1
|
Jacobsen LM, Diggins K, Blanchfield L, McNichols J, Perry DJ, Brant J, Dong X, Bacher R, Gersuk VH, Schatz DA, Atkinson MA, Mathews CE, Haller MJ, Long SA, Linsley PS, Brusko TM. Responders to low-dose ATG induce CD4+ T cell exhaustion in type 1 diabetes. JCI Insight 2023; 8:e161812. [PMID: 37432736 PMCID: PMC10543726 DOI: 10.1172/jci.insight.161812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUNDLow-dose anti-thymocyte globulin (ATG) transiently preserves C-peptide and lowers HbA1c in individuals with recent-onset type 1 diabetes (T1D); however, the mechanisms of action and features of the response remain unclear. Here, we characterized the post hoc immunological outcomes of ATG administration and their potential use as biomarkers of metabolic response to therapy (i.e., improved preservation of endogenous insulin production).METHODSWe assessed gene and protein expression, targeted gene methylation, and cytokine concentrations in peripheral blood following treatment with ATG (n = 29), ATG plus granulocyte colony-stimulating factor (ATG/G-CSF, n = 28), or placebo (n = 31).RESULTSTreatment with low-dose ATG preserved regulatory T cells (Tregs), as measured by stable methylation of FOXP3 Treg-specific demethylation region (TSDR) and increased proportions of CD4+FOXP3+ Tregs (P < 0.001) identified by flow cytometry. While treatment effects were consistent across participants, not all maintained C-peptide. Responders exhibited a transient rise in IL-6, IP-10, and TNF-α (P < 0.05 for all) 2 weeks after treatment and a durable CD4+ exhaustion phenotype (increased PD-1+KLRG1+CD57- on CD4+ T cells [P = 0.011] and PD1+CD4+ Temra MFI [P < 0.001] at 12 weeks, following ATG and ATG/G-CSF, respectively). ATG nonresponders displayed higher proportions of senescent T cells (at baseline and after treatment) and increased methylation of EOMES (i.e., less expression of this exhaustion marker).CONCLUSIONAltogether in these exploratory analyses, Th1 inflammation-associated serum and CD4+ exhaustion transcript and cellular phenotyping profiles may be useful for identifying signatures of clinical response to ATG in T1D.TRIAL REGISTRATIONClinicalTrials.gov NCT02215200.FUNDINGThe Leona M. and Harry B. Helmsley Charitable Trust (2019PG-T1D011), the NIH (R01 DK106191 Supplement, K08 DK128628), NIH TrialNet (U01 DK085461), and the NIH NIAID (P01 AI042288).
Collapse
Affiliation(s)
- Laura M. Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Kirsten Diggins
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Lori Blanchfield
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - James McNichols
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J. Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Jason Brant
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Xiaoru Dong
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA
| | - Vivian H. Gersuk
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Desmond A. Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Mark A. Atkinson
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Clayton E. Mathews
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Michael J. Haller
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Todd M. Brusko
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
2
|
Therapeutic Potential of Alpha-1 Antitrypsin in Type 1 and Type 2 Diabetes Mellitus. ACTA ACUST UNITED AC 2021; 57:medicina57040397. [PMID: 33923873 PMCID: PMC8073794 DOI: 10.3390/medicina57040397] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/12/2021] [Accepted: 04/17/2021] [Indexed: 12/21/2022]
Abstract
Alpha-1 antitrypsin (AAT) has established anti-inflammatory and immunomodulatory effects in chronic obstructive pulmonary disease but there is increasing evidence of its role in other inflammatory and immune-mediated conditions, like diabetes mellitus (DM). AAT activity is altered in both developing and established type 1 diabetes mellitus (T1DM) as well in established type 2 DM (T2DM). Augmentation therapy with AAT appears to favorably impact T1DM development in mice models and to affect β-cell function and inflammation in humans with T1DM. The role of AAT in T2DM is less clear, but AAT activity appears to be reduced in T2DM. This article reviews these associations and emerging therapeutic strategies using AAT to treat DM.
Collapse
|
3
|
Pearson JA, McKinney EF, Walker LSK. 100 years post-insulin: immunotherapy as the next frontier in type 1 diabetes. IMMUNOTHERAPY ADVANCES 2021; 1:ltab024. [PMID: 35156097 PMCID: PMC8826223 DOI: 10.1093/immadv/ltab024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 02/03/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterised by T cell-mediated destruction of the insulin-producing β cells in the pancreas. Similar to other autoimmune diseases, the incidence of T1D is increasing globally. The discovery of insulin 100 years ago dramatically changed the outlook for people with T1D, preventing this from being a fatal condition. As we celebrate the centenary of this milestone, therapeutic options for T1D are once more at a turning point. Years of effort directed at developing immunotherapies are finally starting to pay off, with signs of progress in new onset and even preventative settings. Here, we review a selection of immunotherapies that have shown promise in preserving β cell function and highlight future considerations for immunotherapy in the T1D setting.
Collapse
Affiliation(s)
- James A Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Eoin F McKinney
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge, England, UK
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, England, UK
- Cambridge Centre for Artificial Intelligence in Medicine, University of Cambridge, Cambridge, England, UK
| | - Lucy S K Walker
- Division of Infection and Immunity, Institute or Immunity and Transplantation, University College London, Royal Free Campus, London, UK
| |
Collapse
|
4
|
Tang CL, Gao YR, Wang LX, Zhu YW, Pan Q, Zhang RH, Xiong Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol Cell Endocrinol 2019; 491:110434. [PMID: 31078638 DOI: 10.1016/j.mce.2019.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
The prevalence of T1D in developed societies is partly based on the hygiene hypothesis, that is, the loss of exposure to infectious agents accompanies the loss of immune stimuli shaping the immune system during development. Indeed, the components of parasites, such as Schistosoma, have been reported to ameliorate or prevent the development of T1D, which might be associated with immune cell activity especially that of regulatory T cells (Tregs). Schistosoma infection can lead to the expansion of Treg. Herein, we provide a comprehensive overview of the involvement of Tregs in the response against Schistosoma infection and the mechanism of Schistosoma-associated host protection against T1D.
Collapse
Affiliation(s)
- Chun-Lian Tang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Yan-Ru Gao
- Medical Department, City College, Wuhan University of Science and Technology, Wuhan, 430083, China
| | - Li-Xia Wang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ya-Wen Zhu
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Qun Pan
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Rong-Hui Zhang
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China
| | - Ying Xiong
- Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, 430063, China.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW The immunosuppressive agent cyclosporine was first reported to lower daily insulin dose and improve glycemic control in patients with new-onset type 1 diabetes (T1D) in 1984. While renal toxicity limited cyclosporine's extended use, this observation ignited collaborative efforts to identify immunotherapeutic agents capable of safely preserving β cells in patients with or at risk for T1D. RECENT FINDINGS Advances in T1D prediction and early diagnosis, together with expanded knowledge of the disease mechanisms, have facilitated trials targeting specific immune cell subsets, autoantigens, and pathways. In addition, clinical responder and non-responder subsets have been defined through the use of metabolic and immunological readouts. Herein, we review emerging T1D biomarkers within the context of recent and ongoing T1D immunotherapy trials. We also discuss responder/non-responder analyses in an effort to identify therapeutic mechanisms, define actionable pathways, and guide subject selection, drug dosing, and tailored combination drug therapy for future T1D trials.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Brittney N Newby
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Daniel J Perry
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, 1275 Center Drive, Biomedical Sciences Building J-589, Box 100275, Gainesville, FL, 32610, USA.
| |
Collapse
|
6
|
Xie A, Li R, Jiang T, Yan H, Zhang H, Yang Y, Yang L, Yechoor V, Chan L, Chen W. Anti-TCRβ mAb in Combination With Neurogenin3 Gene Therapy Reverses Established Overt Type 1 Diabetes in Female NOD Mice. Endocrinology 2017; 158:3140-3151. [PMID: 28977608 PMCID: PMC5659705 DOI: 10.1210/en.2016-1947] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
Abstract
Insulin-producing β cells in patients with type 1 diabetes (T1D) are destroyed by T lymphocytes. We investigated whether targeting the T-cell receptor (TCR) with a monoclonal antibody (mAb) abrogates T-cell response against residual and newly formed islets in overtly diabetic nonobese diabetic (NOD) mice. NOD mice with blood glucose levels of 250 to 350 mg/dL or 350 to 450 mg/dL were considered as new-onset or established overt diabetes, respectively. These diabetic NOD mice were transiently treated with an anti-TCR β chain (TCRβ) mAb, H57-597, for 5 days. Two weeks later, some NOD mice with established overt diabetes further received hepatic gene therapy using the islet-lineage determining gene Neurogenin3 (Ngn3), in combination with the islet growth factor gene betacellulin (Btc). We found that anti-TCRβ mAb (50 µg/d) reversed >80% new-onset diabetes in NOD mice for >14 weeks by reducing the number of effector T cells in the pancreas. However, anti-TCRβ mAb therapy alone reversed only ∼20% established overt diabetes in these mice. Among those overtly diabetic NOD mice whose diabetes was resistant to anti-TCRβ mAb treatment, ∼60% no longer had diabetes when they also received Ngn3-Btc hepatic gene transfer 2 weeks after initial anti-TCRβ mAb treatment. This combination of Ngn3-Btc gene therapy and anti-TCRβ mAb treatment induced the sustained formation of periportal insulin-producing cells in the liver of overtly diabetic mice. Therefore, directly targeting TCRβ with a mAb potently reverses new-onset T1D in NOD mice and protects residual and newly formed gene therapy-induced hepatic neo-islets from T-cell‒mediated destruction in mice with established overt diabetes.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Betacellulin/genetics
- Combined Modality Therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/therapy
- Female
- Genetic Therapy/methods
- Immunotherapy/methods
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/physiology
- Islets of Langerhans/cytology
- Islets of Langerhans/immunology
- Liver/cytology
- Mice
- Mice, Inbred NOD
- Nerve Tissue Proteins/genetics
- Receptors, Antigen, T-Cell, alpha-beta/antagonists & inhibitors
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Aini Xie
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
- Division of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rongying Li
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Tao Jiang
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030
| | - Hui Yan
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030
| | - Hedong Zhang
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030
| | - Yisheng Yang
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Lina Yang
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Vijay Yechoor
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
| | - Wenhao Chen
- Center for Immunobiology and Transplantation Research, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas 77030
- Division of Diabetes, Endocrinology & Metabolism, Diabetes & Endocrinology Research Center, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York 10065
| |
Collapse
|
7
|
Gitelman SE, Gottlieb PA, Felner EI, Willi SM, Fisher LK, Moran A, Gottschalk M, Moore WV, Pinckney A, Keyes-Elstein L, Harris KM, Kanaparthi S, Phippard D, Ding L, Bluestone JA, Ehlers MR. Antithymocyte globulin therapy for patients with recent-onset type 1 diabetes: 2 year results of a randomised trial. Diabetologia 2016; 59:1153-61. [PMID: 27053235 PMCID: PMC4869699 DOI: 10.1007/s00125-016-3917-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 02/17/2016] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS Type 1 diabetes results from T cell mediated destruction of beta cells. We conducted a trial of antithymocyte globulin (ATG) in new-onset type 1 diabetes (the Study of Thymoglobulin to ARrest T1D [START] trial). Our goal was to evaluate the longer-term safety and efficacy of ATG in preserving islet function at 2 years. METHODS A multicentre, randomised, double-blind, placebo-controlled trial of 6.5 mg/kg ATG (Thymoglobulin) vs placebo in patients with new-onset type 1 diabetes was conducted at seven university medical centres and one Children's Hospital in the USA. The site-stratified randomisation scheme was computer generated at the data coordinating centre using permuted-blocks of size 3 or 6. Eligible participants were between the ages of 12 and 35, and enrolled within 100 days from diagnosis. Subjects were randomised to 6.5 mg/kg ATG (thymoglobulin) vs placebo in a 2:1 ratio. Participants were blinded, and the study design included two sequential patient-care teams: an unblinded study-drug administration team (for the first 8 weeks), and a blinded diabetes management team (for the remainder of the study). Endpoints assessed at 24 months included meal-stimulated C-peptide AUC, safety and immunological responses. RESULTS Fifty-eight patients were enrolled; at 2 years, 35 assigned to ATG and 16 to placebo completed the study. The pre-specified endpoints were not met. In post hoc analyses, older patients (age 22-35 years) in the ATG group had significantly greater C-peptide AUCs at 24 months than placebo patients. Using complete preservation of baseline C-peptide at 24 months as threshold, nine of 35 ATG-treated participants (vs 2/16 placebo participants) were classified as responders; nine of 11 responders (67%) were older. All participants reported at least one adverse event (AE), with 1,148 events in the 38 ATG participants vs 415 in the 20 placebo participants; a comparable number of infections were noted in the ATG and placebo groups, with no opportunistic infections nor difficulty clearing infections in either group. Circulating T cell subsets depleted by ATG partially reconstituted, but regulatory, naive and central memory subsets remained significantly depleted at 24 months. Beta cell autoantibodies did not change over the 24 months in the ATG-treated or placebo participants. At 12 months, ATG-treated participants had similar humoral immune responses to tetanus and HepA vaccines as placebo-treated participants, and no increased infections. CONCLUSIONS/INTERPRETATION A brief course of ATG substantially depleted T cell subsets, including regulatory cells, but did not preserve islet function 24 months later in the majority of patients with new-onset type 1 diabetes. ATG preserved C-peptide secretion in older participants, which may warrant further study. TRIAL REGISTRATION ClinicalTrials.gov NCT00515099 PUBLIC DATA REPOSITORY: START datasets are available in TrialShare www.itntrialshare.org FUNDING National Institute of Allergy and Infectious Diseases (NIAID) of the National Institutes of Health (NIH). The trial was conducted by the Immune Tolerance Network (ITN).
Collapse
Affiliation(s)
- Stephen E Gitelman
- Division of Pediatric Endocrinology, University of California San Francisco, Mission Hall, 550 16th Street, 4th Floor, Box 0434, San Francisco, CA, 94158-2549, USA.
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA.
| | | | - Eric I Felner
- Division of Pediatric Endocrinology, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven M Willi
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lynda K Fisher
- Department of Endocrinology and Metabolism, Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | - Antoinette Moran
- Department of Pediatrics, Division of Pediatrics Endocrinology, University of Minnesota, Minneapolis, MN, USA
| | - Michael Gottschalk
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Wayne V Moore
- Department of Pediatrics, Division of Pediatric Endocrinology, Children's Mercy Hospital and University of Missouri-Kansas City, Kansas City, MO, USA
| | | | | | | | | | - Deborah Phippard
- Immune Tolerance Network, Bethesda, MD, USA
- Precision for Medicine, Bethesda, MD, USA
| | - Linna Ding
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
8
|
Liu T, Cong M, Sun G, Wang P, Tian Y, Shi W, Li X, You H, Zhang D. Combination of double negative T cells and anti-thymocyte serum reverses type 1 diabetes in NOD mice. J Transl Med 2016; 14:57. [PMID: 26911290 PMCID: PMC4765041 DOI: 10.1186/s12967-016-0815-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background Double-negative (DN) T cells could delay the onset and the progression of autoimmune diabetes, yet they were less efficient on reversing autoimmune diabetes. The aim of this study was to investigate whether the combination of DN T cells and anti-thymocyte serum (ATS) could reverse new-onset diabetes in NOD mice. Methods The regulation of different subsets of T cells in vitro and in vivo by ATS and DN T cells were examined using flow cytometry. At the day of diabetes onset, ATS was administered on the same day and 2 days later, and DN T cells were transferred at day 7. The reversion of diabetes was assessed by monitoring blood glucose levels. Results The efficacy of inhibition of DN T cells on CD8+ T cells was lower than that on CD4+ T cells both in vitro and in vivo. ATS resulted in a significant depletion of CD8+ T cells, while DN T cells were less sensitive to ATS depletion. 80 % diabetic NOD mice achieved long term (6 months) reversion of diabetes by combined ATS and DN T cells treatment, compared to 16 % in ATS single treatment and none in DN T cell single treatment. DN T cells preferentially resided in spleen and pancreatic draining lymph nodes in ATS plus DN T cells treated NOD mice. Conclusions DN T cells plus ATS therapy show promising reversion effects on diabetic NOD mice due to a shift of balance from a destructive T cell response to one that favors DN T cell regulation.
Collapse
Affiliation(s)
- Tianhui Liu
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Min Cong
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Guangyong Sun
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Ping Wang
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Yue Tian
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Wen Shi
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Xinmin Li
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Hong You
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| | - Dong Zhang
- Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing, 100050, China. .,Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing, China.
| |
Collapse
|
9
|
Atkinson MA, von Herrath M, Powers AC, Clare-Salzler M. Current concepts on the pathogenesis of type 1 diabetes--considerations for attempts to prevent and reverse the disease. Diabetes Care 2015; 38:979-88. [PMID: 25998290 PMCID: PMC4439528 DOI: 10.2337/dc15-0144] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Mark A Atkinson
- Department of Pathology, University of Florida, Gainesville, FL Department of Pediatrics, University of Florida, Gainesville, FL
| | - Matthias von Herrath
- La Jolla Institute for Allergy and Immunology, San Diego, CA Novo Nordisk R&D Center, Seattle, WA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Vanderbilt University, Nashville, TN Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN VA Tennessee Valley Healthcare System, Nashville, TN
| | | |
Collapse
|
10
|
Bluestone JA, Bour-Jordan H, Cheng M, Anderson M. T cells in the control of organ-specific autoimmunity. J Clin Invest 2015; 125:2250-60. [PMID: 25985270 DOI: 10.1172/jci78089] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune tolerance is critical to the avoidance of unwarranted immune responses against self antigens. Multiple, non-redundant checkpoints are in place to prevent such potentially deleterious autoimmune responses while preserving immunity integral to the fight against foreign pathogens. Nevertheless, a large and growing segment of the population is developing autoimmune diseases. Deciphering cellular and molecular pathways of immune tolerance is an important goal, with the expectation that understanding these pathways will lead to new clinical advances in the treatment of these devastating diseases. The vast majority of autoimmune diseases develop as a consequence of complex mechanisms that depend on genetic, epigenetic, molecular, cellular, and environmental elements and result in alterations in many different checkpoints of tolerance and ultimately in the breakdown of immune tolerance. The manifestations of this breakdown are harmful inflammatory responses in peripheral tissues driven by innate immunity and self antigen-specific pathogenic T and B cells. T cells play a central role in the regulation and initiation of these responses. In this Review we summarize our current understanding of the mechanisms involved in these fundamental checkpoints, the pathways that are defective in autoimmune diseases, and the therapeutic strategies being developed with the goal of restoring immune tolerance.
Collapse
|
11
|
ElEssawy B, Li XC. Type 1 diabetes and T regulatory cells. Pharmacol Res 2015; 98:22-30. [PMID: 25959211 DOI: 10.1016/j.phrs.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 12/11/2022]
Abstract
T-regulatory cells (Tregs) play a fundamental role in the creation and maintenance of peripheral tolerance. Deficits in the numbers and/or function of Tregs may be an underlying cause of human autoimmune diseases including type 1 Diabetes Mellitus (T1D), whereas an over-abundance of Tregs can hinder immunity against cancer or pathogens. The importance of Tregs in the control of autoimmunity is well established in a variety of experimental animal models. In mice, manipulating the numbers and/or function of Tregs can decrease pathology in a wide range of contexts, including autoimmunity and it is widely assumed that similar approaches will be possible in humans. T1D, the most prevalent human autoimmune disease, has been a focus of interventions either through direct and indirect in vivo proliferations or through adoptive transfer of the in vitro generated antigen specific and non specific Treg. Some challenges still need to be addressed, including a more specific phenotype marker for Tregs; the reproducibility of satisfactory animal results in human and the reconcile of discrepancies between in vitro and in vivo studies. In this article, we will highlight the role of Tregs in autoimmune disease in general with a special focus on T1D, highlighting progress made and challenges ahead in developing Treg-based therapies.
Collapse
Affiliation(s)
| | - Xian C Li
- Immunobiology & Transplantation Research, Houston Methodist Hospital, Texas Medical Center, 6670 Bertner Avenue, R7-211, Houston, TX 77030, United States.
| |
Collapse
|
12
|
Askenasy N. Less Is More: The Detrimental Consequences of Immunosuppressive Therapy in the Treatment of Type-1 Diabetes. Int Rev Immunol 2015; 34:523-37. [DOI: 10.3109/08830185.2015.1010723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Anti-TCR mAb induces peripheral tolerance to alloantigens and delays islet allograft rejection in autoimmune diabetic NOD mice. Transplantation 2014; 97:1216-24. [PMID: 24854475 DOI: 10.1097/tp.0000000000000120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Clinical application of islet transplantation to treat type 1 diabetes has been limited by islet allograft destruction by both allogeneic and autoimmune diabetogenic T-cell responses. The current study aims at determining whether an anti-T-cell receptor (TCR) monoclonal antibody (mAb) has potential as a novel and potent induction immunotherapy for islet transplantation. METHODS We have investigated the therapeutic efficacy and mechanisms of action of anti-TCR therapy in four different murine models, which comprise either allo- or autoimmune responses alone or both together. RESULTS T-cell response to islet allografts was potently abrogated by a brief treatment with an anti-TCRβ mAb (clone H57-597), resulting in long-term survival of BALB/c islet allografts in streptozotocin-induced diabetic B6 mice. Moreover, transient anti-TCR treatment permanently prevented BALB/c skin allograft rejection on Rag1 B6 recipients that were reconstituted with Foxp3 cell-depleted B6 splenocytes, but did not impair the reconstituted cells' ability to reject the later transplanted C3H skin allografts (transplanted at 120 days after BALB/c skin grafting). Transient anti-TCR treatment was also able to completely prevent diabetes onset in NOD.SCID.γc mice that were transferred with lymphocytes from diabetic NOD mice. Next, transient anti-TCR treatment significantly prolonged the survival of transplanted BALB/c islets in overtly diabetic NOD mice, which comprise both allogeneic and autoimmune diabetogenic T-cell responses to the transplanted islets. CONCLUSIONS Overall, anti-TCR mAb induced peripheral tolerance to specific alloantigens even in the absence of Foxp3-expressing natural regulatory T cells. These findings reveal the potential for using TCR-targeting mAbs as induction immunotherapy for islet transplantation.
Collapse
|
14
|
Chhabra P, Brayman KL. Overcoming barriers in clinical islet transplantation: current limitations and future prospects. Curr Probl Surg 2014; 51:49-86. [PMID: 24411187 DOI: 10.1067/j.cpsurg.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
15
|
Wållberg M, Cooke A. Immune mechanisms in type 1 diabetes. Trends Immunol 2013; 34:583-91. [PMID: 24054837 DOI: 10.1016/j.it.2013.08.005] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/17/2022]
Abstract
There are three prerequisites for development of the autoimmune disease type 1 diabetes (T1D). First, β cell-reactive T cells need to be activated; second, the response needs to be proinflammatory; and finally, immune regulation of autoreactive responses must fail. Here, we describe our current understanding of the cell types and immune mechanisms involved in each of these steps leading to T1D. Novel findings regarding β cell involvement in its own destruction, the importance of the microbiota for instruction of the immune system, and recent data from studies in T1D patients are discussed. In addition, we summarise therapeutic approaches to T1D, and how these relate to the immune mechanisms involved in disease development.
Collapse
Affiliation(s)
- Maja Wållberg
- Department of Pathology, University of Cambridge, Tennis Court Rd, Cambridge CB21QP, UK.
| | | |
Collapse
|
16
|
Gitelman SE, Gottlieb PA, Rigby MR, Felner EI, Willi SM, Fisher LK, Moran A, Gottschalk M, Moore WV, Pinckney A, Keyes-Elstein L, Aggarwal S, Phippard D, Sayre PH, Ding L, Bluestone JA, Ehlers MR. Antithymocyte globulin treatment for patients with recent-onset type 1 diabetes: 12-month results of a randomised, placebo-controlled, phase 2 trial. Lancet Diabetes Endocrinol 2013; 1:306-16. [PMID: 24622416 PMCID: PMC6489466 DOI: 10.1016/s2213-8587(13)70065-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Type 1 diabetes results from T-cell-mediated destruction of β cells. Findings from preclinical studies and pilot clinical trials suggest that antithymocyte globulin (ATG) might be effective for reducing this autoimmune response. We assessed the safety and efficacy of rabbit ATG in preserving islet function in participants with recent-onset type 1 diabetes, and report here our 12-month results. METHODS For this phase 2, randomised, placebo-controlled, clinical trial, we enrolled patients with recent-onset type 1 diabetes, aged 12-35 years, and with a peak C-peptide of 0.4 nM or greater on mixed meal tolerance test from 11 sites in the USA. We used a computer generated randomisation sequence to randomly assign patients (2:1, with permuted-blocks of size three or six and stratified by study site) to receive either 6.5 mg/kg ATG or placebo over a course of four days. All participants were masked and initially managed by an unmasked drug management team, which managed all aspects of the study until month 3. Thereafter, to maintain masking for diabetes management throughout the remainder of the study, participants received diabetes management from an independent, masked study physician and nurse educator. The primary endpoint was the baseline-adjusted change in 2-h area under the curve C-peptide response to mixed meal tolerance test from baseline to 12 months. Analyses were by intention to treat. This is a planned interim analysis of an on-going trial that will run for 24 months of follow-up. This study is registered with ClinicalTrials.gov, number NCT00515099. FINDINGS Between Sept 10, 2007, and June 1, 2011, we screened 154 individuals, randomly allocating 38 to ATG and 20 to placebo. We recorded no between-group difference in the primary endpoint: participants in the ATG group had a mean change in C-peptide area under the curve of -0.195 pmol/mL (95% CI -0.292 to -0.098) and those in the placebo group had a mean change of -0.239 pmol/mL (-0.361 to -0.118) in the placebo group (p=0.591). All except one participant in the ATG group had both cytokine release syndrome and serum sickness, which was associated with a transient rise in interleukin-6 and acute-phase proteins. Acute T cell depletion occurred in the ATG group, with slow reconstitution over 12 months. However, effector memory T cells were not depleted, and the ratio of regulatory to effector memory T cells declined in the first 6 months and stabilised thereafter. ATG-treated patients had 159 grade 3-4 adverse events, many associated with T-cell depletion, compared with 13 in the placebo group, but we detected no between-group difference in incidence of infectious diseases. INTERPRETATION Our findings suggest that a brief course of ATG does not result in preservation of β-cell function 12 months later in patients with new-onset type 1 diabetes. Generalised T-cell depletion in the absence of specific depletion of effector memory T cells and preservation of regulatory T cells seems to be an ineffective treatment for type 1 diabetes.
Collapse
Affiliation(s)
| | | | - Mark R Rigby
- Indiana University and Riley Children's Hospital, Indianapolis, Indianapolis, IN, USA
| | | | - Steven M Willi
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lynda K Fisher
- Children's Hospital of Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | - Linna Ding
- National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | | | | | | |
Collapse
|
17
|
Jeker LT, Bour-Jordan H, Bluestone JA. Breakdown in peripheral tolerance in type 1 diabetes in mice and humans. Cold Spring Harb Perspect Med 2013; 2:a007807. [PMID: 22393537 DOI: 10.1101/cshperspect.a007807] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 1 Diabetes (T1D), also called juvenile diabetes because of its classically early onset, is considered an autoimmune disease targeting the insulin-producing β cells in the pancreatic islets of Langerhans. T1D reflects a loss of tolerance to tissue self-antigens caused by defects in both central tolerance, which aims at eliminating potentially autoreactive lymphocytes developing in the thymus, and peripheral tolerance, which normally controls autoreactive T cells that escaped the thymus. Like in other autoimmune diseases, the mechanisms leading to T1D are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in the breakdown of peripheral tolerance. In this article, we discuss the contribution of these factors in the development of the autoimmune response targeting pancreatic islets in T1D and the therapeutic strategies currently being explored to correct these defects.
Collapse
Affiliation(s)
- Lukas T Jeker
- UCSF Diabetes Center, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
18
|
Schneider DA, Kretowicz AM, von Herrath MG. Emerging immune therapies in type 1 diabetes and pancreatic islet transplantation. Diabetes Obes Metab 2013. [PMID: 23194064 DOI: 10.1111/dom.12046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In type 1 diabetes (T1D) the immune system attacks insulin-producing pancreatic β-cells. Unfortunately, our ability to curb this pathogenic autoimmune response in a disease- and organ-specific manner is still very limited due to the inchoate understanding of the exact nature and the kinetics of the immunological pathomechanisms that lead to T1D. None of the clinical immune interventions thus far, which focused primarily on new-onset disease, were successful in producing lasting remission or curbing recurrent autoimmunity. However, these studies do provide us access to a tremendous amount of clinical data and specimens, which will aid us in revising our therapeutical approaches and defining the highly needed paradigm shift in T1D immunotherapy. Analysing the foundation and the results of the most current T1D immunotherapeutic trials, this article gives an outlook for future directions of the field.
Collapse
Affiliation(s)
- D A Schneider
- Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
19
|
von Herrath M, Peakman M, Roep B. Progress in immune-based therapies for type 1 diabetes. Clin Exp Immunol 2013; 172:186-202. [PMID: 23574316 DOI: 10.1111/cei.12085] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2013] [Indexed: 01/10/2023] Open
Abstract
Immune-based therapies that prevent type 1 diabetes or preserve metabolic function remaining at diagnosis have become a major objective for funding agencies and international trial consortia, and receive backing from notable patient advocate groups. The development of immune-based therapeutic strategies in this arena requires a careful balancing of the risks of the therapy against the potential benefits, because many individuals are diagnosed or identified as being at increased risk of disease in early childhood, a period when manipulation of the developing immune system should be undertaken with caution. In addition, a therapy exists (daily insulin injection) that is life-saving in the acute stages of disease and can be used effectively over a lifetime as maintenance. Conversely, the disease is increasing in incidence; is peaking in ever-younger age groups; carries significant risk of increased morbidity and early mortality; and remains difficult to manage effectively in many settings. With these issues in mind, in this article we review progress towards immune-based strategies for this chronic autoimmune disease.
Collapse
Affiliation(s)
- M von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | | |
Collapse
|
20
|
CHEN WENHAO, XIE AINI, CHAN LAWRENCE. Mechanistic basis of immunotherapies for type 1 diabetes mellitus. Transl Res 2013; 161:217-29. [PMID: 23348026 PMCID: PMC3602320 DOI: 10.1016/j.trsl.2012.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/07/2012] [Accepted: 12/28/2012] [Indexed: 01/10/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease for which there is no cure. The pancreatic beta cells are the source of insulin that keeps blood glucose normal. When susceptible individuals develop T1D, their beta cells are destroyed by autoimmune T lymphocytes and no longer produce insulin. T1D patients therefore depend on daily insulin injections for survival. Gene therapy in T1D aims at the induction of new islets to replace those that have been destroyed by autoimmunity. A major goal of T1D research is to restore functional beta cell mass while eliminating diabetogenic T cells in the hope of achieving insulin independence. Multiple therapeutic strategies for the generation of new beta cells have been under intense investigations. However, newly formed beta cells would be immediately destroyed by diabetogenic T cells. Therefore, successful islet induction therapy must be supported by potent immunotherapy that will protect the newly formed beta cells. Herein, we will summarize the current information on immunotherapies that aim at modifying T cell response to beta cells. We will first outline the immune mechanisms that underlie T1D development and progression and review the scientific background and rationale for specific modes of immunotherapy. Numerous clinical trials using antigen-specific strategies and immune-modifying drugs have been published, though most have proved too toxic or have failed to provide long-term beta cell protection. To develop an effective immunotherapy, there must be a continued effort on defining the molecular basis that underlies T cell response to pancreatic islet antigens in T1D.
Collapse
Affiliation(s)
- WENHAO CHEN
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA 77030
| | - AINI XIE
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA 77030
| | - LAWRENCE CHAN
- Diabetes Research Center, Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine and Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, USA 77030
| |
Collapse
|
21
|
Barcala Tabarrozzi AE, Castro CN, Dewey RA, Sogayar MC, Labriola L, Perone MJ. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol 2013; 171:135-46. [PMID: 23286940 DOI: 10.1111/cei.12019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting β cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant β cell mass and to increase β cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM.
Collapse
Affiliation(s)
- A E Barcala Tabarrozzi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires
| | | | | | | | | | | |
Collapse
|
22
|
Ehlers MR, Nepom GT. Immune-directed therapy for type 1 diabetes at the clinical level: the Immune Tolerance Network (ITN) experience. Rev Diabet Stud 2012; 9:359-71. [PMID: 23804273 DOI: 10.1900/rds.2012.9.359] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Reestablishing immune tolerance in type 1 diabetes (T1D), a chronic autoimmune disease, is a major goal. The Immune Tolerance Network (ITN) has initiated eight clinical trials of immunomodulatory therapies in recent-onset T1D over the past decade. Results have been mixed in terms of clinical efficacy, but the studies have provided valuable mechanistic insight that are enhancing our understanding of the disease and guiding the design of future trials. Trials of non-Fc-binding anti-CD3 mAbs have revealed that modulation of this target leads to partial responses, and ITN's AbATE trial led to identification of a robust responder group that could be distinguished from non-responders by baseline metabolic and immunologic features. A pilot study of the combination of IL-2 and rapamycin gave the first demonstration that frequency and function of regulatory T cells (Tregs) can be enhanced in T1D subjects, although the therapy triggered the activation of effectors with transient β-cell dysfunction. Similarly, therapy with anti-thymocyte globulin led to substantial lymphocyte depletion, but also to the activation of the acute-phase response with no clinical benefit during preliminary analyses. These and other results provide mechanistic tools that can be used as biomarkers for safety and efficacy in future trials. Furthermore, our results, together with those of other organizations, notably TrialNet, delineate the roles of the major components of the immune response in T1D. This information is setting the stage for future combination therapy trials. The development of disease-relevant biomarkers will also enable the implementation of innovative trial designs, notably adaptive trials, which will increase efficiencies in terms of study duration and sample size, and which will expedite the conduct of trials in which there are uncertainties about dose response and effect size.
Collapse
Affiliation(s)
- Mario R Ehlers
- Clinical Trials Group, Immune Tolerance Network, San Francisco, CA, USA.
| | | |
Collapse
|
23
|
Xia CQ, Chernatynskaya AV, Wasserfall CH, Wan S, Looney BM, Eisenbeis S, Williams J, Clare-Salzler MJ, Atkinson MA. Anti-thymocyte globulin (ATG) differentially depletes naïve and memory T cells and permits memory-type regulatory T cells in nonobese diabetic mice. BMC Immunol 2012; 13:70. [PMID: 23237483 PMCID: PMC3547787 DOI: 10.1186/1471-2172-13-70] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/24/2012] [Indexed: 12/28/2022] Open
Abstract
Background ATG has been employed to deplete T cells in several immune-mediated conditions. However, whether ATG administration affects naïve and memory T cell differently is largely unknown. The context and purpose of the study In this study, we assessed how murine ATG therapy affected T cell subsets in NOD mice, based on their regulatory and naïve or memory phenotype, as well as its influence on antigen-specific immune responses. Results Peripheral blood CD4+ and CD8+ T cells post-ATG therapy declined to their lowest levels at day 3, while CD4+ T cells returned to normal levels more rapidly than CD8+ T cells. ATG therapy failed to eliminate antigen-primed T cells. CD4+ T cell responses post-ATG therapy skewed to T helper type 2 (Th2) and possibly IL-10-producing T regulatory type 1 (Tr1) cells. Intriguingly, Foxp3+ regulatory T cells (Tregs) were less sensitive to ATG depletion and remained at higher levels following in vivo recovery compared to controls. Of note, the frequency of Foxp3+ Tregs with memory T cell phenotype was significantly increased in ATG-treated animals. Conclusion ATG therapy may modulate antigen-specific immune responses through inducing memory-like regulatory T cells as well as other protective T cells such as Th2 and IL-10-producing Tr1 cells.
Collapse
Affiliation(s)
- Chang-Qing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chiang JL, Haller MJ, Schatz DA. Update on global intervention studies in type 1 diabetes. Endocrinol Metab Clin North Am 2012; 41:695-712. [PMID: 23099265 DOI: 10.1016/j.ecl.2012.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Remarkable progress has been made in strategies to arrest pancreatic β-cell destruction in type 1 diabetes. Although knowledge of the disease has increased, a safe therapeutic intervention to reverse or prevent it remains elusive. The interaction of genes, immune system, and environment result in a complex disease process that has delayed hopes for a cure. Several well-designed prevention and intervention studies have aspired to test potentially efficacious and safe therapies. This article updates the principles used to design prevention and intervention trials, reviews clinical trials, addresses controversial issues, and provides a framework for future efforts to interdict this condition.
Collapse
Affiliation(s)
- Jane L Chiang
- Division of Endocrinology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
25
|
Bluestone JA, Bour-Jordan H. Current and future immunomodulation strategies to restore tolerance in autoimmune diseases. Cold Spring Harb Perspect Biol 2012; 4:4/11/a007542. [PMID: 23125012 DOI: 10.1101/cshperspect.a007542] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Autoimmune diseases reflect a breakdown in self-tolerance that results from defects in thymic deletion of potentially autoreactive T cells (central tolerance) and in T-cell intrinsic and extrinsic mechanisms that normally control potentially autoreactive T cells in the periphery (peripheral tolerance). The mechanisms leading to autoimmune diseases are multifactorial and depend on a complex combination of genetic, epigenetic, molecular, and cellular elements that result in pathogenic inflammatory responses in peripheral tissues driven by self-antigen-specific T cells. In this article, we describe the different checkpoints of tolerance that are defective in autoimmune diseases as well as specific events in the autoimmune response which represent therapeutic opportunities to restore long-term tolerance in autoimmune diseases. We present evidence for the role of different pathways in animal models and the therapeutic strategies targeting these pathways in clinical trials in autoimmune diseases.
Collapse
Affiliation(s)
- Jeffrey A Bluestone
- UCSF Diabetes Center, University of California at San Francisco, 94143, USA.
| | | |
Collapse
|
26
|
Gan MJ, Albanese-O'Neill A, Haller MJ. Type 1 diabetes: current concepts in epidemiology, pathophysiology, clinical care, and research. Curr Probl Pediatr Adolesc Health Care 2012; 42:269-91. [PMID: 23046732 DOI: 10.1016/j.cppeds.2012.07.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by a combination of genetic and environmental triggers resulting in lymphocytic infiltration of pancreatic islets, destruction of beta cells, and lifelong dependency on exogenous insulin. Although T1D is prevalent (1 in 300) and its incidence is steadily increasing worldwide (3% per year), the exact gene-environment interactions precipitating the disease remain unknown. Living with T1D is challenging for patients, families, and caregivers. Because of the relative paucity of pediatric endocrinologists, general pediatricians and other subspecialists may occasionally be faced with the task of managing diabetes-related complaints. Herein, we provide a comprehensive review of the natural history, pathophysiology, and contemporary management of T1D. In addition, recent advances in T1D research are discussed.
Collapse
Affiliation(s)
- Mary Joyce Gan
- Department of Pediatrics, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
27
|
Chatenoud L, Warncke K, Ziegler AG. Clinical immunologic interventions for the treatment of type 1 diabetes. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a007716. [PMID: 22908194 DOI: 10.1101/cshperspect.a007716] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Type 1 diabetes is an autoimmune disease, hence the rationale for immunotherapy to halt disease progression. Based on knowledge gained from other autoimmune diseases and from transplantation, the first immunointervention trials used immunosuppressive drugs, e.g., cyclosporin, in patients with recently diagnosed type 1 diabetes. Although remarkable, the effect vanished following drug withdrawal. Efforts were then devoted to devise strategies to induce/restore self-tolerance and avoid chronic immunosuppression. Various approaches were identified from work in spontaneous models of autoimmune diabetes, including the use of β-cell autoantigens and monoclonal antibodies directed at relevant immune molecules such as costimulatory ligands, T-cell receptor molecules such as CD3, and B cells. Phase II and phase III trials were launched, results of which are now available. Although the endeavor is challenging, the experience gained indicates that immunotherapy appears as the real hope of inducing long-term remission of the disease provided the treatment is started early and that protocols are adapted based on lessons from the past.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université Paris Descartes, INSERM Unité 1013, Hôpital Necker Enfants Malades, Paris, France.
| | | | | |
Collapse
|
28
|
Gu W, Hu J, Wang W, Li L, Tang W, Sun S, Cui W, Ye L, Zhang Y, Hong J, Zhu D, Ning G. Diabetic ketoacidosis at diagnosis influences complete remission after treatment with hematopoietic stem cell transplantation in adolescents with type 1 diabetes. Diabetes Care 2012; 35:1413-9. [PMID: 22723579 PMCID: PMC3379609 DOI: 10.2337/dc11-2161] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine if autologous nonmyeloablative hematopoietic stem cell transplantation (AHSCT) was beneficial for type 1 diabetic adolescents with diabetic ketoacidosis (DKA) at diagnosis. RESEARCH DESIGN AND METHODS We enrolled 28 patients with type 1 diabetes, aged 14-30 years, in a prospective AHSCT phase II clinical trial. HSCs were harvested from the peripheral blood after pretreatment consisting of a combination of cyclophosphamide and antithymocyte globulin. Changes in the exogenous insulin requirement were observed and serum levels of HbA(1c), C-peptide, and anti-glutamic acid decarboxylase antibody were measured before and after the AHSCT. RESULTS After transplantation, complete remission (CR), defined as insulin independence, was observed in 15 of 28 patients (53.6%) over a mean period of 19.3 months during a follow-up ranging from 4 to 42 months. The non-DKA patients achieved a greater CR rate than the DKA patients (70.6% in non-DKA vs. 27.3% in DKA, P = 0.051). In the non-DKA group, the levels of fasting C-peptide, peak value during oral glucose tolerance test (C(max)), and area under C-peptide release curve during oral glucose tolerance test were enhanced significantly 1 month after transplantation and remained high during the 24-month follow-up (all P < 0.05). In the DKA group, significant elevation of fasting C-peptide levels and C(max) levels was observed only at 18 and 6 months, respectively. There was no mortality. CONCLUSIONS We have performed AHSCT in 28 patients with type 1 diabetes. The data show AHSCT to be an effective long-term treatment for insulin dependence that achieved a greater efficacy in patients without DKA at diagnosis.
Collapse
Affiliation(s)
- Weiqiong Gu
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Endocrine and Metabolism Diseases, Endocrine and Metabolic E-Institutes of Shanghai Universities and Key Laboratory for Endocrinology and Metabolism of Chinese Health Ministry, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
de Oliveira GLV, Malmegrim KCR, Ferreira AF, Tognon R, Kashima S, Couri CEB, Covas DT, Voltarelli JC, de Castro FA. Up-regulation of fas and fasL pro-apoptotic genes expression in type 1 diabetes patients after autologous haematopoietic stem cell transplantation. Clin Exp Immunol 2012; 168:291-302. [PMID: 22519592 DOI: 10.1111/j.1365-2249.2012.04583.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by T cell-mediated destruction of pancreatic β cells, resulting in insulin deficiency and hyperglycaemia. Recent studies have described that apoptosis impairment during central and peripheral tolerance is involved in T1D pathogenesis. In this study, the apoptosis-related gene expression in T1D patients was evaluated before and after treatment with high-dose immunosuppression followed by autologous haematopoietic stem cell transplantation (HDI-AHSCT). We also correlated gene expression results with clinical response to HDI-AHSCT. We observed a decreased expression of bad, bax and fasL pro-apoptotic genes and an increased expression of a1, bcl-x(L) and cIAP-2 anti-apoptotic genes in patients' peripheral blood mononuclear cells (PBMCs) compared to controls. After HDI-AHSCT, we found an up-regulation of fas and fasL and a down-regulation of anti-apoptotic bcl-x(L) genes expression in post-HDI-AHSCT periods compared to pre-transplantation. Additionally, the levels of bad, bax, bok, fasL, bcl-x(L) and cIAP-1 genes expression were found similar to controls 2 years after HDI-AHSCT. Furthermore, over-expression of pro-apoptotic noxa at 540 days post-HDI-AHSCT correlated positively with insulin-free patients and conversely with glutamic acid decarboxylase autoantibodies (GAD65) autoantibody levels. Taken together, the results suggest that apoptosis-related genes deregulation in patients' PBMCs might be involved in breakdown of immune tolerance and consequently contribute to T1D pathogenesis. Furthermore, HDI-AHSCT modulated the expression of some apoptotic genes towards the levels similar to controls. Possibly, the expression of these apoptotic molecules could be applied as biomarkers of clinical remission of T1D patients treated with HDI-AHSCT therapy.
Collapse
Affiliation(s)
- G L V de Oliveira
- School of Pharmaceutical Sciences, University of São Paulo, Department of Clinical Analysis, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gallagher MP, Goland RS, Greenbaum CJ. Making progress: preserving beta cells in type 1 diabetes. Ann N Y Acad Sci 2012; 1243:119-34. [PMID: 22211897 DOI: 10.1111/j.1749-6632.2011.06321.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The clinical care of patients with type 1 diabetes (T1D) has greatly improved over the past few decades; however, it remains impossible to completely normalize blood sugar utilizing currently available tools. Research is underway with a goal to improve the care and, ultimately, to cure T1D by preserving beta cells. This review will outline the progress that has been made in trials aimed at preserving insulin secretion in T1D by modifying the immune assault on the pancreatic beta cell. Although not yet ready for clinical use, successful trials have been conducted in new-onset T1D that demonstrated utility of three experimental agents with disparate modes of action (anti-T cell, anti-B cell, and costimulation blockade) to preserve insulin secretion. In contrast, prevention studies have so far failed to produce positive results but have shown that such studies are feasible and have identified new promising agents for study.
Collapse
Affiliation(s)
- Mary Pat Gallagher
- Naomi Berrie Diabetes Center, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | | | |
Collapse
|
31
|
Vargova L, Zacharovova K, Dovolilova E, Vojtova L, Saudek F. Immunoregulatory Effect of Anti-thymocyte Globulin Monotherapy on Peripheral Lymphoid Tissues of Non-obese Diabetic Mice. Transplant Proc 2011; 43:3277-80. [DOI: 10.1016/j.transproceed.2011.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- L Vargova
- Diabetes Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
32
|
Battaglia M, Roncarolo MG. Immune intervention with T regulatory cells: past lessons and future perspectives for type 1 diabetes. Semin Immunol 2011; 23:182-94. [PMID: 21831659 DOI: 10.1016/j.smim.2011.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/10/2011] [Indexed: 01/11/2023]
Abstract
In type 1 diabetes (T1D), insulin-producing pancreatic β-cells are attacked and destroyed by the immune system. Although man-made insulin is life-saving, it is not a cure and it cannot prevent long-term complications. In addition, most T1D patients would do almost anything to achieve release from the burden of daily glucose monitoring and insulin injection. Despite the formation of very large and promising clinical trials, a means to prevent/cure T1D in humans remains elusive. This has led to an increasing interest in the possibility of using T cells with regulatory properties (Treg cells) as a biological therapy to preserve and restore tolerance to self-antigens. In the present review we will attempt to consolidate learning from the past and to describe what we now believe could in the future become a successful Treg-cell based immune intervention in T1D.
Collapse
Affiliation(s)
- Manuela Battaglia
- San Raffaele Diabetes Research Institute, via Olgettina 58, 20132 Milan, Italy.
| | | |
Collapse
|
33
|
Current state of type 1 diabetes immunotherapy: incremental advances, huge leaps, or more of the same? Clin Dev Immunol 2011; 2011:432016. [PMID: 21785616 PMCID: PMC3139873 DOI: 10.1155/2011/432016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 04/28/2011] [Indexed: 01/09/2023]
Abstract
Thus far, none of the preclinically successful and promising immunomodulatory agents for type 1 diabetes mellitus (T1DM) has conferred stable, long-term insulin independence to diabetic patients. The majority of these immunomodulators are humanised antibodies that target immune cells or cytokines. These as well as fusion proteins and inhibitor proteins all share varying adverse event occurrence and severity. Other approaches have included intact putative autoantigens or autoantigen peptides. Considerable logistical outlays have been deployed to develop and to translate humanised antibodies targeting immune cells, cytokines, and cytokine receptors to the clinic. Very recent phase III trials with the leading agent, a humanised anti-CD3 antibody, call into question whether further development of these biologics represents a step forward or more of the same. Combination therapies of one or more of these humanised antibodies are also being considered, and they face identical, if not more serious, impediments and safety issues. This paper will highlight the preclinical successes and the excitement generated by phase II trials while offering alternative possibilities and new translational avenues that can be explored given the very recent disappointment in leading agents in more advanced clinical trials.
Collapse
|
34
|
Waldron-Lynch F, Herold KC. Immunomodulatory therapy to preserve pancreatic β-cell function in type 1 diabetes. Nat Rev Drug Discov 2011; 10:439-52. [DOI: 10.1038/nrd3402] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Sharabi A, Mozes E. Harnessing regulatory T cells for the therapy of lupus and other autoimmune diseases. Immunotherapy 2011; 1:385-401. [PMID: 20635958 DOI: 10.2217/imt.09.2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Regulatory T cells (Tregs) maintain immunological homeostasis and prevent autoimmunity. The depletion or functional alteration of Tregs may lead to the development of autoimmune diseases. Tregs consist of different subpopulations of cells, of which CD4(+)CD25(+)Foxp3(+) cells are the most well characterized. However, CD8 Tregs also constitute a major cell population that has been shown to play an important role in autoimmune diseases. This review will discuss the role of Tregs in autoimmune diseases in general and specifically in systemic lupus erythematosus (SLE). SLE is a multisystem autoimmune disease characterized by the production of autoantibodies against nuclear components and by the deposition of immune complexes in the kidneys as well as in other organs. Abnormalities in Tregs were reported in SLE patients and in animal models of the disease. Current treatment of SLE is based on immunosuppressive drugs that are nonspecific and may cause adverse effects. Therefore, the development of novel, specific, side effect-free therapeutic means that will induce functional Tregs is a most desirable goal. Our group and others have designed and utilized tolerogenic peptides that ameliorate SLE manifestations in murine models. Here, we demonstrate the role of CD4 and CD8 Tregs, as well as the interaction between the two subsets of cells and the mechanism of action of the tolerogenic peptides. We also discuss their therapeutic potential for the treatment of SLE.
Collapse
Affiliation(s)
- Amir Sharabi
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
36
|
Van Belle TL, Coppieters KT, Von Herrath MG. Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiol Rev 2011; 91:79-118. [DOI: 10.1152/physrev.00003.2010] [Citation(s) in RCA: 673] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease in which destruction or damaging of the beta-cells in the islets of Langerhans results in insulin deficiency and hyperglycemia. We only know for sure that autoimmunity is the predominant effector mechanism of T1D, but may not be its primary cause. T1D precipitates in genetically susceptible individuals, very likely as a result of an environmental trigger. Current genetic data point towards the following genes as susceptibility genes: HLA, insulin, PTPN22, IL2Ra, and CTLA4. Epidemiological and other studies suggest a triggering role for enteroviruses, while other microorganisms might provide protection. Efficacious prevention of T1D will require detection of the earliest events in the process. So far, autoantibodies are most widely used as serum biomarker, but T-cell readouts and metabolome studies might strengthen and bring forward diagnosis. Current preventive clinical trials mostly focus on environmental triggers. Therapeutic trials test the efficacy of antigen-specific and antigen-nonspecific immune interventions, but also include restoration of the affected beta-cell mass by islet transplantation, neogenesis and regeneration, and combinations thereof. In this comprehensive review, we explain the genetic, environmental, and immunological data underlying the prevention and intervention strategies to constrain T1D.
Collapse
Affiliation(s)
- Tom L. Van Belle
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Ken T. Coppieters
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Matthias G. Von Herrath
- Center for Type 1 Diabetes Research, La Jolla Institute for Allergy and Immunology, La Jolla, California
| |
Collapse
|
37
|
Boettler T, von Herrath M. Immunotherapy of type 1 diabetes — How to rationally prioritize combination therapies in T1D. Int Immunopharmacol 2010; 10:1491-5. [DOI: 10.1016/j.intimp.2010.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 07/14/2010] [Accepted: 07/15/2010] [Indexed: 02/06/2023]
|
38
|
Haller MJ, Atkinson MA, Schatz DA. Efforts to prevent and halt autoimmune beta cell destruction. Endocrinol Metab Clin North Am 2010; 39:527-39. [PMID: 20723818 PMCID: PMC2925042 DOI: 10.1016/j.ecl.2010.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite improvements in understanding of the natural history of type 1 diabetes (T1D), an intervention capable of consistently and safely preventing or reversing the disease has not been developed. The inability to cure this disorder is largely because of the complex pathophysiology of T1D, continued struggles to identify its precise etiologic triggers, and voids in understanding of the immunologic mechanisms that specifically target pancreatic beta cells. Rapidly improving technologies for managing T1D require critical discussions about equipoise, especially when considering interventions deemed high risk in terms of their safety. This article reviews the conceptual basis for prevention versus intervention trials in settings of T1D, past experiences of clinical trials studying these purposes, and controversial issues regarding disease interdiction, and seeks to provide a roadmap for future efforts to cure this disorder.
Collapse
Affiliation(s)
- Michael J Haller
- Division of Endocrinology, Department of Pediatrics, University of Florida, PO Box 100296, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
39
|
The potential utility of bone marrow or umbilical cord blood transplantation for the treatment of type I diabetes mellitus. Biol Blood Marrow Transplant 2010; 17:455-64. [PMID: 20541025 DOI: 10.1016/j.bbmt.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/01/2010] [Indexed: 12/11/2022]
Abstract
The pathology of type 1 diabetes mellitus (T1D) involves the autoimmune destruction or malfunction of pancreatic β cells, leading to a lack of insulin. The absence of insulin is life-threatening, necessitating daily hormone injections from an exogenous source. Insulin injections do not adequately mimic the precise regulation of β cells on glucose homeostasis, however, eventually leading to complications in diabetic patients. There currently is no definitive cure for T1D. Pancreas transplantation, although quite successful, is an invasive intervention that is restricted to patients with advanced complications, requires constant immunosuppression, and is severely limited by donor availability. Recent progress in human islet cell isolation and immunosuppressive protocols has restored euglycemia in patients who received islet cells from 2 or 3 pancreas donors. However, because of the scarcity of cadaver pancreata and the low yield of islet cells obtained by the procedure, not all patients have access to this surgical intervention. Thus, other therapeutic approaches are needed to arrest immune aggression, preserve β cell mass, and provide efficient replacement. In this sense, bone marrow and umbilical cord blood transplantation are promising possibilities that merit exploration. In this review, we summarize multiple strategies that have been proposed and tested for potential therapeutic benefit in patients with T1D.
Collapse
|
40
|
Luo X, Herold KC, Miller SD. Immunotherapy of type 1 diabetes: where are we and where should we be going? Immunity 2010; 32:488-99. [PMID: 20412759 DOI: 10.1016/j.immuni.2010.04.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/22/2010] [Accepted: 03/31/2010] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by destruction of insulin-producing pancreatic beta cells. Many broad-based immunosuppressive and antigen-specific immunoregulatory therapies have been and are currently being evaluated for their utility in the prevention and treatment of T1D. Looking forward, this review discusses the potential therapeutic use of antigen-specific tolerance strategies, including tolerance induced by "tolerogenic" antigen-presenting cells pulsed with diabetogenic antigens and transfer of induced or expanded regulatory T cells, which have demonstrated efficacy in nonobese diabetic (NOD) mice. Depending on the time of therapeutic intervention in the T1D disease process, antigen-specific immunoregulatory strategies may be employed as monotherapies, or in combination with short-term tolerance-promoting immunoregulatory drugs and/or drugs promoting differentiation of insulin-producing beta cells from endogenous progenitors.
Collapse
Affiliation(s)
- Xunrong Luo
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
41
|
Couri CEB, Voltarelli JC. Autologous stem cell transplantation for early type 1 diabetes mellitus. Autoimmunity 2010; 41:666-72. [PMID: 18958750 DOI: 10.1080/08916930802200208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is the result of the autoimmune response against pancreatic insulin producing beta cells. This autoimmune response begins months or even years before the first presentation of signs and symptoms of hyperglycemia and at the time of clinical diagnosis near 30% of beta-cell mass still remains. In daily clinical practice, the main therapeutic option for T1DM is multiple subcutaneous insulin injections that are shown to promote tight glucose control and reduce much of diabetic chronic complications, especially microvascular complications. Another important aspect related to long-term complications of diabetes is that patients with initially larger beta-cell mass suffer less microvascular complications and less hypoglycemic events than those patients with small beta-cell mass. In face of this, beta-cell preservation is another important target in the management of type 1 diabetes and its related complications. For many years, various immunomodulatory regimens were tested aiming at blocking autoimmunity against beta-cell mass and at promoting beta-cell preservation, mainly in secondary prevention trials. In this review, we summarize some of the most important studies involving beta-cell preservation by immunomodulation and discuss our preliminary data on autologous nonmyeloablative hematopoietic stem cell transplantation in newly-diagnosed T1DM.
Collapse
Affiliation(s)
- Carlos Eduardo Barra Couri
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | |
Collapse
|
42
|
Abstract
The use of stem cells in regenerative medicine holds great promise for the cure of many diseases, including type 1 diabetes mellitus (T1DM). Any potential stem-cell-based cure for T1DM should address the need for beta-cell replacement, as well as control of the autoimmune response to cells which express insulin. The ex vivo generation of beta cells suitable for transplantation to reconstitute a functional beta-cell mass has used pluripotent cells from diverse sources, as well as organ-specific facultative progenitor cells from the liver and the pancreas. The most effective protocols to date have produced cells that express insulin and have molecular characteristics that closely resemble bona fide insulin-secreting cells; however, these cells are often unresponsive to glucose, a characteristic that should be addressed in future protocols. The use of mesenchymal stromal cells or umbilical cord blood to modulate the immune response is already in clinical trials; however, definitive results are still pending. This Review focuses on current strategies to obtain cells which express insulin from different progenitor sources and highlights the main pathways and genes involved, as well as the different approaches for the modulation of the immune response in patients with T1DM.
Collapse
Affiliation(s)
- Cristina Aguayo-Mazzucato
- Section of Islet Transplantation and Cell Biology, Joslin Diabetes Center, Harvard Medical School, 1 Joslin Place, Boston, MA 02215, USA
| | | |
Collapse
|
43
|
Milanetti F, Abinun M, Voltarelli JC, Burt RK. Autologous hematopoietic stem cell transplantation for childhood autoimmune disease. Pediatr Clin North Am 2010; 57:239-71. [PMID: 20307720 DOI: 10.1016/j.pcl.2009.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Autologous and allogeneic hematopoietic stem cell transplantation (HSCT) can be used in the management of patients with autoimmune disorders. Experience gained in adults has helped to better define the conditioning regimens required and appropriate selection of patients who are most likely to benefit from autologous HSCT. The field has been shifting toward the use of safer and less intense nonmyeloablative regimens used earlier in the disease course before patients accumulate extensive irreversible organ damage. This article reviews the experience of using autologous HSCT in treating the most common childhood autoimmune and rheumatic diseases, primarily juvenile idiopathic arthritis, systemic lupus erythematosus, and diabetes mellitus.
Collapse
Affiliation(s)
- Francesca Milanetti
- Division of Immunotherapy, Department of Medicine, Northwestern University Feinberg School of Medicine, 750 North Lake Shore Drive, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
44
|
Couri CEB, Voltarelli JC. Stem cell therapy for type 1 diabetes mellitus: a review of recent clinical trials. Diabetol Metab Syndr 2009; 1:19. [PMID: 19835616 PMCID: PMC2768673 DOI: 10.1186/1758-5996-1-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 10/16/2009] [Indexed: 11/25/2022] Open
Abstract
Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials. Herein we summarize recent data about beta cell regeneration, different ways of immune intervention and what is being employed in type 1 diabetic patients with regard to stem cell repertoire to promote regeneration and/or preservation of beta cell mass.The Diabetes Control and Complications Trial (DCCT) was a 7-year longitudinal study that demonstrated the importance of the intensive insulin therapy when compared to conventional treatment in the development of chronic complications in patients with type 1 diabetes mellitus (T1DM). This study also demonstrated another important issue: there is a reverse relationship between C-peptide levels (endogenous indicator of insulin secretion) chronic complications - that is, the higher the C-peptide levels, the lower the incidence of nephropathy, retinopathy and hypoglycemia. From such data, beta cell preservation has become an additional target in the management of T1DM 1.
Collapse
Affiliation(s)
- Carlos Eduardo Barra Couri
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Júlio César Voltarelli
- Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Parker MJ, Xue S, Alexander JJ, Wasserfall CH, Campbell-Thompson ML, Battaglia M, Gregori S, Mathews CE, Song S, Troutt M, Eisenbeis S, Williams J, Schatz DA, Haller MJ, Atkinson MA. Immune depletion with cellular mobilization imparts immunoregulation and reverses autoimmune diabetes in nonobese diabetic mice. Diabetes 2009; 58:2277-84. [PMID: 19628781 PMCID: PMC2750219 DOI: 10.2337/db09-0557] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE The autoimmune destruction of beta-cells in type 1 diabetes results in a loss of insulin production and glucose homeostasis. As such, an immense interest exists for the development of therapies capable of attenuating this destructive process through restoration of proper immune recognition. Therefore, we investigated the ability of the immune-depleting agent antithymocyte globulin (ATG), as well as the mobilization agent granulocyte colony-stimulating factor (GCSF), to reverse overt hyperglycemia in the nonobese diabetic (NOD) mouse model of type 1 diabetes. RESEARCH DESIGN AND METHODS Effects of each therapy were tested in pre-diabetic and diabetic female NOD mice using measurements of glycemia, regulatory T-cell (CD4+CD25+Foxp3+) frequency, insulitis, and/or beta-cell area. RESULTS Here, we show that combination therapy of murine ATG and GCSF was remarkably effective at reversing new-onset diabetes in NOD mice and more efficacious than either agent alone. This combination also afforded durable reversal from disease (>180 days postonset) in animals having pronounced hyperglycemia (i.e., up to 500 mg/dl). Additionally, glucose control improved over time in mice subject to remission from type 1 diabetes. Mechanistically, this combination therapy resulted in both immunological (increases in CD4-to-CD8 ratios and splenic regulatory T-cell frequencies) and physiological (increase in the pancreatic beta-cell area, attenuation of pancreatic inflammation) benefits. CONCLUSIONS In addition to lending further credence to the notion that combination therapies can enhance efficacy in addressing autoimmune disease, these studies also support the concept for utilizing agents designed for other clinical applications as a means to expedite efforts involving therapeutic translation.
Collapse
Affiliation(s)
- Matthew J. Parker
- Department of Pathology, University of Florida, Gainesville, Florida
| | - Song Xue
- Department of Pathology, University of Florida, Gainesville, Florida
| | - John J. Alexander
- Department of Pathology, University of Florida, Gainesville, Florida
| | | | | | - Manuela Battaglia
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), Milan, Italy
| | | | - Sihong Song
- Department of Pharmaceutics, University of Florida, Gainesville, Florida
| | | | | | | | - Desmond A. Schatz
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Michael J. Haller
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Mark A. Atkinson
- Department of Pathology, University of Florida, Gainesville, Florida
- Department of Pediatrics, University of Florida, Gainesville, Florida
- Corresponding author: Mark Atkinson,
| |
Collapse
|
46
|
Rewers M, Gottlieb P. Immunotherapy for the prevention and treatment of type 1 diabetes: human trials and a look into the future. Diabetes Care 2009; 32:1769-82. [PMID: 19794002 PMCID: PMC2752911 DOI: 10.2337/dc09-0374] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marian Rewers
- From the Barbara Davis Center, University of Colorado, Health Sciences Center, Denver, Colorado
| | - Peter Gottlieb
- From the Barbara Davis Center, University of Colorado, Health Sciences Center, Denver, Colorado
| |
Collapse
|
47
|
An update on preventive and regenerative therapies in diabetes mellitus. Pharmacol Ther 2008; 121:317-31. [PMID: 19168093 DOI: 10.1016/j.pharmthera.2008.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 01/09/2023]
Abstract
Type 1A (immune-mediated) and type 2 diabetes mellitus are two of the most common severe chronic illnesses, affecting over 230 million people worldwide with an estimated global prevalence of 5.1%. Although type 1 and type 2 diabetes differ greatly in modes of pathogenesis, these illnesses share a common pathology and consequences characterized by loss of functional beta-cell mass and subsequent dysregulation of carbohydrate and lipid metabolism. Since therapy for diabetes and the associated complications poses enormous public health and economic burdens, novel preventive and regenerative therapies have emerged in the past decade with the aim to preserve beta-cell mass and delay the onset of diabetes. The goal of this review is to provide a comprehensive overview of current efforts in the fight against diabetes, and attempts to document all strategies that have emerged in clinical studies within the past 25 years. First, strategies to identify individuals at risk, ranging from whole-genome scans to autoantibody screening, will be discussed. Second, novel approaches to prevent or delay the onset of disease will be covered. Particular focus is given on emerging strategies for individuals at risk for type 1 diabetes that target T-cell regulation and induction of tolerance, while new pharmaceutical concepts in combination with lifestyle interventions are discussed within the scope of type 2 diabetes prevention. Lastly, important efforts to halt disease progression with emphasis on beta-cell regeneration are presented.
Collapse
|
48
|
Abstract
Diabetes is a disorder characterized by beta-cell loss or exhaustion and insulin deficiency. At present, knowledge is lacking on the underlying causes and for the therapeutic recovery of the beta-cell mass. A better understanding of diabetes pathogenesis could be obtained through exact monitoring of the fate of beta-cells under disease and therapy conditions. This could pave the way for a new era of intervention by islet replacement and regeneration regimens. Monitoring the beta-cell mass requires a reliable method for noninvasive in vivo imaging. Such a method is not available at present due to the lack of a beta-cell-specific contrast agent. The only existing method to monitor islet cells in vivo consists of labeling islet transplants with iron nanoparticles prior to transplantation and visualization of the transplanted islets by magnetic resonance imaging (MRI). Therefore, accurate assessment of the native beta-cell mass is still limited to autopsy studies. Endeavors to find a biological structure specific for beta-cells led to the discovery of potential candidates that have been tested for noninvasive imaging. Among them are the ligand to the vesicular monoamine transporter type 2 (VMAT-2), which is called dihydrotetrabenazine (DTBZ), antibodies to zinc transporter (ZnT-8) and the monoclonal antibody IC2. While DTBZ and antibodies to ZnT-8 showed binding activities to more than beta-cells, the anti-IC2 monoclonal antibody showed binding properties exclusively to insulin-producing beta-cells. This effect was demonstrated in many previous investigations, and has been further substantiated more recently. Thus, at present, IC2 seems to be the only useful marker for noninvasive functional imaging of native beta-cells. Experiments with a radioisotope-chelated IC2 structure on pancreas ex vivo showed that the tracer specifically bound to the beta-cell surface and could be detected by nuclear imaging. In the near future, these promising findings may offer a new way to monitor the beta-cell mass in vivo under disease and therapy conditions so that we can learn more about diabetes pathogenesis and options for disease prevention.
Collapse
Affiliation(s)
- Frantisek Saudek
- Diabetes Center, Institute for Clinical and Experimental Medicine, Videnska 1958/9, 14021 Prague 4, Czech Republic
| | | | | |
Collapse
|
49
|
Barra Couri CE, Foss-Freitas MC, Foss MC, Voltarelli JC. β-cell regeneration to treat Type 1 diabetes mellitus. Expert Rev Endocrinol Metab 2008; 3:51-60. [PMID: 30743785 DOI: 10.1586/17446651.3.1.51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Type 1 diabetes mellitus (T1DM) results from the autoimmune destruction of the insulin-producing pancreatic β-cells. The autoimmune response begins years before the presentation of hyperglycemic symptoms. At the time of clinical diagnosis, less than 30% of β-cell mass still remains. The conventional therapeutic option to T1DM is daily insulin injections, which is shown to promote tight glucose control and reduce the majority of chronic diabetic complications. Subgroup analysis of the Diabetes Control and Complication Trial showed another important aspect related to long-term complications of diabetes, that is, patients with initially higher serum levels of C-peptide with sustained levels over the subsequent years suffered less microvascular complications and less hypoglycemic events than those patients with low or undetected C-peptide levels. In face of this, β-cell preservation is another important target in the management of T1DM and its related complications. Along the years, many efforts toward the identification of precursors of β-cells have been made, not only with the aim of understanding the physiology of β-cell preservation, but also as a potential source of β-cell replacement. In this review, we summarize the most important studies related to probable precursor cells implied in the process of regeneration, and the results of various immunomodulatory regimens aiming at blocking autoimmunity against pancreatic β-cells and at promoting β-cell preservation. Finally, we comment on the future perspective related to stem cell therapy in T1DM.
Collapse
Affiliation(s)
- Carlos Eduardo Barra Couri
- a Division of Endocrinology, Department of Clinical Medicine, School of Medicine of Ribeirão Preto. University of São Paulo, CEP 14051-140, Ribeirão Preto, Brazil
| | - Maria Cristina Foss-Freitas
- a Division of Endocrinology, Department of Clinical Medicine, School of Medicine of Ribeirão Preto. University of São Paulo, CEP 14051-140, Ribeirão Preto, Brazil
| | - Milton César Foss
- a Division of Endocrinology, Department of Clinical Medicine, School of Medicine of Ribeirão Preto. University of São Paulo, CEP 14051-140, Ribeirão Preto, Brazil
| | - Júlio César Voltarelli
- b Bone Marrow Transplantation Unit, Department of Clinical Medicine, School of Medicine of Ribeirão Preto. University of São Paulo, CEP 14048-900, Ribeirão Preto, Brazil.
| |
Collapse
|
50
|
Lytton SD, Denton CP, Nutzenberger AM. Treatment of Autoimmune Disease with Rabbit Anti-T Lymphocyte Globulin: Clinical Efficacy and Potential Mechanisms of Action. Ann N Y Acad Sci 2007; 1110:285-96. [PMID: 17911443 DOI: 10.1196/annals.1423.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The rabbit anti-T lymphocyte globulins (rATGs) are immune-suppressive anti-T cell agents with beneficial effects in solid organ and hematological transplantation. The present review evaluates the potential mechanisms of rATGs and their impact on pilot and exploratory studies of diffuse cutaneous systemic sclerosis (scleroderma-SSc), inclusion body myositis (IBM), vasculitis, and type 1 diabetes mellitus (T1DM). The rATGs are associated with improvements in well-defined parameters of clinical autoimmunity: insulin usage, tissue inflammation, and systemic organ functions. Meta-analysis of a retrospective database of SSc, N = 196 and two prospective randomized pilot studies; IBM, N = 11 and T1DM, N = 17 shows a two- to ninefold increase in the relative response to treatments with intravenous infusions of rATG. The rATGs deplete T cells and are associated with increases in the percentage of CD25+ T cell subsets. This may underlie the apparent long-lasting immunomodulation associated with these agents. The future optimization of rATG adjunct therapy requires statistically powered-controlled prospective trials of rATG dose-finding and timing of administration. The potential mechanisms of rATGs:depletion of autoreactive T cells, generation CDCD25+Foxp3+ regulatory T cells (Tregs), and the acquisition of regulatory immune cell functions, need to be examined in patients prior to rATG infusion and at time intervals following rATG treatment to identify those mechanisms relevant to the improvement of their clinical outcome.
Collapse
Affiliation(s)
- Simon D Lytton
- SeraDiaLogistics, Hertlingstr 1, 81545 München, Germany.
| | | | | |
Collapse
|