1
|
Dolińska E, Wiśniewski P, Pietruska M. Periodontal Molecular Diagnostics: State of Knowledge and Future Prospects for Clinical Application. Int J Mol Sci 2024; 25:12624. [PMID: 39684335 DOI: 10.3390/ijms252312624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Periodontitis leads to immunologically mediated loss of periodontium and, if untreated, can result in tooth loss. Periodontal diseases are the most prevalent in the world and have a very strong impact on patients' well-being and general health. Their treatment generates enormous costs. Given the above, precise, prompt, and predictive diagnosis of periodontal disease is of paramount importance for clinicians. The aim of the study was to summarize the state-of-the-art knowledge of molecular periodontal diagnostics and the utility of its clinical application. There is a great need to have diagnostic tests that not only describe the periodontal destruction that has occurred in the tissues but also allow clinicians to detect disease at a subclinical level before the changes occur. A test that would enable clinicians to follow the course of the disease and detect areas prone to exacerbation could be used to evaluate the effectiveness of ongoing periodontal therapies. Unfortunately, there is no such diagnostic method yet. A hopeful prospect is molecular diagnostics. There are numerous studies on biomarkers of periodontal disease. Point-of-care tests are also emerging. There are possibilities for processing large biological datasets (omics data). However, all of the above have a minor role in the overall single-patient diagnostics process. Despite advances in microbiological, molecular, and genetic research, the basis of periodontal diagnosis is still clinical examination enriched by the evaluation of radiological images.
Collapse
Affiliation(s)
- Ewa Dolińska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Patryk Wiśniewski
- Student's Research Group at the Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - Małgorzata Pietruska
- Department of Periodontal and Oral Mucosa Diseases, Medical University of Bialystok, ul. Waszyngtona 13, 15-269 Bialystok, Poland
| |
Collapse
|
2
|
Tanwar H, Gnanasekaran JM, Allison D, Chuang LS, He X, Aimetti M, Baima G, Costalonga M, Cross RK, Sears C, Mehandru S, Cho J, Colombel JF, Raufman JP, Thumbigere-Math V. Unravelling the Oral-Gut Axis: Interconnection Between Periodontitis and Inflammatory Bowel Disease, Current Challenges, and Future Perspective. J Crohns Colitis 2024; 18:1319-1341. [PMID: 38417137 PMCID: PMC11324343 DOI: 10.1093/ecco-jcc/jjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024]
Abstract
As the opposite ends of the orodigestive tract, the oral cavity and the intestine share anatomical, microbial, and immunological ties that have bidirectional health implications. A growing body of evidence suggests an interconnection between oral pathologies and inflammatory bowel disease [IBD], implying a shift from the traditional concept of independent diseases to a complex, reciprocal cycle. This review outlines the evidence supporting an 'oral-gut' axis, marked by a higher prevalence of periodontitis and other oral conditions in IBD patients and vice versa. We present an in-depth examination of the interconnection between oral pathologies and IBD, highlighting the shared microbiological and immunological pathways, and proposing a 'multi-hit' hypothesis in the pathogenesis of periodontitis-mediated intestinal inflammation. Furthermore, the review underscores the critical need for a collaborative approach between dentists and gastroenterologists to provide holistic oral-systemic healthcare.
Collapse
Affiliation(s)
- Himanshi Tanwar
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | | | - Devon Allison
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
| | - Ling-shiang Chuang
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuesong He
- Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| | - Mario Aimetti
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Giacomo Baima
- Department of Surgical Sciences, C.I.R. Dental School, University of Turin, Turin, Italy
| | - Massimo Costalonga
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Raymond K Cross
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cynthia Sears
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judy Cho
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology & Hepatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vivek Thumbigere-Math
- Division of Periodontology, University of Maryland School of Dentistry, Baltimore, MD, USA
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
3
|
Miguel MMV, Shaddox LM. Grade C Molar-Incisor Pattern Periodontitis in Young Adults: What Have We Learned So Far? Pathogens 2024; 13:580. [PMID: 39057807 PMCID: PMC11279578 DOI: 10.3390/pathogens13070580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Grade C molar-incisor pattern periodontitis (C-MIP) is a disease that affects specific teeth with an early onset and aggressive progression. It occurs in systemically healthy patients, mostly African descendants, at an early age, with familial involvement, minimal biofilm accumulation, and minor inflammation. Severe and rapidly progressive bone loss is observed around the first molars and incisors. This clinical condition has been usually diagnosed in children and young adults with permanent dentition under 30 years of age. However, this disease can also affect the primary dentition, which is not as frequently discussed in the literature. Radiographic records have shown that most patients diagnosed in the permanent dentition already presented disease signs in the primary dentition. A hyperresponsive immunological profile is observed in local (gingival crevicular fluid-GCF) and systemic environments. Siblings have also displayed a heightened inflammatory profile even without clinical signs of disease. A. actinomycetemcomitans has been classified as a key pathogen in C-MIP in both dentitions. Scaling and root planning associated with systemic antibiotics is the current gold standard to treat C-MIP, leading to GCF biomarker reduction, some systemic inflammatory response modulation and microbiome profile changes to a healthy-site profile. Further studies should focus on other possible disease-contributing risk factors.
Collapse
Affiliation(s)
- Manuela Maria Viana Miguel
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA;
| | - Luciana Macchion Shaddox
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA;
- Department of Oral Health Practice, Periodontology Division, College of Dentistry, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
4
|
Laforgia A, Inchingolo AD, Piras F, Colonna V, Giorgio RV, Carone C, Rapone B, Malcangi G, Inchingolo AM, Inchingolo F, Palermo A, Dipalma G. Therapeutic Strategies and Genetic Implications for Periodontal Disease Management: A Systematic Review. Int J Mol Sci 2024; 25:7217. [PMID: 39000324 PMCID: PMC11242487 DOI: 10.3390/ijms25137217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The objective of this review is to identify the microbiological alterations caused by various therapy modalities by critically analyzing the current findings. We limited our search to English-language papers published between 1 January 2004 and 7 May 2024 in PubMed, Scopus, and Web of Science that were relevant to our topic. In the search approach, the Boolean keywords "microbio*" AND "periodontitis" were used. A total of 5152 papers were obtained from the databases Web of Science (2205), PubMed (1793), and Scopus (1154). This resulted in 3266 articles after eliminating duplicates (1886), and 1411 entries were eliminated after their titles and abstracts were examined. The qualitative analysis of the 22 final articles is included in this study. Research on periodontal disease shows that periodontitis alters the oral microbiome and increases antibiotic resistance. Treatments like scaling and root planing (SRP), especially when combined with minocycline, improve clinical outcomes by reducing harmful bacteria. Comprehensive mechanical debridement with antibiotics, probiotics, EMD with bone grafts, and other adjunctive therapies enhances periodontal health. Personalized treatment strategies and advanced microbial analyses are crucial for effective periodontal management and antibiotic resistance control.
Collapse
Affiliation(s)
- Alessandra Laforgia
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Valeria Colonna
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Roberto Vito Giorgio
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Claudio Carone
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Andrea Palermo
- College of Medicine and Dentistry, CoMD Birmingham Campus, Birmingham B4 6BN, UK
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
5
|
Isakov E, Kalbaev A, Lobanchenko O, Isakov B. Study of various therapeutic strategies for the treatment of rapidly progressive periodontitis in experimental models. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101681. [PMID: 37951498 DOI: 10.1016/j.jormas.2023.101681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/09/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Rapidly progressive periodontitis is a serious disease that leads to rapid degradation of periodontal tissues and can lead to tooth loss at a relatively young age. The purpose of this article is to study the effectiveness of various modern methods in the treatment of this disease on an experimental model. A model of the studied pathology was created - a rat with a destroyed circular ligament of the tooth and a ligature applied to the base of the teeth. 5 study groups were formed, where various treatment methods were used: the appointment of soft food, the combination of intramuscular administration of vitamin C and prednisolone, the combination of tocilizumab and dexamethasone, and the combination of photodynamic therapy and tocilizumab. Histological material was taken from experimental animals and evaluated. The best results were noted in the group of photodynamic therapy and tocilizumab, where there was a better histological picture with minimal signs of the inflammatory process and satisfactory indicators of clinical dynamics, this approach showed high efficiency in resolving inflammation in the area of the affected foci. The 2nd place was taken by the combination of tocilizumab and dexamethasone, in this group, accelerated positive dynamics were noted compared to other groups, but the results of histological examination were worse than in group 1. In 3rd place - the combination of ascorbic acid with dexamethasone and the appointment of soft food, where there were almost no differences in terms of histological results and clinical picture compared to the control group. The combination of tocilizumab with photodynamic therapy is promising in the treatment of patients with rapidly progressive periodontitis, but additional human studies are required to include this type of treatment in clinical guidelines.
Collapse
Affiliation(s)
- Erkinbek Isakov
- Department of Orthopaedic Dentistry, I.K. Akhunbaev Kyrgyz State Medical Academy, 92 Akhunbaev Str., Bishkek 720020, Kyrgyz Republic.
| | - Abibilla Kalbaev
- Department of Orthopaedic Dentistry, I.K. Akhunbaev Kyrgyz State Medical Academy, 92 Akhunbaev Str., Bishkek 720020, Kyrgyz Republic
| | - Olga Lobanchenko
- Department of Rheumatology, I.K. Akhunbaev Kyrgyz State Medical Academy, 92 Akhunbaev Str., Bishkek 720020, Kyrgyz Republic
| | - Bakyt Isakov
- Department of Pediatric Dentistry, I.K. Akhunbaev Kyrgyz State Medical Academy, 92 Akhunbaev Str., Bishkek 720020, Kyrgyz Republic
| |
Collapse
|
6
|
Tabaa M, Adatowovor R, Shabila A, Morford L, Dawson D, Harrison P, Aukhil I, Huang H, Stromberg A, Goncalves J, Shaddox LM. Pattern of grade C molar-incisor pattern periodontitis in families. J Periodontol 2023; 94:811-822. [PMID: 36370032 DOI: 10.1002/jper.22-0317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND The aim of this study was to determine the clinical and inflammatory response patterns for individual siblings diagnosed with grade C molar-incisor pattern periodontitis (C-MIP) and between the related siblings within families. METHODS Sixty-nine siblings within 28 families with moderate-to-severe C-MIP were included. Clinical parameters were evaluated for symmetry regarding the affected type of teeth, side and/or arch, and bone loss pattern. The protein concentrations from in vitro whole blood cultures for 14 different lipopolysaccharide-stimulated inflammatory markers were correlated with the extent and severity of disease, within an individual sibling and among siblings within a family. RESULTS A similar disease pattern was observed among all siblings and within families. The most common teeth affected were first molars and incisors or first molars only within the permanent dentition and only molars within the primary dentition (p < 0.001). Symmetry involving molars was higher than in incisors in siblings, regardless of arch or side affected (p = 0.020). Arc-shape/vertical bone defects were the most common (p = 0.006) and higher symmetry was found for these defects in the permanent dentition (p = 0.005). Positive correlations were found between age, clinical attachment loss, and percent affected sites with several inflammatory markers. The inflammatory responses for several inflammatory markers were correlated within and among families (p < 0.050). Specifically, the intraclass correlation coefficient within families was highest (>0.5) for interleukin (IL)-8, IL-6, and IL-10. CONCLUSIONS Families with C-MIP presented similar patterns of disease. The level of an inflammatory response to bacteria seemed to play a role in the extent and severity of this disease, exemplified by the high degree of correlation in these families.
Collapse
Affiliation(s)
- Mostafa Tabaa
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Reuben Adatowovor
- Biostatistics, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Avesta Shabila
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Lorri Morford
- Division of Orthodontics, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Dolph Dawson
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Peter Harrison
- Department of Periodontology, Dublin School of Dentistry, Dublin, Ireland
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Arnold Stromberg
- Statistics, College of Arts and Science, University of Kentucky, Lexington, Kentucky, USA
| | - Jussara Goncalves
- Division of Periodontology and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| | - Luciana M Shaddox
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, USA
- Division of Periodontology and Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
7
|
Luchian I, Budală DG, Baciu ER, Ursu RG, Diaconu-Popa D, Butnaru O, Tatarciuc M. The Involvement of Photobiology in Contemporary Dentistry-A Narrative Review. Int J Mol Sci 2023; 24:ijms24043985. [PMID: 36835395 PMCID: PMC9961259 DOI: 10.3390/ijms24043985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Light is an emerging treatment approach that is being used to treat many diseases and conditions such as pain, inflammation, and wound healing. The light used in dental therapy generally lies in visible and invisible spectral regions. Despite many positive results in the treatment of different conditions, this therapy still faces some skepticism, which has prevented its widespread adoption in clinics. The main reason for this skepticism is the lack of comprehensive information about the molecular, cellular, and tissular mechanisms of action, which underpin the positive effects of phototherapy. However, there is currently promising evidence in support of the use of light therapy across a spectrum of oral hard and soft tissues, as well as in a variety of important dental subspecialties, such as endodontics, periodontics, orthodontics, and maxillofacial surgery. The merging of diagnostic and therapeutic light procedures is also seen as a promising area for future expansion. In the next decade, several light technologies are foreseen as becoming integral parts of modern dentistry practice.
Collapse
Affiliation(s)
- Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dana Gabriela Budală
- Department of Prosthodontics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Elena-Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (D.G.B.); (E.-R.B.)
| | - Ramona Gabriela Ursu
- Department of Preventive Medicine and Interdisciplinarity (IX)—Microbiology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iaşi, Romania
| | - Diana Diaconu-Popa
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Monica Tatarciuc
- Department of Dental Technology, Faculty of Dental Medicine, Grigore T. Popa University of Medicine and Pharmacy, 700115 Iași, Romania
| |
Collapse
|
8
|
Abstract
Periodontitis, being a multifactorial disorder is found to be the most common oral disease denoted by the inflammation of gingiva and resorption of tooth supporting alveolar bone. The disease being closely linked with fast life style and determined by unhygienic behavioural factors, the internal milieu of oral cavity and formation of plaque biofilm on the dental and gingival surfaces. Porphyromonas gingivalis, being the major keystone pathogen of the periodontal biofilm evokes host immune responses that causes damage of gingival tissues and resorption of bones. The biofilm associated microbial community progressively aggravates the condition resulting in chronic inflammation and finally tooth loss. The disease often maintains bidirectional relationship with different systemic, genetic, autoimmune, immunodeficiency diseases and even psychological disorders. The disease can be diagnosed and predicted by various genetic, radiographic and computer-aided design (CAD) & computer-aided engineering (CAE) and artificial neural network (ANN). The elucidation of genetic background explains the inheritance of the disease. The therapeutic approaches commonly followed include mechanical removal of dental plaque with the use of systemic antibiotics. Awareness generation amongst local people, adoption of good practice of timely tooth brushing preferably with fluoride paste or with nanoconjugate pastes will reduce the chance of periodontal plaque formation. Modern tissue engineering technology like 3D bioprinting of periodontal tissue may help in patient specific flawless regeneration of tooth structures and associated bones.
Collapse
Affiliation(s)
- Rina Rani Ray
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal, Haringhata, Nadia, India.
- Department of Biotechnology and Bioinformatics, Sambalpur University, FVHM+9QP, Jyoti Vihar, Burla, Odisha, 768019, India.
| |
Collapse
|
9
|
Chinipardaz Z, Zhong JM, Yang S. Regulation of LL-37 in Bone and Periodontium Regeneration. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101533. [PMID: 36294968 PMCID: PMC9604716 DOI: 10.3390/life12101533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
The goal of regenerative therapy is to restore the structure and function of the lost tissues in the fields of medicine and dentistry. However, there are some challenges in regeneration therapy such as the delivery of oxygen and nutrition, and the risk of infection in conditions such as periodontitis, osteomyelitis, etc. Leucine leucine-37 (LL-37) is a 37-residue, amphipathic, and helical peptide found only in humans and is expressed throughout the body. It has been shown to induce neovascularization and vascular endothelial growth factor (VEGF) expression. LL-37 also stimulates the migration and differentiation of mesenchymal stem cells (MSCs). Recent studies have shown that LL-37 plays an important role in the innate defense system through the elimination of pathogenic microbes and the modulation of the host immune response. LL-37 also manifests other functions such as promoting wound healing, angiogenesis, cell differentiation, and modulating apoptosis. This review summarizes the current studies on the structure, expression, and function of LL-37 and highlights the contributions of LL-37 to oral cavity, periodontium, and bone regeneration.
Collapse
Affiliation(s)
- Zahra Chinipardaz
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica M. Zhong
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
| | - Shuying Yang
- Department of Basic and Translation Sciences, University of Pennsylvania, 240 South 40th Street, Levy 437, Philadelphia, PA 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Innovation & Precision Dentistry, School of Dental Medicine, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Penn Center for Musculoskeletal Disorders, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
10
|
Claesson R, Johansson A, Belibasakis GN. Clinical laboratory diagnostics in dentistry: Application of microbiological methods. FRONTIERS IN ORAL HEALTH 2022; 3:983991. [PMID: 36160119 PMCID: PMC9493047 DOI: 10.3389/froh.2022.983991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/10/2022] [Indexed: 12/05/2022] Open
Abstract
Diagnosis and treatment in dentistry are based on clinical examination of the patients. Given that the major oral diseases are of microbial biofilm etiology, it can be expected that performing microbiological analysis on samples collected from the patient could deliver supportive evidence to facilitate the decision-making process by the clinician. Applicable microbiological methods range from microscopy, to culture, to molecular techniques, which can be performed easily within dedicated laboratories proximal to the clinics, such as ones in academic dental institutions. Periodontal and endodontic infections, along with odontogenic abscesses, have been identified as conditions in which applied clinical microbiology may be beneficial for the patient. Administration of antimicrobial agents, backed by microbiological analysis, can yield more predictable treatment outcomes in refractory or early-occurring forms of periodontitis. Confirming a sterile root canal using a culture-negative sample during endodontic treatment may ensure the longevity of its outcome and prevent secondary infections. Susceptibility testing of samples obtained from odontogenic abscesses may facilitate the selection of the appropriate antimicrobial treatment to prevent further spread of the infection.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- *Correspondence: Rolf Claesson
| | - Anders Johansson
- Division of Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | - Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
11
|
Hakmi M, Bouricha EM, El Harti J, Amzazi S, Belyamani L, Khanfri JE, Ibrahimi A. Computational modeling and druggability assessment of Aggregatibacter actinomycetemcomitans leukotoxin. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 222:106952. [PMID: 35724475 DOI: 10.1016/j.cmpb.2022.106952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The leukotoxin (LtxA) of Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) is a protein exotoxin belonging to the repeat-in-toxin family (RTX). Numerous studies have demonstrated that LtxA may play a critical role in the pathogenicity of A. actinomycetemcomitans since hyper-leukotoxic strains have been associated with severe disease. Accordingly, considerable effort has been made to elucidate the mechanisms by which LtxA interacts with host cells and induce their death. However, these attempts have been hampered by the unavailability of a tertiary structure of the toxin, which limits the understanding of its molecular properties and mechanisms. In this paper, we used homology and template free modeling algorithms to build the complete tertiary model of LtxA at atomic level in its calcium-bound Holo-state. The resulting model was refined by energy minimization, validated by Molprobity and ProSA tools, and subsequently subjected to a cumulative 600ns of all-atom classical molecular dynamics simulation to evaluate its structural aspects. The druggability of the proposed model was assessed using Fpocket and FTMap tools, resulting in the identification of four putative cavities and fifteen binding hotspots that could be targeted by rational drug design tools to find new ligands to inhibit LtxA activity.
Collapse
Affiliation(s)
- Mohammed Hakmi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - El Mehdi Bouricha
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Jaouad El Harti
- Therapeutic Chemistry Laboratory, Medical Biotechnology Laboratory (MedBiotech), Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Said Amzazi
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Emergency Department, Military Hospital Mohammed V, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Jamal Eddine Khanfri
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco
| | - Azeddine Ibrahimi
- Medical Biotechnology Laboratory (MedBiotech), Bioinova Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Morocco.
| |
Collapse
|
12
|
Wattimena A, Ganesan SM, Kumar PS, Dabdoub SM, Walters JD. An in vitro model for studies of attenuation of antibiotic-inhibited growth of Aggregatibacter actinomycetemcomitans Y4 by polyamines. Mol Oral Microbiol 2021; 36:308-315. [PMID: 34486245 PMCID: PMC9293220 DOI: 10.1111/omi.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 11/30/2022]
Abstract
Polyamines are ubiquitous polycationic molecules that are present in all prokaryotic and eukaryotic cells, and they serve as important modulators of cell growth, stress, and cell proliferation. Polyamines are present at high concentrations in the periodontal pocket and could potentially affect the stress response of periodontal bacteria to antibiotics. The effects of polyamines on inhibition of growth by amoxicillin (AMX), azithromycin (AZM), and doxycycline (DOX) were investigated with the Y4 strain of Aggregatibacter actinomycetemcomitans (Aa). Bacteria were grown in brain heart infusion broth under the following conditions: (1) Aa only, (2) Aa + polyamine mix (1 mM putrescine, 0.4 mM spermidine, and 0.4 mM spermine), (3) Aa + antibiotic, and (4) Aa + antibiotic + polyamines. Growth curve analysis, minimal inhibitory concentration determination, and transcriptomic studies were conducted. The presence of exogenous polyamines produced a small, but significant increase in Aa growth, and polyamines attenuated the inhibitory effects of AMX, AZM, and DOX on growth. Transcriptomic analysis revealed that polyamines upregulate expression of ribosomal biogenesis proteins and small subunits, attenuate the bacterial stress response to antibiotics, and modulate bacterial nutritional pathways in a manner that could potentially increase the virulence of Aa. In summary, the polyamine‐rich environment found in periodontal pockets appears to protect Aa and reduce its susceptibility to several antimicrobial agents in this in vitro model.
Collapse
Affiliation(s)
- Allan Wattimena
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Sukirth M Ganesan
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Purnima S Kumar
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - Shareef M Dabdoub
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| | - John D Walters
- Division of Periodontology, The Ohio State University College of Dentistry, Columbus, Ohio, USA
| |
Collapse
|
13
|
Su CT, Chen CJ, Chen CM, Chen CC, Ma SH, Wu JH. Optical profile: A key determinant of antibacterial efficacy of photodynamic therapy in dentistry. Photodiagnosis Photodyn Ther 2021; 35:102461. [PMID: 34314864 DOI: 10.1016/j.pdpdt.2021.102461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/10/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Periodontal disease effects 20-50% of the population worldwide, posing a global health challenge. It has been reported to be more prevalent among adults. Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) is an important organism associated with localized juvenile periodontitis. Photodynamic therapy (PDT) has been widely utilized for the treatment of periodontal disease; however, the effect of laser (light) profile on the antibacterial efficacy of PDT remains to be established. The quantitative measurement of laser profile is required to confirm the in vitro efficacy of PDT. AIM In the present study, a low cost PDT system comprising of six copper tube waveguides (CTW) was developed to provide more uniform irradiation of the culture plate. METHODS The antibacterial effect of PDT, in combination with 200 μg/mL methylene blue (MB) as photosensitizer and 60 sec of irradiation, was studied on A. actinomycetemcomitans and Streptococcus mutans (S. mutans). In the present case, 660 nm laser guided with unpolished CTW, polished CTW, and optical fiber waveguide (OFW) provided radiant exposure of 0.86, 1.38, and 1.36 J/cm2, respectively, for a 24-well culture plate. RESULTS The designed PDT system provided antimicrobial efficacy of 98% and 91% for A. actinomycetemcomitans and S. mutans, respectively, which was significantly higher as compared to OFW guided PDT. CONCLUSION The results of the study highlighted the importance of laser profile as a key parameter that determines the survival rate of bacteria at the edge of the culture plate. Thus, the dose of PDT at the margin of optical profile is important for antibacterial activity for in vitro evaluation.
Collapse
Affiliation(s)
- Chuan-Tsung Su
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Chun-Ju Chen
- Institute of Oral Science, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan
| | - Chung-Ming Chen
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei City, 10617, Taiwan
| | - Chun-Cheng Chen
- Department of Stomatology, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan; School of Dentistry, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City, 40201, Taiwan
| | - Shih-Hsin Ma
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road., Seatwen District, Taichung City, 40724, Taiwan
| | - Jih-Huah Wu
- Department of Biomedical Engineering, Ming Chuan University, No. 5, Deming Road., Gweishan District, Taoyuan, 33348, Taiwan.
| |
Collapse
|
14
|
Kharitonova M, Vankov P, Abdrakhmanov A, Mamaeva E, Yakovleva G, Ilinskaya O. The composition of microbial communities in inflammatory periodontal diseases in young adults Tatars. AIMS Microbiol 2021; 7:59-74. [PMID: 33659769 PMCID: PMC7921377 DOI: 10.3934/microbiol.2021005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/19/2021] [Indexed: 12/22/2022] Open
Abstract
Host susceptibility and environmental factors are important for the development of gingivitis and periodontitis, but bacterial biofilms attached to the teeth and gingival tissues play a crucial role. We have analyzed and compared the subgingival microbial communities between subjects with dental plaque biofilm-induced generalized chronic gingivitis (CG), localized initial (Stage I) periodontitis (IP) and healthy controls (HC) of young people aged 18-19 years permanently residing in the city of Kazan (Tatarstan, Russia). The results showed that the α-diversity in groups with CG and IP was higher than in the healthy group. In a course of periodontal disease, a decrease in the relative abundance of dominates genera Rothia and Streptococcus was observed along with increase of class TM7-3 (Candidatus Saccharibacteria phylum) representatives. Also, the increase of red complex representatives Porphyromonadeceae, Treponema and Tannerella was detected together with statistically significant increase of Filifactor, Parvimonas, Peptostreptococcaceae, Veillonellaceae, Tissierelaceae and Mogibacteriaceae. Analysis of our data suggests that transition from HC to IP may be accompanied by a decrease in microbial diversity and a reduction in the abundance of family Rs-045 (Candidatus Saccharibacteria phylum), Desulfovibrionaceae Corynebacterium, Campylobacter and Selenomonas in young adults Kazan Tatars.
Collapse
Affiliation(s)
- Maya Kharitonova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Peter Vankov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Airat Abdrakhmanov
- Department of Pediatric Dentistry, Kazan State Medical University, Butlerova Str. 49, Kazan 420012, Russia
| | - Elena Mamaeva
- Department of Pediatric Dentistry, Kazan State Medical University, Butlerova Str. 49, Kazan 420012, Russia
| | - Galina Yakovleva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| | - Olga Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya Str. 18, Kazan 420008, Russia
| |
Collapse
|
15
|
Amado PPP, Kawamoto D, Albuquerque-Souza E, Franco DC, Saraiva L, Casarin RCV, Horliana ACRT, Mayer MPA. Oral and Fecal Microbiome in Molar-Incisor Pattern Periodontitis. Front Cell Infect Microbiol 2020; 10:583761. [PMID: 33117737 PMCID: PMC7578221 DOI: 10.3389/fcimb.2020.583761] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
In order to improve our understanding on the microbial complexity associated with Grade C/molar-incisor pattern periodontitis (GC/MIP), we surveyed the oral and fecal microbiomes of GC/MIP and compared to non-affected individuals (Control). Seven Afro-descendants with GC/MIP and seven age/race/gender-matched controls were evaluated. Biofilms from supra/subgingival sites (OB) and feces were collected and submitted to 16S rRNA sequencing. Aggregatibacter actinomycetemcomitans (Aa) JP2 clone genotyping and salivary nitrite levels were determined. Supragingival biofilm of GC/MIP presented greater abundance of opportunistic bacteria. Selenomonas was increased in subgingival healthy sites of GC/MIP compared to Control. Synergistetes and Spirochaetae were more abundant whereas Actinobacteria was reduced in OB of GC/MIP compared to controls. Aa abundance was 50 times higher in periodontal sites with PD≥ 4 mm of GC/MIP than in controls. GC/MIP oral microbiome was characterized by a reduction in commensals such as Kingella, Granulicatella, Haemophilus, Bergeyella, and Streptococcus and enrichment in periodontopathogens, especially Aa and sulfate reducing Deltaproteobacteria. The oral microbiome of the Aa JP2-like+ patient was phylogenetically distant from other GC/MIP individuals. GC/MIP presented a higher abundance of sulfidogenic bacteria in the feces, such as Desulfovibrio fairfieldensis, Erysipelothrix tonsillarum, and Peptostreptococcus anaerobius than controls. These preliminary data show that the dysbiosis of the microbiome in Afro-descendants with GC/MIP was not restricted to affected sites, but was also observed in supragingival and subgingival healthy sites, as well as in the feces. The understanding on differences of the microbiome between healthy and GC/MIP patients will help in developing strategies to improve and monitor periodontal treatment.
Collapse
Affiliation(s)
- Pâmela Pontes Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dione Kawamoto
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Emmanuel Albuquerque-Souza
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Diego Castillo Franco
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, Brazil.,Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Luciana Saraiva
- Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Renato Corrêa Viana Casarin
- Department of Prosthodontics and Periodontics, Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | | | - Marcia Pinto Alves Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Division of Periodontology, Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
16
|
Velsko IM, Harrison P, Chalmers N, Barb J, Huang H, Aukhil I, Shaddox L. Grade C molar-incisor pattern periodontitis subgingival microbial profile before and after treatment. J Oral Microbiol 2020; 12:1814674. [PMID: 33062199 PMCID: PMC7534306 DOI: 10.1080/20002297.2020.1814674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: This study evaluated the influence of periodontal therapy on the microbiological profile of individuals with Grade C Molar-Incisor Pattern Periodontitis (C/MIP). Methods: Fifty-three African-American participants between the ages of 5–25, diagnosed with C/MIP were included. Patients underwent full mouth mechanical debridement with systemic antibiotics (metronidazole 250 mg + amoxicillin 500 mg, tid, 7 days). Subgingival samples were collected from a diseased and a healthy site from each individual prior to treatment and at 3, 6, 12, 18 and 24 months after therapy from the same sites. Samples were subjected to a 16S rRNA gene based-microarray. Results: Treatment was effective in reducing the main clinical parameters of disease. Aggregatibacter actinomycetemcomitans (A.a.) was the strongest species associated with diseased sites. Other species associated with diseased sites were Treponema lecithinolyticum and Tannerella forsythia. Species associated with healthy sites were Rothia dentocariosa/mucilaginosa, Eubacterium yurii, Parvimonas micra, Veillonella spp., Selenomonas spp., and Streptococcus spp. Overall, treatment was effective in strongly reducing A.a. and other key pathogens, as well as increasing health-associated species. These changes were maintained for at least 6 months. Conclusions:Treatment reduced putative disease-associated species, particularly A.a., and shifted the microbial profile to more closely resemble a healthy-site profile. (Clinicaltrials.gov registration #NCT01330719).
Collapse
Affiliation(s)
- Irina M Velsko
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Peter Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Periodontology, Trinity College, Dublin, Ireland
| | | | - Jennifer Barb
- Clinical Center Nursing Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Luciana Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Center for Oral Health Research, University of Kentucky College of Dentistry, Lexington, KY, USA
| |
Collapse
|
17
|
Nibali L, Sousa V, Davrandi M, Spratt D, Alyahya Q, Dopico J, Donos N. Differences in the periodontal microbiome of successfully treated and persistent aggressive periodontitis. J Clin Periodontol 2020; 47:980-990. [PMID: 32557763 DOI: 10.1111/jcpe.13330] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 05/23/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022]
Abstract
AIMS The primary aim of this investigation was to analyse the periodontal microbiome in patients with aggressive periodontitis (AgP) following treatment. METHODS Sixty-six AgP patients were recalled on average 7 years after completion of active periodontal treatment and had subgingival plaque samples collected and processed for 16S rRNA gene sequencing analyses. RESULTS Of 66 participants, 52 showed persistent periodontal disease, while 13 participants were considered as "successfully treated AgP" (no probing pocket depths >4 mm) and 1 was fully edentulous. Genera associated with persistent generalized disease included Actinomyces, Alloprevotella, Capnocytophaga, Filifactor, Fretibacterium, Fusobacterium, Leptotrichia, Mogibacterium, Saccharibacteria [G-1], Selenomonas and Treponema. "Successfully treated" patients harboured higher proportions of Haemophilus, Rothia, and Lautropia and of Corynebacterium, Streptococcus and Peptidiphaga genera. Overall, patients with persistent generalized AgP (GAgP) revealed higher alpha diversity compared to persistent localized AgP (LAgP) and stable patients (p < .001). Beta diversity analyses revealed significant differences only between stable and persistent GAgP groups (p = .004). CONCLUSION Patients with persistent AgP showed a more dysbiotic subgingival biofilm than those who have been successfully treated. It remains to be established whether such differences were predisposing to disease activity or were a result of a dysbiotic change associated with disease recurrence in the presence of sub-standard supportive periodontal therapy or other patient-related factors.
Collapse
Affiliation(s)
- Luigi Nibali
- Periodontology Unit, Centre for Host Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.,Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Vanessa Sousa
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Mehmet Davrandi
- Microbial Diseases Department, University College London Eastman Dental Institute, London, UK
| | - David Spratt
- Microbial Diseases Department, University College London Eastman Dental Institute, London, UK
| | - Qumasha Alyahya
- Periodontology Unit, University College London Eastman Dental Institute, London, UK
| | - Jose Dopico
- Periodontics Department, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Nikos Donos
- Centre for Oral Immunobiology & Regenerative Medicine & Centre for Oral Clinical Research, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University London, London, UK
| |
Collapse
|
18
|
Montenegro SCL, Retamal-Valdes B, Bueno-Silva B, Duarte PM, Faveri M, Figueiredo LC, Feres M. Do patients with aggressive and chronic periodontitis exhibit specific differences in the subgingival microbial composition? A systematic review. J Periodontol 2020; 91:1503-1520. [PMID: 32233092 DOI: 10.1002/jper.19-0586] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/15/2020] [Accepted: 02/27/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions grouped the diseases previously recognized as chronic (CP) or aggressive (AgP) periodontitis under a single category named periodontitis. The rationale for this decision was the lack of specific patterns of immune-inflammatory response or microbial profiles associated with CP or AgP. However, no previous studies have compiled the results of all studies comparing subgingival microbial data between these clinical conditions. Thus, this systematic review aimed to answer the following focused question: "Do patients with AgP periodontitis present differences in the subgingival microbiota when compared with patients with CP?" METHODS A systematic review was conducted according to the PRISMA statement. The MEDLINE, EMBASE, and Cochrane databases were searched up to June 2019 for studies of any design (except case reports, case series, and reviews) comparing subgingival microbial data from patients with CP and AgP. RESULTS A total of 488 articles were identified and 56 were included. Thirteen studies found Aggregatibacter actinomycetemcomitans elevated in AgP in comparison with CP, while Fusobacterium nucleatum, Parvimonas micra, and Campylobacter rectus were elevated in AgP in a few studies. None of these species were elevated in CP. However, the number of studies not showing statistically significant differences between CP and AgP was always higher than that of studies showing differences. CONCLUSION These results suggested an association of A. actinomycetemcomitans with AgP, but neither this species nor the other species studied to date were unique to or could differentiate between CP and AgP (PROSPERO #CRD42016039385).
Collapse
Affiliation(s)
| | - Belen Retamal-Valdes
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Poliana Mendes Duarte
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil.,Department of Periodontology, School of Advanced Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Marcelo Faveri
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | | | - Magda Feres
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| |
Collapse
|
19
|
Salivary markers of oxidative stress and periodontal pathogens in patients with periodontitis from Santander, Colombia. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:113-124. [PMID: 32463613 PMCID: PMC7449106 DOI: 10.7705/biomedica.5149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 12/31/2022]
Abstract
Introduction: Periodontitis affects more than 20% of the Latin American population. Oxidative markers are associated with greater progression of periodontitis; therefore, its role in pathogenesis should be studied. Objective: To determine the prevalence of the main oral bacteria and viruses associated with periodontitis and estimate the total antioxidant capacity and lipid peroxidation in saliva from patients with periodontitis. Materials and methods: We conducted systemically a cross-sectional study in 101 healthy subjects, 87 of whom had been diagnosed with periodontitis (P), according to the criteria of the Centers of Disease Control and Prevention and the American Academy of Periodontology, and 14 without periodontal pockets as controls (C). In subgingival samples, major viruses and dental pathogenic bacteria were identified using PCR techniques. The levels of total antioxidant capacity and malon-di-aldehyde (MDA) were determined by spectrophotometry in samples of unstimulated saliva. Results: The mean of periodontal depth pocket and clinical attachment loss in patients with periodontitis was 5.6 ± 1.7 and 6.1 ± 3.1 mm, respectively. The most prevalent microorganisms were Aggregatibacter actinomycetemcomitans (32.5%) and Porphyromonas gingivalis (18.6%). The patients from rural areas showed a higher percentage of A. actinomycetemcomitans (urban: 17.9% vs. rural: 48.9%, p=0.0018). In patients with periodontitis, the frequency of EBV, HSV1 & 2, and HCMV genes was 2.3%. Periodontitis patients had higher levels of MDA (P: 2.1 ± 1.5; C: 0.46 ± 0.3 µmol/g protein; p=0.0001) and total antioxidant capacity (P: 0.32 ± 0.2; C: 0.15 ± 0.1 mM; p< 0.0036). Oxidative markers showed no modifications due to the presence of periodontopathic bacteria. Conclusions: Aggregatibacter actinomycetemcomitans was the most prevalent bacteria; its presence did not modify the levels of oxidative markers in the saliva of patients with periodontitis.
Collapse
|
20
|
Fert-Bober J, Darrah E, Andrade F. Insights into the study and origin of the citrullinome in rheumatoid arthritis. Immunol Rev 2019; 294:133-147. [PMID: 31876028 DOI: 10.1111/imr.12834] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of autoantibodies and autoreactive T cells to citrullinated proteins and citrullinating enzymes in patients with rheumatoid arthritis (RA), together with the accumulation of citrullinated proteins in rheumatoid joints, provides substantial evidence that dysregulated citrullination is a hallmark feature of RA. However, understanding mechanisms that dysregulate citrullination in RA has important challenges. Citrullination is a normal process in immune and non-immune cells, which is likely activated by different conditions (eg, inflammation) with no pathogenic consequences. In a complex inflammatory environment such as the RA joint, unique strategies are therefore required to dissect specific mechanisms involved in the abnormal production of citrullinated proteins. Here, we will review current models of citrullination in RA and discuss critical components that, in our view, are relevant to understanding the accumulation of citrullinated proteins in the RA joint, collectively referred to as the RA citrullinome. In particular, we will focus on potential caveats in the study of citrullination in RA and will highlight methods to precisely detect citrullinated proteins in complex biological samples, which is a confirmatory approach to mechanistically link the RA citrullinome with unique pathogenic pathways in RA.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- The Smidt Heart Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
21
|
Sun J, Eberhard J, Glage S, Held N, Voigt H, Schwabe K, Winkel A, Stiesch M. Development of a peri‐implantitis model in the rat. Clin Oral Implants Res 2019; 31:203-214. [DOI: 10.1111/clr.13556] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Jingqing Sun
- Affiliated Hospital of Stomatology School of Medicine Zhejiang University Hangzhou China
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Joerg Eberhard
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
- Faculty of Dentistry University of Sydney Sydney NSW Australia
| | - Silke Glage
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Nadine Held
- Institution for Laboratory Animal Science Hannover Medical School Hannover Germany
| | - Henning Voigt
- Department of Otorhinolaryngology Hannover Medical School Hannover Germany
| | - Kerstin Schwabe
- Department of Neurosurgery Hannover Medical School Hannover Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science Hannover Medical School Hannover Germany
| |
Collapse
|
22
|
Gómez-Bañuelos E, Mukherjee A, Darrah E, Andrade F. Rheumatoid Arthritis-Associated Mechanisms of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J Clin Med 2019; 8:jcm8091309. [PMID: 31454946 PMCID: PMC6780899 DOI: 10.3390/jcm8091309] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/19/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease of unknown etiology characterized by immune-mediated damage of synovial joints and antibodies to citrullinated antigens. Periodontal disease, a bacterial-induced inflammatory disease of the periodontium, is commonly observed in RA and has implicated periodontal pathogens as potential triggers of the disease. In particular, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans have gained interest as microbial candidates involved in RA pathogenesis by inducing the production of citrullinated antigens. Here, we will discuss the clinical and mechanistic evidence surrounding the role of these periodontal bacteria in RA pathogenesis, which highlights a key area for the treatment and preventive interventions in RA.
Collapse
Affiliation(s)
- Eduardo Gómez-Bañuelos
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Amarshi Mukherjee
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Erika Darrah
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Felipe Andrade
- Division of Rheumatology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
23
|
Silva VDO, Pereira LJ, Pasetto S, da Silva MP, Meyers JC, Murata RM. Effects of Monolaurin on Oral Microbe-Host Transcriptome and Metabolome. Front Microbiol 2018; 9:2638. [PMID: 30467497 PMCID: PMC6237204 DOI: 10.3389/fmicb.2018.02638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/16/2018] [Indexed: 11/13/2022] Open
Abstract
The aim of this in vitro study was to evaluate the effects of monolaurin against Aggregatibacter actinomycetemcomitans (Aa) and determine their effects on the host transcriptome and metabolome, using an oral cell/bacteria co-culture dual-chamber model to mimic the human periodontium. For this, the Aa, was applied to cross the monolayer of epithelial keratinocytes (OBA-9) to reach the fibroblasts layer (HGF-1) in the basal chamber. The Monolaurin treatments (25 or 50 μM) were added immediately after the inoculation of the dual-chamber with Aa. After 24 h, the transcriptional factors and metabolites produced were quantified in the remaining cell layers (insert and basal chamber) and in supernatant released from the cells. The genes IL-1α, IL-6, IL-18, and TNF analyzed in HGF-1 concentrations showed a decreased expression when treated with both concentration of Monolaurin. In keratinocytes, the genes IL-6, IL-18, and TNF presented a higher expression and the expression of IL-1α decreased when treated with the two cited concentrations. The production of glycerol and pyruvic acid increased, and the 2-deoxytetronic acid NIST, 4-aminobutyric acid, pinitol and glyceric acid, presented lower concentrations because of the treatment with 25 and/or 50 μM of Monolaurin. Use of monolaurin modulated the immune response and metabolite production when administered for 24 h in a dual-chamber model inoculated with A. actinomycetemcomitans. In summary, this study indicates that monolaurin had antimicrobial activity and modulated the host immune response and metabolite production when administered for 24 h in a dual-chamber model inoculated with A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Viviam de Oliveira Silva
- Department of Veterinary Medicine, Federal University of Lavras, Lavras, Brazil.,Division of Periodontology, Diagnostic Sciences, Dental Hygiene and Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | | | - Silvana Pasetto
- Division of Periodontology, Diagnostic Sciences, Dental Hygiene and Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Maike Paulino da Silva
- Division of Periodontology, Diagnostic Sciences, Dental Hygiene and Biomedical Science, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - Jered Cope Meyers
- Department Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States
| | - Ramiro Mendonça Murata
- Department Foundational Sciences, School of Dental Medicine, East Carolina University, Greenville, NC, United States.,Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| |
Collapse
|
24
|
Ebersole JL, Orraca L, Kensler TB, Gonzalez-Martinez J, Maldonado E, Gonzalez OA. Periodontal disease susceptible matrilines in the Cayo Santiago Macaca mulatta macaques. J Periodontal Res 2018; 54:134-142. [PMID: 30277577 DOI: 10.1111/jre.12610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE AND BACKGROUND The expression of periodontitis, including age of onset, extent, and severity is considered to represent an interaction of the individual's oral microbiome and host response to the microbial challenge that is modified by both genetics and environmental factors. The aim of this study was to determine the distribution of periodontitis in a population of nonhuman primates, to document features of familial distribution that could reflect heritability and transmission of microbes with enhanced virulence. MATERIAL AND METHODS This report presents our findings from evaluation of periodontal disease bone defects in skulls from 569 animals (5-31 years of age) derived from the skeletons of the rhesus monkeys (Macaca mulatta) of Cayo Santiago derived from eight matrilines over 6-9 generations. The distance from the base of alveolar bone to the cemento-enamel junction on 1st /2nd premolars and 1st /2nd molars from all four quadrants was evaluated as a measure of periodontal disease. Additionally, we documented the presence of periodontitis in 79 living descendants within these matrilines. RESULTS The results demonstrated an increased extent and severity of periodontitis with aging across all matrilines. Extensive heterogeneity in disease expression was observed among the animals and this was linked to specific periodontitis susceptible matrilines. Moreover, we identified some matrilines in which the members appeared to show some resistance to more severe disease, even with aging. CONCLUSION Linking these disease variations to multigenerational matriarchal family units supported familial susceptibility of periodontitis. This familial disease relationship was reinforced by the distribution of naturally-occurring periodontitis in the living descendants.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, Nevada
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Terry B Kensler
- Laboratory of Primate Morphology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Elisabeth Maldonado
- Laboratory of Primate Morphology, University of Puerto Rico, San Juan, Puerto Rico
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky.,Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
25
|
Fan X, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Freedman ND, Alekseyenko AV, Wu J, Yang L, Pei Z, Hayes RB, Ahn J. Drinking alcohol is associated with variation in the human oral microbiome in a large study of American adults. MICROBIOME 2018; 6:59. [PMID: 29685174 PMCID: PMC5914044 DOI: 10.1186/s40168-018-0448-x] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/15/2018] [Indexed: 05/25/2023]
Abstract
BACKGROUND Dysbiosis of the oral microbiome can lead to local oral disease and potentially to cancers of the head, neck, and digestive tract. However, little is known regarding exogenous factors contributing to such microbial imbalance. RESULTS We examined the impact of alcohol consumption on the oral microbiome in a cross-sectional study of 1044 US adults. Bacterial 16S rRNA genes from oral wash samples were amplified, sequenced, and assigned to bacterial taxa. We tested the association of alcohol drinking level (non-drinker, moderate drinker, or heavy drinker) and type (liquor, beer, or wine) with overall microbial composition and individual taxon abundance. The diversity of oral microbiota and overall bacterial profiles differed between heavy drinkers and non-drinkers (α-diversity richness p = 0.0059 and β-diversity unweighted UniFrac p = 0.0036), and abundance of commensal order Lactobacillales tends to be decreased with higher alcohol consumption (fold changes = 0.89 and 0.94 for heavy and moderate drinkers, p trend = 0.005 [q = 0.064]). Additionally, certain genera were enriched in subjects with higher alcohol consumption, including Actinomyces, Leptotrichia, Cardiobacterium, and Neisseria; some of these genera contain oral pathogens, while Neisseria can synthesize the human carcinogen acetaldehyde from ethanol. Wine drinkers may differ from non-drinkers in microbial diversity and profiles (α-diversity richness p = 0.048 and β-diversity unweighted UniFrac p = 0.059) after controlling for drinking amount, while liquor and beer drinkers did not. All significant differences between drinkers and non-drinkers remained after exclusion of current smokers. CONCLUSIONS Our results, from a large human study of alcohol consumption and the oral microbiome, indicate that alcohol consumption, and heavy drinking in particular, may influence the oral microbiome composition. These findings may have implications for better understanding the potential role that oral bacteria play in alcohol-related diseases.
Collapse
Affiliation(s)
- Xiaozhou Fan
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
| | - Brandilyn A. Peters
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
| | - Eric J. Jacobs
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA 30303 USA
| | - Susan M. Gapstur
- Epidemiology Research Program, American Cancer Society, 250 Williams Street NW, Atlanta, GA 30303 USA
| | - Mark P. Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Neal D. Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850 USA
| | - Alexander V. Alekseyenko
- Biomedical Informatics Center, Departments of Public Health Sciences and Oral Health Sciences, Program for Human Microbiome Research, Medical University of South Carolina, Charleston, SC 29425 USA
| | - Jing Wu
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
| | - Liying Yang
- Department of Medicine, NYU School of Medicine, 423 East 23rd St, New York, NY 10010 USA
| | - Zhiheng Pei
- NYU Laura and Isaac Perlmutter Cancer Institute, 522 First Avenue, New York, NY 10016 USA
- Department of Pathology, NYU School of Medicine, 550 First Avenue, New York, NY 10016 USA
- Department of Veterans Affairs New York Harbor Healthcare System, New York, NY 10010 USA
| | - Richard B. Hayes
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
- NYU Laura and Isaac Perlmutter Cancer Institute, 522 First Avenue, New York, NY 10016 USA
| | - Jiyoung Ahn
- Department of Population Health, NYU School of Medicine, 650 First Avenue, Room 518, New York, NY 10016 USA
- NYU Laura and Isaac Perlmutter Cancer Institute, 522 First Avenue, New York, NY 10016 USA
| |
Collapse
|
26
|
Liu G, Luan Q, Chen F, Chen Z, Zhang Q, Yu X. Shift in the subgingival microbiome following scaling and root planing in generalized aggressive periodontitis. J Clin Periodontol 2018; 45:440-452. [PMID: 29266363 DOI: 10.1111/jcpe.12862] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Guojing Liu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Qingxian Luan
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Feng Chen
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Zhibin Chen
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| | - Qian Zhang
- Central Laboratory; Peking University School and Hospital of Stomatology; Beijing China
| | - Xiaoqian Yu
- Department of Periodontology; Peking University School and Hospital of Stomatology; Beijing China
| |
Collapse
|
27
|
Ben Lagha A, LeBel G, Grenier D. Dual action of highbush blueberry proanthocyanidins on Aggregatibacter actinomycetemcomitans and the host inflammatory response. Altern Ther Health Med 2018; 18:10. [PMID: 29321009 PMCID: PMC5763534 DOI: 10.1186/s12906-017-2072-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 12/27/2017] [Indexed: 01/06/2023]
Abstract
Background The highbush blueberry (Vaccinium corymbosum) has a beneficial effect on several aspects of human health. The present study investigated the effects of highbush blueberry proanthocyanidins (PACs) on the virulence properties of Aggregatibacter actinomycetemcomitans and macrophage-associated inflammatory responses. Methods PACs were isolated from frozen highbush blueberries using solid-phase chromatography. A microplate dilution assay was performed to determine the effect of highbush blueberry PACs on A. actinomycetemcomitans growth as well as biofilm formation stained with crystal violet. Tight junction integrity of oral keratinocytes was assessed by measuring the transepithelial electrical resistance (TER), while macrophage viability was determined with a colorimetric MTT assay. Pro-inflammatory cytokine and MMP secretion by A. actinomycetemcomitans-stimulated macrophages was quantified by ELISA. The U937-3xκB-LUC monocyte cell line transfected with a luciferase reporter gene was used to monitor NF-κB activation. Results Highbush blueberry PACs reduced the growth of A. actinomycetemcomitans and prevented biofilm formation at sub-inhibitory concentrations. The treatment of pre-formed biofilms with the PACs resulted in a loss of bacterial viability. The antibacterial activity of the PACs appeared to involve damage to the bacterial cell membrane. The PACs protected the oral keratinocytes barrier integrity from damage caused by A. actinomycetemcomitans. The PACs also protected macrophages from the deleterious effect of leukotoxin Ltx-A and dose-dependently inhibited the secretion of pro-inflammatory cytokines (IL-1β, IL-6, CXCL8, TNF-α), matrix metalloproteinases (MMP-3, MMP-9), and sTREM-1 by A. actinomycetemcomitans-treated macrophages. The PACs also inhibited the activation of the NF-κB signaling pathway. Conclusion The antibacterial and anti-inflammatory properties of highbush blueberry PACs as well as their ability to protect the oral keratinocyte barrier and neutralize leukotoxin activity suggest that they may be promising candidates as novel therapeutic agents.
Collapse
|
28
|
Ding Q, Tan KS. Himar1 Transposon for Efficient Random Mutagenesis in Aggregatibacter actinomycetemcomitans. Front Microbiol 2017; 8:1842. [PMID: 29018421 PMCID: PMC5622930 DOI: 10.3389/fmicb.2017.01842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is the primary etiological agent of aggressive periodontal disease. Identification of novel virulence factors at the genome-wide level is hindered by lack of efficient genetic tools to perform mutagenesis in this organism. The Himar1 mariner transposon is known to yield a random distribution of insertions in an organism’s genome with requirement for only a TA dinucleotide target and is independent of host-specific factors. However, the utility of this system in A. actinomycetemcomitans is unknown. In this study, we found that Himar1 transposon mutagenesis occurs at a high frequency (×10-4), and can be universally applied to wild-type A. actinomycetemcomitans strains of serotypes a, b, and c. The Himar1 transposon inserts were stably inherited in A. actinomycetemcomitans transconjugants in the absence of antibiotics. A library of 16,000 mutant colonies of A. actinomycetemcomitans was screened for reduced biofilm formation. Mutants with transposon inserts in genes encoding pilus, putative ion transporters, multidrug resistant proteins, transcription regulators and enzymes involved in the synthesis of extracellular polymeric substance, bacterial metabolism and stress response were discovered in this screen. Our results demonstrated the utility of the Himar1 mutagenesis system as a novel genetic tool for functional genomic analysis in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Qinfeng Ding
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Ebersole JL, Dawson D, Emecen-Huja P, Nagarajan R, Howard K, Grady ME, Thompson K, Peyyala R, Al-Attar A, Lethbridge K, Kirakodu S, Gonzalez OA. The periodontal war: microbes and immunity. Periodontol 2000 2017; 75:52-115. [DOI: 10.1111/prd.12222] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Van der Velden U. What exactly distinguishes aggressive from chronic periodontitis: is it mainly a difference in the degree of bacterial invasiveness? Periodontol 2000 2017; 75:24-44. [DOI: 10.1111/prd.12202] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Burgess D, Huang H, Harrison P, Aukhil I, Shaddox L. Aggregatibacter actinomycetemcomitans in African Americans with Localized Aggressive Periodontitis. JDR Clin Trans Res 2017; 2:249-257. [PMID: 28879247 PMCID: PMC5576056 DOI: 10.1177/2380084417695543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study aims to investigate the prevalence of the highly leukotoxic JP2 sequence versus the minimally leukotoxic non-JP2 sequence of Aggregatibacter actinomycetemcomitans within a cohort of 180 young African Americans, with and without localized aggressive periodontitis (LAP), in north Florida. The study included patients aged 5 to 25 y: 60 LAP patients, 60 healthy siblings (HS), and 60 unrelated healthy controls (HC). Subgingival plaque was collected from LAP sites-diseased (PD ≥5 mm with bleeding on probing) and healthy (PD ≤3 mm with no bleeding on probing)-and from healthy sites of HS and HC. Plaque DNA was extracted and analyzed by polymerase chain reaction for the detection of the JP2 and non-JP2 sequences of A. actinomycetemcomitans. Overall, 90 (50%) subjects tested positive for the JP2 sequence. Fifty (83.33%) LAP subjects were carriers of the highly leukotoxic JP2 sequence, detected in 45 (75%) diseased sites and 34 (56.67%) healthy sites. Additionally, JP2 carriage was found in 16 HS (26.67%) and 24 HC (40%; P < 0.0001, among groups). The non-JP2 sequence was detected in 26 (14.44%) total subjects: 17 (28.33%) LAP patients detected in equal amounts of diseased and healthy sites (n = 11, 18.33%), 6 (10%) HS sites, and 3 (5%) HC sites (P < 0.05, among groups). The JP2 sequence was strongly associated with LAP-diseased sites in young African Americans, significantly more so than the non-JP2 (ClinicalTrials.gov NCT01330719). Knowledge Transfer Statement: Clinicians may use the results of this study to identify susceptible individuals to aggressive periodontitis, potentially leading to more appropriate selection of therapeutic choices.
Collapse
Affiliation(s)
- D. Burgess
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - H. Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - P. Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
- Division of Periodontology, School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - I. Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - L. Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Defining Genetic Fitness Determinants and Creating Genomic Resources for an Oral Pathogen. Appl Environ Microbiol 2017; 83:AEM.00797-17. [PMID: 28476775 DOI: 10.1128/aem.00797-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/02/2017] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a microbial infection that destroys the structures that support the teeth. Although it is typically a chronic condition, rapidly progressing, aggressive forms are associated with the oral pathogen Aggregatibacter actinomycetemcomitans One of this bacterium's key virulence traits is its ability to attach to surfaces and form robust biofilms that resist killing by the host and antibiotics. Though much has been learned about A. actinomycetemcomitans since its initial discovery, we lack insight into a fundamental aspect of its basic biology, as we do not know the full set of genes that it requires for viability (the essential genome). Furthermore, research on A. actinomycetemcomitans is hampered by the field's lack of a mutant collection. To address these gaps, we used rapid transposon mutant sequencing (Tn-seq) to define the essential genomes of two strains of A. actinomycetemcomitans, revealing a core set of 319 genes. We then generated an arrayed mutant library comprising >1,500 unique insertions and used a sequencing-based approach to define each mutant's position (well and plate) in the library. To demonstrate its utility, we screened the library for mutants with weakened resistance to subinhibitory erythromycin, revealing the multidrug efflux pump AcrAB as a critical resistance factor. During the screen, we discovered that erythromycin induces A. actinomycetemcomitans to form biofilms. We therefore devised a novel Tn-seq-based screen to identify specific factors that mediate this phenotype and in follow-up experiments confirmed 4 mutants. Together, these studies present new insights and resources for investigating the basic biology and disease mechanisms of a human pathogen.IMPORTANCE Millions suffer from gum disease, which often is caused by Aggregatibacter actinomycetemcomitans, a bacterium that forms antibiotic-resistant biofilms. To fully understand any organism, we should be able to answer: what genes does it require for life? Here, we address this question for A. actinomycetemcomitans by determining the genes in its genome that cannot be mutated. As for the genes that can be mutated, we archived these mutants into a library, which we used to find genes that contribute to antibiotic resistance, leading us to discover that antibiotics cause A. actinomycetemcomitans to form biofilms. We then devised an approach to find genes that mediate this process and confirmed 4 genes. These results illuminate new fundamental traits of a human pathogen.
Collapse
|
33
|
Silva VDO, Pereira LJ, Murata RM. Oral microbe-host interactions: influence of β-glucans on gene expression of inflammatory cytokines and metabolome profile. BMC Microbiol 2017; 17:53. [PMID: 28270109 PMCID: PMC5341410 DOI: 10.1186/s12866-017-0946-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background The aim of this study was to evaluate the effects of β-glucan on the expression of inflammatory mediators and metabolomic profile of oral cells [keratinocytes (OBA-9) and fibroblasts (HGF-1) in a dual-chamber model] infected by Aggregatibacter actinomycetemcomitans. The periodontopathogen was applied and allowed to cross the top layer of cells (OBA-9) to reach the bottom layer of cells (HGF-1) and induce the synthesis of immune factors and cytokines in the host cells. β-glucan (10 μg/mL or 20 μg/mL) were added, and the transcriptional factors and metabolites produced were quantified in the remaining cell layers and supernatant. Results The relative expression of interleukin (IL)-1-α and IL-18 genes in HGF-1 decreased with 10 μg/mL or 20 μg/mL of β-glucan, where as the expression of PTGS-2 decreased only with 10 μg/mL. The expression of IL-1-α increased with 20 μg/mL and that of IL-18 increased with 10 μg/mL in OBA-9; the expression of BCL 2, EP 300, and PTGS-2 decreased with the higher dose of β-glucan. The production of the metabolite 4-aminobutyric acid presented lower concentrations under 20 μg/mL, whereas the concentrations of 2-deoxytetronic acid NIST and oxalic acid decreased at both concentrations used. Acetophenone, benzoic acid, and pinitol presented reduced concentrations only when treated with 10 μg/mL of β-glucan. Conclusions Treatment with β-glucans positively modulated the immune response and production of metabolites.
Collapse
Affiliation(s)
- Viviam de Oliveira Silva
- Herman Ostrow School of Dentistry, Division of Periodontology Diagnostic Sciences, Dental Hygiene & Biomedical Science, University of Southern California, Los Angeles, CA, USA.,Department of Veterinary Medicine, Physiology and Pharmacology Area, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Luciano José Pereira
- Department of Health Sciences, Physiology Area, Federal University of Lavras,Lavras, Minas Gerais, Brazil
| | - Ramiro Mendonça Murata
- School of Dental Medicine, Department Foundational Sciences, East Carolina University, 1851 MacGregor Downs Road, Greeville, NC, 27834-4354, USA. .,Brody School of Medicine, Department of Microbiology and Immunology, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
34
|
Shaddox LM, Spencer WP, Velsko IM, Al-Kassab H, Huang H, Calderon N, Aukhil I, Wallet SM. Localized aggressive periodontitis immune response to healthy and diseased subgingival plaque. J Clin Periodontol 2016; 43:746-53. [PMID: 27037664 DOI: 10.1111/jcpe.12560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/29/2022]
Abstract
AIM The objective of this case-control study was to compare the inflammatory response of peripheral blood from localized aggressive periodontitis (LAP) patients when stimulated with healthy or diseased plaque samples. MATERIALS AND METHODS Whole blood and subgingival plaque samples were collected from 13 LAP subjects, 14 siblings of LAP subjects and six periodontally healthy individuals. Whole blood was stimulated for 24 h with plaque samples generated from healthy or diseased sites. The levels of 14 cyto/chemokines were detected using multiplex technology. RESULTS Localized aggressive periodontitis-derived cultures displayed higher levels of G-CSF, INFγ, IL10, IL12p40, IL1β, IL-6, IL-8, MCP-1, MIP-1α, and TNFα, than control cultures regardless of stimulus used. Whole blood from healthy siblings displayed higher levels of IL-6 compared to control subjects, but lower levels than those observed in cultures from LAP participants. CONCLUSIONS This study suggests that although bacteria is an important factor in eliciting the hyper-inflammatory response observed in LAP patients, the predisposition of host's response to bacterial presence may play a more significant role than the components of the stimulatory plaque.
Collapse
Affiliation(s)
- Luciana M Shaddox
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - William P Spencer
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hiba Al-Kassab
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Nadia Calderon
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Shannon M Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Joshi VM, Bhat KG, Kugaji MS, Ingalgi PS. Occurrence of Aggregatibacter actinomycetemcomitans in Indian chronic periodontitis patients and periodontally healthy adults. J Indian Soc Periodontol 2016; 20:141-4. [PMID: 27143824 PMCID: PMC4847458 DOI: 10.4103/0972-124x.175171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background: Aggregatibacter actinomycetemcomitans (Aa), an important primary periodontal pathogen, is known for its strong virulence characteristics that cause periodontal disease. We investigated Aa occurrence in Indian individuals using culture and 16 s rDNA polymerase chain reaction (PCR). Materials and Methods: A cross-sectional study with 100 participants each in the healthy and chronic periodontitis (CP) groups was conducted. The subgingival plaque was collected and immediately plated on selective media for Aa. The remaining plaque samples were used for DNA extraction. PCR was performed using specific primers for Aa. Statistical Analysis Used: The detection of bacteria and the clinical parameters between the groups were compared using the Mann–Whitney U-test. For assessing the agreement between the results of anaerobic culture and PCR, Kappa analyses were performed. Results: Aa levels using culture and PCR was 51% and 69% in the CP group and 12% and 30% in the healthy group, respectively. The two groups showed significant differences (P < 0.00001). The detection accuracy of culture and PCR was assessed, and the coefficient of accuracy (k) was highly significant in the healthy (0.3103; P < 0.0001) and CP groups (0.1536; P < 0.0497). Conclusions: Aa was predominantly found in the CP group compared with the healthy group, which is consistent with previous findings. Our results showed that both techniques can be used for detecting Aa. An ideal technique for detecting subgingival microorganisms should be carefully selected depending on the scope of the intended future work.
Collapse
Affiliation(s)
- Vinayak Mahableshwar Joshi
- Department of Molecular Biology and Immunology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Kishore Gajanan Bhat
- Department of Molecular Biology and Immunology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Manohar Suresh Kugaji
- Department of Molecular Biology and Immunology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Preeti Shivaji Ingalgi
- Department of Molecular Biology and Immunology, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| |
Collapse
|
36
|
Virlan MJR, Miricescu D, Radulescu R, Sabliov CM, Totan A, Calenic B, Greabu M. Organic Nanomaterials and Their Applications in the Treatment of Oral Diseases. Molecules 2016; 21:E207. [PMID: 26867191 PMCID: PMC6273611 DOI: 10.3390/molecules21020207] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
There is a growing interest in the development of organic nanomaterials for biomedical applications. An increasing number of studies focus on the uses of nanomaterials with organic structure for regeneration of bone, cartilage, skin or dental tissues. Solid evidence has been found for several advantages of using natural or synthetic organic nanostructures in a wide variety of dental fields, from implantology, endodontics, and periodontics, to regenerative dentistry and wound healing. Most of the research is concentrated on nanoforms of chitosan, silk fibroin, synthetic polymers or their combinations, but new nanocomposites are constantly being developed. The present work reviews in detail current research on organic nanoparticles and their potential applications in the dental field.
Collapse
Affiliation(s)
- Maria Justina Roxana Virlan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Daniela Miricescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Radu Radulescu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Cristina M Sabliov
- Agricultural and Biological Engineering Department, Louisiana State University and LSU Ag Center, 149 EB Doran Building, Baton Rouge, LA 70803, USA.
| | - Alexandra Totan
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Bogdan Calenic
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| | - Maria Greabu
- Department of Biochemistry, Faculty of Dentistry, University of Medicine and Pharmacy Carol Davila, Blvd. EroiiSanitari, No. 8, RO-050474 Bucharest, Romania.
| |
Collapse
|
37
|
Links between atherosclerotic and periodontal disease. Exp Mol Pathol 2016; 100:220-35. [DOI: 10.1016/j.yexmp.2016.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 02/06/2023]
|
38
|
Jensen AB, Ennibi OK, Ismaili Z, Poulsen K, Haubek D. The JP2 genotype of Aggregatibacter actinomycetemcomitans
and marginal periodontitis in the mixed dentition. J Clin Periodontol 2016; 43:19-25. [PMID: 26659719 DOI: 10.1111/jcpe.12486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2015] [Indexed: 10/25/2022]
Affiliation(s)
- Anne Birkeholm Jensen
- Section for Pediatric Dentistry; Department of Dentistry, Health; Aarhus University; Aarhus Denmark
| | - Oum Keltoum Ennibi
- Department of Periodontology; Faculty of Medicine Dentistry; Mohammed V Souissi University; Rabat Morocco
| | - Zouheir Ismaili
- Department of Periodontology; Faculty of Medicine Dentistry; Mohammed V Souissi University; Rabat Morocco
| | - Knud Poulsen
- Department of Biomedicine, Health; Aarhus University; Aarhus Denmark
| | - Dorte Haubek
- Section for Pediatric Dentistry; Department of Dentistry, Health; Aarhus University; Aarhus Denmark
| |
Collapse
|
39
|
Abstract
A paradigm shift several decades ago elucidated that aggressive periodontitis (AgP) was not a degenerative disorder but a rapid progressive form of plaque-induced inflammatory periodontal disease. Ensuing years of research have led to linkage analysis identification of specific genetic defects responsible for AgP in some families and to the finding that subgingival detection of A. actinomycet-emcomitans JP2 clone is a predictive factor for disease onset and progression. However, rather disappointingly, these ‘proven’ risk factors are only detected in a small subset of AgP cases. Recent advances are leading to a new paradigm shift, with the realization that genetically-driven dysbiotic changes in the subgingival microbiota may predispose to a cascade of events leading to the rapid periodontal tissue destruction seen in AgP. This review tries to dissect the existing literature on the host response-microbial axis of AgP and to propose possible pathogenic pathways in line with current theories.
Collapse
Affiliation(s)
- Luigi Nibali
- a Periodontology Unit and Department of Clinical Research; UCL Eastman Dental Institute ; London , UK
| |
Collapse
|
40
|
Characterization of A. actinomycetemcomitans strains in subgingival samples from periodontitis subjects in Morocco. Clin Oral Investig 2015; 20:1809-18. [DOI: 10.1007/s00784-015-1653-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
41
|
Photocatalytical Antibacterial Activity of Mixed-Phase TiO2 Nanocomposite Thin Films against Aggregatibacter actinomycetemcomitans. BIOMED RESEARCH INTERNATIONAL 2015; 2015:705871. [PMID: 26576430 PMCID: PMC4631860 DOI: 10.1155/2015/705871] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022]
Abstract
Mixed-phase TiO2 nanocomposite thin films consisting of anatase and rutile prepared on commercially pure Ti sheets via the electrochemical anodization and annealing treatments were investigated in terms of their photocatalytic activity for antibacterial use around dental implants. The resulting films were characterized by scanning electron microscopy (SEM), and X-ray diffraction (XRD). The topology was assessed by White Light Optical Profiling (WLOP) in the Vertical Scanning Interferometer (VSI) mode. Representative height descriptive parameters of roughness Ra and Rz were calculated. The photocatalytic activity of the resulting TiO2 films was evaluated by the photodegradation of Rhodamine B (RhB) dye solution. The antibacterial ability of the photocatalyst was examined by Aggregatibacter actinomycetemcomitans suspensions in a colony-forming assay. XRD showed that anatase/rutile mixed-phase TiO2 thin films were predominantly in anatase and rutile that were 54.6 wt% and 41.9 wt%, respectively. Craters (2–5 µm) and protruding hills (10–50 µm) on Ti substrates were produced after electrochemical anodization with higher Ra and Rz surface roughness values. Anatase/rutile mixed-phase TiO2 thin films showed 26% photocatalytic decolorization toward RhB dye solution. The number of colonizing bacteria on anatase/rutile mixed-phase TiO2 thin films was decreased significantly in vitro. The photocatalyst was effective against A. actinomycetemcomitans colonization.
Collapse
|
42
|
Oxidative Stress Parameters in Saliva and Its Association with Periodontal Disease and Types of Bacteria. DISEASE MARKERS 2015; 2015:653537. [PMID: 26494938 PMCID: PMC4606402 DOI: 10.1155/2015/653537] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023]
Abstract
Objective. To determine the association between oxidative stress parameters with periodontal disease, bleeding, and the presence of different periodontal bacteria. Methods. A cross-sectional study in a sample of eighty-six patients, divided into three groups depending on their periodontal status. Thirty-three with chronic periodontitis, sixteen with gingivitis, and thirty-seven with periodontal healthy as control. Oxidative stress biomarkers (8-OHdG and MDA), total antioxidant capacity (TAOC), and the activity of two antioxidant enzymes (GPx and SOD) were determined in saliva. Subgingival plaque samples were obtained from the deepest periodontal pocket and PCR was used to determine the presence of the 6 fimA genotypes of Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia, and Treponema denticola. Results. Periodontal disease was found to be associated with increased oxidative stress parameter levels. These levels rose according to the number and type of different periodontal bacteria found in the periodontal pockets. The presence of different types of periodontal bacteria is predictive independent variables in linear regresion models of oxidative stress parameters as dependent variable, above all 8-OHdG. Conclusions. Oxidative stress parameter levels are correlated with the presence of different types of bacteria. Determination of these levels and periodontal bacteria could be a potent tool for controlling periodontal disease development.
Collapse
|
43
|
Gonzalez OA, Orraca L, Kensler TB, Gonzalez-Martinez J, Maldonado E, Ebersole JL. Familial periodontal disease in the Cayo Santiago rhesus macaques. Am J Primatol 2015; 78:143-51. [PMID: 25708960 DOI: 10.1002/ajp.22376] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/08/2014] [Accepted: 12/13/2014] [Indexed: 11/06/2022]
Abstract
Substantial ongoing research continues to explore the contribution of genetics and environment to the onset, extent and severity of periodontal disease(s). Existing evidence supports that periodontal disease appears to have an increased prevalence in family units with a member having aggressive periodontitis. We have been using the nonhuman primate as a model of periodontal disease for over 25 years with these species demonstrating naturally occurring periodontal disease that increases with age. This report details our findings from evaluation of periodontal disease in skulls from 97 animals (5-31 years of age) derived from the skeletons of the rhesus monkeys (Macaca mulatta) on Cayo Santiago. Periodontal disease was evaluated by determining the distance from the base of the alveolar bone defect to the cemento-enamel junction on 1st/2nd premolars and 1st/2nd molars from all four quadrants. The results demonstrated an increasing extent and severity of periodontitis with aging across the population of animals beyond only compensatory eruption. Importantly, irrespective of age, extensive heterogeneity in disease expression was observed among the animals. Linking these variations to multi-generational matriarchal family units supported familial susceptibility of periodontitis. As the current generations of animals that are descendants from these matrilines are alive, studies can be conducted to explore an array of underlying factors that could account for susceptibility or resistance to periodontal disease.
Collapse
Affiliation(s)
- Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
| | - Luis Orraca
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - Terry B Kensler
- Laboratory of Primate Morphology, University of Puerto Rico, San Juan, Puerto Rico
| | | | - Elizabeth Maldonado
- Laboratory of Primate Morphology, University of Puerto Rico, San Juan, Puerto Rico
| | - Jeffrey L Ebersole
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
44
|
Untch M, Schlagenhauf U. Inter- and intra-test agreement of three commercially available molecular diagnostic tests for the identification of periodontal pathogens. Clin Oral Investig 2015; 19:2045-52. [DOI: 10.1007/s00784-015-1418-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/29/2015] [Indexed: 11/29/2022]
|
45
|
Oettinger-Barak O, Sela MN, Sprecher H, Machtei EE. Clinical and microbiological characterization of localized aggressive periodontitis: a cohort study. Aust Dent J 2014; 59:165-71. [PMID: 24861390 DOI: 10.1111/adj.12165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Localized aggressive periodontitis (LAgP) is an infectious periodontal disease which generally affects young people. Recent data suggest the involvement of different bacterial species in different populations. The causative bacterial species in Israel has never been identified despite a high prevalence of LAgP in this population. The objectives of this study were to characterize the bacterial microbiota of periodontal pockets within an Israeli LAgP population who were also clinically assessed. METHODS Twenty-one LAgP patients (test) and 12 chronic periodontitis patients (control) were examined. Bacterial samples were collected from periodontal pockets and analysed by both culture and polymerase chain reaction techniques. Mann-Whitney U test and chi-square test were used to compare results between the groups. RESULTS Higher levels of Parvimonas micra (>10(6) ), Aggregatibacter actinomycetemcomitans (>10(5) ), Fusobacterium nucleatum/F. periodonticum (>10(6) ), and Tannerella forsythia (levels of 10(5) to 10(6) bacteria) were detected in the LAgP group compared to the control (p < 0.05), while levels of Porphyromonas gingivalis and Prevotella intermedia were higher in the CP group. CONCLUSIONS The characteristic periodontal bacterial flora of LAgP patients in Israel is mainly comprised of P. micra, A. actinomycetemcomitans, F. nucleatum/F. periodonticum and T. forsythia. Similar population based studies of each population will improve the quality of treatment of LAgP when individual sampling is not possible.
Collapse
Affiliation(s)
- O Oettinger-Barak
- Melbourne Dental School, The University of Melbourne, Parkville, Victoria, Australia; Oral Ecology and Microbiology, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Israel
| | | | | | | |
Collapse
|
46
|
Raja M, Ummer F, Dhivakar CP. Aggregatibacter actinomycetemcomitans - a tooth killer? J Clin Diagn Res 2014; 8:ZE13-6. [PMID: 25302290 DOI: 10.7860/jcdr/2014/9845.4766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/13/2014] [Indexed: 11/24/2022]
Abstract
Strong evidence is available on Aggregatibacter actinomycetemcomitans (A.a) on its role as the causative agent of localised juvenile periodontitis (LJP), a disease characterised by rapid destruction of the tooth-supporting tissues. This organism possesses a large number of virulence factors with a wide range of activities which enable it to colonise the oral cavity, invade periodontal tissues, evade host defences, initiate connective tissue destruction and interfere with tissue repair. Adhesion to epithelial and tooth surfaces is dependent on the presence of surface proteins and structures such as microvesicles and fimbriae. Invasion has been demonstrated in vivo and in vitro. The organism has a number of means of evading host defences which include: (i) production of leukotoxin; (ii) producing immunosuppressive factors; (iv) secreting proteases capable of cleaving IgG; and (v) producing Fc-binding.
Collapse
Affiliation(s)
- Manoj Raja
- Reader, Department of Periodontics, Karpaga Vinayaga Institute of Dental Sciences , Chennai, India
| | - Fajar Ummer
- Reader, Department of Periodontics, MES Dental College , Perintalmanna, India
| | - C P Dhivakar
- Senior Lecturer, Department of Periodontics, Karpagavinayaga Institute of Dental Sciences , Chennai, India
| |
Collapse
|
47
|
Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6:23980. [PMID: 25206940 PMCID: PMC4139931 DOI: 10.3402/jom.v6.23980] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023] Open
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2 clone, are likely to share this clone with several family members because the clone is transmitted through close contacts. This is a challenge to the clinicians. The patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontal lesions are relatively high. Furthermore, timely periodontal treatment, in some cases including periodontal surgery supplemented by the use of antibiotics, is warranted. Preferably, periodontal attachment loss should be prevented by early detection of the JP2 clone of A. actinomycetemcomitans by microbial diagnostic testing and/or by preventive means.
Collapse
Affiliation(s)
- Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Department of Molecular Periodontology, Umea University, Umea, Sweden
| |
Collapse
|
48
|
Mínguez M, Pousa X, Herrera D, Blasi A, Sánchez MC, León R, Sanz M. Characterization and serotype distribution of Aggregatibacter actinomycetemcomitans isolated from a population of periodontitis patients in Spain. Arch Oral Biol 2014; 59:1359-67. [PMID: 25201701 DOI: 10.1016/j.archoralbio.2014.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/08/2014] [Accepted: 07/27/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is no study characterizing the variability of Aggregatibacter actinomycetemcomitans isolates in periodontitis patients in Spain. It is therefore the aim of this investigation to study the serotype distribution of A. actinomycetemcomitans strains isolated from periodontitis patients in Spain. The polymorphism of the genes that codifies the leukotoxin and the operon of the cytolethal-distending toxin (cdt) will also be investigated. DESIGN From a total of 701 patients samples, 40 A. actinomycetemcomitans-positive periodontitis patients were included in the study (mean age 45.3, 62.5% females) and their clinical periodontal status was assessed. On average, 1-3 isolates from each patient were sub-cultured and characterized by PCR. RESULTS Using culture the prevalence of A. actinomycetemcomitans was 5.7%. The most frequent serotype was "b", being 30 patients infected by a unique serotype, while 7 patients showed co-colonization, mostly with serotypes "a" and "b". From the 79 pure isolates obtained, 24 were from serotype "a", 30 from serotype "b", 12 from serotype "c" and 4 from serotype "d". Further characterization of these samples showed that none of these 79 isolates demonstrated the 530-bp deletion in the leukotoxin's promoter region that characterizes the JP2 strain. Conversely 65.8% of the isolates were cdt+. CONCLUSIONS The most common serotypes were "a" and "b", being serotype "b" the most prevalent in mono-colonization, while serotypes "e" and "f" were not detected. In the majority of samples, operon that codifies the cdt (65.8%) and the genes responsible for the codification of leukotoxin (100%) were found. None of the isolates were JP2 strains.
Collapse
Affiliation(s)
- María Mínguez
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Xiana Pousa
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain
| | - David Herrera
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain; ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain.
| | - Andrea Blasi
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mari Carmen Sánchez
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Rubén León
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain; ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
49
|
Martande SS, Pradeep AR, Singh SP, Kumari M, Naik SB, Suke DK, Singh P. Clinical and microbiological effects of systemic azithromycin in adjunct to nonsurgical periodontal therapy in treatment of Aggregatibacter actinomycetemcomitans associated periodontitis: a randomized placebo-controlled clinical trial. ACTA ACUST UNITED AC 2014; 7:72-80. [PMID: 25044531 DOI: 10.1111/jicd.12115] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 04/07/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE This study aimed to evaluate clinical and microbiological effects of systemic azithromycin (AZM) in adjunct to nonsurgical periodontal therapy (NSPT; or scaling root planing - SRP) in treatment of Aggregatibacter actinomycetemcomitans associated periodontitis (AAAP). METHODS AND MATERIALS Seventy individuals with moderate to severe periodontitis and subgingival detection of A. actinomycetemcomitans were randomly allocated to two groups. Thirty-five individuals were allocated to full mouth SRP+AZM (500 mg oral delivery (OD) × 3 days) while 35 individuals were allocated to SRP+Placebo (OD × 3 days) group. The clinical variables evaluated were probing depth (PD), clinical attachment level (CAL), gingival index (GI), plaque index (PI), and percent bleeding on probing sites (%BOP), while microbiologic variables included percentage of subjects positive for A. actinomycetemcomitans at baseline, 3, 6, and 12 months. RESULTS The AZM group showed statistically significant reduction in mean PD (2.91 ± 0.88 mm) as compared to placebo (1.51 ± 0.98 mm) (P < 0.001), while CAL gain was significant in the AZM group (2.71 ± 1.15 mm) as compared to the placebo group (1.71 ± 1.29 mm) (P < 0.001). There was also a statistically significant reduction in the number of subjects positive for A. actinomycetemcomitans in the AZM group (P < 0.0001). CONCLUSION Azithromycin was found to significantly improve the clinical and microbiological parameters in AAAP individuals.
Collapse
Affiliation(s)
- Santosh S Martande
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Avani R Pradeep
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Sonender P Singh
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Minal Kumari
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Savitha B Naik
- Department of Conservative Dentistry and Endodontics, Government Dental College and Research Institute, Bangalore, India
| | - Deepak Kumar Suke
- Department of Periodontics, Government Dental College and Research Institute, Bangalore, India
| | - Priyanka Singh
- Jawaharlal Nehru Medical College and Hospital, Bhagalpur, Bihar, India
| |
Collapse
|
50
|
Meyer-Bäumer A, Eick S, Mertens C, Uhlmann L, Hagenfeld D, Eickholz P, Kim TS, Cosgarea R. Periodontal pathogens and associated factors in aggressive periodontitis: results 5-17 years after active periodontal therapy. J Clin Periodontol 2014; 41:662-72. [PMID: 24708362 DOI: 10.1111/jcpe.12255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 01/28/2023]
Abstract
OBJECTIVES To assess the association between presence of periodontal pathogens and recurrence of disease in patients with aggressive periodontitis (AgP) after active periodontal therapy (APT) and further influencing factors. MATERIAL & METHODS Microbiological samples were taken from 73 patients with AgP 5-17 years after APT at 292 sites (deepest site per quadrant). Real-time polymerase chain reactions were used to detect the periodontal pathogens Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola. Uni- and multivariate analyses evaluated the associations between pathogens and recurrence of disease, smoking and adjunctive antibiotic therapy. RESULTS At re-examination A. actinomycetemcomitans could be detected in six patients (8.2%), P. gingivalis in 24 (32.9%), T. forsythia in 31 (42.5%) and T. denticola in 35 (48.0%). Increased levels of T. forsythia and T. denticola at re-examination were significantly associated with recurrence of disease in multivariate analyses (OR: 12.72, p < 0.001; OR 5.55, p = 0.002 respectively). Furthermore, high counts of T. denticola were found in patients with increased percentage of sites with clinical attachment levels (CAL) ≥ 6 mm compared to those with low counts (13.8% versus 3.2%, p = 0.005). CONCLUSION In patients with recurrence of disease T. forsythia and T. denticola were detected more frequently and in higher counts. Furthermore, T. denticola was found more frequently in patients with increased CAL.
Collapse
Affiliation(s)
- Amelie Meyer-Bäumer
- Section of Periodontology, Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|