Collapse
Affiliation(s)
- Yanna Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Jinhong Wu
- Shanghai Yaxin Urban Construction Co., Ltd., Shanghai 200436, PR China
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China.
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China.
| | - Chunmei Ye
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, PR China
| |
Collapse
|
5
|
Trenfield MA, Pease CJ, Walker SL, Markich SJ, Humphrey CL, van Dam RA, Harford AJ. Assessing the Toxicity of Mine-Water Mixtures and the Effectiveness of Water Quality Guideline Values in Protecting Local Aquatic Species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2334-2346. [PMID: 33928674 DOI: 10.1002/etc.5103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Six tropical freshwater species were used to assess the toxicity of mine waters from a uranium mine adjacent to a World Heritage area in northern Australia. Key contaminants of potential concern for the mine were U, Mg, Mn, and total ammonia nitrogen (TAN). Direct toxicity assessments were carried out to assess whether the established site-specific guideline values for individual contaminants would be protective with the contaminants occurring as mixtures. Metal speciation was calculated for contaminants to determine which were the major contributors of toxicity, with 84 to 96% of Mg predicted in the free-ion form as Mg2+ , and 76 to 92% of Mn predicted as Mn2+ . Uranium, Al, and Cu were predicted to be strongly bound to fulvic acid. Uranium, Mg, Mn, and Cu were incorporated into concentration addition or independent action mixture toxicity models to compare the observed toxicity in each of the waters with predicted toxicity. For >90% of the data, mine-water toxicity was less than predicted by the concentration addition model. Instances where toxicity was greater than predicted were accompanied by exceedances of individual metal guideline values in all but one case (i.e., a Mg concentration within 10% of the guideline value). This indicates that existing individual water quality guideline values for U, Mg, Mn, and TAN would adequately protect ecosystems downstream of the mine. Environ Toxicol Chem 2021;40:2334-2346. © 2021 Commonwealth of Australia. Environmental Toxicology and Chemistry © 2021 SETAC.
Collapse
Affiliation(s)
- Melanie A Trenfield
- Environmental Research Institute of the Supervising Scientist, Darwin, Northern Territory, Australia
| | - Ceiwen J Pease
- Environmental Research Institute of the Supervising Scientist, Darwin, Northern Territory, Australia
| | - Samantha L Walker
- Environmental Research Institute of the Supervising Scientist, Darwin, Northern Territory, Australia
| | - Scott J Markich
- Aquatic Solutions International, "Point Break", North Narrabeen Beach, New South Wales, Australia
| | - Chris L Humphrey
- Environmental Research Institute of the Supervising Scientist, Darwin, Northern Territory, Australia
| | | | - Andrew J Harford
- Environmental Research Institute of the Supervising Scientist, Darwin, Northern Territory, Australia
| |
Collapse
|
6
|
Joseph SJ, Arunachalam KD, Murthy PB, Ramalingam R, Musthafa MS. Uranium induces genomic instability and slows cell cycle progression in human lymphocytes in acute toxicity study. Toxicol In Vitro 2021; 73:105149. [DOI: 10.1016/j.tiv.2021.105149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
|
7
|
Pease CJ, Trenfield MA, Mooney TJ, van Dam RA, Walker S, Tanneberger C, Harford AJ. Development of a Sublethal Chronic Toxicity Test for the Northern Trout Gudgeon, Mogurnda mogurnda, and Application to Uranium, Magnesium, and Manganese. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1596-1605. [PMID: 33523544 DOI: 10.1002/etc.5005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/13/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Many international guidance documents for deriving water quality guideline values recommend the use of chronic toxicity data. For the tropical fish northern trout gudgeon, Mogurnda mogurnda, 96-h acute and 28-d chronic toxicity tests have been developed, but both tests have drawbacks. The 96-h toxicity test is acute and has a lethal endpoint; hence it is not a preferred method for guideline value derivation. The 28-d method has a sublethal (growth) endpoint, but is highly resource intensive and is high risk in terms of not meeting quality control criteria. The present study aimed to determine the feasibility of a 7-d larval growth toxicity test as an alternative to the 96-h survival and 28-d growth tests. Once the method was successfully developed, derived toxicity estimates for uranium, magnesium, and manganese were compared with those for other endpoints and tests lengths within the literature. As a final validation of the 7-d method, the sensitivity of the 7-d growth endpoint was compared with those of 14-, 21-, and 28-d exposures. Fish growth rate, based on length, over 7 d was significantly more sensitive compared with existing acute toxicity endpoints for magnesium and manganese, and was similarly sensitive to existing chronic toxicity endpoints for uranium. For uranium, the sensitivity of the growth endpoint over the 4 exposure periods was similar, suggesting that 7 d as an exposure duration is sufficient to provide an indication of longer term chronic growth effects. The sensitivity of the 7-d method, across the 3 metals tested, highlights the benefit of utilizing the highly reliable short-term 7-d chronic toxicity test method in future toxicity testing using M. mogurnda. Environ Toxicol Chem 2021;40:1596-1605. © 2021 Commonwealth of Australia. Environmental Toxicology and Chemistry © 2021 SETAC.
Collapse
Affiliation(s)
- Ceiwen J Pease
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Melanie A Trenfield
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Thomas J Mooney
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | | | - Samantha Walker
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Claudia Tanneberger
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| | - Andrew J Harford
- Environmental Research Institute of the Supervising Scientist, Australian Government Department of Agriculture, Water and the Environment, Darwin, Northern Territory, Australia
| |
Collapse
|
8
|
Shankar P, Dashner-Titus EJ, Truong L, Hayward K, Hudson LG, Tanguay RL. Developmental toxicity in zebrafish (Danio rerio) exposed to uranium: A comparison with lead, cadmium, and iron. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116097. [PMID: 33246768 PMCID: PMC7785642 DOI: 10.1016/j.envpol.2020.116097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/08/2020] [Accepted: 11/13/2020] [Indexed: 06/01/2023]
Abstract
Populations of plants and animals, including humans, living in close proximity to abandoned uranium mine sites are vulnerable to uranium exposure through drainage into nearby waterways, soil accumulation, and blowing dust from surface soils. Little is known about how the environmental impact of uranium exposure alters the health of human populations in proximity to mine sites, so we used developmental zebrafish (Danio rerio) to investigate uranium toxicity. Fish are a sensitive target for modeling uranium toxicity, and previous studies report altered reproductive capacity, enhanced DNA damage, and gene expression changes in fish exposed to uranium. In our study, dechorionated zebrafish embryos were exposed to a concentration range of uranyl acetate (UA) from 0 to 3000 μg/L for body burden measurements and developmental toxicity assessments. Uranium was taken up in a concentration-dependent manner by 48 and 120 h post fertilization (hpf)-zebrafish without evidence of bioaccumulation. Exposure to UA was not associated with teratogenic outcomes or 24 hpf behavioral effects, but larvae at 120 hpf exhibited a significant hypoactive photomotor response associated with exposure to 3 μg/L UA which suggested potential neurotoxicity. To our knowledge, this is the first time that uranium has been associated with behavioral effects in an aquatic organism. These results were compared to potential metal co-contaminants using the same exposure paradigm. Similar to uranium exposure, lead, cadmium, and iron significantly altered neurobehavioral outcomes in 120-hpf zebrafish without inducing significant teratogenicity. Our study informs concerns about the potential impacts of developmental exposure to uranium on childhood neurobehavioral outcomes. This work also sets the stage for future, environmentally relevant metal mixture studies. Summary Uranium exposure to developing zebrafish causes hypoactive larval swimming behavior similar to the effect of other commonly occurring metals in uranium mine sites. This is the first time that uranium exposure has been associated with altered neurobehavioral effects in any aquatic organism.
Collapse
Affiliation(s)
- Prarthana Shankar
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, 97331, USA
| | - Erica J Dashner-Titus
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, 97331, USA
| | - Kimberly Hayward
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, 97331, USA
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Robyn L Tanguay
- Department of Environmental and Molecular Toxicology, Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
9
|
Xu C, Li T, Hu C, Guo H, Ye J, Li L, Liu W, Niu L. Waterborne uranium causes toxic effect and thyroid disruption in zebrafish larvae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111585. [PMID: 33396108 DOI: 10.1016/j.ecoenv.2020.111585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Uranium is a radioactive element that is widely present in aquatic environment. However, limited knowledge is available about the effect of uranium on thyroid system, which plays a key role in the development of animals. In this study, zebrafish embryos were exposed to different environmentally relevant concentrations of uranium (2, 20 and 100 μg/L) for 120 h. The bioaccumulation, developmental toxicities, changes of thyroid hormones (THs) and key genes related to the hypothalamic-pituitary-thyroid (HPT) axis in larvae were analyzed after exposure. Results showed that uranium could bioaccumulate in zebrafish larvae, with the bioconcentration factors ranging from 49.6 to 523. Consequently, significant developmental toxicities and changes in locomotor activities were observed with a concentration-dependent manner. The levels of triiodothyronine (T3) levels in larvae were substantially decreased, whereas those of thyroxine (T4) were increased in fish bodies. The levels of THs were regulated by the negative feedback loops through HPT axis related genes, most of which (NIS, Deio1, Deio2, TRα, TSHβ and UGT1ab) were significantly depressed after exposure to uranium. Our results suggest the potential toxicities and thyroid disruption of uranium on zebrafish, which would provide baseline data set for better understanding the impact of waterborne uranium on aquatic organisms and the associated mechanisms. This study also highlights the key role of thyroid disruption in the ecological risk assessment of uranium pollution.
Collapse
Affiliation(s)
- Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tianyang Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chenjian Hu
- Zhejiang Radiation Environment Monitoring Station, Hangzhou 310012, China
| | - Hangqin Guo
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jing Ye
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Ling Li
- College of Chemical Engineering, Huaqiao University, Xiamen 362021, Fujian, China
| | - Weiping Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Niu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Pedroso da Fontoura L, Puntel R, Pinton S, Silva de Ávila D, Teixeira da Rocha JB, Onofre de Souza D, Roos DH. A toxicological comparison between two uranium compounds in Artemia salina: Artificial seawater containing CaCO 3. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105221. [PMID: 33341237 DOI: 10.1016/j.marenvres.2020.105221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Uranium (U) mining is an aquatic environmental concern because most of these harmful compounds are discharged into freshwater, reaching the saline environment as the final destination of this contaminated water. Carbonates are present in ocean waters and are essential for benthic organisms, however they may influence the U-induced toxicity. Thus, the aim of this study was to compare the toxicity of uranium nitrate (UN) and uranium acetate (UA) in Artemia salina (AS), which is one of the leading representatives of the marine biota. The cultures of AS (instar II) maintained in artificial seawater containing CaCO3 were exposed for 24 h to different concentrations of U compounds. The results showed that AS were more sensitive to UN (LC50 ≈ 15 μM) when compared with UA (LC50 ≈ 245 μM) indicating higher toxicity of this U compound. Calculated U speciation indicated that Ca2UO2(CO3)3 and (UO2)2CO3(OH)3- complexes predominated under our experimental conditions. The immobilization/lethality was observed after 9 h of exposure for both U compounds. However, only UN caused a significant decrease (≈40%) in the acetylcholinesterase (AChE) activity when compared with control. In order to observe preliminary toxicity effects, we evaluated oxidative stress parameters, such as catalase (CAT) activity, TBARS formation, radical species (RS) generation and cell membrane injury and/or apoptosis (CMI). In this study, we demonstrate that U compounds caused a significant decrease in CAT activity. Similarly, we also observed that UN increased TBARS levels in AS at concentrations 5 times lower than AU (10 μM and 50 μM, respectively). Furthermore, RS generation and CMI were enhanced only on AS treated with UN. Overall, the effects observed here were remarkably significant in AS exposed to UN when compared with AU. In this study, we showed different profiles of toxicity for both U compounds, contributing significantly to the current and scarce understanding of the aquatic ecotoxicity of this heavy metal.
Collapse
Affiliation(s)
- Lara Pedroso da Fontoura
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - Robson Puntel
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - Simone Pinton
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - Daiana Silva de Ávila
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil
| | - João Batista Teixeira da Rocha
- Universidade Federal de Santa Maria, Departamento de bioquímica e biologia celular/CCNE/UFSM, Laboratório de Bioquímica Toxicológica, Farmacologia e Organocalcogênios, ZIP code: 97105900, Santa Maria, RS, Brazil
| | - Diogo Onofre de Souza
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Departamento de Bioquímica. Rua Ramiro Barcelos, 2.600 - Anexo Laboratorio 28 Santana, ZIP code: 90035003, Porto Alegre, RS, Brazil
| | - Daniel Henrique Roos
- Universidade Federal do Pampa, Campus Uruguaiana, BR-472 Km 592, ZIP code: 97500-970, RS, Brazil.
| |
Collapse
|
11
|
Wang X, Shi C, Gao M, Xu Y, Jiao Y, Wan J, Cao J, Chai Z, Diwu J. Study of the decorporation efficacy and toxicity of tetradentate 3-hydroxy-2-pyridinone ligands at the cellular level. RADIATION MEDICINE AND PROTECTION 2020. [DOI: 10.1016/j.radmp.2020.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Neurotoxicity in Gulf War Illness and the potential role of glutamate. Neurotoxicology 2020; 80:60-70. [DOI: 10.1016/j.neuro.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
13
|
Lu M, Li H, Li Y, Lu Y, Wang H, Wang X. Exploring the Toxicology of Depleted Uranium with Caenorhabditis elegans. ACS OMEGA 2020; 5:12119-12125. [PMID: 32548391 PMCID: PMC7271045 DOI: 10.1021/acsomega.0c00380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Depleted uranium (DU) is an emerging heavy metal pollutant with considerable environmental and occupational concerns. Its radiotoxicity is known to be low. However, its chemical toxicity should not be ignored. In order to explore the chemical toxicity of DU, the effects of uranyl nitrate, prepared from DU, on the model organism Caenorhabditis elegans were investigated. Chronic exposure to DU did not affect the lifespan or reproduction of the worm. DU had little effect on the physiological processes of C. elegans. Additionally, DU treatment did not make C. elegans more susceptible to UV, heat, or oxidative stress. Interestingly, chronic exposure of DU decreased the in vivo reactive oxygen species-scavenging ability through inhibiting the expression of antioxidant genes ctl-1, ctl-2, ctl-3, gst-7, and gst-10. Chronic but not acute exposure of DU induced a statistically significant degeneration of the dopaminergic (DAergic) neurons of treated worms and promoted the increase of α-synuclein aggregation and DAergic neurotoxicity. These findings may raise the public concerns regarding DU as an etiologic agent of Parkinson's disease and underline its potential neurotoxicity.
Collapse
Affiliation(s)
- Meiling Lu
- State Key Laboratory
for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of
Guangxi Normal University, Guilin 541004, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yunfei Li
- Department
of Pharmaceutical Engineering, College of Humanities & Information, Changchun University of Technology, Changchun 130122, China
| | - Yuyuan Lu
- State Key Laboratory of Polymer Physics
and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hengshan Wang
- State Key Laboratory
for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of
Guangxi Normal University, Guilin 541004, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of
Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
14
|
Lind OC, Tschiersch J, Salbu B. Nanometer-micrometer sized depleted uranium (DU) particles in the environment. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106077. [PMID: 31677431 DOI: 10.1016/j.jenvrad.2019.106077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/13/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
Depleted uranium (DU) is a waste product from uranium enrichment that has several civilian and military applications. Significant amounts of DU in the form of particles or as fragments have been released into the environment as a consequence of military use of DU munitions, of industrial releases and of aircraft accidents. Thus, the present paper summarizes present knowledge on nanometer-micrometer sized depleted uranium (DU) particles collected in areas contaminated with such particles. Analysis of DU particles released to the environment has shown that uranium can be present in different crystalline structures and in different oxidation states. The weathering rates of DU particles and the subsequent remobilization of uranium species are also strongly connected to the oxidation state and crystalline phases of uranium, influencing the mobility and potential ecosystem transfer. Therefore, as has been observed for radioactive particles released from most nuclear events, the characteristics of DU particles can be linked to the source term and the release scenario as well as to environmental transformation processes. Although the radiation dose and radiotoxicity of DU is less than from natural occurring uranium, the mobility of U from oxidized DU and the associated chemical toxicity could be significantly higher than from natural UO2. The present paper summarizes present knowledge on depleted uranium particles identified in the environment.
Collapse
Affiliation(s)
- Ole Christian Lind
- CERAD CoE Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1433, Aas, Norway.
| | - Jochen Tschiersch
- Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Institute of Radiation Medicine, 85764, Neuherberg, Germany
| | - Brit Salbu
- CERAD CoE Environmental Radioactivity, Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), 1433, Aas, Norway
| |
Collapse
|
15
|
Mounicou S, Frelon S, Le Guernic A, Eb-Levadoux Y, Camilleri V, Février L, Pierrisnard S, Carasco L, Gilbin R, Mahé K, Tabouret H, Bareille G, Simon O. Use of fish otoliths as a temporal biomarker of field uranium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:511-521. [PMID: 31301492 DOI: 10.1016/j.scitotenv.2019.06.534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
This study aimed to determine uranium (U) pollution over time using otoliths as a marker of fish U contamination. Experiments were performed in field contamination (~20 μg L-1: encaged fish: 15d, 50d and collected wild fish) and in laboratory exposure conditions (20 and 250 μg L-1, 20d). We reported the U seasonal concentrations in field waterborne exposed roach fish (Rutilus rutilus), in organs and otoliths. Otoliths were analyzed by ICPMS and LA-ICP SF MS of the entire growth zone. Concentrations were measured on transects from nucleus to the edge of otoliths to characterize environmental variations of metal accumulation. Results showed a spatial and temporal variation of U contamination in water (from 51 to 9.4 μg L-1 at the surface of the water column), a high and seasonal accumulation in fish organs, mainly the digestive tract (from 1000 to 30,000 ng g-1, fw), the gills (from 1600 to 3200 ng g-1, fw) and the muscle (from 144 to 1054 ng g-1, fw). U was detected throughout the otolith and accumulation varied over the season from 70 to 350 ng g-1, close to the values measured (310 ng g-1) after high exposure levels in laboratory conditions. U in otoliths of encaged fish showed rapid and high U accumulation from 20 to 150 ng g-1. The U accumulation signal was mainly detected on the edge of the otolith, showing two U accumulation peaks, probably correlated to fish age, i.e. 2 years old. Surprisingly, elemental U and Zn signatures followed the same pattern therefore using the same uptake pathways. Laboratory, caging and field experiments indicated that otoliths were able to quickly accumulate U on the surface even for low levels and to store high levels of U. This study is an encouraging first step in using otoliths as a marker of U exposure.
Collapse
Affiliation(s)
- S Mounicou
- CNRS/Univ Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - S Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance 13115, France
| | - A Le Guernic
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance 13115, France
| | - Y Eb-Levadoux
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance 13115, France
| | - V Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance 13115, France
| | - L Février
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint Paul-lez-Durance 13115, France
| | - S Pierrisnard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint Paul-lez-Durance 13115, France
| | - L Carasco
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Cadarache, Saint Paul-lez-Durance 13115, France
| | - R Gilbin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance 13115, France
| | - K Mahé
- IFREMER, Centre Manche Mer du Nord, Laboratoire Ressources Halieutiques, BP 699, 62321 Boulogne-sur-mer, France
| | - H Tabouret
- CNRS/Univ Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - G Bareille
- CNRS/Univ Pau & Pays Adour/E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR5254, 64000 Pau, France
| | - O Simon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Cadarache, Saint Paul-lez-Durance 13115, France.
| |
Collapse
|
16
|
Amine-functionalized magnetite-silica nanoparticles as effective adsorbent for removal of uranium(VI) ions. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111217] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Mtimunye PJ, Chirwa EM. Uranium (VI) reduction in a fixed-film reactor by a bacterial consortium isolated from uranium mining tailing heaps. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Simon O, Gagnaire B, Sommard V, Pierrisnard S, Camilleri V, Carasco L, Gilbin R, Frelon S. Uranium transfer and accumulation in organs of Danio rerio after waterborne exposure alone or combined with diet-borne exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:90-98. [PMID: 30284317 DOI: 10.1002/etc.4283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/21/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Uranium (U) toxicity patterns for fish have been mainly determined under laboratory-controlled waterborne exposure conditions. Because fish can take up metals from water and diet under in situ exposure conditions, a waterborne U exposure experiment (20 μg L-1 , 20 d) was conducted in the laboratory to investigate transfer efficiency and target organ distribution in zebrafish Danio rerio compared with combined waterborne exposure (20 μg L-1 ) and diet-borne exposure (10.7 μg g-1 ). 233 Uranium was used as a specific U isotope tracer for diet-borne exposure. Bioaccumulation was examined in the gills, liver, kidneys, intestine, and gonads of D. rerio. Concentrations in the organs after waterborne exposure were approximately 500 ng g-1 fresh weight, except in the intestine (> 10 μg g-1 fresh wt) and the kidneys (200 ng g-1 fresh wt). No significant difference was observed between waterborne and diet-borne conditions. Trophic U transfer in organs was found but at a low level (< 10 ng g-1 fresh wt). Surprisingly, the intestine appeared to be the main target organ after both tested exposure modalities. The gonads (57% at 20 d) and the liver (41% at 20 d) showed the highest accumulated relative U burdens. Environ Toxicol Chem 2019;38:90-98. © 2018 SETAC.
Collapse
Affiliation(s)
- Olivier Simon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Béatrice Gagnaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Vivien Sommard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Sylvie Pierrisnard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Loic Carasco
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LR2T, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Rodolphe Gilbin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE, Centre de Cadarache, Saint Paul-lez-Durance, France
| | - Sandrine Frelon
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SRTE/LECO, Centre de Cadarache, Saint Paul-lez-Durance, France
| |
Collapse
|
19
|
Carugo O. Structural features of uranium-protein complexes. J Inorg Biochem 2018; 189:1-6. [PMID: 30149122 DOI: 10.1016/j.jinorgbio.2018.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/19/2018] [Accepted: 08/16/2018] [Indexed: 02/06/2023]
Abstract
Uranium toxicity depends on its chemical properties rather than on its radioactivity and involves its interaction with macromolecules. Here, a systematic survey of the structural features of the uranyl sites observed in protein crystal structures deposited in the Protein Data Bank is reported. Beside the two uranyl oxygens, which occupy the axial positions, uranium tends to be coordinated by five other oxygen atoms, which occupy the equatorial vertices of a pentagonal bipyramid. Even if one or more of these equatorial positions are sometime empty, they can be occupied only by oxygen atoms that belong to the carboxylate groups of Glu and Asp side-chains, usually acting as monodentate ligands, to water molecules, or to acetate anions. Although several uranium sites appear undefined or unrefined, with a single uranium atom that lacks the two uranyl oxygen atoms, this problem seems to become less frequent in recent years. However, it is clear that the crystallographic refinements of the uranyl sites are not always well restrained and a better parametrization of these restraints seems to be necessary.
Collapse
Affiliation(s)
- Oliviero Carugo
- Chemistry Department, University of Pavia, Italy; Department of Structural and Computational Biology, University of Vienna, Austria.
| |
Collapse
|
20
|
Morgado RG, Ferreira NGC, Cardoso DN, Silva PV, Soares AMVM, Loureiro S. Joint effects of chlorpyrifos and mancozeb on the terrestrial isopod Porcellionides pruinosus: A multiple biomarker approach. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1446-1457. [PMID: 29336492 DOI: 10.1002/etc.4089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
The exposure to pesticides by nontarget soil biota has long been regarded as a serious downside of modern agricultural regimes and the subject of heated debate. Of utmost relevance is the exposure to pesticide mixtures because their effects have been shown to not necessarily reflect the individual toxicity of their components, and even the simple addition of effects may lead to consequences not clearly anticipated. In the present study, a multiple biomarker approach was employed to identify the mechanistic and time effects underlying several single and mixture treatments of chlorpyrifos (CPF) and mancozeb (MCZ) in juveniles and adults of the terrestrial isopod Porcellionides pruinosus. The effects of the individual pesticides and the mixtures at recommended doses were mostly transitory under these controlled conditions and one-pulse exposure. Whereas imbalances were identified on detoxification and oxidative stress-related enzymes, the isopods generally showed the ability to recover through the end of the experiment. However, juveniles displayed greater vulnerability than adults. Most of the differences between life stages occurred in energy-related parameters where distinct performances and stress-handling behaviors were observed, suggesting higher metabolic costs to juveniles. Our results stress that understanding the time dependence of the underlying mechanisms governing the joint effects of the pesticides can help in assessing and anticipating the effects of the pesticide mixtures. Moreover, we emphasize the importance of taking life stage-related differences into consideration when evaluating the environmental risks of pesticides and pesticide mixtures. Environ Toxicol Chem 2018;37:1446-1457. © 2018 SETAC.
Collapse
Affiliation(s)
- Rui G Morgado
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Nuno G C Ferreira
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Diogo N Cardoso
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Patrícia V Silva
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
21
|
Simon O, Gagnaire B, Camilleri V, Cavalié I, Floriani M, Adam-Guillermin C. Toxicokinetic and toxicodynamic of depleted uranium in the zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:9-18. [PMID: 29425915 DOI: 10.1016/j.aquatox.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 12/12/2017] [Accepted: 12/25/2017] [Indexed: 06/08/2023]
Abstract
This study investigated the accumulation pattern and biological effects (genotoxicity and histopathology) to adult zebrafish (male and female) exposed to a nominal waterborne concentration of 20 μg L-1 of depleted uranium (DU) for 28 days followed by 27 days of depuration. Accumulation pattern showed that (i) DU accumulated in brain, (ii) levels in digestive tract were higher than those measured in gills and (iii) levels remained high in kidney, brain and ovary despite the 27 days of depuration period. Genotoxicity, assessed by comet assay, was significant not only during DU exposure, but also during depuration phase. Gonads, in particular the testes, were more sensitive than gills. The histology of gonads indicated severe biological damages in males. This study improved knowledge of ecotoxic profile of uranium, for which a large range of biological effects has already been demonstrated.
Collapse
Affiliation(s)
- Olivier Simon
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France.
| | - Béatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Isabelle Cavalié
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, St-Paul-lez-Durance, France
| |
Collapse
|
22
|
Gagnaire B, Adam-Guillermin C, Festarini A, Cavalié I, Della-Vedova C, Shultz C, Kim SB, Ikert H, Dubois C, Walsh S, Farrow F, Beaton D, Tan E, Wen K, Stuart M. Effects of in situ exposure to tritiated natural environments: A multi-biomarker approach using the fathead minnow, Pimephales promelas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:597-611. [PMID: 28494285 DOI: 10.1016/j.scitotenv.2017.04.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/14/2017] [Accepted: 04/27/2017] [Indexed: 06/07/2023]
Abstract
Aquatic ecosystems are chronically exposed to radionuclides as well as other pollutants. Increased concentrations of pollutants in aquatic environments can present a risk to exposed organisms, including fish. The goal of this study was to characterize the effects of tritium, in the context of natural environments, on the health of fathead minnow, Pimephales promelas. Fish were exposed to tritium (activity concentrations ranging from 2 to 23,000Bq/L) and also to various concentrations of several metals to replicate multiple-stressor environments. Fish were exposed for 60days, then transferred to the tritium background site where they stayed for another 60days. Tritium, in the forms of tritiated water (HTO) and organically bound tritium (OBT), and a series of fish health indicators were measured in fish tissues at seven time points throughout the 120days required to complete the exposure and the depuration phases. Results showed effects of environmental exposure following the increase of tritium activity and metals concentrations in water. The internal dose rates of tritium, estimated from tissue HTO and OBT activity concentrations, were consistently low (maximum of 0.2μGy/h) compared to levels at which population effects may be expected (>100μGy/h) and no effects were observed on survival, fish condition, gonado-somatic, hepato-somatic, spleno-somatic and metabolic indices (RNA/DNA, proteins/DNA and protein carbonylation (in gonads and kidneys)). Using multivariate analyses, we showed that several biomarkers (DNA damages, MN frequency, gamma-H2AX, SFA/MUFA ratios, lysosomal membrane integrity, AChE, SOD, phagocytosis and esterase activities) were exclusively correlated with fish tritium internal dose rate, showing that tritium induced genotoxicity, DNA repair activity, changes in fatty acid composition, and immune, neural and antioxidant responses. Some biomarkers were responding to the presence of metals, but overall, more biomarkers were linked to internalized tritium. The results are discussed in the context of multiple stressors involving metals and tritium.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - A Festarini
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Della-Vedova
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LRTE, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Shultz
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S B Kim
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - H Ikert
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - C Dubois
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France; Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - S Walsh
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - F Farrow
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - D Beaton
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - E Tan
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - K Wen
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| | - M Stuart
- Canadian Nuclear Laboratories (formerly Atomic Energy of Canada Limited), Chalk River Laboratories, 286 Plant Road, Chalk River, ON K0J 1J0, Canada
| |
Collapse
|
23
|
Naïja A, Kestemont P, Chénais B, Haouas Z, Blust R, Helal AN, Marchand J. Cadmium exposure exerts neurotoxic effects in peacock blennies Salaria pavo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:217-227. [PMID: 28551579 DOI: 10.1016/j.ecoenv.2017.05.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/16/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Cadmium (Cd) is considered as an important factor involved in several neurological disturbances. The aim of this study was to assess the effects of Cd in the brain of peacock blennies Salaria pavo, a species used as a bioindicator of water pollution. A sublethal contamination of 2mg CdCl2 L-1 was performed over periods of 1, 4, 10 and 15 days. Total Cd accumulation was measured in brains and displayed low concentrations throughout the experiment. Partial-length cDNA of different ATP-binding cassette transporters (abcb1, abcc1, abcc2, abcg2 proteins) and acetylcholinesterase (ache) were characterized. mRNA expressions profiles displayed an up-regulation of abcc2 mRNA after 4 days of Cd exposure only while abcg2 mRNA was down-regulated after 10 days only. For AChE, the mRNA transcription and the activity of the enzyme were followed and highlighted that Cd exerted an inhibitory effect on the nervous information transmission. At the histological level, fish exhibited pathological symptoms in the optic tectum and the cerebellum and results showed that the cerebellum was the most affected organ.
Collapse
Affiliation(s)
- Azza Naïja
- Bioressources: Integrative Biology and Valuation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Benoit Chénais
- EA2160 Mer Molécules Santé, LUNAM, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France
| | - Zohra Haouas
- Research unit of Genetic, Laboratory of Histology and Cytogenetic, Faculty of Medicine, Avenue Avicenne 5019, Monastir, Tunisia
| | - Ronny Blust
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Ahmed Noureddine Helal
- Bioressources: Integrative Biology and Valuation (BIOLIVAL), Higher Institute of Biotechnology of Monastir, Avenue Tahar Hadded, BP 74, 5000 Monastir, Tunisia
| | - Justine Marchand
- EA2160 Mer Molécules Santé, LUNAM, IUML-FR 3473 CNRS, University of Le Mans, Le Mans, France.
| |
Collapse
|
24
|
Annamalai SK, Arunachalam KD. Uranium ( 238U) bioaccumulation and its persuaded alterations on hematological, serological and histological parameters in freshwater fish Pangasius sutchi. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:262-275. [PMID: 28477471 DOI: 10.1016/j.etap.2017.03.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
The early biomarkers for the hematological, serological and histological alterations due to the effect of ½ and ¼ LC50 of 238U in different organs in freshwater fish Pangasius sutchi for water-borne 238U accumulation was investigated. The toxicological data due to 238U accumulation on the hematological parameters such as hemoglobin (Hb), red blood cells (RBCs), white blood cells (WBCs) and hematocrit (Hct) to evaluate the oxygen carrying capacity has been indicated as the secondary response of the organisms. The biomarkers of liver damage were determined as by Serum Glutamic Oxaloacetic Transaminase (SGOT), Serum Glutamic Pyruvic Transaminase (SGPT), Alkaline Phosphatase (ALP), γ-Glutamyl Transferase (γ-GT). Similarly, the renal biomarkers of kidney damage were accessed by creatinine, uric acid, triglycerides, and cholesterol. The decrease in hemoglobin in the experimental group due to disturbed synthesis of hemoglobin was directly proportional to the concentration and exposure duration of 238U. The histological studies proved that liver and gills are the target organ for 238U toxicity. The extensive histological lesions were observed in various tissues due to oxidative stress by the accumulation of 238U, and the 238U toxicity in the organs was in the order of Gills<liver<brain<muscle. This study can be useful indicators of 238U toxicity to assess fish health in Uranium (238U) biomonitoring programs.
Collapse
Affiliation(s)
- Sathesh Kumar Annamalai
- Center for Environmental Nuclear Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203 India
| | - Kantha D Arunachalam
- Center for Environmental Nuclear Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203 India.
| |
Collapse
|
25
|
Armant O, Gombeau K, Murat El Houdigui S, Floriani M, Camilleri V, Cavalie I, Adam-Guillermin C. Zebrafish exposure to environmentally relevant concentration of depleted uranium impairs progeny development at the molecular and histological levels. PLoS One 2017; 12:e0177932. [PMID: 28531178 PMCID: PMC5439696 DOI: 10.1371/journal.pone.0177932] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Uranium is an actinide naturally found in the environment. Anthropogenic activities lead to the release of increasing amounts of uranium and depleted uranium (DU) in the environment, posing potential risks to aquatic organisms due to radiological and chemical toxicity of this radionucleide. Although environmental contaminations with high levels of uranium have already been observed, chronic exposures of non-human species to levels close to the environmental quality standards remain scarcely characterized. The present study focused on the identification of the molecular pathways impacted by a chronic exposure of zebrafish to 20 μg/L of DU during 10 days. The transcriptomic effects were evaluated by the use of the mRNAseq analysis in three organs of adult zebrafish, the brain the testis and the ovaries, and two developmental stages of the adult fish progeny, two-cells embryo and four-days larvae. The results highlight generic effects on the cell adhesion process, but also specific transcriptomic responses depending on the organ or the developmental stage investigated. The analysis of the transgenerational effects of DU-exposure on the four-day zebrafish larvae demonstrate an induction of genes involved in oxidative response (cat, mpx, sod1 and sod2), a decrease of expression of the two hatching enzymes (he1a and he1b), the deregulation of the expression of gene coding for the ATPase complex and the induction of cellular stress. Electron microscopy analysis of skeletal muscles on the four-days larvae highlights significant histological impacts on the ultrastructure of both the mitochondria and the myofibres. In addition, the comparison with the transcriptomic data obtained for the acetylcholine esterase mutant reveals the induction of protein-chaperons in the skeletal muscles of the progeny of fish chronically exposed to DU, pointing towards long lasting effects of this chemical in the muscles. The results presented in this study support the hypothesis that a chronic parental exposure to an environmentally relevant concentration of DU could impair the progeny development with significant effects observed both at the molecular level and on the histological ultrastructure of organs. This study provides a comprehensive transcriptomic dataset useful for ecotoxicological studies on other fish species at the molecular level. It also provides a key DU responsive gene, egr1, which may be a candidate biomarker for monitoring aquatic pollution by heavy metals.
Collapse
Affiliation(s)
- Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
- * E-mail:
| | - Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Sophia Murat El Houdigui
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, France
| |
Collapse
|
26
|
Annamalai SK, Arunachalam KD. Uranium ( 238U)-induced ROS and cell cycle perturbations, antioxidant responses and erythrocyte nuclear abnormalities in the freshwater iridescent shark fish Pangasius sutchi. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:145-158. [PMID: 28282621 DOI: 10.1016/j.aquatox.2017.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
The strategic plan of this study is to analyze any possible radiological impact on aquatic organisms from forthcoming uranium mining facilities around the Nagarjuna Sagar Dam in the future. The predominantly consumed and dominant fish species Pangasius sutchi, which is available year-round at Nagarjuna Sagar Dam, was selected for the study. To comprehend the outcome and to understand the mode of action of 238U, the fish species Pangasius sutchi was exposed to ¼ and ½ of the LC50 doses of waterborne 238U in a static system in duplicate for 21 days. Blood and organs, including the gills, liver, brain and muscles, were collected at different time periods-0h, 24h, 48h, 72h, 96h, 7, days 14days and 21 days-using ICP-MS to determine the toxic effects of uranium and the accumulation of 238U concentrations. The bioaccumulation of 238U in P. sutchi tissues was dependent on exposure time and concentration. The accumulation of uranium was, in order of magnitude, measured as gills>liver>brain>tissue, with the highest accumulation in the gills. It was observed that exposure to 238U significantly reduced antioxidant enzymes such as superoxide dismutase, catalase, and lipid peroxidase. The analysis of DNA fragmentation by comet assay and cell viability by flow cytometry was performed at different time intervals. DNA histograms by flow cytometry analysis revealed an increase in the G2/M phase and the S phase. The long-term 238U exposure studies in fish showed increasing micronucleus frequencies in erythrocytes with greater exposure time. The higher the concentration of 238U is, the greater is the effect observed, suggesting a close relationship between accumulation and toxicity. A possible ROS-mediated 238U toxicity mechanism and antioxidant responses have been proposed.
Collapse
Affiliation(s)
- Sathesh Kumar Annamalai
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, Directorate of Research, SRM University, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
27
|
Eb-Levadoux Y, Frelon S, Simon O, Arnaudguilhem C, Lobinski R, Mounicou S. In vivo identification of potential uranium protein targets in zebrafish ovaries after chronic waterborne exposure. Metallomics 2017; 9:525-534. [DOI: 10.1039/c6mt00291a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Song Y, Salbu B, Teien HC, Evensen Ø, Lind OC, Rosseland BO, Tollefsen KE. Hepatic transcriptional responses in Atlantic salmon (Salmo salar) exposed to gamma radiation and depleted uranium singly and in combination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:270-279. [PMID: 27100007 DOI: 10.1016/j.scitotenv.2016.03.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Radionuclides are a special group of substances posing both radiological and chemical hazards to organisms. As a preliminary approach to understand the combined effects of radionuclides, exposure studies were designed using gamma radiation (Gamma) and depleted uranium (DU) as stressors, representing a combination of radiological (radiation) and chemical (metal) exposure. Juvenile Atlantic salmon (Salmo salar) were exposed to 70mGy external Gamma dose delivered over the first 5h of a 48h period (14mGy/h), 0.25mg/L DU were exposed continuously for 48h and the combination of the two stressors (Combi). Water and tissue concentrations of U were determined to assess the exposure quality and DU bioaccumulation. Hepatic gene expression changes were determined using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Effects at the higher physiological levels were determined as plasma glucose (general stress) and hepatic histological changes. The results show that bioaccumulation of DU was observed after both single DU and the combined exposure. Global transcriptional analysis showed that 3122, 2303 and 3460 differentially expressed genes (DEGs) were significantly regulated by exposure to gamma, DU and Combi, respectively. Among these, 349 genes were commonly regulated by all treatments, while the majority was found to be treatment-specific. Functional analysis of DEGs revealed that the stressors displayed similar mode of action (MoA) across treatments such as induction of oxidative stress, DNA damage and disturbance of oxidative phosphorylation, but also stressor-specific mechanisms such as cellular stress and injury, metabolic disorder, programmed cell death, immune response. No changes in plasma glucose level as an indicator of general stress and hepatic histological changes were observed. Although no direct linkage was successfully established between molecular responses and adverse effects at the organism level, the study has enhanced the understanding of the MoA of single radionuclides and mixtures of these.
Collapse
Affiliation(s)
- You Song
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Brit Salbu
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Hans-Christian Teien
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Øystein Evensen
- Norwegian University of Life Sciences (NMBU), Department of Basic Sciences and Aquatic Medicine, P.O. Box 8146 Dep., N-0033 Oslo, Norway
| | - Ole Christian Lind
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway
| | - Bjørn Olav Rosseland
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian University of Life Sciences (NMBU), Department of Ecology and Natural Resource Management (INA), P.O. Box 5003, N-1432 Ås, Norway
| | - Knut Erik Tollefsen
- Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Department of Environmental Sciences (IMV), Centre for Environmental Radioactivity (CERAD), P.O. Box 5003, N-1432 Ås, Norway; Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, N-0349 Oslo, Norway
| |
Collapse
|
29
|
Ng CYP, Cheng SH, Yu KN. Hormetic effect induced by depleted uranium in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:184-191. [PMID: 27060238 DOI: 10.1016/j.aquatox.2016.03.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/12/2016] [Accepted: 03/26/2016] [Indexed: 06/05/2023]
Abstract
The present work studied the hormetic effect induced by uranium (U) in embryos of zebrafish (Danio rerio) using apoptosis as the biological endpoint. Hormetic effect is characterized by biphasic dose-response relationships showing a low-dose stimulation and a high-dose inhibition. Embryos were dechorionated at 4h post fertilization (hpf), and were then exposed to 10 or 100μg/l depleted uranium (DU) in uranyl acetate solutions from 5 to 6 hpf. For exposures to 10μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20 hpf but were significantly decreased at 24 hpf, which demonstrated the presence of U-induced hormesis. For exposures to 100μg/l DU, the amounts of apoptotic signals in the embryos were significantly increased at 20, 24 and 30 hpf. Hormetic effect was not shown but its occurrence between 30 and 48 hpf could not be ruled out. In conclusion, hormetic effect could be induced in zebrafish embryos in a concentration- and time-dependent manner.
Collapse
Affiliation(s)
- C Y P Ng
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - S H Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
30
|
Gombeau K, Pereira S, Ravanat JL, Camilleri V, Cavalie I, Bourdineaud JP, Adam-Guillermin C. Depleted uranium induces sex- and tissue-specific methylation patterns in adult zebrafish. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 154:25-33. [PMID: 26829549 DOI: 10.1016/j.jenvrad.2016.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/15/2015] [Accepted: 01/09/2016] [Indexed: 06/05/2023]
Abstract
We examined the effects of chronic exposure to different concentrations (2 and 20 μg L(-)(1)) of environmentally relevant waterborne depleted uranium (DU) on the DNA methylation patterns both at HpaII restriction sites (5'-CCGG-3') and across the whole genome in the zebrafish brain, gonads, and eyes. We first identified sex-dependent differences in the methylation level of HpaII sites after exposure. In males, these effects were present as early as 7 days after exposure to 20 μg L(-)(1) DU, and were even more pronounced in the brain, gonads, and eyes after 24 days. However, in females, hypomethylation was only observed in the gonads after exposure to 20 μg L(-)(1) DU for 24 days. Sex-specific effects of DU were also apparent at the whole-genome level, because in males, exposure to 20 μg L(-)(1) DU for 24 days resulted in cytosine hypermethylation in the brain and eyes and hypomethylation in the gonads. In contrast, in females, hypermethylation was observed in the brain after exposure to both concentrations of DU for 7 days. Based on our current knowledge of uranium toxicity, several hypotheses are proposed to explain these findings, including the involvement of oxidative stress, alteration of demethylation enzymes and the calcium signaling pathway. This study reports, for the first time, the sex- and tissue-specific epigenetic changes that occur in a nonhuman organism after exposure to environmentally relevant concentrations of uranium, which could induce transgenerational epigenetic effects.
Collapse
Affiliation(s)
- Kewin Gombeau
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Sandrine Pereira
- Neolys Diagnostics, Centre Léon Bérard, Bât Cheney A, 69008 LYON, France
| | - Jean-Luc Ravanat
- Univ. Grenoble Alpes, INAC-SCIB, 38000 Grenoble, France; CEA, INAC-SCIB Laboratoire des Lésions des Acides Nucléiques, 38000 Grenoble, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | - Isabelle Cavalie
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France
| | | | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance, 13115, France.
| |
Collapse
|
31
|
Al Kaddissi S, Simon O, Elia AC, Gonzalez P, Floriani M, Cavalie I, Camilleri V, Frelon S, Legeay A. How toxic is the depleted uranium to crayfish Procambarus clarkii compared with cadmium? ENVIRONMENTAL TOXICOLOGY 2016; 31:211-223. [PMID: 25213093 DOI: 10.1002/tox.22036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Due to a lack of information on the assessment of uranium's (U) toxicity, our work aimed to compare the effects of U on the crayfish Procambarus clarkii with those of the well documented metal: cadmium (Cd). Accumulation and impacts at different levels of biological organization were assessed after acute (40 µM Cd or U; 4-10 days) and chronic (0.1 µM Cd or U; 30-60 days) exposures. The survival rates demonstrated the high tolerance of this species toward both metals and showed that Cd had a greater effect on the sustainability of crayfish. The concentration levels of Cd and U accumulated in gills and hepatopancreas were compared between both conditions. Distinctions in the adsorption capacities and the mobility of the contaminants were suspected. Differences in the detoxification mechanisms of both metals using transmission electron microscopy equiped with an energy dispersive X-ray were also pointed out. In contrast, comparison between the histological structures of contaminated hepatopancreas showed similar symptoms. Principal component analyses revealed different impacts of each metal on the oxidative balance and mitochondria using enzymatic activities and gene expression levels as endpoints. The observation that U seemed to generate more oxidative stress than Cd in our conditions of exposure is discussed.
Collapse
Affiliation(s)
- Simone Al Kaddissi
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
- University of Bordeaux1, EPOC, UMR CNRS 5805, F-33120, Arcachon, France
| | - Olivier Simon
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Antonia Concetta Elia
- Department of Cellular and Environmental Biology, Ecotoxicology Laboratory, University of Perugia, 06123, Perugia, Italy
| | - Patrice Gonzalez
- University of Bordeaux1, EPOC, UMR CNRS 5805, F-33120, Arcachon, France
| | - Magali Floriani
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Isabelle Cavalie
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Virginie Camilleri
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Sandrine Frelon
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Alexia Legeay
- University of Bordeaux1, EPOC, UMR CNRS 5805, F-33120, Arcachon, France
| |
Collapse
|
32
|
Horemans N, Van Hees M, Saenen E, Van Hoeck A, Smolders V, Blust R, Vandenhove H. Influence of nutrient medium composition on uranium toxicity and choice of the most sensitive growth related endpoint in Lemna minor. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 151 Pt 2:427-37. [PMID: 26187266 DOI: 10.1016/j.jenvrad.2015.06.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/20/2015] [Accepted: 06/25/2015] [Indexed: 05/21/2023]
Abstract
Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 μM up to 150 μM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 μM, 7.7-16.4 μM and 19.4-37.2 μM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time.
Collapse
Affiliation(s)
- Nele Horemans
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium; Hasselt University, Centre for Environmental Sciences, Agoralaan gebouw D, B-3590, Diepenbeek, Belgium.
| | - May Van Hees
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Eline Saenen
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Arne Van Hoeck
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Valérie Smolders
- Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400, Mol, Belgium
| | - Ronny Blust
- Department of Biology, University of Antwerp (UA), Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | | |
Collapse
|
33
|
Di S, Zhang W, Chen L, Zhou Z, Diao J. Toxicokinetics and oxidative stress in Tubifex tubifex exposed to hexachlorocyclohexane isomers. RSC Adv 2016. [DOI: 10.1039/c5ra26207k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, Tubifex tubifex (Oligochaeta, Tubificida) was exposed to hexachlorocyclohexane isomers in an aquatic environment to study the bioaccumulation and elimination of these chemicals, and oxidative stress in this organism.
Collapse
Affiliation(s)
- Shanshan Di
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- China Agricultural University
- Beijing 100193
- China
- Department of Applied Chemistry
| | - Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- China Agricultural University
- Beijing 100193
- China
- Department of Applied Chemistry
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- China Agricultural University
- Beijing 100193
- China
- Department of Applied Chemistry
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- China Agricultural University
- Beijing 100193
- China
- Department of Applied Chemistry
| | - Jinling Diao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
34
|
Gagnaire B, Cavalié I, Pereira S, Floriani M, Dubourg N, Camilleri V, Adam-Guillermin C. External gamma irradiation-induced effects in early-life stages of zebrafish, Danio rerio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 169:69-78. [PMID: 26517177 DOI: 10.1016/j.aquatox.2015.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/04/2015] [Accepted: 10/07/2015] [Indexed: 06/05/2023]
Abstract
In the general context of validation of tools useful for the characterization of ecological risk linked to ionizing radiation, the effects of an external gamma irradiation were studied in zebrafish larvae irradiated for 96 h with two dose rates: 0.8 mGy/d, which is close to the level recommended to protect ecosystems from adverse effects of ionizing radiation (0.24 mGy/d) and a higher dose rate of 570 mGy/d. Several endpoints were investigated, such as mortality, hatching, and some parameters of embryo-larval development, immunotoxicity, apoptosis, genotoxicity, neurotoxicity and histological alterations. Results showed that an exposure to gamma rays induced an acceleration of hatching for both doses and a decrease of yolk bag diameter for the highest dose, which could indicate an increase of global metabolism. AChE activity decreased with the low dose rate of gamma irradiation and alterations were also shown in muscles of irradiated larvae. These results suggest that gamma irradiation can induce damages on larval neurotransmission, which could have repercussions on locomotion. DNA damages, basal ROS production and apoptosis were also induced by irradiation, while ROS stimulation index and EROD biotransformation activity were decreased and gene expression of acetylcholinesterase, choline acetyltransferase, cytochrome p450 and myeloperoxidase increased. These results showed that ionizing radiation induced an oxidative stress conducting to DNA damages. This study characterized further the modes of action of ionizing radiation in fish.
Collapse
Affiliation(s)
- B Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - I Cavalié
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - S Pereira
- Neolys Diagnostics, Lyon 69373, France
| | - M Floriani
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - N Dubourg
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - V Camilleri
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - C Adam-Guillermin
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
35
|
Wang Y, Xu L, Li D, Teng M, Zhang R, Zhou Z, Zhu W. Enantioselective bioaccumulation of hexaconazole and its toxic effects in adult zebrafish (Danio rerio). CHEMOSPHERE 2015; 138:798-805. [PMID: 26291761 DOI: 10.1016/j.chemosphere.2015.08.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 06/04/2023]
Abstract
Little is known about the bioaccumulation and toxicity of hexaconazole (HEX) in spite of the fact that they are indispensable parts for a comprehensive assessment of its environmental behavior and toxic effects in organisms of freshwater ecosystems. In this study, adult zebrafish were used to study the enantioselective bioaccumulation of HEX and its effect endpoints in liver, including oxidative stress and the regulation of apoptosis-related gene expression. Significant enantioselective bioaccumulation was demonstrated when exposed to HEX of 100 and 200 μg L(-)(1), finding that the (-)-enantiomer tended to accumulate in zebrafish more easily than (+)-enantiomer. Activities of antioxidant enzymes (SOD, CAT and GPx) and GSH content were all significantly decreased when zebrafish were exposed to 50 and 200 μg L(-1) HEX for 21 d. A series of genes of the apoptosis pathway were examined in groups treated with 50 and 200 μg L(-)(1) HEX for 21 d using real-time PCR. Significant up-regulation of p53, Puma, Apaf-1, caspase-3 and caspase-9 expression and down-regulation of Bcl-2/Bax expression ratio were proved. The overall results indicated that waterborne HEX was able to produce oxidative stress and induce apoptosis through the involvement of caspases in adult zebrafish. The above information will play a vital role in the integrated environmental risk assessment of HEX and make its toxic mechanism in fish clear.
Collapse
Affiliation(s)
- Yao Wang
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Li Xu
- Key Laboratory of Pesticide Chemistry and Application Technology, Ministry of Agriculture, College of Science, China Agricultural University, Beijing, China
| | - Dongzhi Li
- College of Sciences, China Agricultural University, China
| | - Miaomiao Teng
- College of Sciences, China Agricultural University, China
| | - Renke Zhang
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Zhiqiang Zhou
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Wentao Zhu
- Department of Applied Chemistry, China Agricultural University, Beijing, China.
| |
Collapse
|
36
|
Augustine S, Pereira S, Floriani M, Camilleri V, Kooijman SALM, Gagnaire B, Adam-Guillermin C. Effects of chronic exposure to environmentally relevant concentrations of waterborne depleted uranium on the digestive tract of zebrafish, Danio rerio. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2015; 142:45-53. [PMID: 25633624 DOI: 10.1016/j.jenvrad.2015.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 06/04/2023]
Abstract
Uranium is a naturally occurring element, but activities linked to the nuclear fuel cycle can increase background levels in the surrounding waters. For this reason it is important to understand how this affects organisms residing in the water column. The objective of this study was to assess histopathological effects of uranium on the gut wall of a widely used model organism: zebrafish, Danio rerio. To this end we exposed zebrafish to 84 and 420 nM depleted uranium for over a month and then examined the histology of intestines of exposed individuals compared to controls. The gut wall of individuals exposed to 84 and 420 nM of uranium had large regions of degraded mucosa. Using transmission electron microscopy (TEM) coupled to energy-dispersive X-ray spectroscopy microanalysis (EDX) we found that uranium induced a decrease in the amount of calcium containing mitochondrial matrix granules per mitochondria. This is suggestive of perturbations to cellular metabolism and more specifically to cellular calcium homeostasis. TEM-EDX of the gut wall tissue further showed that some uranium was internalized in the nucleus of epithelial cells in the 420 nM treatment. Fluorescent in situ hybridization using specific probes to detect all eubacteria was performed on frozen sections of 6 individual fish in the 84 nM and 420 nM treatments. Bacterial colonization of the gut of individuals in the 420 nM seemed to differ from that of the controls and 84 nM individuals. We suggest that host-microbiota interactions are potentially disturbed in response to uranium induced stress. The damage induced by waterborne uranium to the gut wall did not seem to depend on the concentration of uranium in the media. We measure whole body residues of uranium at the end of the experiment and compute the mean dose rate absorbed for each condition. We discuss why effects might be uncoupled from external concentration and highlight that it is not so much the external concentration but the dynamics of internalization which are important players in the game.
Collapse
Affiliation(s)
- Starrlight Augustine
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Sandrine Pereira
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France; CRCL, UMR INSERM 1052, CNRS 5286 Equipe de Radiobiologie, Cheney A- 1er étage, 28 Rue Laennec, 69373 Lyon Cedex 08, France
| | - Magali Floriani
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | | | - Béatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| |
Collapse
|
37
|
Coppin F, Michon J, Garnier C, Frelon S. Fluorescence Quenching Determination of Uranium (VI) Binding Properties by Two Functional Proteins: Acetylcholinesterase (AChE) and Vitellogenin (Vtg). J Fluoresc 2015; 25:569-76. [PMID: 25764300 DOI: 10.1007/s10895-015-1536-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/20/2015] [Indexed: 11/30/2022]
Abstract
The interactions between uranium and two functional proteins (AChE and Vtg) were investigated using fluorescence quenching measurements. The combined use of a microplate spectrofluorometer and logarithmic additions of uranium into protein solutions allowed us to define the fluorescence quenching over a wide range of [U]/[Pi] ratios (from 1 to 3235) at physiologically relevant conditions of pH. Results showed that fluorescence from the two functional proteins was quenched by UO2 (2+). Stoichiometry reactions, fluorescence quenching mechanisms and complexing properties of proteins, i.e. binding constants and binding sites densities, were determined using classic fluorescence quenching methods and curve-fitting software (PROSECE). It was demonstrated that in our test conditions, the protein complexation by uranium could be simulated by two specific sites (L1 and L2). The obtained complexation constant values are log K1 = 5.7 (±1.0), log K2 = 4.9 (±1.1); L1 = 83 (±2), L2 = 2220 (±150) for U(VI) - Vtg and log K1 = 8.1 (±0.9), log K2 = 6.6 (±0.5), L1 = 115 (±16), L2 = 530 (±23) for U(VI)-AChE (Li is expressed in mol/mol of protein).
Collapse
Affiliation(s)
- Frédéric Coppin
- Laboratoire de Biogéochimie, Biodisponibilité et Transfert des Radionucléides, Institut de Radioprotection et Sûreté Nucléaire, Cadarache, Bât 186, BP3, 13115, Saint-Paul-lez-Durance Cedex, France,
| | | | | | | |
Collapse
|
38
|
Lu-Fritts PY, Kottyan LC, James JA, Xie C, Buckholz JM, Pinney SM, Harley JB. Association of systemic lupus erythematosus with uranium exposure in a community living near a uranium-processing plant: a nested case-control study. Arthritis Rheumatol 2015; 66:3105-12. [PMID: 25103365 DOI: 10.1002/art.38786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 07/10/2014] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To explore the hypothesis that cases of systemic lupus erythematosus (SLE) would be found more frequently in community members with high prior uranium exposure in the Fernald Community Cohort (FCC). METHODS A nested case-control study was performed using data from the FCC, a volunteer population of individuals who had resided near a uranium ore-processing plant in Fernald, Ohio during the years of plant operation; uranium plant workers were excluded. Members of the FCC were monitored for 18 years. SLE cases were identified using the American College of Rheumatology 1997 revised classification criteria, laboratory testing, and medical record review. Each case was matched to 4 controls by age, race, and sex. Sera from potential cases and controls were screened for autoantibodies. Cumulative exposure to uranium particulates was calculated using a dosimetry model. Logistic regression with covariates was used to calculate the odds ratios (ORs) with 95% confidence intervals (95% CIs) for the probability of an association between uranium exposure and SLE. RESULTS The FCC comprised 4,187 individuals with minimal levels of uranium exposure, 1,273 with moderate exposure, and 2,756 with high exposure. The diagnosis of SLE was confirmed in 23 of 31 individuals who had been assigned International Classification of Diseases, Ninth Revision codes for lupus, and was also confirmed in 2 of 43 individuals who had been prescribed hydroxychloroquine. The female to male ratio was 5.25:1. Of the 25 confirmed SLE cases, 12 were in the high exposure group. The presence of SLE was associated with higher levels of uranium exposure (OR 3.92, 95% CI 1.13-13.59; P = 0.031). CONCLUSION High uranium exposure is associated with SLE, as compared to matched controls, in this sample of uranium-exposed individuals. Potential explanations for this relationship include possible autoimmune or estrogen effects of uranium, somatic mutation, epigenetic effects, or effects of some other unidentified accompanying exposure.
Collapse
|
39
|
Gagnaire B, Bado-Nilles A, Betoulle S, Amara R, Camilleri V, Cavalié I, Chadili E, Delahaut L, Kerambrun E, Orjollet D, Palluel O, Sanchez W. Former uranium mine-induced effects in caged roach: a multiparametric approach for the evaluation of in situ metal toxicity. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:215-231. [PMID: 25348601 DOI: 10.1007/s10646-014-1374-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
To characterize environmental risks linked to former uranium mines in the Limousin region of France, a study was conducted on fish health effects from uranium releases. Two private ponds were compared in this study, one with uranium contamination and one background site, upstream of the mining zone. Roach, Rutilus rutilus, were caged for 28 days in both ponds. Physico-chemical parameters of water and sediments and bioaccumulation of metals in several organs were determined. After 14 and 28 days of caging, immune, oxidative stress, biotransformation, neurotoxicity and physiological parameters were measured. Iron and aluminium were quantified in the water of both sites; however, barium and manganese were only present in the water of the uranium contaminated site. Uranium was present in both sites but at very different concentrations. The sediments from the uranium contaminated site contained high levels of radioactive elements coming from the disintegration chain of uranium. Results of biological parameters indicated stimulation of immune parameters and of oxidative stress and a decrease of AChE in fish caged in the uranium contaminated pond compared to the uranium-free pond. Overall, the results determined roach health status in the context of pollution from poly-metallic mining. The data strengthen our knowledge of the environmental risk assessment associated with radioactive substances in the environment.
Collapse
Affiliation(s)
- Béatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Centre de Cadarache, Bât 186, B.P. 3, 13115, Saint-Paul-Lez-Durance, France,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gagnaire B, Bado-Nilles A, Sanchez W. Depleted uranium disturbs immune parameters in zebrafish, Danio rerio: an ex vivo/in vivo experiment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:426-435. [PMID: 24723161 DOI: 10.1007/s00244-014-0022-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
In this study, we investigated the effects of depleted uranium (DU), the byproduct of nuclear enrichment of uranium, on several parameters related to defence system in the zebrafish, Danio rerio, using flow cytometry. Several immune cellular parameters were followed on kidney leucocytes: cell proportion, cell mortality, phagocytosis activity and associated oxidative burst and lysosomal membrane integrity (LMI). Effects of DU were tested ex vivo after 17 h of contact between DU and freshly isolated leucocytes from 0 to 500 µg DU/L. Moreover, adult zebrafish were exposed in vivo during 3 days at 20 and 250 µg DU/L. Oxidative burst results showed that DU increased reactive oxygen species (ROS) basal level and therefore reduced ROS stimulation index in both ex vivo and in vivo experiments. ROS PMA-stimulated level was also increased at 250 µg DU/L in vivo only. Furthermore, a decrease of LMI was detected after in vivo experiments. Cell mortality was also decreased at 20 µg DU/L in ex vivo experiment. However, phagocytosis activity was not modified in both ex vivo and in vivo experiments. A reduction of immune-related parameters was demonstrated in zebrafish exposed to DU. DU could therefore decrease the ability of fish to stimulate its own immune system which could, in turn, enhance the susceptibility of fish to infection. These results encourage the development and the use of innate immune analysis by flow cytometry in order to understand the effects of DU and more generally radionuclides on fish immune system and response to infectious diseases.
Collapse
Affiliation(s)
- Béatrice Gagnaire
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Centre de Cadarache, Bât 186, B.P. 3, 13115, Saint-Paul-lez-Durance, France,
| | | | | |
Collapse
|
41
|
Bourrachot S, Brion F, Pereira S, Floriani M, Camilleri V, Cavalié I, Palluel O, Adam-Guillermin C. Effects of depleted uranium on the reproductive success and F1 generation survival of zebrafish (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 154:1-11. [PMID: 24846854 DOI: 10.1016/j.aquatox.2014.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/01/2014] [Accepted: 04/12/2014] [Indexed: 06/03/2023]
Abstract
Despite the well-characterized occurrence of uranium (U) in the aquatic environment, very little is known about the chronic exposure of fish to low levels of U and its potential effect on reproduction. Therefore, this study was undertaken to investigate the effects of environmental concentrations of depleted U on the reproductive output of zebrafish (Danio rerio) and on survival and development of the F1 embryo-larvae following parental exposure to U. For that purpose, sexually mature male and female zebrafish were exposed to 20 and 250 μg/L of U for 14 days and allowed to reproduce in clean water during a further 14-day period. At all sampling times, whole-body vitellogenin concentrations and gonad histology were analyzed to investigate the effects of U exposure on these reproductive endpoints. In addition, accumulation of U in the gonads and its genotoxic effect on male and female gonad cells were quantified. The results showed that U strongly affected the capability of fish to reproduce and to generate viable individuals as evidenced by the inhibition of egg production and the increased rate of mortality of the F1 embryos. Interestingly, U exposure resulted in decreased circulating concentrations of vitellogenin in females. Increased concentrations of U were observed in gonads and eggs, which were most likely responsible for the genotoxic effects seen in fish gonads and in embryos exposed maternally to U. Altogether, these findings highlight the negative effect of environmentally relevant concentrations of U which alter the reproductive capability of fish and impair the genetic integrity of F1 embryos raising further concern regarding its effect at the population level.
Collapse
Affiliation(s)
- Stéphanie Bourrachot
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - François Brion
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'évaluation des risques écotoxicologiques, BP2, 60550 Verneuil-en-Halatte, France
| | - Sandrine Pereira
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Magali Floriani
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Virginie Camilleri
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Isabelle Cavalié
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), Unité d'évaluation des risques écotoxicologiques, BP2, 60550 Verneuil-en-Halatte, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV/SERIS/LECO, Cadarache, Saint-Paul-lez-Durance 13115, France.
| |
Collapse
|
42
|
Song Y, Salbu B, Teien HC, Sørlie Heier L, Rosseland BO, Høgåsen T, Tollefsen KE. Hepatic transcriptomic profiling reveals early toxicological mechanisms of uranium in Atlantic salmon (Salmo salar). BMC Genomics 2014; 15:694. [PMID: 25145280 PMCID: PMC4148957 DOI: 10.1186/1471-2164-15-694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 08/11/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Uranium (U) is a naturally occurring radionuclide that has been found in the aquatic environment due to anthropogenic activities. Exposure to U may pose risk to aquatic organisms due to its radiological and chemical toxicity. The present study aimed to characterize the chemical toxicity of U in Atlantic salmon (Salmo salar) using depleted uranium (DU) as a test model. The fish were exposed to three environmentally relevant concentrations of DU (0.25, 0.5 and 1.0 mg U/L) for 48 h. Hepatic transcriptional responses were studied using microarrays in combination with quantitative real-time reverse transcription polymerase chain reaction (qPCR). Plasma variables and chromosomal damages were also studied to link transcriptional responses to potential physiological changes at higher levels. RESULTS The microarray gene expression analysis identified 847, 891 and 766 differentially expressed genes (DEGs) in the liver of salmon after 48 h exposure to 0.25, 0.5 and 1.0 mg/L DU, respectively. These DEGs were associated with known gene ontology functions such as generation of precursor metabolites and energy, carbohydrate metabolic process and cellular homeostasis. The salmon DEGs were then mapped to mammalian orthologs and subjected to protein-protein network and pathway analysis. The results showed that various toxicity pathways involved in mitochondrial functions, oxidative stress, nuclear receptor signaling, organ damage were commonly affected by all DU concentrations. Eight genes representative of several key pathways were further verified using qPCR No significant formation of micronuclei in the red blood cells or alterations of plasma stress variables were identified. CONCLUSION The current study suggested that the mitochondrion may be a key target of U chemical toxicity in salmon. The induction of oxidative stress and uncoupling of oxidative phosphorylation may be two potential modes of action (MoA) of DU. These MoAs may subsequently lead to downstream events such as apoptosis, DNA repair, hypoxia signaling and immune response. The early toxicological mechanisms of U chemical toxicity in salmon has for the first time been systematically profiled. However, no other physiological changes were observed. Future efforts to link transcriptional responses to adverse effects have been outlined as important for understanding of potential risk to aquatic organisms.
Collapse
Affiliation(s)
- You Song
- Department of Environmental Sciences (IMV), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Science and Technology, Centre for Environmental Radioactivity (CERAD), P,O, Box 5003, N-1432 Ås, Norway.
| | | | | | | | | | | | | |
Collapse
|
43
|
Simon O, Floc'h E, Geffroy B, Frelon S. Exploring ecotoxicological fish bioassay for the evaluation of uranium reprotoxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1817-1824. [PMID: 24920155 DOI: 10.1002/etc.2586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 10/26/2013] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
Although reproduction in fish is known to be sensitive to metal exposure, few ecotoxicological studies have focused on the toxicological effects of metals. Because uranium (U) is naturally present in aquatic ecosystems (0.6-2 mg/L), freshwater organisms are subjected to chronic U exposure. Although new standardized assays are currently being developed to mimic realistic exposure conditions, they could be improved by taking into account the contamination that occurs throughout the life cycle of fish. The authors initially evaluated the effect of food (commercial flakes vs pure Spirulina) and ionic composition of the exposure medium on the reproductive performance of Danio rerio. The effects of U exposure on reproduction then were assessed 1) for the F0 adult stage at short exposure times (5 d, 20 d, and 40 d), and 2) for the F0 stage and the F1 generation after 200 d of exposure to control, low (20 µg U/L), and moderate (250 µg U/L) waterborne levels of U. Reproductive endpoints (reproductive success, fecundity, number of spawns, egg and larvae viability, and hatching) were measured mainly after the first spawn and after 10 d of cumulative spawns. The authors evaluated the plasticity of these endpoints and compared the effect of exposure conditions to identify the most relevant markers of the effect of U exposure on reproductive performance of D. rerio.
Collapse
Affiliation(s)
- Olivier Simon
- Laboratoire de Biogéochimie, Biodisponibilité et Transferts des radionucléides, Institut de Radioprotection et de Sûreté Nucléaire, Saint Paul Lez Durance, France
| | | | | | | |
Collapse
|
44
|
Dedeh A, Ciutat A, Treguer-Delapierre M, Bourdineaud JP. Impact of gold nanoparticles on zebrafish exposed to a spiked sediment. Nanotoxicology 2014; 9:71-80. [PMID: 24559428 DOI: 10.3109/17435390.2014.889238] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Increasing use of metallic nanomaterials is likely to result in release of these particles into aquatic environments; nevertheless it is unclear whether these materials present a hazard to aquatic organisms. The impact of contaminated sediment containing 14-nm gold nanoparticles (AuNPs) was investigated in the zebrafish Danio rerio exposed for 20 days to two concentrations, 16 and 55 µg/g dry weight. AuNPs were released from the sediment to the water column, and during this period the mean concentrations of AuNP in the filtered water fraction were 0.25 ± 0.05 and 0.8 ± 0.1 µg/L, respectively. A similar experiment with ionic gold contamination was simultaneously performed to obtain a positive control. AuNP exposure triggered various effects in fish tissues including modifications of genome composition, shown using a random amplified polymorphic DNA-PCR genotoxicity test. Expression of genes involved in oxidative stress, mitochondrial metabolism, detoxification and DNA repair were also modulated in response to AuNP contamination. Gold altered neurotransmission, since brain acetylcholine esterase activity increased for both tested doses of AuNP but not for ionic gold. Gold accumulation in fish tissues demonstrated the lower bioavailability of AuNP compared to ionic Au, and underlined the higher toxic potential of the nanoparticle form.
Collapse
Affiliation(s)
- Amina Dedeh
- CNRS, UMR EPOC 5805, University of Bordeaux , Arcachon , France and
| | | | | | | |
Collapse
|
45
|
Plaire D, Bourdineaud JP, Alonzo A, Camilleri V, Garcia-Sanchez L, Adam-Guillermin C, Alonzo F. Transmission of DNA damage and increasing reprotoxic effects over two generations of Daphnia magna exposed to uranium. Comp Biochem Physiol C Toxicol Pharmacol 2013; 158:231-43. [PMID: 24035969 DOI: 10.1016/j.cbpc.2013.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/19/2022]
Abstract
This study aimed to examine the mechanisms involved in the transgenerational increase in Daphnia magna sensitivity to waterborne depleted uranium (DU) under controlled laboratory conditions. Daphnids were exposed to concentrations ranging from 2 to 50 μg L(-1) over two successive generations. Genotoxic effects were assessed using random amplified polymorphic DNA and real time PCR (RAPD-PCR). Effects on life history (survival, fecundity and somatic growth) were monitored from hatching to release of brood 5. Different exposure regimes were tested to investigate the specific sensitivity of various life stages to DU. When daphnids were exposed continuously or from hatching to deposition of brood 5, results demonstrated that DNA damage accumulated in females and were transmitted to offspring in parallel with an increase in severity of effects on life history across generations. When daphnids were exposed during the embryo stage only, DU exposure induced transient DNA damage which was repaired after neonates were returned to a clean medium. Effects on life history remained visible after hatching and did not significantly increase in severity across generations. The present results suggest that DNA damage might be an early indicator of future effects on life history.
Collapse
Affiliation(s)
- Delphine Plaire
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PRP-ENV, SERIS, LECO, Cadarache, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Poisson C, Rouas C, Manens L, Dublineau I, Gueguen Y. Antioxidant status in rat kidneys after coexposure to uranium and gentamicin. Hum Exp Toxicol 2013; 33:136-47. [DOI: 10.1177/0960327113493297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Uranium (U) accumulates and produces its toxic effects preferentially in the kidneys, especially in the proximal tubular structure. U disturbs the balance of pro-/antioxidants in the renal cortex after acute exposure. Other nephrotoxic agents, such as medications, also cause oxidative stress, but the effects of coexposure are not known. The aim of this study was to analyze the effect of chronic exposure to U and acute gentamicin treatment on the pro- and antioxidant status of the renal cortex of rats. Animals were chronically exposed (9 months) to a nonnephrotoxic level of U (40 mg/L) and then treated with daily injections of gentamicin at a range of doses (0, 5, 25, 100, and 150 mg/kg) during the last week of contamination. We studied changes in the gene expression, protein expression, and enzyme activity of key factors involved in the pro-/antioxidant balance in the renal cortex. At and above a dose of 100 mg/kg, gentamicin decreased the messenger RNA (mRNA) levels of catalase ( CAT), copper/zinc superoxide dismutase ( SOD) and increased the mRNA levels of heme oxygenase-1 in contaminated rats. This treatment decreased CAT activity, but did not significantly change the SOD protein level. Chronic exposure to U did not worsen these effects in our experimental conditions. In conclusion, gentamicin treatment disturbed the oxidative balance in our model’s renal cortex, but the chronic exposure to U at this nonnephrotoxic level did not appear to reinforce these effects.
Collapse
Affiliation(s)
- C Poisson
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux-Roses, France
| | - C Rouas
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux-Roses, France
| | - L Manens
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux-Roses, France
| | - I Dublineau
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux-Roses, France
| | - Y Gueguen
- Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-HOM, SRBE, LRTOX, Fontenay-aux-Roses, France
| |
Collapse
|
47
|
Genotoxic effects of exposure to waterborne uranium, dietary methylmercury and hyperoxia in zebrafish assessed by the quantitative RAPD-PCR method. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 755:55-60. [DOI: 10.1016/j.mrgentox.2013.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/05/2013] [Accepted: 05/09/2013] [Indexed: 11/23/2022]
|
48
|
Sanchez W, Burgeot T, Porcher JM. A novel "Integrated Biomarker Response" calculation based on reference deviation concept. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013. [PMID: 23208755 DOI: 10.1007/s11356-012-1359-1] [Citation(s) in RCA: 409] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multi-biomarker approaches are used to assess ecosystem health and identify impacts of environmental stress on organisms. However, exploration of large datasets by environmental managers represents a major challenge for regulatory application of this tool. Several integrative tools were developed to summarize biomarker responses. The aim of the present paper is to update calculation of the "Integrated Biological Response" (IBR) described by Beliaeff and Burgeot (Environ Toxicol Chem 21:1316-1322, 2002) to avoid weaknesses of this integrative tool. In the present paper, a novel index named "Integrated Biological Responses version 2" based on the reference deviation concept is presented. It allows a clear discrimination of sampling sites as for the IBR, but several differences are observed for contaminated sites according to up- and downregulation of biomarker responses. This novel tool could be used to integrate multi-biomarker responses not only in large-scale monitoring but also in upstream/downstream investigations.
Collapse
Affiliation(s)
- Wilfried Sanchez
- Institut National de l'Environnement Industriel et des Risques, unité d'écotoxicologie in vitro et in vivo, 60550 Verneuil en Halatte, France.
| | | | | |
Collapse
|
49
|
Frelon S, Mounicou S, Lobinski R, Gilbin R, Simon O. Subcellular fractionation and chemical speciation of uranium to elucidate its fate in gills and hepatopancreas of crayfish Procambarus clarkii. CHEMOSPHERE 2013; 91:481-490. [PMID: 23332674 DOI: 10.1016/j.chemosphere.2012.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/27/2012] [Accepted: 12/08/2012] [Indexed: 06/01/2023]
Abstract
Knowledge of the organ and subcellular distribution of metals in organisms is fundamental for the understanding of their uptake, storage, elimination and toxicity. Detoxification via MTLP and MRG formation and chelation by some proteins are necessary to better assess the metal toxic fraction in aquatic organisms. This work focused on uranium, natural element mainly used in nuclear industry, and its subcellular fractionation and chemical speciation to elucidate its accumulation pattern in gills and hepatopancreas of crayfish Procambarus clarkii, key organs of uptake and detoxification, respectively. Crayfish waterborne exposure was performed during 4 and 10d at 0, 30, 600 and 4000 μg UL(-1). After tissue dissection, uranium subcellular fractionation was performed by successive ultracentrifugations. SEC-ICP MS was used to study uranium speciation in cytosolic fraction. The uranium subcellular partitioning patterns varied according to the target organ studied and its biological function in the organism. The cytosolic fraction accounted for 13-30% of the total uranium amount in gills and 35-75% in hepatopancreas. The uranium fraction coeluting with MTLPs in gills and hepatopancreas cytosols showed that roughly 55% of uranium remained non-detoxified and thus potentially toxic in the cytosol. Furthermore, the sum of uranium amount in organelle fractions and in the non-detoxified part of cytosol, possibly equivalent to available fraction, accounted for 20% (gills) and 57% (hepatopancreas) of the total uranium. Finally, the SEC-ICP MS analysis provided information on potential competition of U for biomolecules similar than the ones involved in endogenous essential metal (Fe, Cu) chelation.
Collapse
Affiliation(s)
- S Frelon
- IRSN/PRP-ENV/SERIS, Laboratoire de Biogéochimie, Biodisponibilité et Transfert des Radionucléides, BP3, 13115 St Paul lez Durance, France.
| | | | | | | | | |
Collapse
|
50
|
Gagnaire B, Cavalie I, Camilleri V, Adam-Guillermin C. Effects of depleted uranium on oxidative stress, detoxification, and defence parameters of zebrafish Danio rerio. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 64:140-150. [PMID: 23052361 DOI: 10.1007/s00244-012-9814-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 09/10/2012] [Indexed: 06/01/2023]
Abstract
In this study, we investigated the effects of depleted uranium (DU), the by-product of nuclear enrichment of uranium, on several parameters related to oxidative stress, detoxification, and the defence system in the zebrafish Danio rerio. Several parameters were recorded: phenoloxidase-like (PO) activity, reactive oxygen species (ROS) production, and 7-ethoxyresrufin-O-deethylase (EROD) activity. Experiments were performed on adult and larvae D. rerio. Adult fish were exposed for 28 days at 20 μg U/L followed by a 27-day depuration period. Eggs of D. rerio were exposed for 4 days at 0, 20, 100, 250, 500, and 1,000 μg U/L. Results showed that DU increased ROS production both in adult and in larvae even at the low concentrations tested and even during the depuration period for adult D. rerio. DU also modified PO-like activity, both in the D. rerio adult and larvae experiments, but in a more transient manner. EROD activity was not modified by DU, but sex effects were shown. Results are discussed by way of comparison with other known effects of uranium in fish. Overall, these results show that the mechanisms of action of DU in fish tend to be similar to the ones existing for mammals. These results encourage the development and use of innate immune biomarkers to understand the effects of uranium and, more generally, radionuclides on the fish immune system.
Collapse
Affiliation(s)
- Beatrice Gagnaire
- Institut de Radioprotection et Sûreté Nucléaire, PRP-ENV/SERIS/LECO, Laboratoire d'Ecotoxicologie des Radionucléides, 13115, St-Paul-lez-Durance Cedex, France.
| | | | | | | |
Collapse
|