1
|
Qin L, Lin H, Zhu F, Wang J, Feng T, Xu T, Zhang G, Zhang X. CD4 +LAG3 +T cells are decreased in SSc-ILD and affect fibroblast mesenchymal transition by TGF-β3. iScience 2023; 26:108225. [PMID: 38025770 PMCID: PMC10661698 DOI: 10.1016/j.isci.2023.108225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Pulmonary fibrosis frequently occurs in rheumatic conditions, particularly systemic sclerosis-associated interstitial lung disease (SSc-ILD). The pathology involves cell transformation into interstitial structures and collagen accumulation. CD4+LAG3+T cells, known for immune inhibition, are relevant in autoimmunity. This study investigates CD4+LAG3+T cells in SSc-ILD. Clinical analysis revealed a correlation between CD4+LAG3+T cells and interleukin-6 (IL-6) and erythrocyte sedimentation rate (ESR). Using primary human lung fibroblasts (pHLFs) and murine bone marrow-derived macrophages (BMDMs), we showed that CD4+LAG3+T cells secreted TGF-β3 inhibits TGF-β1-induced mesenchymal transformation, modulates cellular function, and reduces collagen release. In mouse models, CD4+LAG3+T cells exhibited potential in alleviating bleomycin-induced pulmonary fibrosis. This study emphasizes CD4+LAG3+T cells' therapeutic promise against fibrosis and proposes their role as biomarkers.
Collapse
Affiliation(s)
- Linmang Qin
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Haobo Lin
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fu Zhu
- Liuzhou Worker’s Hospital, Liuzhou 545007, China
| | - Jieying Wang
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Tianxiao Feng
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ting Xu
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Guangfeng Zhang
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiao Zhang
- Department of Rheumatology and Immunology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| |
Collapse
|
2
|
Saygili E, Saglam-Metiner P, Cakmak B, Alarcin E, Beceren G, Tulum P, Kim YW, Gunes K, Eren-Ozcan GG, Akakin D, Sun JY, Yesil-Celiktas O. Bilayered laponite/alginate-poly(acrylamide) composite hydrogel for osteochondral injuries enhances macrophage polarization: An in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 134:112721. [DOI: 10.1016/j.msec.2022.112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
|
3
|
Pilmane M, Sidhoma E, Akota I, Kazoka D. Characterization of Cytokines and Proliferation Marker Ki67 in Cleft Affected Lip Tissue. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E518. [PMID: 31443525 PMCID: PMC6780708 DOI: 10.3390/medicina55090518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/19/2019] [Indexed: 12/29/2022]
Abstract
Background and objectives: Cleft lip palate takes the second place among all anomalies. The complex appearance of cytokines and proliferation markers has still not been clarified despite their possible crucial role in cleft tissue. Therefore, the aim of work was the detection of appearance of pro- and anti-inflammatory cytokines and proliferation marker Ki67, and their inter-correlations in cleft affected lip (CAL). Materials and Methods: The lip material was obtained from 16 children aged before primary dentition during plastic surgery. Control was obtained from 7 non-CAL oral tissue. Tissues were stained for IL-1, IL-4, IL-6, IL-8, IL-10 and Ki67 immunohistochemically. Non-parametric statistic, Mann-Whitney and Spearman's coefficient were used. Results: All cytokines positive cells were observed more into the epithelium. Statistically significant difference was seen between epithelial IL-1, IL-10, IL-8 and Ki67 positive cells and IL-10-, IL-4-containing connective tissue cells in comparison to the control. Strong positive correlation was detected in CAL epithelium between IL-10 and IL-8, IL-10 and IL-4, IL-10 and IL-1, IL-1 and IL-8, IL-1 and IL-4, IL-4 and IL-8, IL-8 and Ki67, IL-10 and Ki67, but moderate-in connective tissue between IL-1 and IL-10, IL-1 and IL-4. Conclusion: The CAL epithelium is the main source for the interleukins. Rich similar expression of IL-1 and IL-10 suggests the balance between pro-and anti-inflammatory tissue response on basis of dysregulated tissue homeostasis (increase of IL-8). The correlations between the different ILs -1, -4, -8, -10 in CAL epithelium seem to indicate the self-protection compensatory mechanism for intensification of local inflammatory-immune response without involvement of IL-6. The correlations between Ki67 and cytokines indicate the involvement of IL-8 and IL-10 in stimulation of cellular proliferation. IL-4 and IL-10 expression from CAL connective tissue simultaneously to IL-1, IL-4 and IL-10 inter-correlations there suggests the intensification of local immune response regulated probably by main pro-inflammatory cytokine-IL-1.
Collapse
Affiliation(s)
- Mara Pilmane
- Institute of Anatomy and Anthropology, Riga Stradins University , Kronvalda Boulevard 9, LV-1010 Riga, Latvia.
| | - Elga Sidhoma
- Institute of Anatomy and Anthropology, Riga Stradins University , Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| | - Ilze Akota
- Institute of Stomatology, Riga Stradins University, Dzirciema Street 20, LV-1007 Riga, Latvia
| | - Dzintra Kazoka
- Institute of Anatomy and Anthropology, Riga Stradins University , Kronvalda Boulevard 9, LV-1010 Riga, Latvia
| |
Collapse
|
4
|
Tettamanti L, Avantaggiato A, Nardone M, Silvestre-Rangil J, Tagliabue A. Cleft palate only: current concepts. ACTA ACUST UNITED AC 2017; 10:45-52. [PMID: 28757935 DOI: 10.11138/orl/2017.10.1.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cleft palate only (CPO) is one of the most common congenital malformations worldwide. The etiopathogenesis of CPO is not completely understood. Environmental factors, such as smoking, alcohol consumption, intake of drugs during pregnancy, advanced paternal age, have been demonstrated to be a risk of CPO, but conflicting results have also been published. Insufficient intake of folic acid during the pregnancy has been suggested to increase the risk for CPO. The demonstrated risk for siblings and the higher risk for monozygotic twins suggest a genetic etiopathogenesis for CPO. In some cases of CPO a prevalent mode of inheritance has been reported, but oligogenic models with reduced penetrance, and the risk related to environmental factors have also been proved. One of the first manifestations associated with CPO is difficulty with feeding. Aerophagia is a problem in these infants with CPO and requires more frequent burping and slower feeding. The inability to generate intraoral breath pressure due to nasal air emission in CPO children frequently manifests as articulation difficulties, particularly consonant weakness, and unintelligible speech. Hearing disorders are prevalent among individuals with CPO, as a result of chronic otitis media with effusion due to eustachian tube dysfunction. A multidisciplinary team is essential to manage the many aspects of CPO. In treating CPO, the reconstructive surgeon works in cooperation with otolaryngologists, dentists and orthodontists, speech pathologists, audiologists, geneticists, psychiatrists, maxillofacial surgeons, social workers, and prosthodontists. CPO can be considered a genetically complex disease, but new knowledge and new therapeutic approaches have greatly improved the quality of life of these children. Prenatal diagnosis is an important step in the treatment of this disease.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - M Nardone
- Ministry of Public Health, Rome, Italy
| | | | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
5
|
Tettamanti L, Avantaggiato A, Nardone M, Palmieri A, Tagliabue A. New insights in orofacial cleft: epidemiological and genetic studies on italian samples. ACTA ACUST UNITED AC 2017; 10:11-19. [PMID: 28757931 DOI: 10.11138/orl/2017.10.1.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cleft of the lip and/or palate (CL±P) is the most common congenital craniofacial anomaly affecting around 1 in 700 live births worldwide. Clefts of the human face can be classified anatomically as cleft lip only (CL), cleft palate only (CP), cleft lip and palate (CLP) or a combined group of cleft lip with or without cleft palate (CL±P), based on differences in embryologic development. CL±P has a genetic base and several linkage and association analyses have been performed in order to obtain important information about the role of candidate genes in its onset; not less important are gene-environment interactions that play an increasing role in its aetiology. In CL±P, several loci have been seen associated with the malformation, and, in some cases, a specific gene mapping in a locus has also been identified as susceptibility factor. In CP, one gene has been found, but many more are probably involved. In this short review the genetic studies carried out on CL±P, and the interaction with environmental factors (alcohol, smoking, drugs) are discussed.
Collapse
Affiliation(s)
- L Tettamanti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - A Avantaggiato
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - M Nardone
- Ministry of Public Health, Rome, Italy
| | - A Palmieri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - A Tagliabue
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Beyeler J, Schnyder I, Katsaros C, Chiquet M. Accelerated wound closure in vitro by fibroblasts from a subgroup of cleft lip/palate patients: role of transforming growth factor-α. PLoS One 2014; 9:e111752. [PMID: 25360592 PMCID: PMC4216129 DOI: 10.1371/journal.pone.0111752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/02/2014] [Indexed: 01/11/2023] Open
Abstract
In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely “fast”, “intermediate”, and “slow”. Most cleft lip/palate fibroblasts were distributed between the “fast” (5 strains) and the “intermediate” group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the “fast” group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the “intermediate” migratory group to the level of the “fast”, but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of “fast” cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling.
Collapse
Affiliation(s)
- Joël Beyeler
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Isabelle Schnyder
- University Clinic for Childrens' Surgery, Bern University Hospital, Bern, Switzerland
| | - Christos Katsaros
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Matthias Chiquet
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
7
|
Gagliano N, Carinci F, Moscheni C, Torri C, Pezzetti F, Scapoli L, Martinelli M, Gioia M, Stabellini G. New insights in collagen turnover in orofacial cleft patients. Cleft Palate Craniofac J 2014; 47:393-9. [PMID: 20590460 DOI: 10.1597/07-196.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE We aimed to characterize the fibroblast phenotype of patients by analyzing gene and protein expression of cleft lip and/or cleft palate fibroblasts in relation to collagen turnover and extracellular matrix remodeling. PATIENTS Human palatal fibroblasts were obtained from three healthy subjects without cleft lip and/or cleft palate and from three subjects with nonsyndromic cleft lip and/or cleft palate. Collagen turnover-related gene and protein expression were analyzed by real-time polymerase chain reaction, Western and dot blots, and sodium dodecyl sulfate zymography. RESULTS Cleft lip and/or cleft palate fibroblasts, compared with controls, displayed a down-regulation of collagens type I and III messenger RNA (p < .0001 and p < .001, respectively) but an opposite tendency to increase protein levels. Cleft lip and/or cleft palate cells had higher lysyl hydroxylase-2b messenger RNA levels expressed in relation to collagen type I messenger RNA, down-regulated matrix metalloproteinase-1, tissue inhibitor of matrix metalloproteinase-1, and Secreted Protein Acidic and Rich in Cysteine messenger RNA (p < .0001 and p < .01, respectively). Pro-matrix metalloproteinase-1 tended to decrease, and pro-matrix metalloproteinase-2 and -9 were down-regulated (p < .01, p < .05, respectively), as was Secreted Protein Acidic and Rich in Cysteine protein expression (p < .05). CONCLUSIONS Our results suggest that the cleft lip and/or cleft palate fibroblast phenotype is characterized by a tendency toward interstitial collagen deposition due to posttranslational modifications, such as decreased collagen degradation by matrix metalloproteinases and increased collagen cross-links. These findings may contribute to the knowledge of the cleft lip and/or cleft palate fibroblast phenotype and may be useful to the surgeon when considering the potential wound contraction and subsequent undesired scarring in cleft lip and/or cleft palate ocurring after the surgical closure of a cleft palate.
Collapse
Affiliation(s)
- Nicoletta Gagliano
- Department of Human Morphology and Biomedical Sciences–Città Study, Extracellular Matrix Laboratory, University of Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Warner DR, Mukhopadhyay P, Brock GN, Pihur V, Pisano MM, Greene RM. TGFβ-1 and Wnt-3a interact to induce unique gene expression profiles in murine embryonic palate mesenchymal cells. Reprod Toxicol 2010; 31:128-33. [PMID: 20955781 DOI: 10.1016/j.reprotox.2010.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/14/2010] [Accepted: 10/06/2010] [Indexed: 11/18/2022]
Abstract
Development of the secondary palate in mammals is a complex process under the control of numerous growth and differentiation factors that regulate key processes such as cell proliferation, synthesis of extracellular matrix molecules, and epithelial-mesenchymal transdifferentiation. Alterations in any one of these processes either through genetic mutation or environmental insult have the potential to lead to clefts of the secondary palate. Members of the TGFβ family of cytokines are crucial mediators of these processes and emerging evidence supports a pivotal role for members of the Wnt family of secreted growth and differentiation factors. Previous work in this laboratory demonstrated cross-talk between the Wnt and TGFβ signaling pathways in cultured mouse embryonic palate mesenchymal cells. In the current study we tested the hypothesis that unique gene expression profiles are induced in murine embryonic palate mesenchymal cells as a result of this cross-talk between the TGFβ and Wnt signal transduction pathways.
Collapse
Affiliation(s)
- Dennis R Warner
- University of Louisville Birth Defects Center, Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, ULSD, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
9
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Lumare E, Palmieri A, Stabellini G, Bodo M. Human cleft lip and palate fibroblasts and normal nicotine-treated fibroblasts show altered in vitro expressions of genes related to molecular signaling pathways and extracellular matrix metabolism. J Cell Physiol 2010; 222:748-56. [PMID: 20020508 DOI: 10.1002/jcp.22006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonsyndromic cleft lip with or without cleft palate (CLP) is a frequent craniofacial malformation caused by both genetic and environmental factors. Maternal smoking during pregnancy is a known risk factor, due to the teratogenic role of nicotine. To assess and compare the impact of CLP and nicotine, we studied the quantitative expression of genes involved in signaling pathways and extracellular matrix (ECM) metabolism in human normal nicotine-treated (NicN) and CLP fibroblasts compared to normal control (CTRL) cells. Palatal fibroblast cultures from seven CLP children and seven age-matched CTRL subjects were established and subconfluent cells incubated for 24 h without (CTRL and CLP fibroblasts) or with (NicN fibroblasts) 0.6 mM nicotine. Gene expressions were analyzed by real-time quantitative PCR. For the first time, a regulated cholinergic signaling in our human fibroblasts in vitro was demonstrated. Members of TGF-beta, retinoic acid (RA), and GABA-ergic signaling systems were also differently regulated. Among the ECM genes, fibronectin, syndecan, integrin alpha2, and MMP13 genes were concordantly modulated, while integrin beta5, and decorin genes were discordantly modulated. Interestingly, nicotine treatment regulated gene expressions of CD44 and CLPTM1, two candidate genes for CLP. Our findings show a positive association between nicotine treatment and CLP phenotype. Results suggest that nicotine deranges normal palate development, which might contribute to the development of a CLP malformative phenotype, through the impairment of some important signaling systems and ECM composition.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, via del Giochetto, 06100 Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Marinucci L, Balloni S, Bodo M, Carinci F, Pezzetti F, Stabellini G, Conte C, Carmela C, Lumare E. Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture. Toxicology 2008; 257:10-6. [PMID: 19114084 DOI: 10.1016/j.tox.2008.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 01/06/2023]
Abstract
Prenatal exposure to diazepam, a prototype sedative drug that belongs to Benzodiazepines, can lead to orofacial clefting in human newborns. By using real-time PCR, in the present study we investigated whether diazepam elicits gene expression alterations in extracellular matrix (ECM) components, growth factors and gamma-aminobutyric acid receptor (GABRB3), implicated in the coordinate regulation of palate development. Palate fibroblasts were treated with diazepam (Dz-N fibroblasts) and compared to cleft lip-palate (CLP) fibroblasts obtained from patients with no known exposure to diazepam or other teratogens. Untreated fibroblasts from non-CLP patients were used as control. The results showed significant convergences in gene expression pattern of collagens, fibromodulin, vitronectin, tenascin C, integrins and metalloprotease MMP13 between Dz-N and CLP fibroblasts. Among the growth factors, constitutive Fibroblast Growth Factor 2 (FGF2) was greatly enhanced in Dz-N and CLP fibroblasts and associated with a higher reduction of FGF receptor. Transforming Growth Factor beta 3 (TGFbeta(3)) resulted up-regulated in CLP fibroblasts and decreased in Dz-N fibroblasts. We found phenotypic differences exhibited by Dz-N and CLP fibroblasts in GABRB3 gene regulation, so further studies are necessary to determine whether GABAergic system could be involved in the development of diazepam mediated CLP phenotype. Taken together the results elucidate the molecular mechanisms underlying possible toxicology effects induced by diazepam. Counselling of women on the safety of diazepam exposure is clinically important, also for the forensic consequences.
Collapse
Affiliation(s)
- Lorella Marinucci
- Department of Experimental Medicine and Biochemical Science, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
TGFB3 displays parent-of-origin effects among central Europeans with nonsyndromic cleft lip and palate. J Hum Genet 2008; 53:656-661. [DOI: 10.1007/s10038-008-0296-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
|
12
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, Bodo M. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. Mol Med 2007. [PMID: 17225872 DOI: 10.2119/2006-00026.baroni] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Becchetti E, Carinci P, Stabellini G, Calvitti M, Lumare E, Bodo M. Retinoic acid, GABA-ergic, and TGF-beta signaling systems are involved in human cleft palate fibroblast phenotype. MOLECULAR MEDICINE (CAMBRIDGE, MASS.) 2007; 12:237-45. [PMID: 17225872 PMCID: PMC1770008 DOI: 10.2119/2006–00026.baroni] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 07/31/2006] [Indexed: 11/06/2022]
Abstract
During embryogenesis, a complex interplay between extracellular matrix (ECM) molecules, regulatory molecules, and growth factors mediates morphogenetic processes involved in palatogenesis. Transforming growth factor-beta (TGF-beta), retinoic acid (RA), and gamma-aminobutyric acid (GABA)ergic signaling systems are also potentially involved. Using [3H]glucosamine and [35S]methionine incorporation, anion exchange chromatography, semiquantitative radioactive RT-PCR, and a TGF-beta binding assay, we aimed to verify the presence of phenotypic differences between primary cultures of secondary palate (SP) fibroblasts from 2-year-old subjects with familial nonsyndromic cleft lip and/or palate (CLP-SP fibroblasts) and age-matched normal SP (N-SP) fibroblasts. The effects of RA--which, at pharmacologic doses, induces cleft palate in newborns of many species--were also studied. We found an altered ECM production in CLP-SP fibroblasts that synthesized and secreted more glycosaminoglycans (GAGs) and fibronectin (FN) compared with N-SP cells. In CLP-SP cells, TGF-beta3 mRNA expression and TGF-beta receptor number were higher and RA receptor-alpha (RARA) gene expression was increased. Moreover, we demonstrated for the first time that GABA receptor (GABRB3) mRNA expression was upregulated in human CLP-SP fibroblasts. In N-SP and CLP-SP fibroblasts, RA decreased GAG and FN secretion and increased TGF-beta3 mRNA expression but reduced the number of TGF-beta receptors. TGF-beta receptor type I mRNA expression was decreased, TGF-beta receptor type II was increased, and TGF-beta receptor type III was not affected. RA treatment increased RARA gene expression in both cell populations but upregulated GABRB3 mRNA expression only in N-SP cells. These results show that CLP-SP fibroblasts compared with N-SP fibroblasts exhibit an abnormal phenotype in vitro and respond differently to RA treatment, and suggest that altered crosstalk between RA, GABAergic, and TGF-beta signaling systems could be involved in human cleft palate fibroblast phenotype.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Resel E, Martínez-Sanz E, González I, Trinidad E, Garcillán B, Amorós M, Alonso-Bañuelos C, González-Meli B, Lagarón E, Murillo J, Del Río A, Barrio C, López M, Martínez-Alvarez C. In Vitro Manipulation of Cleft Palate Connective Tissue: Setting the Bases of a Proposed New Treatment. J Surg Res 2007; 138:111-20. [PMID: 17173932 DOI: 10.1016/j.jss.2006.07.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Revised: 07/19/2006] [Accepted: 07/20/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Palatoplasty has the undesired side effect of impaired mid-facial growth. To avoid this problem, we propose an alternative to palatoplasty. We hypothesize that if BMP-2 is injected together with a carrier into the periosteum of the cleft palate borders, border volume will increase and connective tissue cells will be activated to produce extra bone. Once these borders supported by bone reach the midline, extraction of their covering epithelia with trypsin will permit adhesion of the underlying tissues. We investigated in vitro the ability of cleft palate connective tissue cells to produce extra bone in the presence of BMP-2 and the possibility of using trypsin to remove the epithelium covering the cleft palate borders without impairing the underlying tissues' ability to adhere. MATERIALS AND METHODS We used the cleft palate presented by tgf-beta(3) null mice and small fragments of human cleft palate mucoperiosteum as models. Immunolabeling BMP-2-treated or untreated cultures with TUNEL and anti-osteocalcin or PCNA antibodies was performed. The epithelium of the cleft palate borders was removed with a trypsin solution, and the de-epithelialized tissues were cultured in apposition. RESULTS BMP-2 induces differentiation toward bone on cleft palate connective tissue cells without producing cell death or proliferation. Trypsin removal of the cleft palate margins' epithelium does not impair the underlying tissues' adhesion. CONCLUSION It is possible to generate extra bone at the cleft palate margins and to chemically eliminate their covering epithelia without damaging the underlying tissues, which allows further investigation in vivo of this new approach for cleft palate closure.
Collapse
Affiliation(s)
- Eva Resel
- Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rullo R, Gombos F, Ferraraccio F, Farina A, Morano D, Festa VM, Guida L, Martinelli M, Scapoli L, Pezzetti F, Carinci F. TGFbeta3 expression in non-syndromic orofacial clefts. Int J Pediatr Otorhinolaryngol 2006; 70:1759-64. [PMID: 16837067 DOI: 10.1016/j.ijporl.2006.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Revised: 05/23/2006] [Accepted: 05/28/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Genetic studies have demonstrated that non-syndromic cleft is composed of two separate entities - cleft palate only (CPO) and cleft of lip, alveolus with or without cleft palate (CL+/-P) -, both have a heterogeneous genetic background and environmental factors contribute to the onset of these malformations. Previous studies have shown that TGFbeta3 could be involved in these diseases, but no conclusive results have been reached. PURPOSE In order to detect if TGFbeta3 has a role in cleft diseases, a series of non-syndromic cleft patients and controls are analyzed for TGFbeta3 protein expression. MATERIAL AND METHODS Forty-three non-syndromic cleft patients and 21 unaffected subjects were involved in this study. Paraffin-embedded specimens were matched with the TGFbeta3 antibody and then scanned with a computerized image analyzer. TGFbeta3 was found to be absent (less than 10%), moderate (from 10% to 30%) and highly expressed (higher than 30%) in epithelium (EP), minor palatal salivary gland (GL) and fibres of elevator palati muscle (MU). Data was statistically analyzed with a Kruskal-Wallis test. RESULTS Only GL and EP have a statistically significant lower expression in non-syndromic cleft compared to unaffected subjects. A subsequent comparison between CL+/-P and CPO groups demonstrates a statistically significant difference only for GL, with a lower expression in GL of CPO patients. CONCLUSIONS TGFbeta3 is decreasingly expressed in GL of unaffected CL+/-P and CPO patients and thus further strength is given to a pathogenetic role of TGFbeta3 in the onset of clefts.
Collapse
Affiliation(s)
- Rosario Rullo
- Dental Clinic, Second University of Naples, Via De Crecchio, 80138 Napoli, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Transforming growth factor-beta (TGF-beta) plays an essential role in regulating the homeostasis of cells in the lymphoid lineage. TGF-beta signaling is not required for normal thymopoiesis, but is essential for regulating the expansion, activation, and effector function of the mature CD4+ and CD8+ T cells in the peripheral lymphoid organs and target tissues. Recent studies in both mice and humans have elucidated an important and complex role for TGF-beta in regulatory T-cell biology. Disruption of TGF-beta signaling in T cells impairs the maintenance of regulatory T cells, results in the expansion of activated effector T cells, and is associated with the production of cytokines that have major effects on cells in their environment. While autoimmunity and inflammation are the principal phenotypes associated with the abrogation of TGF-beta signaling in T cells in mice, emerging evidence now also directly links Smad-dependent TGF-beta signaling in T cells to the suppression of epithelial neoplasia. The TGF-beta receptor-activated Smad3 plays a critical role in mediating many of the inhibitory effects of TGF-beta signaling in T cells, and has now been established as an important suppressor of leukemogenesis. These studies are increasing our awareness of the many complex mechanisms through which TGF-beta signaling controls the pathogenesis of cancer.
Collapse
Affiliation(s)
- John J Letterio
- The Laboratory of Cell Regulation and Carcinogenesis, The Center for Cancer Research, The National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-5055, USA.
| |
Collapse
|