1
|
He J, Liu Y, Xu H, Wei X, Chen M. Insights into the variations in microbial community structure during the development of periodontitis and its pathogenesis. Clin Oral Investig 2024; 28:675. [PMID: 39617812 DOI: 10.1007/s00784-024-06074-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE To characterize the subgingival microbiota in subjects with stage I/II periodontitis (moderate periodontitis, MP), stage III/IV periodontitis (severe periodontitis, SP), and periodontal health (PH) at the same probing depth (PD) (shallow ≤ 3 mm, moderate 4-6 mm, or deep ≥ 7 mm), and to investigate the changes associated with probing depth progression. MATERIALS AND METHODS 100 subgingival plaque samples were collected from 50 subjects (16 MP, 17 SP and 17 PH), forming six groups: PHS (PH, shallow), MPS (MP, shallow), MPM (MP, moderate), SPS (SP, shallow), SPM (SP, moderate), and SPD (SP, deep). Samples were analyzed using high-throughput sequencing. RESULT The subgingival microbiome showed significant differences associated with both PD and periodontitis stage (p < 0.05). With increasing PD, alpha diversity initially increased and then decreased. Pathogenic genera like Fusobacterium, Filifactor, and Porphyromonas increased, while health-associated genera like Streptococcus and Haemophilus decreased. At shallow sites, the PHS, MPS, and SPS groups showed similar community structure. At moderate and deep sites, the SPM and SPD groups exhibited significant differences in community structure compared to the MPM group, with the SPM and SPD groups showing decreased abundances of Actinomyces and increased abundances of Treponema. The microbial co-networks in the SPD and SPM groups exhibited greater complexity and connectivity and were more resilient to random microbial or node removal. CONCLUSIONS The subgingival microbiome shows strong associations with PD and periodontitis stage. CLINICAL RELEVANCE Once periodontitis progresses to stage III/IV, reconstructing a healthy subgingival microbiome may be challenging, emphasizing the importance of early prevention.
Collapse
Affiliation(s)
- Junlin He
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Yefei Liu
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Hongzhen Xu
- Department of Prosthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Xiaolin Wei
- Department of Endodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| | - Meihua Chen
- Department of Periodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Liu X, Guo L, Du J, Luo Z, Xu J, Bhawal UK, Li X, Liu Y. Macrophage-derived apoptotic bodies impair the osteogenic ability of osteoblasts in periodontitis. Oral Dis 2024; 30:3296-3307. [PMID: 37994174 DOI: 10.1111/odi.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVES Periodontitis is induced by the imbalance between osteoblast and osteoclast activity, which leads to periodontal tissue destruction. Macrophages play a vital role in periodontitis. However, the hypoxic periodontal environment will also induce macrophage apoptosis within a short time. Apoptotic bodies (ABs) are the major products generated from apoptotic cells, but whether macrophage-derived ABs play a regulatory role as their mother cells in periodontitis remains unknown. In the present study, we aimed to investigate the effects of ABs on osteoblasts. METHOD ABs derived from hypoxia-induced macrophages were co-cultured with osteoblasts and the impact of ABs on osteoblast differentiation in vitro was assessed. In vivo, periodontitis model was established and macrophages-derived ABs were injected into the gingival sulcus. The effects of ABs on periodontal bone resorption were determined. RESULTS The results showed that ABs significantly inhibit osteoblast differentiation and promoted alveolar bone resorption in periodontitis. MicroRNA (miRNAs) array analysis was performed and revealed that miR-483-5p is the key miRNA in ABs. Dual luciferase reporter assays were performed and confirmed that miR-483-5p targeted Col1A1 mRNA and attenuated its expression. CONCLUSION Macrophage-derived ABs inhibit osteoblast differentiation via the transfer of miR-483-5p, which downregulates Col1A1 expression and finally suppresses osteogenic activity.
Collapse
Affiliation(s)
- Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Acharya S, Hegde U, Acharya AB, Nitin P. Dysbiosis linking periodontal disease and oral squamous cell carcinoma-A brief narrative review. Heliyon 2024; 10:e32259. [PMID: 38947439 PMCID: PMC11214465 DOI: 10.1016/j.heliyon.2024.e32259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/12/2024] [Accepted: 05/30/2024] [Indexed: 07/02/2024] Open
Abstract
An association between periodontal disease and oral squamous cell carcinoma (OSCC) has been recognized. However, there is no causal relationship between the two. The polymicrobial etiology of periodontal disease is confirmed, and so are the proven etiological factors for OSCC. Inflammation lies at the core of periodontal pathogenesis induced by the putative microbes. OSCC has inflammatory overtures in its pathobiology. Bacterial species involved in periodontal disease have been extensively documented and validated. The microbial profile in OSCC has been explored with no specific conclusions. The scientific reasoning to link a common microbial signature that connects periodontal disease to OSCC has led to many studies but has not provided conclusive evidence. Therefore, it would be beneficial to know the status of any plausible microbiota having a similarity in periodontal disease and OSCC. This brief review attempted to clarify the existence of a dysbiotic "fingerprint" that may link these two diseases. The review examined the literature with a focused objective of identifying periodontal microbial profiles in OSCC that could provide insights into pathogen commonality. The review concluded that there is great diversity in microbial association, but important bacterial species that correlate with periodontal disease and OSCC are forthcoming.
Collapse
Affiliation(s)
- Swetha Acharya
- Department of Oral Pathology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570004, Karnataka, India
| | - Usha Hegde
- Department of Oral Pathology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570004, Karnataka, India
| | - Anirudh B. Acharya
- Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Priyanka Nitin
- Department of Oral Pathology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research (JSSAHER), Mysuru, 570004, Karnataka, India
| |
Collapse
|
4
|
de Jongh CA, Bikker FJ, de Vries TJ, Werner A, Gibbs S, Krom BP. Porphyromonas gingivalis interaction with Candida albicans allows for aerobic escape, virulence and adherence. Biofilm 2024; 7:100172. [PMID: 38226024 PMCID: PMC10788424 DOI: 10.1016/j.bioflm.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
In the oral cavity Candida albicans interacts with many oral bacteria, including Porphyromonas gingivalis, both physically and metabolically. The aim of this in vitro study was to characterize these interactions and study their effects on the survival of P. gingivalis. First, metabolic interactions were evaluated by counting the colony forming units (CFU) after co-culturing. The results indicated that the anaerobic bacterium P. gingivalis survives under aerobic conditions when co-cultured with C. albicans. This is due to the oxygen consumption by C. albicans as determined by a reduction in survival upon the addition of Antimycin A. By measuring the protease activity, it was found that the presence of C. albicans induced gingipain activity by P. gingivalis, which is an important virulence factor. Adherence of P. gingivalis to hyphae of C. albicans was observed with a dynamic flow system. Using various C. albicans mutants, it was shown that the mechanism of adhesion was mediated by the cell wall adhesins, members of the agglutinin-like sequence (Als) family: Als3 and Als1. Furthermore, the two microorganisms could be co-cultured into forming a biofilm in which P. gingivalis can survive under aerobic culturing conditions, which was imaged using scanning electron microscopy. This study has further elucidated mechanisms of interaction, virulence acquisition and survival of P. gingivalis when co-cultured with C. albicans. Such survival could be essential for the pathogenicity of P. gingivalis in the oxygen-rich niches of the oral cavity. This study has emphasized the importance of interaction between different microbes in promoting survival, virulence and attachment of pathogens, which could be essential in facilitating penetration into the environment of the host.
Collapse
Affiliation(s)
- Caroline A. de Jongh
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Kzar WA, Abbas RF. Association of Polymorphism with Periodontitis and Salivary Levels of Hypoxia-Inducible Factor-1α. Eur J Dent 2024. [PMID: 38744330 DOI: 10.1055/s-0044-1785530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
OBJECTIVE This investigation aims to investigate the association between HIF-1α genetic polymorphism and periodontitis and examine and contrast the levels of HIF-1α present in the saliva of subjects afflicted with periodontitis and in the control group. Additionally, this study aims to establish diagnostic proficiency of this biomarker in distinguishing between periodontal health and disease. MATERIALS AND METHODS This study entailed the collection of venous blood samples and unstimulated saliva samples from a total of 160 participants, encompassing 80 individuals diagnosed with periodontitis and 80 periodontitis-free individuals. The periodontal parameters were evaluated, involving the measurement of clinical attachment loss, the probing pocket depth, and the bleeding on probing percentage. Subsequently, genetic analysis of HIF-1α using polymerase chain reaction (PCR) technique, DNA sequencing, and enzyme-linked immunosorbent assays was conducted. RESULTS The genetic analysis of 352 bp of the HIF-1α gene revealed the presence of 66 single-nucleotide polymorphisms (SNPs) in control samples, whereas 78 SNPs were found in periodontitis sample. The nucleotide A was replaced with a C nucleotide at position 207 of the amplified PCR fragments. The homozygous AA pattern was predominant in the control group, with significant differences between the two groups. In contrast, the homozygous CC pattern was more dominant in the periodontitis group, with significant differences between the two groups. The analysis of Hardy-Weinberg equilibrium for the comparison between the observed and the expected genotypes showed significant differences between the observed and the expected values in the control and periodontitis groups, as well as the total sample. The highest mean values of the measured periodontal parameters were found in the periodontitis group (clinical attachment loss = 4.759, probing pocket depth = 4.050, and bleeding on probing = 30.950) with statistically significant differences between the groups. The periodontitis group showed significantly higher salivary HIF-1α levels compared to control group (p < 0.001). Besides, HIF-1α is a good biomarker in distinguishing between periodontal health and periodontitis. CONCLUSION rs1951795 SNP of HIF-1α has no significant impact on the progression of periodontitis and the salivary level HIF-1α. Periodontitis results in a notable elevation in HIF-1α salivary levels, with an outstanding diagnostic ability to distinguish between periodontitis and periodontal health.
Collapse
Affiliation(s)
- Wael Abdulazeez Kzar
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Raghad Fadhil Abbas
- Department of Periodontology, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
6
|
Li X, Jiang Y, Liu X, Fu J, Du J, Luo Z, Xu J, Bhawal UK, Liu Y, Guo L. Mesenchymal stem cell-derived apoptotic bodies alleviate alveolar bone destruction by regulating osteoclast differentiation and function. Int J Oral Sci 2023; 15:51. [PMID: 38040672 PMCID: PMC10692139 DOI: 10.1038/s41368-023-00255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 12/03/2023] Open
Abstract
Periodontitis is caused by overactive osteoclast activity that results in the loss of periodontal supporting tissue and mesenchymal stem cells (MSCs) are essential for periodontal regeneration. However, the hypoxic periodontal microenvironment during periodontitis induces the apoptosis of MSCs. Apoptotic bodies (ABs) are the major product of apoptotic cells and have been attracting increased attention as potential mediators for periodontitis treatment, thus we investigated the effects of ABs derived from MSCs on periodontitis. MSCs were derived from bone marrows of mice and were cultured under hypoxic conditions for 72 h, after which ABs were isolated from the culture supernatant using a multi-filtration system. The results demonstrate that ABs derived from MSCs inhibited osteoclast differentiation and alveolar bone resorption. miRNA array analysis showed that miR-223-3p is highly enriched in those ABs and is critical for their therapeutic effects. Targetscan and luciferase activity results confirmed that Itgb1 is targeted by miR-223-3p, which interferes with the function of osteoclasts. Additionally, DC-STAMP is a key regulator that mediates membrane infusion. ABs and pre-osteoclasts expressed high levels of DC-STAMP on their membranes, which mediates the engulfment of ABs by pre-osteoclasts. ABs with knock-down of DC-STAMP failed to be engulfed by pre-osteoclasts. Collectively, MSC-derived ABs are targeted to be engulfed by pre-osteoclasts via DC-STAMP, which rescued alveolar bone loss by transferring miR-223-3p to osteoclasts, which in turn led to the attenuation of their differentiation and bone resorption. These results suggest that MSC-derived ABs are promising therapeutic agents for the treatment of periodontitis.
Collapse
Grants
- National Key R&D Program of China (Grant NO. 2022YFC2504200), the National Nature Science Foundation of China (81991504 and 81974149), the Beijing Municipal Administration of Hospitals Clinical Medicine Development of Special Funding Support (ZYLX202121), Innovation Research Team Project of Beijing Stomatological Hospital, Capital Medical University (CXTD202202), the Beijing Municipal Administration of Hospitals’ Ascent Plan (DFL20181501)
- National Nature Science Foundation of China (82201052), Beijing Municipal Administration of Hospitals’ Youth Programme (QML20231505), the Beijing Stomatological Hospital, Capital Medical University Young Scientist Program (NO. YSP202103)
- Beijing Municipal Administration of Hospitals’ Youth Programme (QML20181501), Innovation Foundation of Beijing Stomatological Hospital, Capital Medical University (21-09-18)
Collapse
Affiliation(s)
- Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Yiyang Jiang
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Xu Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingfei Fu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhenhua Luo
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China
| | - Ujjal Kumar Bhawal
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo, Chiba, Japan.
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China.
| | - Lijia Guo
- Department of Orthodontics School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Nie M, Yang J, Rastelli ANDS, Shen Y, Deng D. Oxygen Availability on the Application of Antimicrobial Photodynamic Therapy against Multi-Species Biofilms. Pathogens 2023; 12:904. [PMID: 37513751 PMCID: PMC10384119 DOI: 10.3390/pathogens12070904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/30/2023] Open
Abstract
Methylene blue (MB)- or Curcumin (Cur)-based photodynamic therapy (PDT) has been used as an adjunctive treatment for periodontitis. Its actual clinical efficacy is still in question because the lack of oxygen in a deep periodontal pocket might reduce the PDT efficacy. We aim to investigate the effect of oxygen on PDT efficacy and to examine if the addition of hydrogen peroxide (HP) could improve PDT performance anaerobically. To this end, we cultured 48 h saliva-derived multi-species biofilms and treated the biofilms with 25 µM MB or 40 µM Cur, HP (0.001%, 0.01% and 0.1%), light (L-450 nm or L-660 nm), or combinations thereof under ambient air or strictly anaerobic conditions. MB- and Cur-PDTs significantly reduced biofilm viability in air but not under anaerobic conditions. HP at 0.1% significantly enhanced the killing efficacies of both MB- and Cur-PDTs anaerobically. The killing efficacy of Cur-PDT combined with 0.1% HP was higher anaerobically than in air. However, this was not the case for MB-PDT combined with 0.1% HP. In conclusion, this study demonstrated that the biofilm killing efficacies of MB- and Cur-PDTs diminished when there was no oxygen. HP at 0.1% can enhance the efficacy of PDT performed anaerobically, but the level of enhancement is photosensitizer-dependent.
Collapse
Affiliation(s)
- Min Nie
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | - Jingmei Yang
- State Key Laboratory of Oral Disease & National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| | | | - Yuqin Shen
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou 510182, China
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and Vrije Universiteit Amsterdam, 1081 LA Amsterdam, The Netherlands
| |
Collapse
|
8
|
Ye Y, Fu L, Liu L, Xiao T, Cuba Manduca AG, Yu J. Integrative Analysis of ceRNA Networks in human periodontal ligament stem cells under hypoxia. Oral Dis 2023; 29:1197-1213. [PMID: 34874587 DOI: 10.1111/odi.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aims to investigate the regulatory effect of hypoxia on human periodontal ligament stem cells (PDLSCs) through RNA sequencing (RNA SEQ). Human PDLSCs were cultured in normoxia (20% O2 ) or hypoxia (2% O2 ). MATERIAL AND METHODS Total RNA was extracted and sequenced. The expression profiles of circRNAs, lncRNAs, and miRNAs were determined, and the lncRNA/circRNA-miRNA-mRNA networks were analyzed. RESULTS In total, 15 miRNAs, 449 lncRNAs, and 53 circRNAs were differentially expressed. Among them, 21 circRNAs, 262 lncRNAs, 5 miRNAs, and 5 mRNAs were selected to construct competing endogenous RNA (ceRNA) networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were carried out to explore potential related pathways and regulatory functions. Several ceRNA axes (lncRNA-FTX/circRNA-FAT1-hsa-miR-4781-3p-SMAD5 and circRNA LPAR1-hsa-miR-342-3p-ADAR) may provide a theoretical basis on the study of osteogenic differentiation of PDLSCs under hypoxia. CONCLUSION This study revealed that the expression profiles of circRNAs, lncRNAs, and miRNAs had changed significantly in PDLSCs cultured in 2% O2 ; specific circRNAs/lncRNAs may play a competitive role in the differentiation of PDLSCs.
Collapse
Affiliation(s)
- Yu Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Liu Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Tong Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ana Gloria Cuba Manduca
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jinhua Yu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University & Department of Endodontic, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
9
|
Müller-Heupt LK, Wiesmann-Imilowski N, Schröder S, Groß J, Ziskoven PC, Bani P, Kämmerer PW, Schiegnitz E, Eckelt A, Eckelt J, Ritz U, Opatz T, Al-Nawas B, Synatschke CV, Deschner J. Oxygen-Releasing Hyaluronic Acid-Based Dispersion with Controlled Oxygen Delivery for Enhanced Periodontal Tissue Engineering. Int J Mol Sci 2023; 24:ijms24065936. [PMID: 36983008 PMCID: PMC10059003 DOI: 10.3390/ijms24065936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Nadine Wiesmann-Imilowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeck Str. 1, 55131 Mainz, Germany
| | - Sofia Schröder
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pablo Cores Ziskoven
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Philipp Bani
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Peer Wolfgang Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | | | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| |
Collapse
|
10
|
Prieto D, Pino-Lagos K, Realini O, Cáceres F, Retamal I, Chaparro A. Relationship between soluble neuropilin-1 in the gingival crevicular fluid of early pregnant women and different severities of periodontitis: A cross-sectional study. J Oral Biol Craniofac Res 2023; 13:321-326. [PMID: 36891285 PMCID: PMC9988399 DOI: 10.1016/j.jobcr.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Background Pregnancy exacerbates the periodontal inflammation; however, the biological mediators involved are not well characterized. Neuropilins (NRPs) are transmembrane glycoproteins involved in physiological and pathogenic processes such as angiogenesis and immunity but its relationship with periodontal disease in pregnant women has not been studied. Objective To explore the soluble Neuropilin-1 (sNRP-1) levels in gingival crevicular fluid (GCF) samples during early pregnancy and its association with the periodontitis severity and periodontal clinical parameters. Methods 80 pregnant women were recruited, and GCF samples were collected. Clinical data and periodontal clinical parameters were recorded. sNRP-1 expression was determined by ELISA assay. The relationship between sNRP-1(+) pregnant women with the severity of periodontitis and periodontal clinical parameters was determined by Kruskal-Wallis and Mann-Whitney tests. Spearman's test estimated the correlation between sNRP-1 levels and periodontal clinical parameters. Results Periodontitis was classified as mild in 27.5% (n = 22) women, moderate in 42.5% (n = 34), and severe in 30% (n = 24). sNRP-1 expression was higher in the GCF of pregnant with severe (41.67%) and moderate (41.17%) periodontitis compared than in those with mild periodontitis (18.8%). The sNRP-1(+) pregnant had a higher BOP (76.5% v/s 57%; p = 0.0071) and PISA (1199.5 mm2 v/s 880.2 mm2; p = 0.0282) compared with sNRP-1(-). A positive correlation between sNRP-1 levels in GCF and BOP (p = 0.0081) and PISA (p = 0.0398) was observed. Conclusions The results suggest that sNRP-1 could be involved in periodontal inflammation during pregnancy.
Collapse
Affiliation(s)
- Diego Prieto
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Karina Pino-Lagos
- Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Ornella Realini
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Felipe Cáceres
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Ignacio Retamal
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| | - Alejandra Chaparro
- Facultad de Odontología, Universidad de Los Andes, Santiago, Chile
- Programa de Magíster en Investigación e Innovación en Ciencias de La Odontología, Universidad de Los Andes, Santiago, 7550000, Chile
| |
Collapse
|
11
|
Cai J, Liu J, Yan J, Lu X, Wang X, Li S, Mustafa K, Wang H, Xue Y, Mustafa M, Kantarci A, Xing Z. Impact of Resolvin D1 on the inflammatory phenotype of periodontal ligament cell response to hypoxia. J Periodontal Res 2022; 57:1034-1042. [PMID: 35944267 DOI: 10.1111/jre.13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Periodontal ligament cells (PDLCs) are critical for wound healing and regenerative capacity of periodontal diseases. Within an inflammatory periodontal pocket, a hypoxic environment can aggravate periodontal inflammation, where PDLCs response to the inflammation would change. Resolvin D1 (RvD1) is an endogenous lipid mediator, which can impact intracellular inflammatory pathways of periodontal/oral cells and periodontal regeneration. It is not clear how hypoxia and RvD1 impact the inflammatory responses of pro-inflammatory PDLCs phenotype. Therefore, this study aimed to test hypoxia could induce changes in pro-inflammatory phenotype of PDLCs and RvD1 could reverse it. METHODS Human PDLCs were cultured from periodontal tissues from eight healthy individuals and were characterized by immunofluorescence staining of vimentin and cytokeratin. Cell viability was examined by Methyl-thiazolyl-tetrazolium (MTT) assay. To examine the effects of hypoxia and RvD1 on the inflammatory responses of pro-inflammatory PDLCs phenotype, protein levels and gene expressions of inflammatory cytokines and signal transduction molecules were measured by enzyme-linked immunosorbent assay (ELISA), western blotting (WB), and real-time quantitative reverse transcription PCR (real-time qRT-PCR). Alizarin red S staining and real-time qRT-PCR were employed to study the effects of hypoxia and RvD1 on the osteogenic differentiation of pro-inflammatory PDLCs phenotype. RESULTS It was found that hypoxia increases the expression of inflammatory factors at the gene level (p < .05). RvD1 reduced the expression of IL-1β (p < .05) in PDLCs under hypoxia both at the protein and RNA levels. There were increases in the expression of p38 mitogen-activated protein kinase (p38 MAPK, p < .01) and protein kinase B (Akt, p < .05) in response to RvD1. Also, a significantly higher density of calcified nodules was observed after treatment with RvD1 for 21 days under hypoxia. CONCLUSION Our results indicate that hypoxia up-regulated the inflammatory level of PDLCs. RvD1 can reduce under-hypoxia-induced pro-inflammatory cytokines in the inflammatory phenotype of PDLCs. Moreover, RvD1 promotes the calcium nodules in PDLCs, possibly by affecting the p38 MAPK signaling pathway through Akt and HIF-1α.
Collapse
Affiliation(s)
- Jiazheng Cai
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Jing Liu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Jing Yan
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Xuexia Lu
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Xiaoli Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Si Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Huihui Wang
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Manal Mustafa
- Oral Health Centre of Expertise in Western Norway, Bergen, Norway
| | - Alpdogan Kantarci
- The Forsyth Institute, Cambridge, Massachusetts, USA.,Harvard University, School of Dental Medicine, Boston, Massachusetts, USA
| | - Zhe Xing
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, P.R.China.,Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, Lanzhou University, Lanzhou, P.R. China.,RNA and Molecular Pathology Research Group, Institute of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
12
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
13
|
Aggravating Effects of Psychological Stress on Ligature-Induced Periodontitis via the Involvement of Local Oxidative Damage and NF-κB Activation. Mediators Inflamm 2022; 2022:6447056. [PMID: 35221795 PMCID: PMC8866020 DOI: 10.1155/2022/6447056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/16/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Periodontitis is the leading cause of tooth loss in adults, and psychological factors play an important role in the development of periodontitis. To elucidate the adverse effects of psychological stress on the inflammatory process and redox status of periodontitis tissue, fifty male Sprague-Dawley rats were divided into the control, experimental periodontitis, psychological stress, experimental periodontitis plus psychological stress, and experimental periodontitis plus psychological stress plus fluoxetine groups. Chronic unpredictable mild stress (CUMS) was used to establish psychological stress, and silk ligature was used to induce experimental periodontitis. Four weeks later, stressed rats showed altered behaviour, serum hormone levels, and sucrose preference. More obvious alveolar bone loss and attachment loss and higher protein expressions of inflammatory cytokines were observed in the experimental periodontitis plus psychological stress group. The combination of CUMS and periodontitis had synergistic effects on increasing hypoxia-inducible factor-1α (HIF-1α) protein expression and reactive oxygen species (ROS) and malondialdehyde (MDA) contents and decreasing antioxidant enzyme activities compared with those in the stress or periodontitis groups. Moreover, psychological stress further increased p-IκBα and p-NF-κB p65 protein levels and decreased IκBα protein levels in periodontitis rats. Fluoxetine administration alleviated the adverse effects of psychological stress on the progression of periodontitis in rats. These results hint us that psychological stress could aggravate inflammation in periodontitis tissues, which may be partly due to local worsening of oxidative damage and further activation of the nuclear factor kappa-B (NF-κB) signalling pathway.
Collapse
|
14
|
Okić-Đorđević I, Obradović H, Kukolj T, Petrović A, Mojsilović S, Bugarski D, Jauković A. Dental mesenchymal stromal/stem cells in different microenvironments— implications in regenerative therapy. World J Stem Cells 2021; 13:1863-1880. [PMID: 35069987 PMCID: PMC8727232 DOI: 10.4252/wjsc.v13.i12.1863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/15/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Current research data reveal microenvironment as a significant modifier of physical functions, pathologic changes, as well as the therapeutic effects of stem cells. When comparing regeneration potential of various stem cell types used for cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently the most attractive cell source for bone and tooth regeneration due to their differentiation and immunomodulatory potential and lack of ethical issues associated with their use. The microenvironment of donors and recipients selected in cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, indicating interactions of cells with their microenvironment indispensable in MSC-mediated bone and dental regeneration. Since a variety of MSC populations have been procured from different parts of the tooth and tooth-supporting tissues, MSCs of dental origin and their achievements in capacity to reconstitute various dental tissues have gained attention of many research groups over the years. This review discusses recent advances in comparative analyses of dental MSC regeneration potential with regards to their tissue origin and specific microenvironmental conditions, giving additional insight into the current clinical application of these cells.
Collapse
Affiliation(s)
- Ivana Okić-Đorđević
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Hristina Obradović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Tamara Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Anđelija Petrović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Slavko Mojsilović
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Diana Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| | - Aleksandra Jauković
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11129, Serbia
| |
Collapse
|
15
|
Ye Y, Zhao X, Xu Y, Yu J. Hypoxia-Inducible Non-coding RNAs in Mesenchymal Stem Cell Fate and Regeneration. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.799716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cells (MSCs) can differentiate into multiple cell lines, which makes them an important source of cells for tissue engineering applications. They are defined by the capability to renew themselves and maintain pluripotency. This ability is modulated by the balance between complex cues from cellular microenvironment. Self-renewal and differentiation abilities are regulated by particular microenvironmental signals. Oxygen is considered to be an important part of cell microenvironment, which not only acts as a metabolic substrate but also a signal molecule. It has been proved that MSCs are hypoxic in the physiological environment. Signals from MSCs' microenvironment or niche which means the anatomical location of the MSCs, maintain the final properties of MSCs. Physiological conditions like oxygen tension are deemed to be a significant part of the mesenchymal stem cell niche, and have been proved to be involved in modulating embryonic and adult MSCs. Non-coding RNAs (ncRNAs), which play a key role in cell signal transduction, transcription and translation of genes, have been widely concerned as epigenetic regulators in a great deal of tissues. With the rapid development of bioinformatics analysis tools and high-throughput RNA sequencing technology, more and more evidences show that ncRNAs play a key role in tissue regeneration. It shows potential as a biomarker of MSC differentiation. In this paper, we reviewed the physiological correlation of hypoxia as a unique environmental parameter which is conducive to MSC expansion and maintenance, discussed the correlation of tissue engineering, and summarized the influence of hypoxia related ncRNAs on MSCs' fate and regeneration. This review will provide reference for future research of MSCs' regeneration.
Collapse
|
16
|
Dubar M, Lizambard M, Delcourt-Debruyne E, Batool F, Huck O, Siepmann F, Agossa K. In-situforming drug-delivery systems for periodontal treatment: current knowledge and perspectives. Biomed Mater 2021; 16. [PMID: 34500442 DOI: 10.1088/1748-605x/ac254c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023]
Abstract
Several chemical compounds are considered to be promising as adjuvants in the treatment of periodontitis. Antimicrobials, anti-inflammatory drugs or, more recently, pro-regenerative or antioxidant molecules have shown a very interesting potential to improve the outcomes of mechanical biofilm removal and promote the healing of the damaged tissues. However, their clinical effect is often limited by the challenge of achieving effective and prolonged drug delivery within the periodontal lesion, while limiting the risk of toxicity.In-situforming implants (ISFI) are 'implantable' drug-delivery systems that have gained considerable attention over the last few decades due to their multiple biomedical applications. They are liquids that, when injected at the site to be treated, form a semi-solid or solid dosage form that provides safe and locally controlled drug release. This review discusses current data and future prospects for the use of ISFI in periodontal treatment.
Collapse
Affiliation(s)
- Marie Dubar
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Martin Lizambard
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | | | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Florence Siepmann
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| | - Kevimy Agossa
- University Lille, Inserm, CHU Lille, U1008-Advanced Drug Delivery Systems, F-59000 Lille, France
| |
Collapse
|
17
|
Özçelik H, Batool F, Corre M, Garlaschelli A, Conzatti G, Stutz C, Petit C, Delpy E, Zal F, Leize-Zal E, Huck O. Characterization of a hyaluronic acid-based hydrogel containing an extracellular oxygen carrier (M101) for periodontitis treatment: An in vitro study. Int J Pharm 2021; 605:120810. [PMID: 34144138 DOI: 10.1016/j.ijpharm.2021.120810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
Periodontitis is an inflammatory disease associated with anaerobic bacteria leading to the destruction of tooth-supporting tissues. Porphyromonas gingivalis is a keystone anaerobic pathogen involved in the development of severe lesions. Periodontal treatment aims to suppress subgingival biofilms and to restore tissue homeostasis. However, hypoxia impairs wound healing and promotes bacterial growth within periodontal pocket. This study aimed to evaluate the potential of local oxygen delivery through the local application of a hydrogel containing Arenicola marina's hemoglobin (M101). To this end, a hydrogel (xanthan (2%), hyaluronic acid (1%)) containing M101 (1-2 g/L) (Xn(2%)-HA(1%)-M101) was prepared and characterized. Rheological tests revealed the occurrence of high deformation without the loss of elastic properties. Dialysis experiment revealed that incorporation of M101 within the gel did not modify its oxygen transportation properties. Samples of release media of the gels (1 g/L (10%) and 2 g/L (10%) M101) decreased significantly the growth of P. gingivalis after 24 h validating its antibacterial effect. Metabolic activity measurement confirmed the cytocompatibility of Xn(2%)-HA(1%)-M101. This study suggests the therapeutic interest of Xn(2%)-HA(1%)-M101 gel to optimize treatment of periodontitis with a non-invasive approach.
Collapse
Affiliation(s)
- Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | | | | | - Guillaume Conzatti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Catherine Petit
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France; Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Eric Delpy
- Hemarina SA, Aéropôle centre, 29600 Morlaix, France
| | - Franck Zal
- Hemarina SA, Aéropôle centre, 29600 Morlaix, France
| | | | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France; Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
18
|
Abusleme L, Hoare A, Hong BY, Diaz PI. Microbial signatures of health, gingivitis, and periodontitis. Periodontol 2000 2021; 86:57-78. [PMID: 33690899 DOI: 10.1111/prd.12362] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The subgingival crevice harbors diverse microbial communities. Shifts in the composition of these communities occur with the development of gingivitis and periodontitis, which are considered as successive stages of periodontal health deterioration. It is not clear, however, to what extent health- and gingivitis-associated microbiota are protective, or whether these communities facilitate the successive growth of periodontitis-associated taxa. To further our understanding of the dynamics of the microbial stimuli that trigger disruptions in periodontal homeostasis, we reviewed the available literature with the aim of defining specific microbial signatures associated with different stages of periodontal dysbiosis. Although several studies have evaluated the subgingival communities present in different periodontal conditions, we found limited evidence for the direct comparison of communities in health, gingivitis, and periodontitis. Therefore, we aimed to better define subgingival microbiome shifts by merging and reanalyzing, using unified bioinformatic processing strategies, publicly available 16S ribosomal RNA gene amplicon datasets of periodontal health, gingivitis, and periodontitis. Despite inherent methodological differences across studies, distinct community structures were found for health, gingivitis, and periodontitis, demonstrating the specific associations between gingival tissue status and the subgingival microbiome. Consistent with the concept that periodontal dysbiosis is the result of a process of microbial succession without replacement, more species were detected in disease than in health. However, gingivitis-associated communities were more diverse than those from subjects with periodontitis, suggesting that certain species ultimately become dominant as dysbiosis progresses. We identified the bacterial species associated with each periodontal condition and prevalent species that do not change in abundance from one state to another (core species), and we also outlined species co-occurrence patterns via network analysis. Most periodontitis-associated species were rarely detected in health but were frequently detected, albeit in low abundance, in gingivitis, which suggests that gingivitis and periodontitis are a continuum. Overall, we provide a framework of subgingival microbiome shifts, which can be used to generate hypotheses with respect to community assembly processes and the emergence of periodontal dysbiosis.
Collapse
Affiliation(s)
- Loreto Abusleme
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile.,Laboratory for Craniofacial Translational Research, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Anilei Hoare
- Laboratory of Oral Microbiology, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Bo-Young Hong
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.,UB Microbiome Center, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
19
|
Yang K, Xu S, Zhao H, Liu L, Lv X, Hu F, Wang L, Ji Q. Hypoxia and Porphyromonas gingivalis-lipopolysaccharide synergistically induce NLRP3 inflammasome activation in human gingival fibroblasts. Int Immunopharmacol 2021; 94:107456. [PMID: 33588175 DOI: 10.1016/j.intimp.2021.107456] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effects of hypoxia and Porphyromonas gingivalis- lipopolysaccharide (P. gingivalis-LPS) on activation of the NACHT leucine-rich repeat protein 3 (NLRP3) inflammasome in human gingival fibroblasts (HGFs). DESIGN Periodontitis was optimally simulated using a hypoxic concentration of 1%. HGFs were stimulated using P. gingivalis-LPS (1.0 μg/ml) in normoxia and hypoxia for 3 h and 6 h, respectively. The expression levels of genes and proteins of hypoxia-inducible factor-1α (HIF-1α), interleukin-1β, gasdermin D (GSDMD) and the NLRP3 inflammasome, including NLRP3, apoptosis-associated speck-like protein containing CARD (ASC), caspase-1 and its activated forms, were measured using quantitative real-time polymerase chain reaction and western blot. ELISA was used to detect and determine levels of the inflammatory factor interleukin-1β in cell supernatants. Lactate dehydrogenase (LDH) release assay, caspase-1 activity assay and Hoechst 33342/Propidium Iodide (PI) staining were performed to further verify the presence of pyroptosis. RESULTS The NLRP3 inflammasome (i.e., NLRP3, ASC, caspase-1) was not affected by individual stimulation using P. gingivalis-LPS or hypoxia. However, the combination of both hypoxia and P. gingivalis-LPS stimulation significantly enhanced inflammasome activation and promoted the expression of interleukin-1β, gasdermin D and HIF-1α at gene and protein levels; PI positive cells and the release of LDH were also elevated. CONCLUSION Hypoxia and P. gingivalis-LPS synergistically induced NLRP3 inflammasome activation in HGFs, and subsequently high levels of interleukin-1β and GSDMD-mediated pyroptosis can cause an HGF inflammatory response, which plays an important role in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Kai Yang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Shuo Xu
- Laboratory of Oral Microbiology, Shanghai Research Institute of Stomatology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Zhao
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingshuang Liu
- Department of Endodontics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaofang Lv
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Fang Hu
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Lei Wang
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; School of Stomatology, Qingdao University, Qingdao, Shandong, China
| | - Qiuxia Ji
- Department of Periodontology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; School of Stomatology, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Zhou M, Hu H, Han Y, Li J, Zhang Y, Tang S, Yuan Y, Zhang X. Long non-coding RNA 01126 promotes periodontitis pathogenesis of human periodontal ligament cells via miR-518a-5p/HIF-1α/MAPK pathway. Cell Prolif 2021; 54:e12957. [PMID: 33231338 PMCID: PMC7791173 DOI: 10.1111/cpr.12957] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Periodontitis is a prevalent oral inflammatory disease, which can cause periodontal ligament to a local hypoxia environment. However, the mechanism of hypoxia associated long non-coding RNAs (lncRNAs) involved in periodontitis is still largely unknown. METHODS Microarray was performed to detect the expression patterns of lncRNAs in 3 pairs of gingival tissues from patients with periodontitis and healthy controls. The expression of lncRNA 01126 (LINC01126), miR-518a-5p and hypoxia-inducible factor-1α (HIF-1α) in periodontal tissues and in human periodontal ligament cells (hPDLCs) under hypoxia was measured by quantitative real-time polymerase chain reaction or western blot. Fluorescence in situ hybridization and cell fraction assay were performed to determine the subcellular localization of LINC01126 and miR-518a-5p. Overexpression or knockdown of LINC01126 or HIF-1α was used to confirm their biological roles in hPDLCs. MTT assays were performed to evaluate hPDLCs proliferation ability. Flow cytometry was used to detect apoptosis. ELISA was used to measure the expression levels of interleukin (IL)-1β, IL-6, IL-8 and TNF-α. Dual-luciferase reporter assays were performed to assess the binding of miR-518a-5p to LINC01126 and HIF-1α. RNA immunoprecipitation assay was used to identify whether LINC01126 and miR-518a-5p were significantly enriched in AGO-containing micro-ribonucleoprotein complexes. RESULTS We selected LINC01126, which was the most highly expressed lncRNA, to further verify its functions in periodontitis-induced hypoxia. The expression of LINC01126 was increased in periodontal tissues. In vitro experiment demonstrated that LINC01126 suppressed proliferation, promoted apoptosis and inflammation of hPDLCs under hypoxia via sponging miR-518a-5p. Moreover, we identified HIF-1α acted as a direct target of miR-518a-5p in hPDLCs and LINC01126 promoted periodontitis pathogenesis by regulating the miR-518a-5p/HIF-1α/MAPK pathway. CONCLUSION LINC01126 promotes periodontitis pathogenesis of hPDLCs via miR-518a-5p/HIF-1α/MAPK pathway, providing a possible clue for LINC01126-based periodontal therapeutic approaches.
Collapse
Affiliation(s)
- Mi Zhou
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Hui Hu
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yineng Han
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| | - Yang Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Song Tang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Yu Yuan
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
| | - Xiaonan Zhang
- College of StomatologyChongqing Medical UniversityChongqingChina
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqingChina
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqingChina
| |
Collapse
|
21
|
Tonon CC, Panariello BHD, Spolidorio DMP, Gossweiler AG, Duarte S. Antibiofilm effect of ozonized physiological saline solution on peri-implant-related biofilm. J Periodontol 2020; 92:1151-1162. [PMID: 33231303 DOI: 10.1002/jper.20-0333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Removal of dental plaque and local application of local chemical adjuncts, such as chlorhexidine (CHX), have been used to control and treat peri-implant disease. However, these methods can damage the surface properties of the implants or promote bacterial resistance. The application of ozone as an adjunctive treatment represents a new approach in the management of peri-implantitis. Thus, the purpose of this study was to evaluate the antimicrobial effect of ozonized physiological saline solution in different concentrations against oral biofilms developed on titanium surface. METHODS Single and multi-species biofilms of Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus oralis were formed on titanium specimens for 5 days in anaerobic conditions. Biofilms were treated with ozonized saline solution at different concentrations (25, 50, and 80 μg/NmL), for 30 seconds and 1 minute. CHX (0.12%) and saline solution (0.89% NaCl) were used as positive and negative controls, respectively. Bacterial viability was quantified by colony forming units (CFU mL-1 ), and biofilm images were acquired by confocal laser scanning microscopy (CLSM). Data were analyzed by parametric test (ANOVA) with Tukey post-hoc test (P < 0.05). RESULTS Ozonized saline solution showed antibiofilm activity at a concentration of 80 μg/NmL for 30 seconds and 1 minute, reducing, mainly, Porphyromonas gingivalis viability, with 2.78 and 1.7 log10 CFU mL-1 of reduction in both single and multi-species biofilms, respectively, when compared to the control (saline), whereas CHX reduced 1.4 and 1.2 log10 CFU mL-1 . CONCLUSION Ozonized saline solution has antibiofilm activity, with better effect when applied for 1 minute at 80 μg/NmL, being a promising candidate therapy for the treatment of peri-implant diseases.
Collapse
Affiliation(s)
- Caroline C Tonon
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA.,Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Beatriz H D Panariello
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Denise M P Spolidorio
- Department of Oral Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ana G Gossweiler
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Simone Duarte
- Department of Cariology, Operative Dentistry and Dental Public Health, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Cunha E, Rebelo S, Carneiro C, Tavares L, Carreira LM, Oliveira M. A polymicrobial biofilm model for testing the antimicrobial potential of a nisin-biogel for canine periodontal disease control. BMC Vet Res 2020; 16:469. [PMID: 33267882 PMCID: PMC7709300 DOI: 10.1186/s12917-020-02646-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Periodontal disease (PD) in dogs is prompted by the establishment of a polymicrobial biofilm at the tooth surface and a subsequent host inflammatory response. Several strategies may be used for PD control, including dental hygiene home care procedures, like toothbrushing, special diet and chew toys that reduce dental plaque accumulation, or professional periodontal treatments. Aiming at PD control, a biogel composed by nisin and guar-gum was previously developed. This work aimed to establish an in vitro model mimicking the PD-associated biofilms and to evaluate the nisin-biogel inhibitory activity against this polymicrobial biofilm by determining its Minimum Biofilm Inhibitory (MBIC) and Eradication Concentrations (MBEC). Bacterial species tested included Neisseria zoodegmatis CCUG 52598T, Corynebacterium canis CCUG 58627T, Porphyromonas cangingivalis DSMZ VPB 4874, Peptostreptococcus canis CCUG 57081 and an Enterococcus faecalis isolate belonging to a collection of oral bacteria obtained from dogs with PD. Before establishing the biofilm, coaggregation between species was determined by optical density measurement after 2 and 24 hours. Nisin-biogel MBIC and MBEC values regarding the polymicrobial biofilm were determined using a modified version of the Calgary biofilm pin lid device, after confirming the presence of the five bacterial species by Fluorescent In Situ Hybridization. RESULTS Only 40% of the bacterial dual suspensions were able to coaggregate at 2 hours, but all species tested exhibited a coaggregation percentage higher than 30% at 24 hours. It was possible to establish a 48 h polymicrobial biofilm model composed by the five bacterial species selected. This model was used to determine nisin-biogel MBIC (26.39 ± 5.89 µg/mL) and MBEC (62.5 ± 27.73 µg/mL) values. CONCLUSIONS Our results showed that the nisin-biogel can inhibit and eradicate PD multispecies biofilms. As this in vitro model mimics an in vivo periodontal polymicrobial biofilm, our results reinforce the potential of the application of nisin-biogel for canine PD control.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| | - Sandra Rebelo
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Carla Carneiro
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Luís Miguel Carreira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| |
Collapse
|
23
|
Abstract
O2 is a fundamental environmental metabolite that affects all life on earth. While toxic to many microbes and obligately required by others, those that have appropriate physiological responses survive and can even benefit from various levels of O2, particularly in biofilm communities. Although most studies have focused on measuring O2 within biofilms, little is known about O2 gradients surrounding biofilms. Here, we developed electrochemical methodology based on scanning electrochemical microscopy to measure the O2 gradients surrounding biofilms in real time on the micron scale. Our results reveal that P. aeruginosa biofilms produce a hypoxic zone that can extend hundreds of microns from the biofilm surface and that this gradient remains even after the addition of antibiotic concentrations that eradicated 99% of viable cells. Our results provide a high resolution of the O2 gradients produced by P. aeruginosa biofilms and reveal sustained O2 consumption in the presence of antibiotics. Bacteria alter their local chemical environment through both consumption and the production of a variety of molecules, ultimately shaping the local ecology. Molecular oxygen (O2) is a key metabolite that affects the physiology and behavior of virtually all bacteria, and its consumption often results in O2 gradients within sessile bacterial communities (biofilms). O2 plays a critical role in several bacterial phenotypes, including antibiotic tolerance; however, our understanding of O2 levels within and surrounding biofilms has been hampered by the difficulties in measuring O2 levels in real-time for extended durations and at the micron scale. Here, we developed electrochemical methodology based on scanning electrochemical microscopy to quantify the O2 gradients present above a Pseudomonas aeruginosa biofilm. These results reveal that a biofilm produces a hypoxic zone that extends hundreds of microns from the biofilm surface within minutes and that the biofilm consumes O2 at a maximum rate. Treating the biofilm with levels of the antibiotic ciprofloxacin that kill 99% of the bacteria did not affect the O2 gradient, indicating that the biofilm is highly resilient to antimicrobial treatment in regard to O2 consumption.
Collapse
|
24
|
Feura ES, Yang L, Schoenfisch MH. Antibacterial activity of nitric oxide-releasing carboxymethylcellulose against periodontal pathogens. J Biomed Mater Res A 2020; 109:713-721. [PMID: 32654391 DOI: 10.1002/jbm.a.37056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/30/2022]
Abstract
The prevalence of periodontal disease poses a significant global health burden. Treatments for these diseases, primarily focused on removal and eradication of dental plaque biofilms, are challenging due to limited access to periodontal pockets where these oral pathogens reside. Herein, we report on the development and characterization of nitric oxide (NO)-releasing carboxymethylcellulose (CMC) derivatives and evaluate their in vitro bactericidal efficacy against planktonic Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, two prominent periodontopathogens. Bactericidal exposure assays revealed that three of the synthesized NO-releasing polymers were capable of reducing bacterial viability of both species by 99.9% in 2 hr at concentrations of 4 mg ml-1 or lower, reflecting NO's potent and rapid bactericidal action. The NO-releasing CMCs elicited minimal toxicity to human gingival fibroblasts at their bactericidal concentrations following 24-hr exposure.
Collapse
Affiliation(s)
- Evan S Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Mark H Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Phillips L, Chu L, Kolodrubetz D. Multiple enzymes can make hydrogen sulfide from cysteine in Treponema denticola. Anaerobe 2020; 64:102231. [PMID: 32603680 PMCID: PMC7484134 DOI: 10.1016/j.anaerobe.2020.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 10/24/2022]
Abstract
Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.
Collapse
Affiliation(s)
- Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
26
|
Chathoth K, Martin B, Cornelis P, Yvenou S, Bonnaure-Mallet M, Baysse C. The events that may contribute to subgingival dysbiosis: a focus on the interplay between iron, sulfide and oxygen. FEMS Microbiol Lett 2020; 367:5860280. [DOI: 10.1093/femsle/fnaa100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
This minireview considers the disruption of the host–microbiota harmless symbiosis in the subgingival niche. The establishment of a chronic infection by subversion of a commensal microbiota results from a complex and multiparametric sequence of events. This review narrows down to the interplay between oxygen, iron and sulfide that can result in a vicious cycle that would favor peroxygenic and glutathione producing streptococci as well as sulfidogenic anaerobic pathogens in the subgingival niche. We propose hypothesis and discuss strategies for the therapeutic modulation of the microbiota to prevent periodontitis and promote oral health.
Collapse
Affiliation(s)
- Kanchana Chathoth
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Bénédicte Martin
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Laboratory of Microbiology, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
- Laboratoire de Microbiologie Signaux et Microenvironnement, LMSM EA4312, Université de Rouen Normandie, Normandie Université, F-27000 Évreux, France
| | - Stéven Yvenou
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| | - Martine Bonnaure-Mallet
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
- CHU Pontchaillou Rennes, 35000 Rennes, France
| | - Christine Baysse
- NuMeCan INSERM U1241, CIMIAD, Université de Rennes 1, F-35043 Rennes, France
| |
Collapse
|
27
|
Matsha TE, Prince Y, Davids S, Chikte U, Erasmus RT, Kengne AP, Davison GM. Oral Microbiome Signatures in Diabetes Mellitus and Periodontal Disease. J Dent Res 2020; 99:658-665. [PMID: 32298191 DOI: 10.1177/0022034520913818] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disturbances in the oral microbiome are associated with periodontal disease initiation and progression and diabetes mellitus (DM), but how this contributes to the cause-and-effect relationship between periodontal disease and DM is poorly understood. We examined the bacterial composition in plaque samples from 128 South Africans with periodontal disease across glycemic statuses using 16S rDNA sequencing of regions 2, 3, 4, 6-7, 8, and 9. Of the 9 phyla identified, Firmicutes, Proteobacteria, Bacteroidetes, Fusobacteria, and Actinobacteria made up >98%. Fusobacteria and Actinobacteria were significantly more abundant in subjects with diabetes, while Proteobacteria were less abundant. However, in the presence of gingival bleeding and DM, as compared with DM without gingival bleeding, Actinobacteria were markedly reduced while Bacteroidetes were more abundant. In contrast, no differences in Actinobacteria or Bacteroidetes abundance were observed between DM with and without pocket depth (PD) ≥4 mm. At the genus level, similar changes in relative abundance were observed in the presence of DM and periodontal disease. Our findings remained in conditional logistic regression models adjusted for age, sex, waist circumference, and the 5 most dominant phyla. For example, Actinobacteria significantly increased the odds of diabetes by 10% in subjects with gingival bleeding, while Fusobacteria increased this odd by 14%; yet, among subjects with PD ≥4 mm, Fusobacteria decreased the odds of DM by 47%. Our findings have confirmed the alterations in the composition of the oral microbiota across glycemic statuses as well as different stages of periodontal disease. However, it is not clear whether these differences were the consequence of hyperglycemia or the presence of periodontal diseases. Therefore, we recommend further investigations in a longitudinal study design.
Collapse
Affiliation(s)
- T E Matsha
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Y Prince
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - S Davids
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - U Chikte
- Department of Global Health, Stellenbosch University, Cape Town, South Africa
| | - R T Erasmus
- Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - A P Kengne
- Noncommunicable Diseases Research Unit, South African Medical Research Council, Cape Town, South Africa.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - G M Davison
- SAMRC/CPUT/Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
28
|
Afacan B, Keleş Yücel ZP, Paşali Ç, Atmaca İlhan H, Köse T, Emingil G. Effect of non-surgical periodontal treatment on gingival crevicular fluid hypoxia inducible factor-1 alpha, vascular endothelial growth factor and tumor necrosis factor-alpha levels in generalized aggressive periodontitis patients. J Periodontol 2020; 91:1495-1502. [PMID: 32246842 DOI: 10.1002/jper.19-0521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Hypoxia-inducible angiogenic pathway involving hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF) and tumor necrosis factor-alpha (TNF-α) may regulate several biological processes related to inflammation. The present study aimed to assess the effect of non-surgical periodontal treatment on gingival crevicular fluid (GCF) HIF-1α, VEGF, and TNF-α levels in generalized aggressive periodontitis (G-AgP). METHODS Twenty G-AgP patients and 20 periodontally healthy individuals were included. G-AgP patients received scaling and root planning (SRP), per quadrant at a 1-week-interval, performed with ultrasonic and periodontal hand instruments. GCF samples were collected and clinical periodontal parameters including probing depth, clinical attachment level, gingival index and plaque index were recorded at baseline, 1 and 3 months after treatment. Biomarker levels in GCF were analyzed by ELISA. RESULTS At baseline all clinical parameters and GCF HIF-1α, VEGF, and TNF-α levels were significantly higher in G-AgP patients compared to healthy control (P < 0.05). All clinical parameters improved over the 3-month-period in G-AgP patients (P < 0.05). GCF HIF-1α levels in G-AgP reduced at 1 and 3 months post-treatment, however, this did not reach to statistical significance (P > 0.05). GCF VEGF and TNF-α levels remained unchanged throughout the study period (P > 0.05). CONCLUSIONS Within the limitations of the present study, although HIF-1α seems to possess a potential diagnostic value for G-AgP, it might not be a proper predictor of clinically favorable treatment outcome. SRP plus different adjunctive therapies could provide better information about the prognostic role of hypoxia-inducible angiogenic pathway in G-AgP.
Collapse
Affiliation(s)
- Beral Afacan
- Department of Periodontology, School of Dentistry, Adnan Menderes University, Aydın, Turkey
| | | | - Çiğdem Paşali
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Harika Atmaca İlhan
- Section of Molecular Biology, Department of Biology, School of Science, Celal Bayar University, Manisa, Turkey
| | - Timur Köse
- Department of Biostatistics and Medical Informatics, School of Medicine, Ege University, İzmir, Turkey
| | - Gülnur Emingil
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| |
Collapse
|
29
|
Chu L, Wu Y, Xu X, Phillips L, Kolodrubetz D. Glutathione catabolism by Treponema denticola impacts its pathogenic potential. Anaerobe 2020; 62:102170. [PMID: 32044394 PMCID: PMC7153967 DOI: 10.1016/j.anaerobe.2020.102170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Treponema denticola is a spirochete that is etiologic for periodontal diseases. This bacterium is one of two periodontal pathogens that have been shown to have a complete three step enzymatic pathway (GTSP) that catabolizes glutathione to H2S. This pathway may contribute to the tissue pathology seen in periodontitis since diseased periodontal pockets have lower glutathione levels than healthy sites with a concomitant increase in H2S concentration. In order to be able to demonstrate that glutathione catabolism by the GTSP is critical for the pathogenic potential of T. denticola, allelic replacement mutagenesis was used to make a deletion mutant (Δggt) in the gene encoding the first enzyme in the GTSP. The mutant cannot produce H2S from glutathione since it lacks gamma-glutamyltransferase (GGT) activity. The hemolytic and hemoxidation activities of wild type T. denticola plus glutathione are reduced to background levels with the Δggt mutant and the mutant has lost the ability to grow aerobically when incubated with glutathione. The Δggt bacteria with glutathione cause less cell death in human gingival fibroblasts (hGFs) in vitro than do wild type T. denticola and the levels of hGF death correlate with the amounts of H2S produced. Importantly, the mutant spirochetes plus glutathione make significantly smaller lesions than wild type bacteria plus glutathione in a mouse back lesion model that assesses soft tissue destruction, a major symptom of periodontal diseases. Our results are the first to prove that T. denticola thiol-compound catabolism by its gamma-glutamyltransferase can play a significant role in the in the types of host tissue damage seen in periodontitis.
Collapse
Affiliation(s)
- Lianrui Chu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yimin Wu
- Department of Developmental Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xiaoping Xu
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Linda Phillips
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - David Kolodrubetz
- Department of Microbiology, Immunology and Molecular Genetics, UT Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
30
|
Vasthavi C, Babu HM, Rangaraju VM, Dasappa S, Jagadish L, Shivamurthy R. Evaluation of ozone as an adjunct to scaling and root planing in the treatment of chronic periodontitis: A randomized clinico-microbial study. J Indian Soc Periodontol 2020; 24:42-46. [PMID: 31983844 PMCID: PMC6961456 DOI: 10.4103/jisp.jisp_162_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 06/05/2019] [Indexed: 11/04/2022] Open
Abstract
Background and Objectives Mechanical plaque control is an essential part of periodontal therapy. In the present study, the efficacy of ozone water irrigation as an adjunct to scaling and root planing was evaluated in the treatment of generalized chronic periodontitis. Materials and Methods Twenty-four patients with chronic periodontitis selected for the study were randomly divided into Group A and Group B, receiving ozone water irrigation and distilled water irrigation, respectively, after scaling and root planing. Subgingival plaque was collected from the selected investigational teeth and was analyzed using BANA-Zyme™ Processor to evaluate the "red complex" periodontal pathogens. The clinical and microbiological parameters were recorded at baseline, 14 days, 21 days, and 2 months. Results The mean probing pocket depth scores for Group A and Group B at the baseline were 6.833 ± 1.193 and 7.833 ± 1.276; on day 14th, they were 6.616 ± 1.403 and 7.083 ± 1.378; on day 21st, they were 5.166 ± 0.937 and 6.083 ± 1.443;and on the 2nd month, they were 4.500 ± 0.797 and 5.166 ± 1.029, respectively. At the 2nd month, in Group A, 9 samples showed BANA negative and 3 samples showed BANA positive, and in Group B, 12 samples showed BANA negative and 0 sample showed BANA positive. The microbiological analysis showed a reduction in periodontal pathogens in both the groups. Conclusion Significant improvement in both clinical and microbiological parameters suggests that subgingival ozonated water irrigation could be an efficient adjunct to scaling and root planing in the treatment of chronic periodontitis.
Collapse
Affiliation(s)
- Chandrappa Vasthavi
- Department of Periodontics, Sri Hasanamba Dental College and Hospital, Hassan, Karnataka, India
| | - Harsha Mysore Babu
- Department of Periodontics, Sri Hasanamba Dental College and Hospital, Hassan, Karnataka, India
| | | | - Shivaprasad Dasappa
- Department of Periodontics, Sri Hasanamba Dental College and Hospital, Hassan, Karnataka, India
| | - Leka Jagadish
- Department of Periodontics, Sri Hasanamba Dental College and Hospital, Hassan, Karnataka, India
| | | |
Collapse
|
31
|
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019; 73:335-358. [PMID: 31180804 PMCID: PMC7153577 DOI: 10.1146/annurev-micro-090817-062503] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.
Collapse
Affiliation(s)
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge MA 02142 and Harvard School of Dental Medicine, Boston MA 02115
| | | |
Collapse
|
32
|
Li Q, Luo T, Lu W, Yi X, Zhao Z, Liu J. Proteomic analysis of human periodontal ligament cells under hypoxia. Proteome Sci 2019; 17:3. [PMID: 31496921 PMCID: PMC6717648 DOI: 10.1186/s12953-019-0151-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/20/2019] [Indexed: 02/05/2023] Open
Abstract
Background The periodontal ligament is essential for homeostasis of periodontal tissue. A hypoxic milieu of the periodontal tissue is generated under periodontitis or during orthodontic treatment, which affects the periodontal and bone remodelling process. Here, we provide a comprehensive proteomic characterization of periodontal ligament cells under hypoxic conditions, aiming to reveal previously unappreciated biological changes and to help advance hypoxia-based therapeutic strategies for periodontal diseases. Methods Human periodontal ligament cells (hPDLCs) were characterized using immunohistochemistry (IHC) and flow cytometry (FACS). Successful hypoxia treatment of hPDLCs with 1% O2 was confirmed by qRT-PCR. Proliferation was evaluated using an MTT assay. The proteomic expression profile under hypoxia was studied with the isobaric tags for relative and absolute quantification (iTRAQ) approach followed by protein identification and bioinformatic analysis, and western blot verification was performed. Results The hPDLCs were positive for vimentin, CD73 and CD105 and negative for keratin, CD34 and CD45. After hypoxia treatment, the mRNA expression of hypoxia-inducible factor 1a (HIF1a) was upregulated. The proliferation rate was elevated during the first 6 h but decreased from 6 h to 72 h. A total of 220 differentially expressed proteins were quantified in hPDLCs under hypoxia (1% O2, 24 h), including 153 upregulated and 67 downregulated proteins, five of which were verified by western blot analysis. The Gene Ontology enriched terms included the energy metabolic process, membrane-bound organelle and vesicle, and protein binding terms. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated several involved pathways, including glycolysis/gluconeogenesis, biosynthesis of amino acids, the HIF-1 signalling pathway, and focal adhesion. A protein–protein interaction (PPI) network demonstrated the dominant role of autophagy over apoptosis under hypoxia. Conclusion The proteomic profile of hPDLCs under hypoxia was mainly related to energy metabolism, autophagy, and responses to stimuli such as adhesion and inflammation. Previously unrecognized proteins including solute carrier family proteins, heat shock proteins, ubiquitination-related enzymes, collagen and S100 family proteins are involved in adaptive response to hypoxia in hPDLCs and are thus of great research interest in future work. Electronic supplementary material The online version of this article (10.1186/s12953-019-0151-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qiwen Li
- 1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China
| | - Tao Luo
- 1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China.,2Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenxin Lu
- 1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China.,3Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Yi
- 1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China.,3Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- 1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China.,3Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- 1State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section, South Renmin Road, Chengdu, 610041 China.,3Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Jiang M, Li Z, Zhu G. The role of autophagy in the pathogenesis of periodontal disease. Oral Dis 2019; 26:259-269. [PMID: 30674085 DOI: 10.1111/odi.13045] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/13/2019] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Jiang
- Department of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology Wuhan China
| | - Zhuoneng Li
- Centers for Disease Control and Prevention of Wuhan Wuhan China
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
34
|
Berbel LO, Banczek EDP, Karoussis IK, Kotsakis GA, Costa I. Determinants of corrosion resistance of Ti-6Al-4V alloy dental implants in an In Vitro model of peri-implant inflammation. PLoS One 2019; 14:e0210530. [PMID: 30703125 PMCID: PMC6354969 DOI: 10.1371/journal.pone.0210530] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/26/2018] [Indexed: 11/17/2022] Open
Abstract
Background Titanium (Ti) and its alloys possess high biocompatibility and corrosion resistance due to Ti ability to form a passive oxide film, i.e. TiO2, immediately after contact with oxygen. This passive layer is considered stable during function in the oral cavity, however, emerging information associate inflammatory peri-implantitis to vast increases in Ti corrosion products around diseased implants as compared to healthy ones. Thus, it is imperative to identify which factors in the peri-implant micro-environment may reduce Ti corrosion resistance. Methods The aim of this work is to simulate peri-implant inflammatory conditions in vitro to determine which factors affect corrosion susceptibility of Ti-6Al-4V dental implants. The effects of hydrogen peroxide (surrogate for reactive oxygen species, ROS, found during inflammation), albumin (a protein typical of physiological fluids), deaeration (to simulate reduced pO2 conditions during inflammation), in an acidic environment (pH 3), which is typical of inflammation condition, were investigated. Corrosion resistance of Ti-6Al-4V clinically-relevant acid etched surfaces was investigated by electrochemical techniques: Open Circuit Potential; Electrochemical Impedance Spectroscopy; and Anodic Polarization. Results Electrochemical tests confirmed that most aggressive conditions to the Ti-6Al-4V alloy were those typical of occluded cells, i.e. oxidizing conditions (H2O2), in the presence of protein and deaeration of the physiological medium. Conclusions Our results provide evidence that titanium’s corrosion resistance can be reduced by intense inflammatory conditions. This observation indicates that the micro-environment to which the implant is exposed during peri-implant inflammation is highly aggressive and may lead to TiO2 passive layer attack. Further investigation of the effect of these aggressive conditions on titanium dissolution is warranted.
Collapse
Affiliation(s)
- Larissa O Berbel
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Ciência e Tecnologia de Materiais, São Paulo-SP, Brazil
| | - Everson do P Banczek
- Universidade Estadual do Centro-Oeste, Unicentro, Department of Chemistry, Guarapuava-PR, Brazil
| | - Ioannis K Karoussis
- National and Kapodistrian University of Athens, Department of Periodontics, Athens, Greece
| | - Georgios A Kotsakis
- Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Isolda Costa
- Instituto de Pesquisas Energéticas e Nucleares, Centro de Ciência e Tecnologia de Materiais, São Paulo-SP, Brazil
| |
Collapse
|
35
|
Brown JL, Yates EA, Bielecki M, Olczak T, Smalley JW. Potential role for Streptococcus gordonii-derived hydrogen peroxide in heme acquisition by Porphyromonas gingivalis. Mol Oral Microbiol 2019; 33:322-335. [PMID: 29847019 DOI: 10.1111/omi.12229] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2018] [Indexed: 01/16/2023]
Abstract
Streptococcus gordonii, an accessory pathogen and early colonizer of plaque, co-aggregates with many oral species including Porphyromonas gingivalis. It causes α-hemolysis on blood agar, a process mediated by H2 O2 and thought to involve concomitant oxidation of hemoglobin (Hb). Porphyromonas gingivalis has a growth requirement for heme, which is acquired mainly from Hb. The paradigm for Hb heme acquisition involves the initial oxidation of oxyhemoglobin (oxyHb) to methemoglobin (metHb), followed by heme release and extraction through the actions of K-gingipain protease and/or the HmuY hemophore-like protein. The ability of S. gordonii to mediate Hb oxidation may potentially aid heme capture during co-aggregation with P. gingivalis. Hemoglobin derived from zones of S. gordonii α-hemolysis was found to be metHb. Generation of metHb from oxyHb by S. gordonii cells was inhibited by catalase, and correlated with levels of cellular H2 O2 production. Generation of metHb by S. gordonii occurred through the higher Hb oxidation state of ferrylhemoglobin. Heme complexation by the P. gingivalis HmuY was employed as a measure of the ease of heme capture from metHb. HmuY was able to extract iron(III)protoporphyrin IX from metHb derived from zones of S. gordonii α-hemolysis and from metHb generated by the action of S. gordonii cells on isolated oxyHb. The rate of HmuY-Fe(III)heme complex formation from S. gordonii-mediated metHb was greater than from an equivalent concentration of auto-oxidized metHb. It is concluded that S. gordonii may potentially aid heme acquisition by P. gingivalis by facilitating metHb formation in the presence of oxyHb.
Collapse
Affiliation(s)
- J L Brown
- School of Dentistry, Institute of Clinical Sciences, University of Liverpool, Liverpool, UK
| | - E A Yates
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Bielecki
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - T Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - J W Smalley
- School of Dentistry, Institute of Clinical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Afacan B, Öztürk VÖ, Paşalı Ç, Bozkurt E, Köse T, Emingil G. Gingival crevicular fluid and salivary HIF‐1α, VEGF, and TNF‐α levels in periodontal health and disease. J Periodontol 2018; 90:788-797. [DOI: 10.1002/jper.18-0412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Beral Afacan
- Department of PeriodontologyFaculty of DentistryAdnan Menderes University Aydın Turkey
| | - Veli Özgen Öztürk
- Department of PeriodontologyFaculty of DentistryAdnan Menderes University Aydın Turkey
| | - Çiğdem Paşalı
- Department of PeriodontologyFaculty of DentistryEge University İzmir Turkey
| | - Emir Bozkurt
- Section of Molecular BiologyDepartment of BiologyFaculty of Science and LettersCelal Bayar University Manisa Turkey
| | - Timur Köse
- Department of Biostatistics and Medical InformaticsFaculty of MedicineEge University İzmir Turkey
| | - Gülnur Emingil
- Department of PeriodontologyFaculty of DentistryEge University İzmir Turkey
| |
Collapse
|
37
|
Bonner M, Fresno M, Gironès N, Guillén N, Santi-Rocca J. Reassessing the Role of Entamoeba gingivalis in Periodontitis. Front Cell Infect Microbiol 2018; 8:379. [PMID: 30420943 PMCID: PMC6215854 DOI: 10.3389/fcimb.2018.00379] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
The protozoan Entamoeba gingivalis resides in the oral cavity and is frequently observed in the periodontal pockets of humans and pets. This species of Entamoeba is closely related to the human pathogen Entamoeba histolytica, the agent of amoebiasis. Although E. gingivalis is highly enriched in people with periodontitis (a disease in which inflammation and bone loss correlate with changes in the microbial flora), the potential role of this protozoan in oral infectious diseases is not known. Periodontitis affects half the adult population in the world, eventually leads to edentulism, and has been linked to other pathologies, like diabetes and cardiovascular diseases. As aging is a risk factor for the disorder, it is considered an inevitable physiological process, even though it can be prevented and cured. However, the impact of periodontitis on the patient's health and quality of life, as well as its economic burden, are underestimated. Commonly accepted models explain the progression from health to gingivitis and then periodontitis by a gradual change in the identity and proportion of bacterial microorganisms in the gingival crevices. Though not pathognomonic, inflammation is always present in periodontitis. The recruitment of leukocytes to inflamed gums and their passage to the periodontal pocket lumen are speculated to fuel both tissue destruction and the development of the flora. The individual contribution to the disease of each bacterial species is difficult to establish and the eventual role of protozoa in the fate of this disease has been ignored. Following recent scientific findings, we discuss the relevance of these data and propose that the status of E. gingivalis be reconsidered as a potential pathogen contributing to periodontitis.
Collapse
Affiliation(s)
- Mark Bonner
- International Institute of Periodontology Victoriaville, QC, Canada
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Nancy Guillén
- Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, CNRS-ERL9195, Paris, France
| | | |
Collapse
|
38
|
Shi M, Wei Y, Hu W, Nie Y, Wu X, Lu R. The Subgingival Microbiome of Periodontal Pockets With Different Probing Depths in Chronic and Aggressive Periodontitis: A Pilot Study. Front Cell Infect Microbiol 2018; 8:124. [PMID: 29765908 PMCID: PMC5938363 DOI: 10.3389/fcimb.2018.00124] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/13/2018] [Indexed: 11/18/2022] Open
Abstract
Periodontitis is a kind of infectious disease initiated by colonization of subgingival periodontal pathogens, which cause destruction of tooth-supporting tissues, and is a predominant threat to oral health as the most common cause of loss of teeth. The aim of this pilot study was to characterize the subgingival bacterial biodiversity of periodontal pockets with different probing depths in patients with different forms of periodontitis. Twenty-one subgingival plaque samples were collected from three patients with chronic periodontitis (ChP), three patients with aggressive periodontitis (AgP) and three periodontally healthy subjects (PH). Each patient with periodontitis was sampled at three sites, at different probing depths (PDs, one each at 4 mm, 5–6 mm, and ≥ 7 mm). Using 16S rRNA gene high-throughput sequencing and bioinformatic analysis, we found that subgingival communities in health and periodontitis samples largely differed. Meanwhile, Acholeplasma, Fretibacterium, Porphyromonas, Peptococcus, Treponema_2, Defluviitaleaceae_UCG_011, Filifactor, and Mycoplasma increased with the deepening of the pockets in ChP, whilst only Corynebacterium was negatively associated with PD. In AgP, Corynebacterium and Klebsiella were positively associated with PD, while Serratia, Pseudoramibacter, Defluviitaleaceae_UCG_011, and Desulfobulbus were negatively associated with PD. And among these two groups, Corynebacterium shifted differently. Moreover, in subgingival plaque, the unweighted UniFrac distances between samples from pockets with different PD in the same patients were significantly lower than those from pockets within the same PD category from different patients. This study demonstrated the shift of the subgingival microbiome in individual teeth sites during disease development. Within the limitation of the relative small sample size, this pilot study shed new light on the dynamic relationship between the extent of periodontal destruction and the subgingival microbiome.
Collapse
Affiliation(s)
- Meng Shi
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yiping Wei
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Wenjie Hu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yong Nie
- Laboratory of Environmental Microbiology, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
| | - Xiaolei Wu
- Laboratory of Environmental Microbiology, Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, China
| | - Ruifang Lu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
39
|
Abstract
The three main oral diseases of humans, that is, caries, periodontal diseases, and oral candidiasis, are associated with microbiome shifts initiated by changes in the oral environment and/or decreased effectiveness of mucosal immune surveillance. In this review, we discuss the role that microbial-based therapies may have in the control of these conditions. Most investigations on the use of microorganisms for management of oral disease have been conducted with probiotic strains with some positive but very discrete clinical outcomes. Other strategies such as whole oral microbiome transplantation or modification of community function by enrichment with health-promoting indigenous oral strains may offer more promise, but research in this field is still in its infancy. Any microbial-based therapeutics for oral conditions, however, are likely to be only one component within a holistic preventive strategy that should also aim at modification of the environmental influences responsible for the initiation and perpetuation of microbiome shifts associated with oral dysbiosis.
Collapse
|
40
|
Kriebel K, Hieke C, Müller-Hilke B, Nakata M, Kreikemeyer B. Oral Biofilms from Symbiotic to Pathogenic Interactions and Associated Disease -Connection of Periodontitis and Rheumatic Arthritis by Peptidylarginine Deiminase. Front Microbiol 2018; 9:53. [PMID: 29441048 PMCID: PMC5797574 DOI: 10.3389/fmicb.2018.00053] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022] Open
Abstract
A wide range of bacterial species are harbored in the oral cavity, with the resulting complex network of interactions between the microbiome and host contributing to physiological as well as pathological conditions at both local and systemic levels. Bacterial communities inhabit the oral cavity as primary niches in a symbiotic manner and form dental biofilm in a stepwise process. However, excessive formation of biofilm in combination with a corresponding deregulated immune response leads to intra-oral diseases, such as dental caries, gingivitis, and periodontitis. Moreover, oral commensal bacteria, which are classified as so-called “pathobionts” according to a now widely accepted terminology, were recently shown to be present in extra-oral lesions with distinct bacterial species found to be involved in the onset of various pathophysiological conditions, including cancer, atherosclerosis, chronic infective endocarditis, and rheumatoid arthritis. The present review focuses on oral pathobionts as commensal and healthy members of oral biofilms that can turn into initiators of disease. We will shed light on the processes involved in dental biofilm formation and also provide an overview of the interactions of P. gingivalis, as one of the most prominent oral pathobionts, with host cells, including epithelial cells, phagocytes, and dental stem cells present in dental tissues. Notably, a previously unknown interaction of P. gingivalis bacteria with human stem cells that has impact on human immune response is discussed. In addition to this very specific interaction, the present review summarizes current knowledge regarding the immunomodulatory effect of P. gingivalis and other oral pathobionts, members of the oral microbiome, that pave the way for systemic and chronic diseases, thereby showing a link between periodontitis and rheumatoid arthritis.
Collapse
Affiliation(s)
- Katja Kriebel
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | - Cathleen Hieke
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| | | | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
41
|
Song ZC, Li S, Dong JC, Sun MJ, Zhang XL, Shu R. Enamel matrix proteins regulate hypoxia-induced cellular biobehavior and osteogenic differentiation in human periodontal ligament cells. Biotech Histochem 2017; 92:606-618. [PMID: 29205072 DOI: 10.1080/10520295.2017.1370131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Hypoxia is a crucial microenvironment for inflamed periodontal tissue and periodontal wound healing. Enamel matrix proteins (EMPs) potentially can promote the formation of new periodontium. The effects of EMPs on periodontal ligament cells under hypoxia, however, remain unclear. We investigated the effects of EMPs on cellular biobehavior and osteogenic differentiation of human periodontal ligament cells (hPDLCs) under hypoxia. Under cobalt chloride (CoCl2)-induced hypoxia, cellular biobehavior of hPDLCs, including proliferation, attachment, spreading, and migration with or without EMPs, was evaluated by 3-(4, 5-dimethylthiazol- 2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), cell counting, spreading area measurement and wound scratch assay. The osteogenic activity of hPDLCs was assessed using alkaline phosphatase (ALP) and alizarin red S staining (ARS). The expressions of osteogenic genes including runt related transcription factor 2 (Runx2), ALP, osteocalcin (OCN) and collagen type I (Col-I) were detected using real time quantitative PCR, western blot and immunocytochemistry assays. The biobehavior and osteogenic differentiation of hPDLCs were inhibited significantly under hypoxia. EMPs have no effect on cell proliferation under mimicked hypoxia. EMPs partly reversed the inhibitory effects of hypoxia, however, for other cellular biobehavior including attachment, spreading and migration, and markedly up-regulated osteogenic differentiation activities including ALP, mineralization ability and the expressions of osteogenic genes such as Runx2, ALP, osteocalcin, and collagen type I in hPDLCs under hypoxia. EMPs attenuate the hypoxic injury to cellular biobehavior and osteogenic differentiation in hPDLCs under hypoxia.
Collapse
Affiliation(s)
- Z C Song
- a Department of Periodontology , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , 200011 , China
| | - S Li
- a Department of Periodontology , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , 200011 , China
| | - J C Dong
- a Department of Periodontology , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , 200011 , China
| | - M J Sun
- a Department of Periodontology , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , 200011 , China
| | - X L Zhang
- b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , 200011 , China
| | - R Shu
- a Department of Periodontology , Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.,b Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology , Shanghai , 200011 , China
| |
Collapse
|
42
|
Cheng R, Liu W, Zhang R, Feng Y, Bhowmick NA, Hu T. Porphyromonas gingivalis-Derived Lipopolysaccharide Combines Hypoxia to Induce Caspase-1 Activation in Periodontitis. Front Cell Infect Microbiol 2017; 7:474. [PMID: 29184853 PMCID: PMC5694474 DOI: 10.3389/fcimb.2017.00474] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/30/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is defined as inflammation affecting the supporting tissue of teeth. Periodontal pathogens initiate the disease and induce inflammatory host response. Hypoxia may accelerate the process by producing pro-inflammatory factors. The aim of this study is to investigate the effect of Porphyromonas gingivalis (P. gingivalis) lipopolysaccharides (LPS) and Escherichia coli (E. coli) LPS in inducing caspase-1 activation in normoxic or hypoxic phases. The results showed that healthy gingiva was in a normoxic phase (HIF-1α negative). However, hypoxia appeared in periodontitis, in which NLRP3, cleaved-caspase-1, interleukin 1 beta (IL-1β) and caspase-1-induced cell death was enhanced in periodontitis specimens. The in vitro experiment showed that P. gingivalis LPS slightly decreased the level of NLRP3 and IL-1β in gingival fibroblasts under normoxia. Surprisingly, hypoxia reversed the effects of P. gingivalis LPS, highly promoted caspase-1 activation and IL-1β maturation. E. coli LPS, a kind of pathogen-associated molecular pattern (PAMP) was chosen to simulate the effect of Gram-negative microbiota. Different from P. gingivalis LPS, E. coli LPS enhanced IL-1β maturation both in normoxia and hypoxia. Moreover, E. coli LPS turned normoxia into hypoxia phase in experimental periodontitis model, which may subsequently propel the inflammatory effect of P. gingivalis LPS. It was concluded that E. coli LPS induced a hypoxic phase, which is a combing pathological factor of P. gingivalis LPS in caspase-1 activating and IL-1β maturation in periodontal inflammation.
Collapse
Affiliation(s)
- Ran Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Wen Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuchao Feng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
43
|
Goh EX, Tan KS, Chan YH, Lim LP. Effects of root debridement and adjunctive photodynamic therapy in residual pockets of patients on supportive periodontal therapy: A randomized split-mouth trial. Photodiagnosis Photodyn Ther 2017; 18:342-348. [PMID: 28366818 DOI: 10.1016/j.pdpdt.2017.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND The study aims to compare the effects of adjunctive photodynamic therapy (PDT) with scaling and root debridement alone on periodontal parameters and inflammatory cytokines in residual pockets of patients undergoing maintenance therapy. METHODS 27 subjects, each with at least 2 residual pockets ≥5mm, were recruited for this randomized, split-mouth controlled trial, providing total of 72 sites. Probing pocket depth (PPD), recession, clinical attachment loss (CAL), plaque and bleeding on probing of all sites were examined at baseline, 3 and 6 months. Gingival crevicular fluids (GCFs) were collected to determine levels of IL-1β, IL-6, IL-8, TNF-α and MMP-8 via enzyme-linked immunosorbent assay. At baseline, all sites received subgingival instrumentation and polishing. In addition, test sites received a single application of PDT using Fotosan® with toluidine blue O solution photosensitizer. At 3 and 6 months, site level analysis was performed for changes in clinical parameters and cytokine level. RESULTS Based on mixed model analysis, at 3 months, test sites showed significant reduction in CAL (p=0.016) and PPD (p=0.027) (from 6.14±0.28mm to 5.49±0.20mm and 5.42±0.16mm to 4.65±0.18mm respectively) compared to control sites (from 6.32±0.24mm to 6.08±0.17mm and 5.32±0.13mm to 5.15±0.15mm respectively). At 6 months, these differences were no longer significant (p=0.510). Adjunctive PDT did not offer additional reduction in levels of GCF cytokines. CONCLUSIONS A single application of PDT to residual pockets provided a modest improvement of CAL and PPD over 3 months. Application of adjunctive PDT may lead to faster resolution of residual pockets and may be recommended for periodontal patients with slower healing capacity.
Collapse
Affiliation(s)
- Edwin X Goh
- Discipline of Periodontology, Faculty of Dentistry, National University of Singapore, Republic of Singapore.
| | - Kai Soo Tan
- Discipline of Oral Sciences, Faculty of Dentistry, National University of Singapore, Republic of Singapore.
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore.
| | - Lum Peng Lim
- Discipline of Periodontology, Faculty of Dentistry, National University of Singapore, Republic of Singapore.
| |
Collapse
|
44
|
Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci Rep 2016; 6:39096. [PMID: 27974831 PMCID: PMC5156907 DOI: 10.1038/srep39096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/17/2016] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is characterized by inflammation associated with the colonization of different oral pathogens. We here aimed to investigate how bacteria and host cells shape their environment in order to limit inflammation and tissue damage in the presence of the pathogen. Human dental follicle stem cells (hDFSCs) were co-cultured with gram-negative P. intermedia and T. forsythia and were quantified for adherence and internalization as well as migration and interleukin secretion. To delineate hDFSC-specific effects, gingival epithelial cells (Ca9-22) were used as controls. Direct effects of hDFSCs on neutrophils (PMN) after interaction with bacteria were analyzed via chemotactic attraction, phagocytic activity and NET formation. We show that P. intermedia and T. forsythia adhere to and internalize into hDFSCs. This infection decreased the migratory capacity of the hDFSCs by 50%, did not disturb hDFSC differentiation potential and provoked an increase in IL-6 and IL-8 secretion while leaving IL-10 levels unaltered. These environmental modulations correlated with reduced PMN chemotaxis, phagocytic activity and NET formation. Our results suggest that P. intermedia and T. forsythia infected hDFSCs maintain their stem cell functionality, reduce PMN-induced tissue and bone degradation via suppression of PMN-activity, and at the same time allow for the survival of the oral pathogens.
Collapse
|
45
|
White P, Sakellari D, Roberts H, Risafi I, Ling M, Cooper P, Milward M, Chapple I. Peripheral blood neutrophil extracellular trap production and degradation in chronic periodontitis. J Clin Periodontol 2016; 43:1041-1049. [DOI: 10.1111/jcpe.12628] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Phillipa White
- Periodontal Research Group and MRC Centre for Immune Regulation; School of Dentistry, University of Birmingham, UK and Birmingham Community Healthcare Trust; 5 Mill Pool Way Birmingham B5 7EG UK
| | - Dimitra Sakellari
- Department of Preventive Dentistry, Periodontology and Implant Biology; School of Dentistry; Aristotle University; Thessaloniki Greece
| | - Helen Roberts
- Periodontal Research Group and MRC Centre for Immune Regulation; School of Dentistry, University of Birmingham, UK and Birmingham Community Healthcare Trust; 5 Mill Pool Way Birmingham B5 7EG UK
| | - Idyli Risafi
- Department of Preventive Dentistry, Periodontology and Implant Biology; School of Dentistry; Aristotle University; Thessaloniki Greece
| | - Martin Ling
- Periodontal Research Group and MRC Centre for Immune Regulation; School of Dentistry, University of Birmingham, UK and Birmingham Community Healthcare Trust; 5 Mill Pool Way Birmingham B5 7EG UK
| | - Paul Cooper
- Periodontal Research Group and MRC Centre for Immune Regulation; School of Dentistry, University of Birmingham, UK and Birmingham Community Healthcare Trust; 5 Mill Pool Way Birmingham B5 7EG UK
| | - Mike Milward
- Periodontal Research Group and MRC Centre for Immune Regulation; School of Dentistry, University of Birmingham, UK and Birmingham Community Healthcare Trust; 5 Mill Pool Way Birmingham B5 7EG UK
| | - Iain Chapple
- Periodontal Research Group and MRC Centre for Immune Regulation; School of Dentistry, University of Birmingham, UK and Birmingham Community Healthcare Trust; 5 Mill Pool Way Birmingham B5 7EG UK
| |
Collapse
|
46
|
Gajendrareddy PK, Junges R, Cygan G, Zhao Y, Marucha PT, Engeland CG. Increased oxygen exposure alters collagen expression and tissue architecture during ligature-induced periodontitis. J Periodontal Res 2016; 52:644-649. [PMID: 27573480 DOI: 10.1111/jre.12408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to evaluate the effects of increased oxygen availability on gene expression and on collagen deposition/maturation in the periodontium following disease. MATERIAL AND METHODS Male Wistar rats had ligatures placed around their molars to induce periodontal disease, and a subset of animals underwent hyperbaric oxygen (HBO) treatment for 2 h twice per day. At 15 and 28 d, tissue gene expression of COL1A1, transforming growth factor-β1 and alkaline phosphatase was determined; other histological samples were stained with Picrosirius red to evaluate levels of collagen deposition, maturation and thickness. RESULTS In animals that underwent HBO treatment, type I collagen expression was higher and collagen deposition, maturation and thickness were more robust. Reduced mRNA levels of transforming growth factor-beta1 and alkaline phosphatase in HBO-treated rats on day 28 suggested that a quicker resolution in both soft tissue and bone remodeling occurred following oxygen treatment. No differences in inflammation were observed between groups. CONCLUSIONS The extracellular matrix regenerated more quickly in the HBO-treated group as evidenced by higher collagen expression, deposition and maturation.
Collapse
Affiliation(s)
- P K Gajendrareddy
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - R Junges
- Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,Faculty of Dentistry, Department of Oral Biology, University of Oslo, Oslo, Norway
| | - G Cygan
- Department of Oral and Maxillofacial Surgery, West Virginia University, Morgantown, WV, USA
| | - Y Zhao
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - P T Marucha
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - C G Engeland
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.,College of Nursing, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Lethal photosensitisation of Prevotellaceae under anaerobic conditions by their endogenous porphyrins. Photodiagnosis Photodyn Ther 2016. [DOI: 10.1016/j.pdpdt.2015.07.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Smalley JW, Olczak T. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment. Mol Oral Microbiol 2016; 32:1-23. [PMID: 26662717 DOI: 10.1111/omi.12149] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2015] [Indexed: 01/14/2023]
Abstract
Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore.
Collapse
Affiliation(s)
- J W Smalley
- School of Dentistry, University of Liverpool, Liverpool, UK
| | - T Olczak
- Laboratory of Biochemistry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
49
|
Holden MS, Black J, Lewis A, Boutrin MC, Walemba E, Sabir TS, Boskovic DS, Wilson A, Fletcher HM, Perry CC. Antibacterial Activity of Partially Oxidized Ag/Au Nanoparticles against the Oral Pathogen Porphyromonas gingivalis W83. JOURNAL OF NANOMATERIALS 2016; 2016:9605906. [PMID: 30245705 PMCID: PMC6146971 DOI: 10.1155/2016/9605906] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Advances in nanotechnology provide opportunities for the prevention and treatment of periodontal disease. While physicochemical properties of Ag containing nanoparticles (NPs) are known to influence the magnitude of their toxicity, it is thought that nanosilver can be made less toxic to eukaryotes by passivation of the NPs with a benign metal. Moreover, the addition of other noble metals to silver nanoparticles, in the alloy formulation, is known to alter the silver dissolution behavior. Thus, we synthesized glutathione capped Ag/Au alloy bimetallic nanoparticles (NPs) via the galvanic replacement reaction between maltose coated Ag NPs and chloroauric acid (HAuCl4) in 5% aqueous triblock F127 copolymer solution. We then compared the antibacterial activity of the Ag/Au NPs to pure Ag NPs on Porphyromonas gingivalis W83, a key pathogen in the development of periodontal disease. Only partially oxidized glutathione capped Ag and Ag/Au (Au:Ag≈0.2) NPs inhibited the planktonic growth of P. gingivalis W83. This effect was enhanced in the presence of hydrogen peroxide, which simulates the oxidative stress environment in the periodontal pocket during chronic inflammation.
Collapse
Affiliation(s)
- Megan S. Holden
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
| | - Jason Black
- Northern Caribbean University, Manchester, Jamaica
| | | | - Marie-Claire Boutrin
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Elvin Walemba
- Department of Earth and Biological Sciences, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Theodore S. Sabir
- College of Arts and Sciences, Faulkner University,
Montgomery, AL 36109, USA
| | - Danilo S. Boskovic
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
- Department of Earth and Biological Sciences, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Aruni Wilson
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Hansel M. Fletcher
- Division of Microbiology and Molecular Genetics, Loma Linda
University School of Medicine, Loma Linda, CA 92350, USA
| | - Christopher C. Perry
- Division of Biochemistry, Loma Linda University School of
Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
50
|
Uekubo A, Hiratsuka K, Aoki A, Takeuchi Y, Abiko Y, Izumi Y. Effect of antimicrobial photodynamic therapy using rose bengal and blue light-emitting diode on Porphyromonas gingivalis in vitro: Influence of oxygen during treatment. Laser Ther 2016; 25:299-308. [PMID: 28765675 DOI: 10.5978/islsm.16-or-25] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aims: A combination of rose bengal (RB) and blue LED (BL) has emerged as a new technical modality for antimicrobial photodynamic therapy (a-PDT). The purpose of this study was to clarify the influence of oxygen on the antimicrobial effect of RB + BL treatment on Porphyromonas gingivalis in vitro.Materials and Methods:P. gingivalis cells were treated with RB, BL (450-470 nm; 1 W/cm2, 5 s), or RB + BL under anaerobic/aerobic conditions. Cells were incubated anaerobically, and the cell density (OD600 nm) was measured after 6-48 h. Additionally, cells were cultured anaerobically on blood agar plates for 9 days, and the resulting colonies were observed. Bacterial growth within 1 h of aerobic RB + BL treatment was examined, and RNA degradation due to anaerobic/aerobic RB + BL treatment was measured after 3 h of culture. Results: Under anaerobic conditions, RB + BL significantly suppressed bacterial growth after 18 h; however, the growth after 48 h and the number of colonies after 9 days were similar to those of the untreated control. RNA degradation in the anaerobic-treatment group was not significantly different from that in the control. Under aerobic conditions, RB + BL immediately affected bacterial growth and completely inhibited growth for up to 48 h. Few colonies were detected even after 9 days of culture, and RNA was completely degraded. Conclusions: Unlike the bacteriostatic effect of anaerobic treatment, aerobic RB + BL treatment may have a bactericidal action via a-PDT effect, resulting in the destruction of RNA and bacterial cells within a short period.
Collapse
Affiliation(s)
- Ayano Uekubo
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Abiko
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|