1
|
Alkhurayji KS, Al Suwaidan H, Kalagi F, Al Essa M, Alsubaie M, Alrayes S, Althumairi A. Perception of Periodontitis Patients about Treatment Outcomes: A Cross-Sectional Study in Saudi Arabia. Healthcare (Basel) 2024; 12:1288. [PMID: 38998823 PMCID: PMC11241393 DOI: 10.3390/healthcare12131288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Patient compliance following periodontal therapy is extremely important in predicting the prognosis of the disease and maintaining treatment outcomes. Therefore, this study aimed to investigate the perception of periodontitis patients about treatment outcomes. A cross-sectional study was conducted among periodontitis patients in a single dental center through a pre-validated questionnaire that was distributed to each participant in the waiting area of periodontal clinics by utilizing a convenience sampling technique. Median and interquartile ranges were used in addition to frequency and percentages. Bivariate analyses were performed using the Mann-Whitney U and Kruskal-Wallis test. Among the 300 male and female participants, the median score (interquartile range) of the current level of pain revealed that males experienced more pain than females, with a median score of 5 (0-7) for males and 4 (0-6) for women. However, the median (interquartile range) for desired and expected pain levels in both genders was 0 (0-1), 0 (0-4). There were significant differences in median score ratings between males and females for expected, distress, success, and importance levels (p-value < 0.05). Patients with periodontitis provided valuable insights into the experiences of individuals undergoing treatment for periodontal disease, indicating overall patient satisfaction with the expected levels of periodontal outcomes.
Collapse
Affiliation(s)
- Khalid Saad Alkhurayji
- Health Information Management and Technology Department, College of Public Health, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| | - Hessah Al Suwaidan
- Health Information Management and Technology Department, College of Public Health, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| | - Farah Kalagi
- Health Information Management and Technology Department, College of Public Health, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| | - Mohamed Al Essa
- Dental Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Mohammed Alsubaie
- Dental Center, Prince Sultan Military Medical City, Riyadh 11159, Saudi Arabia
| | - Saja Alrayes
- Health Information Management and Technology Department, College of Public Health, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| | - Arwa Althumairi
- Health Information Management and Technology Department, College of Public Health, Imam Abdulrahman bin Faisal University, Dammam 34212, Saudi Arabia
| |
Collapse
|
2
|
Lee YS, Kim AR, Jeon YE, Bak EJ, Yoo YJ. Periodontitis deteriorates renal fibrosis and macrophage infiltration in rats with chronic kidney disease. Oral Dis 2024; 30:1497-1505. [PMID: 36905098 DOI: 10.1111/odi.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
OBJECTIVE The objective of this study was to examine the effect of periodontitis on renal function and morphology in rats with or without nephrectomy (Nx)-induced chronic kidney disease (CKD). METHODS Rats were divided into sham surgery (Sham), Sham with tooth ligation (ShamL), Nx, and NxL groups. Periodontitis was induced by tooth ligation at 16-week olds. Creatinine, alveolar bone area, and renal histopathology were analyzed at 20-week olds. RESULTS Creatinine did not differ between the Sham and ShamL groups or between the Nx and NxL groups. The ShamL and NxL groups (both p = 0.002) had less alveolar bone area than the Sham group. The NxL group had fewer glomeruli than the Nx group (p < 0.000). The periodontitis groups demonstrated more tubulointerstitial fibrosis (Sham vs. ShamL p = 0.002, Nx vs. NxL p < 0.000) and macrophage infiltration (Sham vs. ShamL p = 0.002, Nx vs. NxL p = 0.006) than the groups without periodontitis. Only the NxL group had greater renal TNFα expression than the Sham group (p < 0.003). CONCLUSIONS These suggest that periodontitis increases renal fibrosis and inflammation in the presence or absence of CKD but does not affect renal function. Periodontitis also increases TNFα expression in the presence of CKD.
Collapse
Affiliation(s)
- Youn Soo Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Dentistry, The Graduate School, Yonsei University, Seoul, South Korea
| | - Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
- BK21 FOUR Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
- Department of Dentistry, The Graduate School, Yonsei University, Seoul, South Korea
| |
Collapse
|
3
|
Khan S, Ahmad F, Khalid N. Applications of Strain-Specific Probiotics in the Management of Cardiovascular Diseases: A Systemic Review. Mol Nutr Food Res 2024; 68:e2300675. [PMID: 38549453 DOI: 10.1002/mnfr.202300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/14/2024] [Indexed: 05/08/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading cause of global mortality and novel approaches for prevention and management are needed. The human gastrointestinal tract hosts a diverse microbiota that is crucial in maintaining metabolic homeostasis. The formulation of effective probiotics, alone or in combination, has been under discussion due to their impact on cardiovascular and metabolic diseases. Probiotics have been shown to impact cardiovascular health positively. An imbalance in the presence of Firmicutes and Bacteroidetes has been linked to the progression of CVDs due to their impact on bile acid and cholesterol metabolism. The probiotics primarily help in the reduction of plasma low-density lipoprotein levels and attenuation of the proinflammatory markers. These beneficial microorganisms contribute to lowering cholesterol levels and produce essential short-chain fatty acids. The impact of lipid-regulating probiotic strains on human health is quite significant. However, only a few have been tested for potential beneficial efficacy, and ambiguity exists regarding strain dosages, interactions with confounding factors, and potential adverse effects. Hence, more comprehensive studies and randomized trials are needed to understand the mechanisms of probiotics on CVDs and to ensure human health. This review assesses the evidence and highlights the roles of strain-specific probiotics in the management of CVDs.
Collapse
Affiliation(s)
- Saleha Khan
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
| | - Firdos Ahmad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Nauman Khalid
- Department of Human Nutrition and Dietetics, School of Food and Agricultural Sciences, University of Management and Technology, Lahore, 54000, Pakistan
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, 59911, United Arab Emirates
| |
Collapse
|
4
|
Laugisch O, Ruppert-Jungck MC, Auschill TM, Eick S, Sculean A, Heumann C, Timmermann L, Pedrosa DJ, Eggers C, Arweiler NB. Glucose-6-Phosphatase-Dehydrogenase activity as modulative association between Parkinson's disease and periodontitis. Front Cell Infect Microbiol 2024; 14:1298546. [PMID: 38404290 PMCID: PMC10885135 DOI: 10.3389/fcimb.2024.1298546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 02/27/2024] Open
Abstract
The association between periodontitis (PD) and Parkinson's disease (PK) is discussed due to the inflammatory component of neurodegenerative processes. PK severity and affected areas were determined using the following neuropsychological tests: Unified Parkinson's Disease Rating Score (UPDRS) and Hoehn and Yahr; non-motoric symptoms by Non-Motor Symptoms Scale (NMSS), and cognitive involvement by Mini-Mental State Examination (MMSE). Neuroinflammation and the resulting Glucose-6-Phosphatase-Dehydrogenase (G6PD) dysfunction are part of the pathophysiology of PK. This study aimed to evaluate these associations in periodontal inflammation. Clinical data and saliva-, serum-, and RNA-biobank samples of 50 well-characterized diametric patients with PK and five age- and sex-matched neurologically healthy participants were analyzed for G6PD function, periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Prevotella intermedia, Campylobacter rectus, Fusobacterium nucleatum, and Filifactor alocis), monocyte chemoattractant protein (MCP) 1, and interleukin (IL) 1-beta. Regression analysis was used to identify associations between clinical and behavioral data, and t-tests were used to compare health and disease. Compared with PK, no pathogens and lower inflammatory markers (p < 0.001) were detectible in healthy saliva and serum, PK-severity/UPDRS interrelated with the occurrence of Prevotella intermedia in serum as well as IL1-beta levels in serum and saliva (p = 0.006, 0.019, 0.034), Hoehn and Yahr correlated with Porphyromonas gingivalis, Prevotella intermedia, RNA IL1-beta regulation, serum, and saliva IL1-beta levels, with p-values of 0.038, 0.011, 0.008, <0.001, and 0.010, while MMSE was associated with Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, serum MCP 1 levels, RNA IL1-beta regulation and G6PD serum activity (p = 0.036, 0.003, 0.045, <0.001, and 0.021). Cognitive and motor skills seem to be important as representative tests are associated with periodontal pathogens and oral/general inflammation, wherein G6PD-saliva dysfunction might be involved. Clinical trial registration https://www.bfarm.de/DE/Das-BfArM/Aufgaben/Deutsches-Register-Klinischer-Studien/_node.html, identifier DRKS00005388.
Collapse
Affiliation(s)
- Oliver Laugisch
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Marina C. Ruppert-Jungck
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Thorsten M. Auschill
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christian Heumann
- Department of Statistics, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Lars Timmermann
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - David J. Pedrosa
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
| | - Carsten Eggers
- Department of Neurology, University Hospital Giessen and Marburg, Marburg, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Giessen and Marburg, Marburg, Germany
- Department of Neurology, Knappschaftskrankenhaus Bottrop, Bottrop, Germany
| | - Nicole B. Arweiler
- Department of Periodontology and Peri-Implant Diseases, Universitätsklinikum Giessen und Marburg (UKGM), Philipps University, Marburg, Germany
| |
Collapse
|
5
|
Sato A, Arai S, Sumi K, Fukamachi H, Miyake S, Ozawa M, Myers M, Maruoka Y, Shimizu K, Mizutani T, Kuwata H. Metagenomic Analysis of Bacterial Microflora in Dental and Atherosclerotic Plaques of Patients With Internal Carotid Artery Stenosis. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468231225852. [PMID: 38328472 PMCID: PMC10848802 DOI: 10.1177/11795468231225852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Background Internal carotid artery stenosis is primarily attributed to atherosclerosis in the carotid artery bifurcation. Previous studies have detected oral bacteria in atherosclerotic lesions, suggesting an association between oral bacteria and atherosclerosis. In this study, we compared the bacterial flora of the atherosclerotic plaque in the carotid artery and dental plaque of patients with internal carotid artery stenosis using 16S ribosomal RNA (16S rRNA) metagenomic sequencing. Methods Fifty-four patients who underwent internal carotid endarterectomy for internal carotid artery stenosis at the Showa University Hospital between April 2016 and February 2018 were included. Polymerase chain reaction targeting the 16S rRNA gene detected bacterial DNA in the carotid plaques of 11 cases, of which only 5 could be further analyzed. Thereafter, DNA extracted from the carotid and oral plaques of these 5 cases were analyzed using metagenomic sequencing targeting 16S rRNA. In addition, their general condition and oral conditions were evaluated. The patients were classified into symptomatic and asymptomatic groups based on the presence or absence of symptoms of transient ischemic attack, and their bacterial flora was evaluated. Results The results demonstrated that the microflora of carotid plaques (n = 5) contained bacterial species from 55 families and 78 genera. In addition, 86.5% of the bacteria detected in the carotid plaques were also detected in oral plaques. Cariogenic and periodontopathic bacteria accounted for 27.7% and 4.7% of the bacteria in the carotid plaques, respectively. Conclusions These results suggest that oral bacteria are directly or indirectly involved in the pathogenesis of atherosclerosis. More extensive studies of oral commensal bacteria detected in extra-oral lesions are warranted to comprehensively investigate the role of oral bacteria in the pathogenesis of systemic diseases.
Collapse
Affiliation(s)
- Ayako Sato
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Shintaro Arai
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Kenji Sumi
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Haruka Fukamachi
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Satoko Miyake
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
| | - Manami Ozawa
- Department of Advanced Oral Surgery, Yokohama Clinic, Kanagawa Dental University, Yokohama, Kanagawa, Japan
| | - Mie Myers
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
| | - Yasubumi Maruoka
- Department of Special Needs Dentistry, Division of Community-Based Comprehensive Dentistry, Showa University, Ohta-ku, Tokyo, Japan
- Department of Oral and Maxillofacial Surgery, Totsuka Kyouritsu Daini Hospital, Yokohama-shi, Kanagawa, Japan
| | - Katsuyoshi Shimizu
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Tohru Mizutani
- Department of Neurosurgery, School of Medicine, Showa University, Shinagawa-Ku, Tokyo, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa-Ku, Tokyo, Japan
| |
Collapse
|
6
|
Bailey RJ, Sarkar A, Snell-Bergeon JK, Burkhardt BR, Chandrasekaran S, Johnson L, Alman AC. Periodontitis and cardiovascular risk factors in subjects with and without type 1 diabetes: A cross sectional analysis. J Diabetes Complications 2023; 37:108494. [PMID: 37209505 PMCID: PMC10601755 DOI: 10.1016/j.jdiacomp.2023.108494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
AIMS This cross-sectional analysis explored the relationships between periodontal disease (PD) and subclinical CVD in a cohort of patients with type 1 diabetes and non-diabetic controls. METHODS Data were collected from adults enrolled in the Coronary Artery Calcification in Type 1 Diabetes (CACTI) study or enrolled through the Barbara Davis Center for Diabetes Adult Clinic. A clinical periodontal exam measured attachment loss and probing depth. Brachial artery distensibility (brachD), carotid intima-media thickness (cIMT), and pulse wave velocity (PWV) were assessed as measures of subclinical cardiovascular structure and function. RESULTS 144 participants with T1D and 148 non-diabetics were enrolled. Compared to non-diabetic controls, T1D participants had a higher probing depth (2.6 mm vs. 2.5 mm; p = 0.04), higher attachment loss (2.7 mm vs. 2.4 mm; p < 0.01), lower brachD (mean 5.8 vs. 6.4 mmHg; p < 0.01), a higher cIMT (mean 0.68 vs. 0.64 mm; p < 0.01), and a higher PWV (mean 8.3 vs. 7.8 m/s; p < 0.01). There were no significant associations between PD and CVD metrics. CONCLUSIONS Periodontal and cardiovascular health was worse in participants with T1D compared to non-diabetics. No significant associations between PD measures and CVD were identified.
Collapse
Affiliation(s)
- Ryan J Bailey
- University of South Florida, College of Public Health, United States of America.
| | - Anujit Sarkar
- University of Tennessee at Knoxville, College of Nursing, United States of America
| | - Janet K Snell-Bergeon
- University of Colorado, Anschutz Medical Campus, School of Medicine, Barbara Davis Center, United States of America
| | - Brant R Burkhardt
- University of South Florida, College of Arts and Sciences, Molecular Biosciences, Microbiology, and Molecular Biology, United States of America
| | - Sangeetha Chandrasekaran
- University of Colorado, Anschutz Medical Campus, School of Dental Medicine, United States of America
| | - Lonnie Johnson
- University of Colorado, Anschutz Medical Campus, School of Dental Medicine, United States of America
| | - Amy C Alman
- University of South Florida, College of Public Health, United States of America
| |
Collapse
|
7
|
Lou X, Liu J, Ouyang X, Liu W, Xie Y, Zhong J, Lv P, Zhang S. Role of nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 6 in activation of inflammation in human umbilical vein endothelial cells stimulated by Porphyromonas gingivalis-an in vitro study. J Dent Sci 2022; 18:510-516. [PMID: 37021264 PMCID: PMC10068369 DOI: 10.1016/j.jds.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/11/2022] [Indexed: 10/14/2022] Open
Abstract
Background/purpose Porphyromonas gingivalis (P. gingivalis) could induce the activation of vascular endothelial cells and promote the formation of atherosclerosis. Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing (NLRP) 6 could recognize P. gingivalis, but its role in atherosclerosis was unknown. The purpose of this study is to investigate the role of NLRP6 in the activation of inflammation in human umbilical vein endothelial cells (HUVECs) stimulated by P. gingivalis. Materials and methods The expression level of NLRP6 in HUVECs with or without P. gingivalis-challenge was observed. Down-regulating the expression of NLRP6 in HUVECs, the expression levels of interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α (TNF-α) and monocyte chemoattractant protein (MCP)-1 were detected. Then, the HUVECs with NLRP6-overexpressed were stimulated by P. gingivalis, the levels of inflammatory cytokines above were examined and compared with those in HUVECs triggered by P. gingivalis only. To evaluate the effect of NLRP6 on bacterial immune escape, the NLRP6 was overexpressed, and the colonies of P. gingivalis that survived in HUVECs were calculated. Results NLRP6 was expressed in HUVECs and decreased after P. gingivalis stimulation. Downregulation of NLRP6 decreased the expression levels of IL-1β, IL-6, IL-8, TNF-α and MCP-1 in HUVECs. Those cytokines above in NLRP6-overexpressed HUVECs with P. gingivalis-stimulation significantly increased than in the cells with P. gingivalis-stimulation only. Furthermore, over-expression of NLRP6 decreased the colonies of P. gingivalis survival in HUVECs. Conclusion NLRP6 regulated the activation of inflammation in HUVECs triggered by P. gingivalis and played an important role in P. gingivalis survival in endothelial cells.
Collapse
|
8
|
Kręgielczak A, Dorocka-Bobkowska B, Słomski R, Oszkinis G, Krasiński Z. Periodontal status and the incidence of selected bacterial pathogens in periodontal pockets and vascular walls in patients with atherosclerosis and abdominal aortic aneurysms. PLoS One 2022; 17:e0270177. [PMID: 35951554 PMCID: PMC9371326 DOI: 10.1371/journal.pone.0270177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/06/2022] [Indexed: 11/19/2022] Open
Abstract
The aim of the study was to examine the periodontal status of patients with atherosclerosis and abdominal aortic aneurysms. The occurrence of 5 periodontopathogens was evaluated in periodontal pockets and atheromatous plaques together with specimens from pathologically changed vascular walls of aortic aneurysms. The study comprised 39 patients who qualified for vascular surgeries. Patients with periodontitis and concomitant atherosclerosis or aneurysms were enrolled in the study. Periodontal indices were evaluated, and subgingival plaque samples were examined together with atheromatous plaques or specimens from vascular walls to identify, by polymerase chain reaction (PCR), the following periodontopathogens: Porphyromonas gingivalis, Tanarella forsythia, Aggregatibacter actinomycetemcomitans, Prevotella intermedia and Treponema denticola. The majority of patients had chronic severe generalized periodontitis in stages III and IV. Laboratory investigations showed the occurrence of one or more of the five targeted periodontopathogens in 94.6% of the periodontal pockets examined. Of the examined periodontopathogens, only Porphyromonas gingivalis was confirmed in 1 atheromatous plaque sample collected from the wall of an aortic aneurysm. Therefore, the occurrence of this bacterium in these vessels was considered to be occasional in patients with chronic periodontitis.
Collapse
Affiliation(s)
- Agnieszka Kręgielczak
- Department of Gerontology and Oral Pathology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Oszkinis
- Department of Vascular and General Surgery, Institute of Medical Sciences, Opole University, Opole, Poland
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Arsiwala LT, Mok Y, Yang C, Ishigami J, Selvin E, Beck JD, Allison MA, Heiss G, Demmer RT, Matsushita K. Periodontal disease measures and risk of incident peripheral artery disease: The Atherosclerosis Risk in Communities (ARIC) Study. J Periodontol 2022; 93:943-953. [PMID: 34590322 PMCID: PMC8960475 DOI: 10.1002/jper.21-0342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The association of periodontal disease with atherosclerotic cardiovascular diseases is well known, but not specifically with incident peripheral artery disease (PAD). Therefore, we studied the associations of periodontal disease with incident PAD in a population-based setting. METHODS Among 9,793 participants (aged 53-75 years) without prevalent PAD, self-reported history of periodontal disease was ascertained. Of these, 5,872 participants underwent full-mouth examinations from which periodontal status was defined using the US Centers for Disease Control and Prevention-American Academy of Periodontology (CDC-AAP) definition. We quantified the association of periodontal disease with incident PAD (defined by hospital admission diagnosis or procedures) using multivariable Cox regression models. RESULTS During a median follow-up of 20.1 years, 360 participants (3.6%) developed PAD. In models accounting for potential confounders including diabetes and smoking pack-years, there was higher hazard of PAD in participants with self-reported tooth loss because of periodontal disease (hazard ratio:1.54 [95% CI:1.20-1.98]), history of periodontal disease treatment (1.37 [1.05-1.80]), and periodontal disease diagnosis (1.38 [1.09-1.74]), compared to their respective counterparts. The clinical measure of periodontal disease (n = 5,872) was not significantly associated with incident PAD in the fully adjusted model (e.g., 1.53 [0.94-2.50] in CDC-AAP-defined severe periodontal disease versus no disease). CONCLUSION We observed a modest association of self-reported periodontal disease, especially when resulting in tooth loss, with incident PAD in the general population. Nonetheless, a larger study with the clinical measure of periodontal disease is warranted.
Collapse
Affiliation(s)
| | - Yejin Mok
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Chao Yang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Junichi Ishigami
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Elizabeth Selvin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - James D. Beck
- Department of Dental Ecology, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, USA
- Department of Epidemiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | | | - Gerardo Heiss
- Department of Epidemiology, University of North Carolina at Chapel Hill, Gillings School of Global Public Health, Chapel Hill, USA
| | - Ryan T. Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, USA
| | - Kunihiro Matsushita
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| |
Collapse
|
10
|
Zou P, Cao P, Liu J, Li P, Luan Q. Comparisons of the killing effect of direct current partially mediated by reactive oxygen species on Porphyromonas gingivalis and Prevotella intermedia in planktonic state and biofilm state - an in vitro study. J Dent Sci 2022; 17:459-467. [PMID: 35028071 PMCID: PMC8739843 DOI: 10.1016/j.jds.2021.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Background/purpose Bacterial biofilms formed on the surface of tissues and biomaterials are major causes of chronic infections in humans. Among them, Porphyromonas gingivalis (P. gingivalis) and Prevotella intermedia (P. intermedia) are anaerobic pathogens causing dental infections associated with periodontitis. In this study, we evaluated the killing effect and underlying mechanisms of direct current (DC) as an antimicrobial method in vitro. Materials and methods We chose P. gingivalis and P. intermedia in different states to make comparisons of the killing effect of DC. By viable bacteria counting, fluorescent live/dead staining, reactive oxygen species (ROS) assay, addition of ROS scavenger DMTU and mRNA expression assay of ROS scavenging genes, the role of ROS in the killing effect was explored. Results The planktonic and biofilm states of two bacteria could be effectively killed by low-intensity DC. For the killing effect of 1000 μA DC, there were significant differences whether on planktonic P. gingivalis and P. intermedia (mean killing values: 2.40 vs 2.62 log10 CFU/mL) or on biofilm state of those (mean killing values: 0.63 vs 0.98 log10 CFU/mL). 1000 μA DC greatly induced ROS production and the mRNA expression of ROS scavenging genes. DMTU could partially decrease the killing values of DC and downregulate corresponding gene’s expression. Conclusion 1000 μA DC can kill P. gingivalis and P. intermedia in two states by promoting overproduction of ROS, and P. intermedia is more sensitive to DC than P. gingivalis. These findings indicate low-intensity DC may be a promising approach in treating periodontal infections.
Collapse
Affiliation(s)
- Peihui Zou
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Pei Cao
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Jia Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Peng Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
| | - Qingxian Luan
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, China
- Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, China
- Corresponding author. Department of Periodontology, School and Hospital of Stomatology, Peking University, NO.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, PR, China.
| |
Collapse
|
11
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
12
|
Li Z, Liu J, Wang P, Tao C, Zheng L, Sekine S, Zhuang S, Zhang D, Yamaguchi Y. Multiplex amplification of target genes of periodontal pathogens in continuous flow PCR microfluidic chip. LAB ON A CHIP 2021; 21:3159-3164. [PMID: 34190300 DOI: 10.1039/d1lc00457c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Porphyromonas gingivalis (P.g), Treponema denticola (T.d), and Tannerella forsythia (T.f) are believed to be the major periodontal pathogens that cause gingivitis, which affects 50-90% of adults worldwide. Microfluidic chips based on continuous flow PCR (CF-PCR) are an ideal alternative to a traditional thermal cycler, because it can effectively reduce the time needed for temperature transformation. Herein, we explored multi-PCR of P.g, T.d and T.f using a CF-PCR microfluidic chip for the first time. Through a series of experiments, we obtained two optimal combinations of primers that are suitable for performing multi-PCR on these three periodontal pathogens, with amplicon sizes of (197 bp, 316 bp, 226 bp) and (197 bp, 316 bp, 641 bp), respectively. The results also demonstrated that by using multi-PCR, the amplification time can be reduced to as short as 3'48'' for the short-sized amplicons, while for T.f (641 bp), the minimum time required was 8'25''. This work provides an effective way to simultaneously amplify the target genes of P.g, T.d and T.f within a short time, and may promote CF-PCR as a practical tool for point-of-care testing of gingivitis.
Collapse
Affiliation(s)
- Zhenqing Li
- Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.
| | - Jiahui Liu
- Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.
| | - Ping Wang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China
| | - Chunxian Tao
- Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.
| | - Lulu Zheng
- Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.
| | - Shinichi Sekine
- Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Songlin Zhuang
- Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.
| | - Dawei Zhang
- Engineering Research Centre of Optical Instrument and System, Ministry of Education, Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai, China.
| | - Yoshinori Yamaguchi
- Oono Joint Research laboratory, Graduate school of Engineering, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
13
|
Fernandes Forte CP, Oliveira FAF, Lopes CDB, Alves APNN, Mota MRL, de Barros Silva PG, Montenegro RC, Campos Ribeiro Dos Santos ÂK, Lobo Filho JG, Sousa FB. Streptococcus mutans in atherosclerotic plaque: Molecular and immunohistochemical evaluations. Oral Dis 2021; 28:1705-1714. [PMID: 33825326 DOI: 10.1111/odi.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 03/10/2021] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To verify the presence of Streptococcus mutans (S. mutans) in atherosclerotic plaque (AP) using techniques with different sensitivities, correlating with histological changes in plaque and immunoexpression of inflammatory markers. MATERIALS AND METHODS Thirteen AP samples were subjected to real-time polymerase chain reaction (qRT-PCR), histopathological analyses, histochemical analysis by Giemsa staining (GS), and immunohistochemical analysis for S. mutans, IL-1β, and TNF-α (streptavidin-biotin-peroxidase method). Ten necropsy samples of healthy vessels were used as controls. RESULTS All AP samples showed histopathological characteristics of severe atherosclerosis and were positive for S. mutans (100.0%) in qRT-PCR and immunohistochemical analyses. GS showed that Streptococcus sp. colonized the lipid-rich core regions and fibrous tissue, while the control group was negative for Streptococcus sp. IL-1β and TNF-α were expressed in 100% and 92.3% of the AP tested, respectively. The control samples were positive for S. mutans in qRT-PCR analysis, but negative for S. mutans, IL-1β, and TNF-α in immunohistochemical analyses. CONCLUSION The detection of S. mutans in AP and the visualization of Streptococcus sp. suggested a possible association between S. mutans and atherosclerosis. The results obtained from the control samples suggested the presence of DNA fragments or innocuous bacteria that were not associated with tissue alteration. However, future studies are necessary to provide more information.
Collapse
Affiliation(s)
| | | | - Camile de Barros Lopes
- Department of Human and Medical Genetics, School of Biological Sciences, Federal University of Para, Belém, Brazil
| | | | - Mário Rogério Lima Mota
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| | | | - Raquel Carvalho Montenegro
- Department of Human Cytogenetics, School of Biological Sciences, Federal University of Para, Belém, Brazil
| | | | | | - Fabrício Bitu Sousa
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
14
|
Zhu S, Xu K, Jiang Y, Zhu C, Suo C, Cui M, Wang Y, Yuan Z, Xue J, Wang J, Zhang T, Zhao G, Ye W, Huang T, Lu M, Tian W, Jin L, Chen X. The gut microbiome in subclinical atherosclerosis: a population-based multi-phenotype analysis. Rheumatology (Oxford) 2021; 61:258-269. [PMID: 33769467 DOI: 10.1093/rheumatology/keab309] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The altered microbiota, considered as quantitative traits, has also been identified to play pivotal roles in the host vascular physiology and might contribute to diseases. To understand the role of gut microbiota on vascular physiology in the sub-clinical elderly population and how lifestyles affect the composition of host gut microbiota to further impact the pathogenesis of vascular diseases. METHODS Performed a population-based fecal metagenomic study over 569 elderly asymptomatic sub-clinical individuals in rural China. An association network was built based on clinical measurements and detailed epidemiologic questionnaires, including blood chemistry, arterial stiffness, carotid ultrasonography, and metagenomic datasets. RESULTS Carotid arterial atherosclerosis indices, including intima-media thickness (IMT), were shown essentially in the network, and were significantly associated with living habits, socio-economic status, and diet. Using mediation analysis, we found that higher frequency of taking fresh fruits, fresh vegetables, and more exercise significantly reduces carotid arteries atherosclerosis in terms of IMT, PSV and EDV values the through the mediation of Alistepes, Oligella, and Prevotella. The gut microbes explained 16.5% of the mediation effect of lifestyles on the pathogenesis of carotid atherosclerosis. After adjusted, Faecalicatena (OR = 0.20∼0.30) was shown protective in the formation of carotid athersclerosis independently, while Libanicoccus (OR = 2.39∼2.43) were hazardous to carotid arterial IMTs. KEGG/KO analyses revealed a loss of anti-inflammation function in IMT subjects. CONCLUSIONS Our study provided a Chinese population-wide phenotype-metagenomic network, revealing association and mediation effect of gut microbiota on carotid artery atherosclerosis, hinting at a therapeutic and preventive potential of microbiota in vascular diseases.
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Kelin Xu
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Biostatistics, School of Public Health, Fudan University; Key Laboratory of Public Health Safety, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yingzhe Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Jiangli Xue
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Genming Zhao
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Tingting Huang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Weizhong Tian
- Department of Medical Imaging, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| |
Collapse
|
15
|
Farrugia C, Stafford GP, Potempa J, Wilkinson RN, Chen Y, Murdoch C, Widziolek M. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J 2021; 288:1479-1495. [PMID: 32681704 PMCID: PMC9994420 DOI: 10.1111/febs.15486] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/15/2020] [Accepted: 07/14/2020] [Indexed: 01/04/2023]
Abstract
Several studies have shown a clear association between periodontal disease and increased risk of cardiovascular disease. Porphyromonas gingivalis (Pg), a key oral pathogen, and its cell surface-expressed gingipains, induce oedema in a zebrafish larvae infection model although the mechanism of these vascular effects is unknown. Here, we aimed to determine whether Pg-induced vascular damage is mediated by gingipains. In vitro, human endothelial cells from different vascular beds were invaded by wild-type (W83) but not gingipain-deficient (ΔK/R-ab) Pg. W83 infection resulted in increased endothelial permeability as well as decreased cell surface abundance of endothelial adhesion molecules PECAM-1 and VE-cadherin compared to infection with ΔK/R-ab. In agreement, when transgenic zebrafish larvae expressing fluorescently labelled PECAM-1 or VE-cadherin were systemically infected with W83 or ΔK/R-ab, a significant reduction in adhesion molecule fluorescence was observed specifically in endothelium proximal to W83 bacteria through a gingipain-dependent mechanism. Furthermore, this was associated with increased vascular permeability in vivo when assessed by dextran leakage microangiography. These data are the first to show that Pg directly mediates vascular damage in vivo by degrading PECAM-1 and VE-cadherin. Our data provide a molecular mechanism by which Pg might contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Cher Farrugia
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Graham P. Stafford
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Robert N. Wilkinson
- School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - Yan Chen
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, S10 2RX, UK
| | - Craig Murdoch
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Magdalena Widziolek
- School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
16
|
Patel J, Kulkarni S, Doshi D, Poddar P, Srilatha A, Reddy KS. Periodontal disease among non-diabetic Coronary Heart Disease patients. A case-control study. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021030. [PMID: 33682819 PMCID: PMC7975955 DOI: 10.23750/abm.v92i1.8891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/04/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND There is well documented scientific evidence supporting the association between Coronary Heart Disease (CHD) and periodontitis. It is however, uncertain if this association is causal or is mediated by the common inflammatory pathways. Hence, the study assessed and compared the Periodontal Health Status among CHD patients with age and gender matched controls. METHODS A total of 808 medically confirmed CHD patients were compared with 808 age and gender matched controls. Oral examination was conducted using Simplified Oral Hygiene Index (OHI-S) and modified World Health Organization (WHO) Oral Health Assessment form, 1997. Mean scores were compared using Mann- Whitney-U test and Analysis of Variance (ANOVA). Logistic regression analysed the association between the risk factors and CHD. RESULTS Cases had significantly higher mean sextants with pockets and attachment loss ≥4mm compared to controls (p≤0.05). The cases also had significantly poor oral hygiene mean scores compared to controls (p=0.0001*). There was a lower and insignificant association between age (p=0.99), gender (p=0.84) and CHD. Risk factors education (p=0.001), lesser frequency of dental visit (p=0.001) also showed a lower, yet significant association. Risk of CHD was higher among tobacco (Odds ratio (OR) - 2.26) and alcohol (OR-1.83) users. Presence of poor oral hygiene (OR-5.20), pocket of ≥6 mm (6.70) and attachment loss of ≥9 mm (OR-11.31) also showed higher risk of CHD. CONCLUSION The study results support the association between periodontal disease and CHD. To halt the epidemic of CHD, emphasis on screening of wide age range, reinforcement of public health systems and early detection is recommended. (www.actabiomedica.it).
Collapse
Affiliation(s)
- Jenisha Patel
- Department of Public Health Dentistry, Panineeya Institute of Dental Sciences and Research Centre, India.
| | - Suhas Kulkarni
- Department of Public Health Dentistry, Panineeya Institute of Dental Sciences and Research Centre, India.
| | - Dolar Doshi
- Government Dental College and Hospital, Hyderabad, India.
| | - Pawan Poddar
- Department of Cardiology, Yashoda Hospital, Hyderabad, India.
| | - Adepu Srilatha
- Department of Public Health Dentistry, Panineeya Institute of Dental Sciences and Research Centre, India.
| | - Kommuri Sahithi Reddy
- Department of Public Health Dentistry, Panineeya Institute of Dental Sciences and Research Centre, India.
| |
Collapse
|
17
|
Paul O, Arora P, Mayer M, Chatterjee S. Inflammation in Periodontal Disease: Possible Link to Vascular Disease. Front Physiol 2021; 11:609614. [PMID: 33519515 PMCID: PMC7841426 DOI: 10.3389/fphys.2020.609614] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a well-organized protective response to pathogens and consists of immune cell recruitment into areas of infection. Inflammation either clears pathogens and gets resolved leading to tissue healing or remains predominantly unresolved triggering pathological processes in organs. Periodontal disease (PD) that is initiated by specific bacteria also triggers production of inflammatory mediators. These processes lead to loss of tissue structure and function. Reactive oxygen species and oxidative stress play a role in susceptibility to periodontal pathogenic bacterial infections. Periodontal inflammation is a risk factor for systemic inflammation and eventually cardiovascular disease (CVD). This review discusses the role of inflammation in PD and its two way association with other health conditions such as diabetes and CVD. Some of the mechanisms underpinning the links between inflammation, diabetes, CVD and PD are also discussed. Finally, we review available epidemiological data and other reports to assess possible links between oral health and CVD.
Collapse
Affiliation(s)
- Oindrila Paul
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Payal Arora
- Early-Research Oral Care, Colgate-Palmolive Company, Piscataway, NJ, United States
| | - Michael Mayer
- Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Shampa Chatterjee
- Institute for Environmental Medicine, Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
18
|
Infection of Porphyromonas gingivalis Increases Phosphate-Induced Calcification of Vascular Smooth Muscle Cells. Cells 2020; 9:cells9122694. [PMID: 33334022 PMCID: PMC7765351 DOI: 10.3390/cells9122694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests a link between periodontal disease and cardiovascular diseases. Vascular calcification is the pathological precipitation of phosphate and calcium in the vasculature and is closely associated with increased cardiovascular risk and mortality. In this study, we have demonstrated that the infection with Porphyromonas gingivalis (P. gingivalis), one of the major periodontal pathogens, increases inorganic phosphate-induced vascular calcification through the phenotype transition, apoptosis, and matrix vesicle release of vascular smooth muscle cells. Moreover, P. gingivalis infection accelerated the phosphate-induced calcium deposition in cultured rat aorta ex vivo. Taken together, our findings indicate that P. gingivalis contributes to the periodontal infection-related vascular diseases associated with vascular calcification.
Collapse
|
19
|
Byon MJ, Kim SY, Kim JS, Kim HN, Kim JB. Association of Periodontitis with Atherosclerotic Cardiovascular Diseases: A Nationwide Population-based Retrospective Matched Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7261. [PMID: 33020434 PMCID: PMC7578974 DOI: 10.3390/ijerph17197261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022]
Abstract
We investigated the association between periodontitis and atherosclerotic cardiovascular disease (ACVD) development using the National Health Insurance Service-National Sample Cohort 2.0 (NHIS-NSC2) database, which contains data for approximately 1 million nationally representative random participants. We selected 52,425 participants aged 20+ years and diagnosed with periodontitis from January to December 2003 and used propensity score matching to select an equivalent number of participants who were never diagnosed with periodontitis in the period covered by the NHIS-NSC2 database (2002-2015). The propensity scores were based on sex, age group, type of national health insurance, household income, diabetes status, and hypertension status and were used for 1:1 matching of individuals with similar propensities. A total of 104,850 participants were selected for the study. A multivariable Cox proportional hazard regression model was used to investigate the risk of ACVD development due to periodontitis from 2003 to 2015 after adjusting for sex, age, type of national health insurance, household income, hypertension status, and diabetes status. Participants with periodontitis had a higher risk of ACVD (adjusted hazard ratio: 1.09, 95% confidence interval: 1.05-1.13) than those without periodontitis. Thus, periodontitis can increase the risk of ACVD, and prevention of periodontitis may help reduce the risk of cardiovascular disease.
Collapse
Affiliation(s)
- Min-Ji Byon
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Korea; (M.-J.B.); (S.-Y.K.); (J.-S.K.)
- BK21 FOUR project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| | - Se-Yeon Kim
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Korea; (M.-J.B.); (S.-Y.K.); (J.-S.K.)
| | - Ji-Soo Kim
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Korea; (M.-J.B.); (S.-Y.K.); (J.-S.K.)
| | - Han-Na Kim
- Department of Dental Hygiene, College of Health and Medical Sciences, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Bom Kim
- Department of Preventive and Community Dentistry, School of Dentistry, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Korea; (M.-J.B.); (S.-Y.K.); (J.-S.K.)
- BK21 FOUR project, School of Dentistry, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
20
|
Li Q, Liu J, Liu W, Chu Y, Zhong J, Xie Y, Lou X, Ouyang X. LOX-1 Regulates P. gingivalis-Induced Monocyte Migration and Adhesion to Human Umbilical Vein Endothelial Cells. Front Cell Dev Biol 2020; 8:596. [PMID: 32793587 PMCID: PMC7394702 DOI: 10.3389/fcell.2020.00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is one of the main periodontal bacteria. This pathogen was reported to enhance monocyte migration and adhesion to endothelial cells in atherosclerosis. The scavenger receptor lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) plays a pivotal role in atherogenesis. The aim of this study was to investigate whether LOX-1 modulates P. gingivalis-mediated monocyte migration and adhesion to endothelial cells and how it works. The results showed that the migration and adhesion of monocytic THP-1 cells to human umbilical vein endothelial cells (HUVECs) were significantly enhanced when HUVECs or THP-1 cells were challenged with P. gingivalis. Meanwhile, the expression level of LOX-1 in both HUVECs and THP-1 cells were also significantly increased by P. gingivalis stimulation. It is well known that ligand/receptor pairs monocyte chemoattractant protein-1 (MCP-1)/CC chemokine receptor 2 (CCR2), selectins/Integrins, and cell adhesion molecules (CAMs)/Integrins mediate monocyte migration and adhesion to endothelial cells. In this study, LOX-1 was demonstrated to be crucially involved in P. gingivalis-induced THP-1 cell migration and adhesion to HUVECs, by regulating expression of ligands MCP-1, intercellular adhesion molecule-1 (ICAM-1) and E-selectin in HUVECs and that of their receptors CCR2 and Integrin αMβ2 in THP-1 cells. The nuclear factor-kappa B (NF-κB) signaling pathway was proved to be involved in this process. In conclusion, LOX-1 plays a crucial role in P. gingivalis-induced monocyte migration and adhesion to endothelial cells. This result implies LOX-1 may act as a bridge in linking periodontitis to atherosclerosis.
Collapse
Affiliation(s)
- Qian Li
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yi Chu
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China.,First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jinsheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Xie
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xinzhe Lou
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
21
|
Yoshioka S, Miyamoto T, Satomi J, Tada Y, Yagi K, Shimada K, Naruishi K, Shikata E, Yamaguchi I, Yamaguchi T, Korai M, Okayama Y, Harada M, Kitazato KT, Kanematsu Y, Nagahiro S, Takagi Y. Disequilibrium of Plasma Protease/Anti-Protease Due to Severe Periodontal Disease Contributes to Human Subarachnoid Hemorrhage. NEUROSURGERY OPEN 2020. [DOI: 10.1093/neuopn/okaa007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
BACKGROUND
The pathophysiology of subarachnoid hemorrhages (SAHs) due to ruptured intracranial aneurysms (IAs) remains unclear. Although a relationship between SAHs and periodontal disease (PD) has been suggested, the mechanism requires clarification.
OBJECTIVE
To evaluate the relationship between PD and SAHs and to identify periodontal pathogens associated with SAHs.
METHODS
This prospective study included consecutive patients with ruptured (n = 11) and unruptured (n = 14) IAs and healthy controls (n = 8). The plasma and plaque subgingival bacterial deoxyribonucleic acid (DNA) levels in PD were evaluated by a dentist using the Community Periodontal Index of Treatment Needs (CPITN). Plasma levels of matrix metalloproteinase (MMP-9), tissue inhibitors of matrix metalloproteinase (TIMP2), and procollagen I were analyzed.
RESULTS
Patients with ruptured IAs, had significantly higher CPITN scores than the controls, suggesting that ruptured IAs were associated with severe PD. Although no rupture-specific bacteria were identified, the positive rate of plaque subgingival bacterial DNA was significantly higher in patients with severe PD than in those without severe PD. Multivariate logistic regression analysis indicated that bleeding on probing (BOP) was associated with ruptured IAs (odds ratio, 1.10; 95% confidence interval 1.04–1.20; P = .0001). BOP was positively associated with plasma MMP-9 levels and a disequilibrium in the MMP-9/TIMP2 ratio. BOP was negatively correlated with plasma procollagen I levels (P < .05, for each). This suggested that local inflammation with severe PD might have systemic effects and lead to ruptured IAs.
CONCLUSION
Disequilibrium of plasma protease/anti-protease associated with a high BOP rate in severe PD may be attributable to IA rupture.
Collapse
Affiliation(s)
- Shotaro Yoshioka
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takeshi Miyamoto
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Junichiro Satomi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiteru Tada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Yagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Kenji Shimada
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Koji Naruishi
- Department of Periodontology and Endodontology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Eiji Shikata
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Izumi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tadashi Yamaguchi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masaaki Korai
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshihiro Okayama
- Clinical Trial Center, Tokushima University and Tokushima University Hospital, Tokushima, Japan
| | - Masafumi Harada
- Department of Radiology, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Keiko T Kitazato
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasuhisa Kanematsu
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Shinji Nagahiro
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
22
|
Mahtani AA, Jacob C, Lakshmanan R. Prevalence of diabetes among patients and the assessment of the awareness of the bidirectional relation between diabetes and periodontal disease. J Family Med Prim Care 2020; 9:2774-2780. [PMID: 32984124 PMCID: PMC7491835 DOI: 10.4103/jfmpc.jfmpc_63_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/12/2020] [Accepted: 03/21/2020] [Indexed: 01/14/2023] Open
Abstract
AIM To assess the extent of self-awareness and knowledge of diabetes and its association with periodontal disease among patients seeking dental care. MATERIALS AND METHODS Data were collected in the form of a questionnaire from 150 consecutive adult patients from the outpatient department of Saveetha Dental College in Chennai, India. Complying patients were tested for diabetes mellitus by checking their random blood sugar and the results were correlated with the questionnaire and their periodontal findings. The findings were interpreted to examine the relationship between self-awareness and clinically diagnosed periodontitis. RESULTS One hundred fifty patients participated in the questionnaire and 70% were unaware of diabetes causing periodontal disease. A total of 47.3% of patients were also unwilling to get themselves tested for diabetes by their dentists as nearly 73.3% believed that they did not have diabetes. As a result, out of 150 patients, 41 consented to random blood sugar but only 23 patients followed up. Among these 23, 14 believed they were diabetic but only 12 of those 14 were proven to be so. Additionally, 20 patients were diagnosed with either localized or generalized chronic periodontitis while the remaining 3 patients had gingivitis. All 12 patients diagnosed with diabetes were affected by periodontitis as well. CONCLUSIONS Patients are generally apprehensive and misinformed regarding the influence of periodontitis and diabetes between both diseases and must be educated by both the medical and dental practitioners regarding the implications of these chronic inflammatory diseases.
Collapse
Affiliation(s)
- Anisha A. Mahtani
- Student, Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Caroline Jacob
- Senior Lecturer, Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Reema Lakshmanan
- Senior Lecturer, Department of Periodontics, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Brun A, Rangé H, Prouvost B, Mazighi M, Kapila Y, Bouchard P, Michel JB. Innovative application of nested PCR for detection of Porphyromonas gingivalis in human highly calcified atherothrombotic plaques. J Oral Microbiol 2020; 12:1742523. [PMID: 32363006 PMCID: PMC7178846 DOI: 10.1080/20002297.2020.1742523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 12/25/2022] Open
Abstract
Atherothrombosis, leading to stroke and myocardial infarction, is responsible for most of the deaths in the world. An increased risk of atherothrombotic vascular events has been reported in patients with periodontitis. Periodontitis is a chronic multifactorial inflammatory disease, which involves a dysbiotic microbiota, and leads to a progressive destruction of the tooth-supporting apparatus. Transcient periodontal pathogen blood translocation, mainly bacteremia, has been associated with the severity of gingival inflammation. The identification of periodontal bacteria within atherothrombotic plaques is challenging and unpredictable. This review aims to summarize existing molecular technics for identifying periodontal microbiota in human atherothrombotic samples. A secondary objective is to describe a protocol for the identification of Porphyromonas gingivalis from highly calcified, atherothrombotic human samples that is based on our experience in translational cardiovascular research. Compared to direct real-time PCR, our protocol based on nested PCR has increased the detection of Porphyromonas gingivalis by 22.2% with good specificity.
Collapse
Affiliation(s)
- Adrian Brun
- Laboratory for Vascular Translational Science, Inserm UMR_S1148, Paris, France
- Department of Periodontology, Faculty of Dentistry, Université de Paris, Montrouge, France
- Department of Periodontology, Service of Oral Medicine, AP-HP, Mondor Hospital, Créteil, France
| | - Hélène Rangé
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, UR2496, France
- Department of Periodontology, Faculty of Odontology, Université de Paris, Paris, France
- Department of Periodontology, Service of Odontology, APHP, Rothschild Hospital, Paris, France
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Bastien Prouvost
- Department of Periodontology, Service of Odontology, APHP, Rothschild Hospital, Paris, France
| | - Mikael Mazighi
- Laboratory for Vascular Translational Science, Inserm UMR_S1148, Paris, France
- Department of Neurology, APHP, Lariboisiere Hospital, Université de Paris, Paris, France
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Philippe Bouchard
- Laboratory Orofacial Pathologies, Imaging and Biotherapies, Université de Paris, Montrouge, UR2496, France
- Department of Periodontology, Faculty of Odontology, Université de Paris, Paris, France
- Department of Periodontology, Service of Odontology, APHP, Rothschild Hospital, Paris, France
| | | |
Collapse
|
24
|
Lund Håheim L, Schwarze PE, Thelle DS, Nafstad P, Rønningen KS, Olsen I. Low levels of antibodies for the oral bacterium Tannerella forsythia predict cardiovascular disease mortality in men with myocardial infarction: A prospective cohort study. Med Hypotheses 2020; 138:109575. [PMID: 32088522 DOI: 10.1016/j.mehy.2020.109575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/01/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
Antibody levels to periodontal pathogens in prediction of cardiovascular disease (CVD) mortality were explored using data from a health survey in Oslo in 2000 (Oslo II-study) with 12 1/2 years follow-up. IgG antibodies to four common periodontal pathogens; Tannerella forsythia (TF), Porphyromonas gingivalis (PG), and Treponema denticola (TD) all termed collectively the "red complex", and Aggregatibacter actinomycetemcomitans(AA) were analysed. The study sample consisted of 1172 men drawn from a cohort of 6,530 men who participated in the Oslo II-study, where they provided information on medical and dental history. Of the study sample, 548 men had reported prior myocardial infarction (MI) at baseline whereas the remaining 624 men were randomly drawn from the ostensibly healthy participants for comparative analyses. Dental anamnestic information included tooth extractions and oral infections. An inverse relation was found for trend by the quartile risk level of TF predicting CVD mortality, p-value for trend = 0.017. Comparison of the first to fourth quartile of TF antibodies resulted in hazard ratio (HR) = 1.82, 95% confidence interval 1.12-2.94, p = 0.015, adjusted for age, education, diabetes, daily smoking, and systolic blood pressure. Specificity comparing decile 1 to deciles 2-10 of TF predicting mortality was 92.3%. We found an increased HR by low levels of antibodies to the bacterium T. forsythia predicting CVD mortality in a 12 ½ years follow-up in persons who had experienced an MI but not among non-MI men. This novel finding constitutes a plausible causal link between oral infections and CVD mortality.
Collapse
Affiliation(s)
- Lise Lund Håheim
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway.
| | - P E Schwarze
- Norwegian Institute for Public Health, Oslo, Norway
| | - D S Thelle
- Institute of Basic Medical Sciences, Medical Faculty, University of Oslo, Norway; Department of Community Medicine and Public Health, University of Gothenburg, Sweden
| | - P Nafstad
- Norwegian Institute for Public Health, Oslo, Norway; Institute of Health and Society, Medical Faculty, University of Oslo, Norway
| | - K S Rønningen
- Department of Paediatric Research, Division for Women and Children, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - I Olsen
- Department of Oral Biology, Dental Faculty, University of Oslo, Norway
| |
Collapse
|
25
|
Oliveira FAF, Fernandes Forte CP, Silva PGDB, Lopes CDB, Montenegro RC, Dos Santos ÂKCR, Mota MRL, Sousa FB, Alves APNN. Relationship of Streptococcus mutans with valvar cardiac tissue: A molecular and immunohistochemical study. J Oral Pathol Med 2019; 48:745-753. [PMID: 31323147 DOI: 10.1111/jop.12929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 06/04/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND The present study aimed to investigate the presence or absence of Streptococcus mutans in oral cavity and valvular samples associating with the histomorphologic alterations of calcified aortic stenosis. METHODOLOGY Dental plaque and cardiac valve samples were collected from 10 patients with calcified aortic stenosis for molecular analysis of S mutans by real-time polymerase chain reaction (PCR). Healthy valve tissue was also collected from five young cadavers and analyzed for S mutans. Moreover, fragments of all valvar specimens were submitted for histomorphological analysis and immunohistochemistry (anti-S mutans and anti-CD61). RESULTS Streptococcus mutans was present in 100% of the oral cavity samples from the patients with calcified aortic stenosis in the molecular analysis. The analysis by real-time PCR showed that S mutans presented the same proportion in healthy valves and those with calcified aortic stenosis (80%; P = 1.000). Conversely, the immunoexpression of S mutans was 37.40 (IC95% = 1.49-937.00) times superior in samples of patients with cardiac disease (P = .007). The immunoexpression analysis showed that CD61 was present in seven (70%) calcified aortic stenosis samples, all of which were also immunopositive for S mutans. CONCLUSIONS Streptococcus mutans was found in the oral cavity, healthy valve tissue, and calcified aortic stenosis samples. However, the microorganism was visualized by immunohistochemistry only in the calcified aortic stenosis samples, which may suggest viability and an increased bacterial density in this condition. The association of the presence of S mutans and positive CD61 immunoexpression suggests a probable relationship with calcified aortic stenosis.
Collapse
Affiliation(s)
- Francisco Artur Forte Oliveira
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | - Camile de Barros Lopes
- Laboratory of Human and Medical Genetics, Graduate Program in Genetics and Molecular Biology, Federal University of Pará, Brazil
| | - Raquel Carvalho Montenegro
- Department of Human Cytogenetics, School of Biological Sciences, Federal University of Para, Belém, Pará, Brazil
| | | | - Mário Rogério Lima Mota
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fabrício Bitu Sousa
- Department of Stomatology and Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Department of Oral Pathology, School of Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | |
Collapse
|
26
|
pH-Responsive mineralized nanoparticles for bacteria-triggered topical release of antibiotics. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.11.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Chukkapalli SS, Ambadapadi S, Varkoly K, Jiron J, Aguirre JI, Bhattacharyya I, Morel LM, Lucas AR, Kesavalu L. Impaired innate immune signaling due to combined Toll-like receptor 2 and 4 deficiency affects both periodontitis and atherosclerosis in response to polybacterial infection. Pathog Dis 2018; 76:5142697. [PMID: 30351354 DOI: 10.1093/femspd/fty076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/22/2018] [Indexed: 12/15/2022] Open
Abstract
Plasma membrane-associated Toll-like receptor (TLR2 and TLR4) signaling contributes to oral microbe infection-induced periodontitis and atherosclerosis. We recently reported that either TLR2 or TLR4 receptor deficiency alters recognition of a consortium of oral pathogens, modifying host responses in periodontitis and atherosclerosis. We evaluated the effects of combined TLR2-/-TLR4-/- double knockout mice on innate immune signaling and induction of periodontitis and atherosclerosis after polybacterial infection with Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia and Fusobacterium nucleatum in a mouse model. Multispecies infections established gingival colonization in all TLR2-/-TLR4-/- mice and induced production of bacterial-specific IgG antibodies. In combined TLR2-/-TLR4-/- deficiency there was, however, reduced alveolar bone resorption and mild gingival inflammation with minimal migration of junctional epithelium and infiltration of inflammatory cells. This indicates a central role for TLR2 and TLR4 in periodontitis. Atherosclerotic plaque progression was markedly reduced in infected TLR2-/-TLR4-/- mice or in heterozygotes indicating a profound effect on plaque growth. However, bacterial genomic DNA was detected in multiple organs in TLR2-/-TLR4-/- mice indicating an intravascular dissemination from gingival tissue to heart, aorta, kidney and lungs. TRL2 and TLR4 were dispensable for systemic spread after polybacterial infections but TLR2 and 4 deficiency markedly reduces atherosclerosis induced by oral bacteria.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Sriram Ambadapadi
- Biodesign Institute, Arizona State University, Tempe, 727 E Tyler St 85287, AZ, USA
| | - Kyle Varkoly
- Biodesign Institute, Arizona State University, Tempe, 727 E Tyler St 85287, AZ, USA
| | - Jessica Jiron
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jose Ignacio Aguirre
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Indraneel Bhattacharyya
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | - Laurence M Morel
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Alexandra R Lucas
- Biodesign Institute, Arizona State University, Tempe, 727 E Tyler St 85287, AZ, USA
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Abstract
About one in two adults in the United States has periodontal disease. Chronic periodontitis is an oral disease affecting the supporting structures of the teeth leading to progressive loss of the attachment apparatus and bone around teeth. It is characterized by gingival pocket formation and/or gingival recession. The disease is initiated by bacteria and their components like lipopolysaccharide and causes a heightened host inflammatory response. This cascade of inflammatory response ultimately leads to an increased osteoclastic activity and bone loss. Individuals with periodontitis have increased systemic levels of acute phase proteins, plasma antibody levels, coagulation factor, total white blood cell count, neutrophils, C reactive protein (CRP), and cytokines such as INF- gamma (Interferon gamma), TNF-α (Tumor necrosis Factor- Alpha), IL (Interleukin)-1β, IL-2 and IL-6. As periodontitis works on the same chronic inflammation model seen in systemic diseases, there is sufficient evidence to suggest a bi-directional link between the two. This article summarizes the established associations between periodontal disease and systemic health.
Collapse
|
29
|
Chen TC, Lin CT, Chien SJ, Chang SF, Chen CN. Regulation of calcification in human aortic smooth muscle cells infected with high-glucose-treated Porphyromonas gingivalis. J Cell Physiol 2018; 233:4759-4769. [PMID: 29150938 DOI: 10.1002/jcp.26268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 10/18/2017] [Indexed: 12/30/2022]
Abstract
Porphyromonas (P.) gingivalis infection leading to the periodontitis has been associated with the development of systemic diseases, including cardiovascular diseases and diabetes. However, the effect of a high concentration of glucose (HG) on the invasion efficiency of P. gingivalis and the consequent modulation of pathogenesis in vascular cells, especially in the vascular smooth muscle cells (VSMCs), remains unclear. Hence, the aim of this study was to investigate whether treating P. gingivalis with HG could change its invasion capability and result in VSMC calcification and the underlying mechanism. Human aortic SMCs (HASMCs) and P. gingivalis strain CCUG25226 were used in this study. We found that HGPg infection of HASMCs could initiate the HASMC calcification by stimulating the autocrine regulation of bone morphogenetic protein (BMP) 4 in HASMCs. The upregulation of BMP4 expression in HASMCs was mediated by toll-like receptor 4 and ERK1/2-p38 signaling after P. gingivalis infection. Moreover, the autocrine action of BMP4 in HGPg infection-initiated HASMC calcification upregulated BMP4-specific downstream smad1/5/8-runx2 signaling to increase the expressions of bone-related matrix proteins, that is, osteopontin, osteocalcin, and alkaline phosphatase. This study elucidates the detailed mechanism of HGPg infection-initiated calcification of HASMCs and indicates a possible therapeutic role of BMP4 in P. gingivalis infection-associated vascular calcification.
Collapse
Affiliation(s)
- Te-Chuan Chen
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Tsong Lin
- Center for General Education, National Formosa University, Yunlin, Taiwan.,Department of Wood Based Materials and Design, National Chiayi University, Chiayi, Taiwan
| | - Shao-Ju Chien
- Disivion of Pediatric Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital, Chiayi Branch, Chiayi, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
30
|
Chukkapalli SS, Easwaran M, Rivera-Kweh MF, Velsko IM, Ambadapadi S, Dai J, Larjava H, Lucas AR, Kesavalu L. Sequential colonization of periodontal pathogens in induction of periodontal disease and atherosclerosis in LDLRnull mice. Pathog Dis 2017; 75:ftx003. [PMID: 28104616 DOI: 10.1093/femspd/ftx003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal disease (PD) and atherosclerotic vascular disease (ASVD) are both chronic inflammatory diseases with a polymicrobial etiology and have been epidemiologically associated. The purpose is to examine whether periodontal bacteria that infect the periodontium can also infect vascular tissues and enhance pre-existing early aortic atherosclerotic lesions in LDLRnull mice. Mice were orally infected with intermediate bacterial colonizer Fusobacterium nucleatum for the first 12 weeks followed by late bacterial colonizers (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) for the remaining 12 weeks mimicking the human oral microbiota ecological colonization. Genomic DNA from all four bacterial was detected in gingival plaque by PCR, consistently demonstrating infection of mouse gingival surfaces. Infected mice had significant levels of IgG and IgM antibodies, alveolar bone resorption, and showed apical migration of junctional epithelium revealing the induction of PD. These results support the ability of oral bacteria to cause PD in mice. Detection of bacterial genomic DNA in systemic organs indicates hematogenous dissemination from the gingival pockets. Bacterial infection did not alter serum lipid fractions or serum amyloid A levels and did not induce aortic atherosclerotic plaque. This is the first study examining the causal role of periodontal bacteria in induction of ASVD in LDLRnull mice.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Meena Easwaran
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Mercedes F Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Irina M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | - Sriram Ambadapadi
- Biodesign Institute, Arizona state University, Tempe, AZ 85287-5001, USA
| | - Jiayin Dai
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Hannu Larjava
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | - Alexandra R Lucas
- Biodesign Institute, Arizona state University, Tempe, AZ 85287-5001, USA
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| |
Collapse
|
31
|
Nemati R, Dietz C, Anstadt EJ, Cervantes J, Liu Y, Dewhirst FE, Clark RB, Finegold S, Gallagher JJ, Smith MB, Yao X, Nichols FC. Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. J Lipid Res 2017; 58:1999-2007. [PMID: 28814639 DOI: 10.1194/jlr.m077792] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Indexed: 11/20/2022] Open
Abstract
Multiple reaction monitoring-MS analysis of lipid extracts from human carotid endarterectomy and carotid artery samples from young individuals consistently demonstrated the presence of bacterial serine dipeptide lipid classes, including Lipid 654, an agonist for human and mouse Toll-like receptor (TLR)2, and Lipid 430, the deacylated product of Lipid 654. The relative levels of Lipid 654 and Lipid 430 were also determined in common oral and intestinal bacteria from the phylum Bacteroidetes and human serum and brain samples from healthy adults. The median Lipid 430/Lipid 654 ratio observed in carotid endarterectomy samples was significantly higher than the median ratio in lipid extracts of common oral and intestinal Bacteroidetes bacteria, and serum and brain samples from healthy subjects. More importantly, the median Lipid 430/Lipid 654 ratio was significantly elevated in carotid endarterectomies when compared with control artery samples. Our results indicate that deacylation of Lipid 654 to Lipid 430 likely occurs in diseased artery walls due to phospholipase A2 enzyme activity. These results suggest that commensal Bacteriodetes bacteria of the gut and the oral cavity may contribute to the pathogenesis of TLR2-dependent atherosclerosis through serine dipeptide lipid deposition and metabolism in artery walls.
Collapse
Affiliation(s)
- Reza Nemati
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | | | - Emily J Anstadt
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Jorge Cervantes
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Yaling Liu
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| | - Floyd E Dewhirst
- Department of Microbiology, The Forsyth Institute, Cambridge, MA 02142 and Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115
| | - Robert B Clark
- Department of Immunology and Medicine, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Sydney Finegold
- Infectious Disease Division, Veterans Affairs Medical Center, Los Angeles, CA 90073 and Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024
| | | | - Michael B Smith
- Department of Chemistry University of Connecticut, Storrs, CT 06269
| | - Xudong Yao
- Department of Chemistry University of Connecticut, Storrs, CT 06269.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Frank C Nichols
- Department of Oral Health and Diagnostic Sciences, University of Connecticut School of Dental Medicine, Farmington, CT 06030
| |
Collapse
|
32
|
Holmstrup P, Damgaard C, Olsen I, Klinge B, Flyvbjerg A, Nielsen CH, Hansen PR. Comorbidity of periodontal disease: two sides of the same coin? An introduction for the clinician. J Oral Microbiol 2017; 9:1332710. [PMID: 28748036 PMCID: PMC5508374 DOI: 10.1080/20002297.2017.1332710] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/07/2017] [Indexed: 12/14/2022] Open
Abstract
Increasing evidence has suggested an independent association between periodontitis and a range of comorbidities, for example cardiovascular disease, type 2 diabetes, rheumatoid arthritis, osteoporosis, Parkinson’s disease, Alzheimer’s disease, psoriasis, and respiratory infections. Shared inflammatory pathways are likely to contribute to this association, but distinct causal mechanisms remain to be defined. Some of these comorbid conditions may improve by periodontal treatment, and a bidirectional relationship may exist, where, for example, treatment of diabetes can improve periodontal status. The present article presents an overview of the evidence linking periodontitis with selected systemic diseases and calls for increased cooperation between dentists and medical doctors to provide optimal screening, treatment, and prevention of both periodontitis and its comorbidities.
Collapse
Affiliation(s)
- Palle Holmstrup
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Damgaard
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Björn Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Claus Henrik Nielsen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Riis Hansen
- Section for Periodontology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Cardiology Department, Herlev and Gentofte Hospital, Hellerup, Denmark
| |
Collapse
|
33
|
Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis. PLoS One 2017; 12:e0172773. [PMID: 28235036 PMCID: PMC5325525 DOI: 10.1371/journal.pone.0172773] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 02/09/2017] [Indexed: 12/30/2022] Open
Abstract
Cholesterol deposits and pro-inflammatory cytokines play an essential role in the pathogenesis of atherosclerosis, a predominant cause of cardiovascular disease (CVD). Epidemiological evidence has linked periodontal disease (PD) with atherosclerotic CVD. Accordingly, viable periodontal pathogens, including Porphyromonas gingivalis, have been found in atherosclerotic plaques in humans and mice. We aimed to determine whether cholesterol crystals (CHCs) and oral bacteria synergize in the stimulation of human monocytes. Incubation of human monocytes with CHCs induced secretion of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6, and IL-8. Moreover, CHCs markedly enhanced secretion of IL-1β by monocytes stimulated with the toll-like receptor (TLR) 4 agonist Escherichia coli lipopolysaccharide (LPS), and the TLR2 agonist Staphylococcus aureus lipoteichoic acid. Notably, CHCs also enhanced IL-1β secretion induced by P. gingivalis LPS and IL-1β secretion induced by whole P. gingivalis bacteria. This enhancement was abrogated by the NLRP3 inflammasome inhibitors Z-YVAD-FMK and glibenclamide. CHCs had no effect on cytokine production induced by P. gingivalis gingipains. Taken together, our findings support that CHCs, via stimulation of NLRP3 inflammasomes, act in synergy with the periodontal pathogen P. gingivalis to promote monocyte secretion of pro-atherogenic cytokines.
Collapse
|
34
|
Zebrafish as a new model to study effects of periodontal pathogens on cardiovascular diseases. Sci Rep 2016; 6:36023. [PMID: 27777406 PMCID: PMC5078774 DOI: 10.1038/srep36023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022] Open
Abstract
Porphyromonas gingivalis (Pg) is a keystone pathogen in the aetiology of chronic periodontitis. However, recent evidence suggests that the bacterium is also able to enter the bloodstream, interact with host cells and tissues, and ultimately contribute to the pathogenesis of cardiovascular disease (CVD). Here we established a novel zebrafish larvae systemic infection model showing that Pg rapidly adheres to and penetrates the zebrafish vascular endothelium causing a dose- and time-dependent mortality with associated development of pericardial oedemas and cardiac damage. The in vivo model was then used to probe the role of Pg expressed gingipain proteases using systemically delivered gingipain-deficient Pg mutants, which displayed significantly reduced zebrafish morbidity and mortality compared to wild-type bacteria. In addition, we used the zebrafish model to show efficacy of a gingipain inhibitor (KYT) on Pg-mediated systemic disease, suggesting its potential use therapeutically. Our data reveal the first real-time in vivo evidence of intracellular Pg within the endothelium of an infection model and establishes that gingipains are crucially linked to systemic disease and potentially contribute to CVD.
Collapse
|
35
|
Chukkapalli SS, Velsko IM, Rivera-Kweh MF, Larjava H, Lucas AR, Kesavalu L. Global TLR2 and 4 deficiency in mice impacts bone resorption, inflammatory markers and atherosclerosis to polymicrobial infection. Mol Oral Microbiol 2016; 32:211-225. [PMID: 27224005 DOI: 10.1111/omi.12165] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2016] [Indexed: 12/19/2022]
Abstract
Toll-like-receptors (TLRs) play a significant role in the generation of a specific innate immune response against invading pathogens. TLR2 and TLR4 signaling contributes to infection-induced inflammation in periodontal disease (PD) and atherosclerosis. Observational studies point towards a relationship between PD and atherosclerosis, but the role of TLR2 and TLR4 in the recognition of multiple oral pathogens and their modulation of host response leading to atherosclerosis are not clear. We evaluated the role of TLR2 and TLR4 signaling in the induction of both PD and atherosclerosis in TLR2-/- and TLR4-/- mice to polymicrobial infection with periodontal pathogens Porphyromonas gingivalis, Treponema denticola, Tannerella forsythia, and Fusobacterium nucleatum. Polybacterial infections have established gingival colonization in TLR2-/- and TLR4-/- mice and induction of a pathogen-specific immunoglobulin G immune response. But TLR deficiency dampened accelerated alveolar bone resorption and intrabony defects, indicating a central role in infection-induced PD. Periodontal bacteria disseminated from gingival tissue to the heart and aorta through intravascular dissemination; however, there was no increase in atherosclerosis progression in the aortic arch. Polybacterial infection does not alter levels of serum risk factors such as oxidized low-density lipoprotein, nitric oxide, and lipid fractions in both mice. Polymicrobial-infected TLR2-/- mice demonstrated significant levels (P < 0.05 to P < 0.01) of T helper type 2 [transforming growth factor-β1 , macrophage inflammatory protein-3α, interleukin-13 (IL-13)] and T helper type 17 (IL-17, IL-21, IL-22, IL-23) splenic T-cell cytokine responses. Increased heat-shock protein expression, hspa1a for Hsp 70, was observed for both TLR2-/- and TLR4-/- mice. This study supports a role for TLR2 and TLR4 in PD and atherosclerosis, corroborating an intricate association between two inflammatory diseases.
Collapse
Affiliation(s)
- S S Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - I M Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - M F Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - H Larjava
- Division of Periodontics and Dental Hygiene, University of British Columbia, Vancouver, BC, Canada
| | - A R Lucas
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, USA.,Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
36
|
Krane V, Wanner C. Should we aim for oral health to improve outcomes in chronic kidney disease? Nephrol Dial Transplant 2016; 31:1551-4. [PMID: 27190378 DOI: 10.1093/ndt/gfw049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vera Krane
- Department of Medicine 1, Division of Nephrology, University of Würzburg, Würzburg, Germany Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
| | - Christoph Wanner
- Department of Medicine 1, Division of Nephrology, University of Würzburg, Würzburg, Germany Comprehensive Heart Failure Centre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
37
|
Reyes L, Herrera D, Kozarov E, Roldán S, Progulske-Fox A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J Clin Periodontol 2016; 40 Suppl 14:S30-50. [PMID: 23627333 DOI: 10.1111/jcpe.12079] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. METHODS Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. RESULTS Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. CONCLUSIONS Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment of proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | |
Collapse
|
38
|
Reyes L, Herrera D, Kozarov E, Roldá S, Progulske-Fox A. Periodontal bacterial invasion and infection: contribution to atherosclerotic pathology. J Periodontol 2016; 84:S30-50. [PMID: 23631583 DOI: 10.1902/jop.2013.1340012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The objective of this review was to perform a systematic evaluation of the literature reporting current scientific evidence for periodontal bacteria as contributors to atherosclerosis. METHODS Literature from epidemiological, clinical and experimental studies concerning periodontal bacteria and atherosclerosis were reviewed. Gathered data were categorized into seven "proofs" of evidence that periodontal bacteria: 1) disseminate from the oral cavity and reach systemic vascular tissues; 2) can be found in the affected tissues; 3) live within the affected site; 4) invade affected cell types in vitro; 5) induce atherosclerosis in animal models of disease; 6) non-invasive mutants of periodontal bacteria cause significantly reduced pathology in vitro and in vivo; and 7) periodontal isolates from human atheromas can cause disease in animal models of infection. RESULTS Substantial evidence for proofs 1 to 6 was found. However, proof 7 has not yet been fulfilled. CONCLUSIONS Despite the lack of evidence that periodontal bacteria obtained from human atheromas can cause atherosclerosis in animal models of infection, attainment proofs 1 to 6 provides support that periodontal pathogens can contribute to atherosclerosis.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
39
|
Jang EY, Kim M, Noh MH, Moon JH, Lee JY. In Vitro Effects of Polyphosphate against Prevotella intermedia in Planktonic Phase and Biofilm. Antimicrob Agents Chemother 2016; 60:818-26. [PMID: 26596937 PMCID: PMC4750699 DOI: 10.1128/aac.01861-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 11/14/2015] [Indexed: 11/20/2022] Open
Abstract
Polyphosphate (polyP) has gained a wide interest in the food industry due to its potential as a decontaminating agent. In this study, we examined the effect of sodium tripolyphosphate (polyP3; Na5P3O10) against planktonic and biofilm cells of Prevotella intermedia, a major oral pathogen. The MIC of polyP3 against P. intermedia ATCC 49046 determined by agar dilution method was 0.075%, while 0.05% polyP3 was bactericidal against P. intermedia in time-kill analysis performed using liquid medium. A crystal violet binding assay for the assessment of biofilm formation by P. intermedia showed that sub-MICs of polyP3 significantly decreased biofilm formation. Under the scanning electron microscope, decreased numbers of P. intermedia cells forming the biofilms were observed when the bacterial cells were incubated with 0.025% or higher concentrations of polyP3. Assessment of biofilm viability with LIVE/DEAD staining and viable cell count methods showed that 0.05% or higher concentrations of polyP3 significantly decreased the viability of the preformed biofilms in a concentration-dependent manner. The zone sizes of alpha-hemolysis formed on horse blood agar produced by P. intermedia were decreased in the presence of polyP3. The expression of the genes encoding hemolysins and the genes of the hemin uptake (hmu) locus was downregulated by polyP3. Collectively, our results show that polyP is an effective antimicrobial agent against P. intermedia in biofilms as well as planktonic phase, interfering with the process of hemin acquisition by the bacterium.
Collapse
Affiliation(s)
- Eun-Young Jang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Minjung Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Mi Hee Noh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Ji-Hoi Moon
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Yong Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Chukkapalli SS, Velsko IM, Rivera-Kweh MF, Zheng D, Lucas AR, Kesavalu L. Polymicrobial Oral Infection with Four Periodontal Bacteria Orchestrates a Distinct Inflammatory Response and Atherosclerosis in ApoE null Mice. PLoS One 2015; 10:e0143291. [PMID: 26619277 PMCID: PMC4664240 DOI: 10.1371/journal.pone.0143291] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease (PD) develops from a synergy of complex subgingival oral microbiome, and is linked to systemic inflammatory atherosclerotic vascular disease (ASVD). To investigate how a polybacterial microbiome infection influences atherosclerotic plaque progression, we infected the oral cavity of ApoEnull mice with a polybacterial consortium of 4 well-characterized periodontal pathogens, Porphyromonas gingivalis, Treponema denticola, Tannerealla forsythia and Fusobacterium nucleatum, that have been identified in human atherosclerotic plaque by DNA screening. We assessed periodontal disease characteristics, hematogenous dissemination of bacteria, peripheral T cell response, serum inflammatory cytokines, atherosclerosis risk factors, atherosclerotic plaque development, and alteration of aortic gene expression. Polybacterial infections have established gingival colonization in ApoEnull hyperlipidemic mice and displayed invasive characteristics with hematogenous dissemination into cardiovascular tissues such as the heart and aorta. Polybacterial infection induced significantly higher levels of serum risk factors oxidized LDL (p < 0.05), nitric oxide (p < 0.01), altered lipid profiles (cholesterol, triglycerides, Chylomicrons, VLDL) (p < 0.05) as well as accelerated aortic plaque formation in ApoEnull mice (p < 0.05). Periodontal microbiome infection is associated with significant decreases in Apoa1, Apob, Birc3, Fga, FgB genes that are associated with atherosclerosis. Periodontal infection for 12 weeks had modified levels of inflammatory molecules, with decreased Fas ligand, IL-13, SDF-1 and increased chemokine RANTES. In contrast, 24 weeks of infection induced new changes in other inflammatory molecules with reduced KC, MCSF, enhancing GM-CSF, IFNγ, IL-1β, IL-13, IL-4, IL-13, lymphotactin, RANTES, and also an increase in select inflammatory molecules. This study demonstrates unique differences in the host immune response to a polybacterial periodontal infection with atherosclerotic lesion progression in a mouse model.
Collapse
Affiliation(s)
- Sasanka S. Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Irina M. Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes F. Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Donghang Zheng
- Division of Cardiovascular Medicine, Department of Medicine, Gainesville, Florida, United States of America
| | - Alexandra R. Lucas
- Division of Cardiovascular Medicine, Department of Medicine, Gainesville, Florida, United States of America
- Department of Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
41
|
Calandrini CA, Ribeiro AC, Gonnelli AC, Ota-Tsuzuki C, Rangel LP, Saba-Chujfi E, Mayer MPA. Microbial composition of atherosclerotic plaques. Oral Dis 2015; 20:e128-34. [PMID: 24188425 DOI: 10.1111/odi.12205] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/08/2013] [Accepted: 10/14/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The association of infections such as periodontitis with atherosclerotic diseases is well documented. In spite of the high diversity of the human oral microbiota, and its close contact with the circulatory system, few oral species were detected in atherosclerotic plaques. Thus, we attempted to evaluate the microbial diversity of atherosclerotic plaques from patients with different periodontal conditions, submitted to endarterectomy by a broad-range microbial method. MATERIALS AND METHODS Patients indicated for aorta endarterectomy due to myocardial infarction were recruited for periodontal clinical examination. The microbial diversity of atherosclerotic plaques (n = 35) was evaluated by sequence analysis of bacterial 16S rRNA libraries. RESULTS Bacterial DNA was detected in 12 endarterectomy specimens (34.3%). Twenty-three bacterial species/phylotypes were identified. Proteobacteria and Firmicutes comprised 78.3% and 21.7% of the identified taxa, respectively. Fifteen (60.9%) phylotypes were reported as yet uncultivable or as yet uncharacterized species. Two uncultured phylotypes were previously detected in the human mouth. The periodontopathogen Aggregatibacter actinomycetemcomitans was detected in seven samples (20%), followed by Pseudomonas species. There was no association between periodontal parameters and detection of A. actinomycetemcomitans or other phylotypes in atherosclerotic plaques. CONCLUSION Our results suggest a role of the oral microbiota in the development of inflammation in atherogenesis, particularly of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- C A Calandrini
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Department of Periodontology, São Leopoldo Mandic University, Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Mitra S, Drautz-Moses DI, Alhede M, Maw MT, Liu Y, Purbojati RW, Yap ZH, Kushwaha KK, Gheorghe AG, Bjarnsholt T, Hansen GM, Sillesen HH, Hougen HP, Hansen PR, Yang L, Tolker-Nielsen T, Schuster SC, Givskov M. In silico analyses of metagenomes from human atherosclerotic plaque samples. MICROBIOME 2015; 3:38. [PMID: 26334731 PMCID: PMC4559171 DOI: 10.1186/s40168-015-0100-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/12/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND Through several observational and mechanistic studies, microbial infection is known to promote cardiovascular disease. Direct infection of the vessel wall, along with the cardiovascular risk factors, is hypothesized to play a key role in the atherogenesis by promoting an inflammatory response leading to endothelial dysfunction and generating a proatherogenic and prothrombotic environment ultimately leading to clinical manifestations of cardiovascular disease, e.g., acute myocardial infarction or stroke. There are many reports of microbial DNA isolation and even a few studies of viable microbes isolated from human atherosclerotic vessels. However, high-resolution investigation of microbial infectious agents from human vessels that may contribute to atherosclerosis is very limited. In spite of the progress in recent sequencing technologies, analyzing host-associated metagenomes remain a challenge. RESULTS To investigate microbiome diversity within human atherosclerotic tissue samples, we employed high-throughput metagenomic analysis on: (1) atherosclerotic plaques obtained from a group of patients who underwent endarterectomy due to recent transient cerebral ischemia or stroke. (2) Presumed stabile atherosclerotic plaques obtained from autopsy from a control group of patients who all died from causes not related to cardiovascular disease. Our data provides evidence that suggest a wide range of microbial agents in atherosclerotic plaques, and an intriguing new observation that shows these microbiota displayed differences between symptomatic and asymptomatic plaques as judged from the taxonomic profiles in these two groups of patients. Additionally, functional annotations reveal significant differences in basic metabolic and disease pathway signatures between these groups. CONCLUSIONS We demonstrate the feasibility of novel high-resolution techniques aimed at identification and characterization of microbial genomes in human atherosclerotic tissue samples. Our analysis suggests that distinct groups of microbial agents might play different roles during the development of atherosclerotic plaques. These findings may serve as a reference point for future studies in this area of research.
Collapse
Affiliation(s)
- Suparna Mitra
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Norwich Medical School, University of East Anglia, Norwich, UK.
- Institute of Food Research, Norwich Research Park, Norwich, UK.
| | - Daniela I Drautz-Moses
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Morten Alhede
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Myat T Maw
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Yang Liu
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Rikky W Purbojati
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Zhei H Yap
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Kavita K Kushwaha
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Alexandra G Gheorghe
- The Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas Bjarnsholt
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark.
| | - Gorm M Hansen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark.
| | - Henrik H Sillesen
- The Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Hans P Hougen
- The Department of Forensic Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Peter R Hansen
- Department of Cardiology, Gentofte University Hospital, Copenhagen, Denmark.
| | - Liang Yang
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Stephan C Schuster
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
| | - Michael Givskov
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
43
|
Major Adverse Cardiovascular Events in Treated Periodontitis: A Population-Based Follow-Up Study from Taiwan. PLoS One 2015; 10:e0130807. [PMID: 26114433 PMCID: PMC4482590 DOI: 10.1371/journal.pone.0130807] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Background The aim of the present study was to identify the long-term major adverse cardiovascular events (MACE) in treated periodontitis patients in Taiwan. Methods From the National Health Insurance Research Database (2001-2010), adult patients (≥ 18 years) with treated periodontitis were identified. Comparison was made between patients with mild form and severe form of treated periodontitis after propensity score matching. The primary end point was the incidence of MACE. Results A total of 32,504 adult patients with treated periodontitis were identified between 2001 and 2010. After propensity score matching, 27,146 patients were preserved for comparison, including 13,573 patients with mild form and 13,573 patients with severe form of treated periodontitis. During follow-up, 728 individuals in mild treated periodontitis group and 1,206 individuals in severe treated periodontitis group had at least 1 MACE event. After adjustment for gender, hyperlipidemia, hypertension and diabetes mellitus, severe treated periodontitis was associated with a mildly but significantly increased risk of MACE among older patients > 60 years of age (incidence rate ratio, 1.26; 95% confidence interval, 1.08–1.46). No association was found among younger patients ≤ 60 years of age. Conclusions Severe form of treated periodontitis was associated with an increased risk of MACE among older Taiwanese patients, but not among younger Taiwanese patients. We should put more efforts on the improvement of periodontal health to prevent further MACE.
Collapse
|
44
|
Gangula P, Ravella K, Chukkapalli S, Rivera M, Srinivasan S, Hale A, Channon K, Southerland J, Kesavalu L. Polybacterial Periodontal Pathogens Alter Vascular and Gut BH4/nNOS/NRF2-Phase II Enzyme Expression. PLoS One 2015; 10:e0129885. [PMID: 26111153 PMCID: PMC4482323 DOI: 10.1371/journal.pone.0129885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
Periodontal disease is a highly prevalent chronic inflammatory disease and is associated with complex microbial infection in the subgingival cavity. Recently, American Heart Association supported a century old association between periodontal disease and atherosclerotic vascular disease. We have recently shown that polybacterial periodontal infection led to aortic atherosclerosis and modulation of lipid profiles; however the underlying mechanism(s) has not been yet demonstrated. Altered nitric oxide (NO) synthesis and tetrahydrobiopterin (BH4), a cofactor for nitric oxide synthases (NOS) has long been shown to be associated with vascular dysfunction and gastrointestinal motility disorders. We sought to examine the mechanism of periodontal infection leading to altered vascular and gastrointestinal smooth muscle relaxation, focusing on the BH4/nNOS pathways. In addition, we also have investigated how the antioxidant system (NRF2-Phase II enzyme expression) in vascular and GI specimens is altered by oral infection. Eight week old male ApoEnull mice were either sham-infected or infected orally for 16 weeks with a mixture of major periodontal bacteria Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia to induce experimental periodontitis. Serum, vascular (mesenteric), stomach, and colon specimens were collected at the end of periodontal pathogen infection. Bacterial infection induced significant (p<0.05) reductions in the levels of BH4,in ratio of BH4:BH2+B and also in nitric oxide levels compared to sham-infected controls. In addition, we identified a significant (p<0.05) reduction in eNOS dimerization, nNOS dimerization and protein expression of BH4 biosynthesis enzymes; GCH-1, DHFR and NRF2 & Phase II enzymes in infected mice versus controls in both mesenteric artery and colon tissues. However, we found no differences in nNOS/BH4 protein expression in stomach tissues of infected and sham-infected mice. This suggests that a polybacterial infection can cause significant changes in the vascular and colonic BH4/nNOS/NRF2 pathways which might lead to impaired vascular relaxation and colonic motility.
Collapse
Affiliation(s)
- Pandu Gangula
- Department of Physiology, Meharry Medical College, Nashville, TN, United States of America
- School of Dentistry, Meharry Medical College, Nashville, TN, United States of America
| | - Kalpana Ravella
- Department of Physiology, Meharry Medical College, Nashville, TN, United States of America
| | - Sasanka Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes Rivera
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Shanthi Srinivasan
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia, United States of America
| | - Ashley Hale
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Keith Channon
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Janet Southerland
- School of Dentistry, Meharry Medical College, Nashville, TN, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
45
|
Velsko IM, Chukkapalli SS, Rivera-Kweh MF, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoE(null) Mice. PLoS One 2015; 10:e0129795. [PMID: 26079509 PMCID: PMC4469693 DOI: 10.1371/journal.pone.0129795] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic lesions were significantly reduced after F. nucleatum infection suggesting a potential protective function for this member of the oral microbiota.
Collapse
Affiliation(s)
- Irina M. Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes. F. Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Hao Chen
- Cardiovascular Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Donghang Zheng
- Cardiovascular Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Pandu R. Gangula
- Department of Oral Biology and Research, CWHR Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Physiology, CWHR Meharry Medical College, Nashville, Tennessee, United States of America
| | - Alexandra R. Lucas
- Cardiovascular Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
46
|
Salvatore P, Zullo A, Sommese L, Colicchio R, Picascia A, Schiano C, Mancini FP, Napoli C. Infections and cardiovascular disease: is Bartonella henselae contributing to this matter? J Med Microbiol 2015; 64:799-809. [PMID: 26066633 DOI: 10.1099/jmm.0.000099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease is still the major cause of death worldwide despite the remarkable progress in its prevention and treatment. Endothelial progenitor cells (EPCs) have recently emerged as key players of vascular repair and regenerative medicine applied to cardiovascular disease. A large amount of effort has been put into discovering the factors that could aid or impair the number and function of EPCs, and also into characterizing these cells at the molecular level in order to facilitate their therapeutic applications in vascular disease. Interestingly, the major cardiovascular risk factors have been associated with reduced number and function of EPCs. The bacterial contribution to cardiovascular disease represents a long-standing controversy. The discovery that Bartonella henselae can infect and damage EPCs revitalizes the enduring debate about the microbiological contribution to atherosclerosis, thus allowing the hypothesis that this infection could impair the cardiovascular regenerative potential and increase the risk for cardiovascular disease. In this review, we summarize the rationale suggesting that Bartonella henselae could favour atherogenesis by infecting and damaging EPCs, thus reducing their vascular repair potential. These mechanisms suggest a novel link between communicable and non-communicable human diseases, and put forward the possibility that Bartonella henselae could enhance the susceptibility and worsen the prognosis in cardiovascular disease.
Collapse
Affiliation(s)
- Paola Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Alberto Zullo
- CEINGE-Advanced Biotechnologies, Naples, Italy.,Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Linda Sommese
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Department of Experimental Medicine, Section of Microbiology, Second University of Naples, Naples, Italy
| | - Roberta Colicchio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Antonietta Picascia
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.,U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Concetta Schiano
- Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| | | | - Claudio Napoli
- U.O.C. Division of Immunohematology, Transfusion Medicine and Transplant Immunology [SIMT], Regional Reference Laboratory of Transplant Immunology [LIT], Azienda Universitaria Policlinico (AOU) and Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Foundation SDN, Institute of Diagnostic and Nuclear Development, IRCCS, Naples, Italy
| |
Collapse
|
47
|
Etemadifar R, Konarizadeh S, Zarei A, Farshidi H, Sobhani A. Relationship between periodontal status and C-reactive protein and interleuckin-6 levels among atherosclerotic patients in Bandar Abbas, Iran in 2014. Electron Physician 2015; 7:1010-6. [PMID: 26052413 PMCID: PMC4455295 DOI: 10.14661/2015.1010-1016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 08/26/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Recent studies have reported an association between periodontitis and cardiovascular diseases. Atherosclerosis is also a risk factor for cardiovascular diseases. IL-6 and CRP are important inflammatory markers that are important because they have been shown to be higher when a patient has periodontitis, and they are related to atherosclerosis. The aim of this study was to assess the relationship between periodontitis and CRP and IL-6 in atherosclerotic patients. METHODS The study population in this case control study was atherosclerotic patients in Bandar Abbas, Iran in 2014. The participants included 30 individuals with periodontal diseases and 30 individuals without periodontal diseases, and they were allocated into two groups according to probe depth (PD) and clinical attachment loss (CAL). Inflammatory markers, including CRP and IL-6 were measured in the two groups. The data were analyzed using IBM SPSS 21 statistical software. Descriptive statistics, chi-squared, independent samples t-test, and Mann-Whitney tests were used to analyze the data. RESULTS Individuals with abnormal CRP had significantly higher PD and CAL than individuals with normal CRP (P<0.001). Although PD was not significantly different in individuals with normal and abnormal IL-6 (P=0.124), CAL was significantly higher in individuals with abnormal IL-6 than in the other individuals (P=0.005). CONCLUSION The results of this study showed that CRP and IL-6 are associated with periodontal diseases in atherosclerotic patients. Treatment of periodontal diseases is recommended in atherosclerotic patients.
Collapse
Affiliation(s)
- Ruhollah Etemadifar
- Periodontologist, Assistant Professor, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Shokufe Konarizadeh
- Dentistry Student, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Atefeh Zarei
- Dentistry Student, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Hossein Farshidi
- Cardiologist, Associate Professor, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Sobhani
- Pathologist, Assistant Professor, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
48
|
Abstract
Background. The pathophysiology of cardiovascular disease (CVD) includes inflammation in the development of atherosclerosis and thrombosis. Increasing evidence supports oral infections, and in particular the common periodontal disease, to be associated with CVD development. Periodontal infection is present in populations worldwide and in the moderate to mild form in about 35% of populations according to the World Health Organization. Objective. This review of the literature aims to present cross evidence from medical research disciplines that explore how oral infections can contribute to increase the risk for CVDs and how treatment of oral infections can reduce the risk for CVDs. Design. Review article. Results. Long-term exposure to active nontreated infections of the oral cavity presents an opportunity for bacteria, bacterial products, and viruses to enter the circulation. Toxic bacterial products enter the circulation, affecting atherosclerosis, causing platelet adhesiveness that results in clot formation, and establishing cardiac vegetation. Pathological observations have identified oral bacteria in heart valves, aortic aneurysms, and arterial walls. Clinical intervention studies on periodontal disease reduce the risk level of serological predictors for CVDs. Conclusions. This paper presents evidence across medical research disciplines for oral infections to be considered as one of the risk factors for CVDs.
Collapse
|
49
|
Serra e Silva Filho W, Casarin RCV, Nicolela Junior EL, Passos HM, Sallum AW, Gonçalves RB. Microbial diversity similarities in periodontal pockets and atheromatous plaques of cardiovascular disease patients. PLoS One 2014; 9:e109761. [PMID: 25329160 PMCID: PMC4199612 DOI: 10.1371/journal.pone.0109761] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022] Open
Abstract
Background and Objective The immune and infectious alterations occurring in periodontitis have been shown to alter the development and severity of cardiovascular disease. One of these relationships is the translocation of oral bacteria to atheroma plaques, thereby promoting plaque development. Thus, the aim of this study was to assess, by 16s cloning and sequencing, the microbial diversity of the subgingival environment and atheroma plaques of patients concomitantly suffering from periodontitis and obstructive coronary artery atherosclerosis (OCAA). Methods Subgingival biofilm and coronary balloons used in percutaneous transluminal coronary angioplasty were collected from 18 subjects presenting with generalized moderate to severe periodontitis and OCAA. DNA was extracted and the gene 16S was amplified, cloned and sequenced. Results Significant differences in microbial diversity were observed between both environments. While subgingival samples mostly contained the phylum Firmicutes, in coronary balloons, Proteobacteria (p<0.05) was predominant. In addition, the most commonly detected genera in coronary balloons were Acinetobacter, Alloprevotella, Pseudomonas, Enterobacter, Sphingomonas and Moraxella, while in subgingival samples Porphyromonas, Filifactor, Veillonella, Aggregatibacter and Treponema (p<0.05) were found. Interestingly, 17 identical phylotypes were found in atheroma and subgingival samples, indicating possible bacterial translocation between periodontal pockets and coronary arteries. Conclusion Periodontal pockets and atheromatous plaques of cardiovascular disease patients can present similarities in the microbial diversity.
Collapse
Affiliation(s)
| | | | | | | | - Antônio W. Sallum
- Piracicaba Dental School, State University of Campinas, São Paulo, Brazil
| | | |
Collapse
|
50
|
Emani S, Gunjiganur GV, Mehta DS. Determination of the antibacterial activity of simvastatin against periodontal pathogens, Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans: An in vitro study. Contemp Clin Dent 2014; 5:377-82. [PMID: 25191077 PMCID: PMC4147817 DOI: 10.4103/0976-237x.137959] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
CONTEXT AND OBJECTIVE Statin treatment, apart from its hypolipidemic action has proven its antimicrobial activity by improving the survival rate of patients with severe systemic bacterial infections. Periodontitis is an inflammatory disorder of tooth supporting structures caused by a group of specific microorganisms. The objective of the present study was to determine the antimicrobial activity of pure simvastatin drug against the primary periodontal pathogens. MATERIALS AND METHODS Minimum inhibitory concentration (MIC) was determined against Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans using serial dilution method. RESULTS MIC of simvastatin against P. gingivalis was 2 μg/ml and A. actinomycetemcomitans was found to be <1 μg/ml which requires further dilutions to determine the exact value. CONCLUSIONS Data suggests a potent antimicrobial activity of simvastatin against both A. actinomycetemcomitans and P gingivalis. Hence simvastatin can be prescribed as a dual action drug in patients with both hyperlipidemia and periodontal disease.
Collapse
Affiliation(s)
- Shilpa Emani
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Gayathri V. Gunjiganur
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| | - Dhoom Singh Mehta
- Department of Periodontics, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|