1
|
Ejiohuo O, Bilska K, Narożna B, Skibińska M, Kapelski P, Dmitrzak-Węglarz M, Szczepankiewicz A, Pawlak J. The implication of ADRA2A and AVPRIB gene variants in the aetiology of stress-related bipolar disorder. J Affect Disord 2025; 368:249-257. [PMID: 39278467 DOI: 10.1016/j.jad.2024.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
OBJECTIVE Bipolar disorder is a complex and severe mental illness characterised by manic and depressive episodes that can be triggered and exacerbated by psychosocial, environmental, and biological stressors. Genetic variations are a risk factor for bipolar disorder. However, the identification of the exact gene variants and genotypes remains complex. This study, therefore, aims to identify the potential association between genotypes of analysed single nucleotide polymorphisms and the presence of a stressor in bipolar disorder patients. METHOD We analysed 114 single nucleotide polymorphisms (SNPs) from bipolar and stress-related candidate genes in 550 patients with bipolar disorders (60.36 % females and 39.64 % male). We compared SNPs of patients reporting the presence (40.73 %) or absence of stressors (59.27 %) before the first episode using the Persons Chi-square test and Bayes Factor t-test. The genotyping of 114 SNPs was done using TaqMan assays. Statistical analysis was done using Statistica 13.3 software (StatSoft Poland, Krakow, Poland), R programming, and G*Power statistics. RESULT We found significant differences in genotype distribution (p < 0.05) in 6 polymorphisms (AVPRIB/rs28536160, FKBP4/rs2968909, ADRA2A/rs3750625, 5HTR2A/rs6311, 5HTR2A/rs6313, and GLCCI1/rs37972) when comparing BD patient with and without stressor with a small effect of d = 0.2. Of these, two gene variants (ADRA2A/rs3750625/AC and AVPRIB/rs28536160/CT) with minor alleles formed an association with the presence of a stressor prior to the disease onset and favoured the alternative hypothesis using Bayes Factor Analysis t-test for hypothesis testing. CONCLUSION This study presents a novel association of ADRA2A/rs3750625/AC and AVPR1B/rs28536160/CT gene variants in stress-related bipolar disorder with the AC genotype of ADRA2A/rs3750625 constituting a risk genotype and CT of AVPR1B/rs28536160 constituting a protective genotype. However, further functional analysis is required to fully understand their clinical and biological significance and interaction.
Collapse
Affiliation(s)
- Ovinuchi Ejiohuo
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland; Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland.
| | - Karolina Bilska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Beata Narożna
- Molecular and Cell Biology Unit, Poznan University of Medical Sciences, Poznan, Poland
| | - Maria Skibińska
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Paweł Kapelski
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | | | | | - Joanna Pawlak
- Department of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
2
|
Alharbi AE, Ahmad MS, Damanhouri ZA, Mosli H, Yaghmour KA, Refai F, Issa NM, Alkreathy HM. The Effect of Genetic Variants of SLC22A2 (rs662301 and rs315978) on the response to Metformin in type 2 Saudi diabetic patients. Gene 2024; 927:148648. [PMID: 38852696 DOI: 10.1016/j.gene.2024.148648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE To investigate the allelic and genotypic frequencies of the two genetic variations, NC_000006.12: g.160275887C > T (rs662301) and NC_000006.12:g.160231826 T > C (rs315978), in the SLC22A2 gene among the Saudi population. The primary goal is to elucidate potential associations with these genetic variations and the response to metformin therapy over 6 months to enhance our knowledge of the genetic basis of Type 2 Diabetes Mellitus (T2DM) and its clinical management in the Saudi population. MATERIALS/METHODS 76 newly diagnosed T2DM patients, aged 30 to 60, of both sexes and Saudi origin, were treated with metformin monotherapy. Blood samples were collected before and after 6 months of therapy,80 healthy individuals were included as controls. Genomic DNA was extracted. Genotyping of the SLC22A2 genetic variations was performed using TaqMan® SNP Genotyping Assays. Binary logistic regression was utilized to evaluate how certain clinical parameters influence T2DM concerning the presence of SLC22A2 gene variants. RESULTS Among these patients, 73.3 % were responders, and 26.7 % were non-responders. For these variants, no statistically significant differences in genotype or allele frequencies were observed between responders and non-responders (p = 0.375 and p = 0.384 for rs662301; p = 0.473 and p = 0.481 for rs315978, respectively). For the SLC22A2 variant rs662301, the C/C genotype was significantly associated with increased T2DM risk with age and elevated HbA1c levels. Similarly, rs315978 revealed higher T2DM susceptibility and HbA1c elevation in C/C genotype carriers, specifically with advancing age compared to individuals with C/T and T/T genotypes. CONCLUSION The study offers insights into the genetic landscape of T2DM in Saudi Arabia. Despite the absence of significant associations with treatment response, the study suggests potential age-specific associations, this highlights the complexity of the disease. This research underscores the necessity for expanded research, considering diverse populations and genetic factors, to develop personalized treatment approaches. This study serves as a foundation for future investigations into the Saudi population, recognizing the need for a larger sample size.
Collapse
Affiliation(s)
- Amani E Alharbi
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah, Saudi Arabia.
| | - Muhammad S Ahmad
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Zoheir A Damanhouri
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hala Mosli
- Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled A Yaghmour
- Family Medicine Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahd Refai
- Department of Pathology, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Noha M Issa
- Department of Medical Genetics, Faculty of Medicine, King Abdul-Aziz University, Saudi Arabia; Department of Human Genetics, Medical Research Institute, Alexandria University, Egypt
| | - Huda M Alkreathy
- Department of Clinical Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
3
|
Gagnon L, Moreau C, Laprise C, Girard SL. Fine-scale genetic structure and rare variant frequencies. PLoS One 2024; 19:e0313133. [PMID: 39499706 PMCID: PMC11537391 DOI: 10.1371/journal.pone.0313133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/19/2024] [Indexed: 11/07/2024] Open
Abstract
In response to the current challenge in genetic studies to make new associations, we advocate for a shift toward leveraging population fine-scale structure. Our exploration brings to light distinct fine-structure within populations having undergone a founder effect such as the Ashkenazi Jews and the population of the Quebec' province. We leverage the fine-scale population structure to explore its impact on the frequency of rare variants. Notably, we observed an 8-fold increase in frequency for a variant associated with the Usher syndrome in one Quebec subpopulation. Our study underscores that smaller cohorts with greater genetic similarity demonstrate an important increase in rare variant frequencies, offering a promising avenue for new genetic variants' discovery.
Collapse
Affiliation(s)
- Laurence Gagnon
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Claudia Moreau
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
| | - Catherine Laprise
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intégré Universitaire en Santé et Services Sociaux du Saguenay–Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Simon L. Girard
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre Intersectoriel en Santé Durable, Université du Québec à Chicoutimi, Saguenay, Québec, Canada
- Centre de recherche CERVO, Université Laval, Québec, Québec, Canada
| |
Collapse
|
4
|
Biagetti G, Thompson E, O'Brien C, Damrauer S. The Role of Genetics in Managing Peripheral Arterial Disease. Ann Vasc Surg 2024; 108:279-286. [PMID: 38960093 DOI: 10.1016/j.avsg.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Genome wide association studies (GWAS) have allowed for a rapid increase in our understanding of the underlying genetics and biology of many diseases. By capitalizing on common genetic variation between individuals, GWAS can identify DNA variants associated with diseases of interest. A variety of statistical methods can be applied to GWAS results which allows for risk factor identification, stratification, and to identify potential treatments. Peripheral artery disease (PAD) is a common vascular disease that has been shown to have a strong genetic component. This article provides a review of the modern literature and our current understanding of the role of genetics in PAD. METHODS All available GWAS studies on PAD were reviewed. A literature search involving these studies was conducted and relevant articles applying the available GWAS data were summarized to provide a comprehensive review of our current understanding of the genetic component in PAD. RESULTS The largest available GWAS on PAD has identified 19 genome wide significant loci, with factor V Leiden and genes responsible for circulating lipoproteins being implicated in the development of PAD. Mendelian randomization (MR) studies have identified risk factors and causal associations with smoking, diabetes, and obesity and many other traits; protein-based MR has also identified circulating lipid and clotting factor levels associated with the incidence of PAD. Polygenic risk scores may allow for improved prediction of disease incidence and allow for early identification of at-risk patients but more work needs to be done to validate this approach. CONCLUSIONS Genetic epidemiology has allowed for an increased understanding of PAD in the past decade. Genome-wide association studies have led to improved detection of genetic contributions to PAD, and further genetic analyses have validated risk factors and may provide options for improved screening in at-risk populations. Ongoing biobank studies of chronic limb threatening ischemia patients and the increasing ancestral diversity in biobank enrollment will allow for even further exploration into the pathogenesis and progression of PAD.
Collapse
Affiliation(s)
- Gina Biagetti
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Elizabeth Thompson
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ciaran O'Brien
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Scott Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Corporal Michael Crescenz VA Medical Center, Philadelphia, PA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
5
|
Pauly R, Johnson L, Feltus FA, Casanova EL. Enrichment of a subset of Neanderthal polymorphisms in autistic probands and siblings. Mol Psychiatry 2024; 29:3452-3461. [PMID: 38760502 PMCID: PMC11541192 DOI: 10.1038/s41380-024-02593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/19/2024]
Abstract
Homo sapiens and Neanderthals underwent hybridization during the Middle/Upper Paleolithic age, culminating in retention of small amounts of Neanderthal-derived DNA in the modern human genome. In the current study, we address the potential roles Neanderthal single nucleotide polymorphisms (SNP) may be playing in autism susceptibility in samples of black non-Hispanic, white Hispanic, and white non-Hispanic people using data from the Simons Foundation Powering Autism Research (SPARK), Genotype-Tissue Expression (GTEx), and 1000 Genomes (1000G) databases. We have discovered that rare variants are significantly enriched in autistic probands compared to race-matched controls. In addition, we have identified 25 rare and common SNPs that are significantly enriched in autism on different ethnic backgrounds, some of which show significant clinical associations. We have also identified other SNPs that share more specific genotype-phenotype correlations but which are not necessarily enriched in autism and yet may nevertheless play roles in comorbid phenotype expression (e.g., intellectual disability, epilepsy, and language regression). These results strongly suggest Neanderthal-derived DNA is playing a significant role in autism susceptibility across major populations in the United States.
Collapse
Affiliation(s)
- Rini Pauly
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
| | - Layla Johnson
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA
| | - F Alex Feltus
- Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC, 29634, USA
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
- Center for Human Genetics, Clemson University, Clemson, SC, 29634, USA
| | - Emily L Casanova
- Department of Psychology, Loyola University, New Orleans, New Orleans, LA, 70118, USA.
| |
Collapse
|
6
|
Logsdon GA, Ebert P, Audano PA, Loftus M, Porubsky D, Ebler J, Yilmaz F, Hallast P, Prodanov T, Yoo D, Paisie CA, Harvey WT, Zhao X, Martino GV, Henglin M, Munson KM, Rabbani K, Chin CS, Gu B, Ashraf H, Austine-Orimoloye O, Balachandran P, Bonder MJ, Cheng H, Chong Z, Crabtree J, Gerstein M, Guethlein LA, Hasenfeld P, Hickey G, Hoekzema K, Hunt SE, Jensen M, Jiang Y, Koren S, Kwon Y, Li C, Li H, Li J, Norman PJ, Oshima KK, Paten B, Phillippy AM, Pollock NR, Rausch T, Rautiainen M, Scholz S, Song Y, Söylev A, Sulovari A, Surapaneni L, Tsapalou V, Zhou W, Zhou Y, Zhu Q, Zody MC, Mills RE, Devine SE, Shi X, Talkowski ME, Chaisson MJP, Dilthey AT, Konkel MK, Korbel JO, Lee C, Beck CR, Eichler EE, Marschall T. Complex genetic variation in nearly complete human genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614721. [PMID: 39372794 PMCID: PMC11451754 DOI: 10.1101/2024.09.24.614721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Diverse sets of complete human genomes are required to construct a pangenome reference and to understand the extent of complex structural variation. Here, we sequence 65 diverse human genomes and build 130 haplotype-resolved assemblies (130 Mbp median continuity), closing 92% of all previous assembly gaps1,2 and reaching telomere-to-telomere (T2T) status for 39% of the chromosomes. We highlight complete sequence continuity of complex loci, including the major histocompatibility complex (MHC), SMN1/SMN2, NBPF8, and AMY1/AMY2, and fully resolve 1,852 complex structural variants (SVs). In addition, we completely assemble and validate 1,246 human centromeres. We find up to 30-fold variation in α-satellite high-order repeat (HOR) array length and characterize the pattern of mobile element insertions into α-satellite HOR arrays. While most centromeres predict a single site of kinetochore attachment, epigenetic analysis suggests the presence of two hypomethylated regions for 7% of centromeres. Combining our data with the draft pangenome reference1 significantly enhances genotyping accuracy from short-read data, enabling whole-genome inference3 to a median quality value (QV) of 45. Using this approach, 26,115 SVs per sample are detected, substantially increasing the number of SVs now amenable to downstream disease association studies.
Collapse
Affiliation(s)
- Glennis A Logsdon
- Perelman School of Medicine, University of Pennsylvania, Department of Genetics, Epigenetics Institute, Philadelphia, PA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter Ebert
- Core Unit Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Mark Loftus
- Clemson University, Department of Genetics & Biochemistry, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - David Porubsky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jana Ebler
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Carolyn A Paisie
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gianni V Martino
- Clemson University, Department of Genetics & Biochemistry, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
- Medical University of South Carolina, College of Graduate Studies, Charleston, SC, USA
| | - Mir Henglin
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Chen-Shan Chin
- Foundation of Biological Data Sciences, Belmont, CA, USA
| | - Bida Gu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Hufsah Ashraf
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Olanrewaju Austine-Orimoloye
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Marc Jan Bonder
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Oncode Institute, Utrecht, The Netherlands
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center, Heidelberg, Germany
| | - Haoyu Cheng
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Zechen Chong
- Department of Biomedical Informatics and Data Science, Heersink School of Medicine, University of Alabama, Birmingham, AL, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Patrick Hasenfeld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Glenn Hickey
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Matthew Jensen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Yunzhe Jiang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Youngjun Kwon
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Chong Li
- Temple University, Department of Computer and Information Sciences, College of Science and Technology, Philadelphia, PA, USA
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA, USA
| | - Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jiaqi Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Paul J Norman
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Keisuke K Oshima
- Perelman School of Medicine, University of Pennsylvania, Department of Genetics, Epigenetics Institute, Philadelphia, PA, USA
| | - Benedict Paten
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, CA, USA
| | - Adam M Phillippy
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas R Pollock
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tobias Rausch
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Mikko Rautiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Stephan Scholz
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Yuwei Song
- Department of Biomedical Informatics and Data Science, Heersink School of Medicine, University of Alabama, Birmingham, AL, USA
| | - Arda Söylev
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Likhitha Surapaneni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Vasiliki Tsapalou
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Weichen Zhou
- Department of Computational Medicine & Bioinformatics, University of Michigan, MI, USA
| | - Ying Zhou
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Qihui Zhu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Stanford Health Care, Palo Alto, CA, USA
| | | | - Ryan E Mills
- Department of Computational Medicine & Bioinformatics, University of Michigan, MI, USA
| | - Scott E Devine
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xinghua Shi
- Temple University, Department of Computer and Information Sciences, College of Science and Technology, Philadelphia, PA, USA
- Temple University, Institute for Genomics and Evolutionary Medicine, Philadelphia, PA, USA
| | - Mike E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Alexander T Dilthey
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Miriam K Konkel
- Clemson University, Department of Genetics & Biochemistry, Clemson, SC, USA
- Center for Human Genetics, Clemson University, Greenwood, SC, USA
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- The University of Connecticut Health Center, Farmington, CT, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
7
|
Gunasekaran TI, Reyes-Dumeyer D, Faber KM, Goate A, Boeve B, Cruchaga C, Pericak-Vance M, Haines JL, Rosenberg R, Tsuang D, Mejia DR, Medrano M, Lantigua RA, Sweet RA, Bennett DA, Wilson RS, Alba C, Dalgard C, Foroud T, Vardarajan BN, Mayeux R. Missense and loss-of-function variants at GWAS loci in familial Alzheimer's disease. Alzheimers Dement 2024. [PMID: 39233587 DOI: 10.1002/alz.14221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Few rare variants have been identified in genetic loci from genome-wide association studies (GWAS) of Alzheimer's disease (AD), limiting understanding of mechanisms, risk assessment, and genetic counseling. METHODS Using genome sequencing data from 197 families in the National Institute on Aging Alzheimer's Disease Family Based Study and 214 Caribbean Hispanic families, we searched for rare coding variants within known GWAS loci from the largest published study. RESULTS Eighty-six rare missense or loss-of-function (LoF) variants completely segregated in 17.5% of families, but in 91 (22.1%) families Apolipoprotein E (APOE)-𝜀4 was the only variant segregating. However, in 60.3% of families, APOE 𝜀4, missense, and LoF variants were not found within the GWAS loci. DISCUSSION Although APOE 𝜀4and several rare variants were found to segregate in both family datasets, many families had no variant accounting for their disease. This suggests that familial AD may be the result of unidentified rare variants. HIGHLIGHTS Rare coding variants from GWAS loci segregate in familial Alzheimer's disease. Missense or loss of function variants were found segregating in nearly 7% of families. APOE-𝜀4 was the only segregating variant in 29.7% in familial Alzheimer's disease. In Hispanic and non-Hispanic families, different variants were found in segregating genes. No coding variants were found segregating in many Hispanic and non-Hispanic families.
Collapse
Affiliation(s)
- Tamil Iniyan Gunasekaran
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Dolly Reyes-Dumeyer
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Kelley M Faber
- Department of Medical and Molecular Genetics, National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alison Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, Icahn Bldg., One Gustave L. Levy Place, New York, New York, USA
| | - Brad Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. Louis, Rand Johnson Building, 600 S Euclid Ave., Wohl Hospital Building, St. Louis, Missouri, USA
| | - Margaret Pericak-Vance
- John P Hussman Institute for Human Genomics, Dr. John T Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jonathan L Haines
- Department of Population & Quantitative Health Sciences and Cleveland Institute for Computational Biology. Case Western Reserve University, Cleveland, Ohio, USA
| | - Roger Rosenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Debby Tsuang
- Department of Psychiatry and Behavioral Sciences, University of Washington, GRECC VA Puget Sound, 1660 South Columbian Way, Seattle, Washington, USA
| | - Diones Rivera Mejia
- Los Centros de Diagnóstico y Medicina Avanzada y de Conferencias Médicas y Telemedicina, CEDIMAT, Arturo Logroño, Plaza de la Salud, Dr. Juan Manuel Taveras Rodríguez, C. Pepillo Salcedo esq, Santo Domingo, Dominican Republic
- Universidad Pedro Henríquez Urena, Av. John F. Kennedy Km. 7-1/2 Santo Domingo 1423, Santo Domingo, Dominican Republic
| | - Martin Medrano
- Pontíficia Universidad Católica Madre y Maestra (PUCMM), Autopista Duarte Km 1 1/2, Santiago de los Caballeros, Dominican Republic
| | - Rafael A Lantigua
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, New York, USA
| | - Robert A Sweet
- Departments of Psychiatry and Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750, West Harrison St, Chicago, Illinois, USA
| | - Robert S Wilson
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750, West Harrison St, Chicago, Illinois, USA
| | - Camille Alba
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Clifton Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, National Centralized Repository for Alzheimer's Disease and Related Dementias (NCRAD), 410 W. 10th St., HS 4000. Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Badri N Vardarajan
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| | - Richard Mayeux
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University, New York, New York, USA
| |
Collapse
|
8
|
Underwood M, Bidlack C, Desch KC. Venous thromboembolic disease genetics: from variants to function. J Thromb Haemost 2024; 22:2393-2403. [PMID: 38908832 DOI: 10.1016/j.jtha.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/24/2024]
Abstract
Venous thromboembolic disease (VTE) is a prevalent and potentially life-threatening vascular disease, including both deep vein thrombosis and pulmonary embolism. This review will focus on recent insights into the heritable factors that influence an individual's risk for VTE. Here, we will explore not only the discovery of new genetic risk variants but also the importance of functional characterization of these variants. These genome-wide studies should lead to a better understanding of the biological role of genes inside and outside of the canonical coagulation system in thrombus formation and lead to an improved ability to predict an individual's risk of VTE. Further understanding of the molecular mechanisms altered by genetic variation in VTE risk will be accelerated by further human genome sequencing efforts and the use of functional genetic screens.
Collapse
Affiliation(s)
- Mary Underwood
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Christopher Bidlack
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Karl C Desch
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
9
|
Zodanu GKE, Hwang JH, Mehta Z, Sisniega C, Barsegian A, Kang X, Biniwale R, Si MS, Satou GM, Halnon N, Grody WW, Van Arsdell GS, Nelson SF, Touma M. High-Throughput Genomics Identify Novel FBN1/2 Variants in Severe Neonatal Marfan Syndrome and Congenital Heart Defects. Int J Mol Sci 2024; 25:5469. [PMID: 38791509 PMCID: PMC11122089 DOI: 10.3390/ijms25105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Fibrillin-1 and fibrillin-2, encoded by FBN1 and FBN2, respectively, play significant roles in elastic fiber assembly, with pathogenic variants causing a diverse group of connective tissue disorders such as Marfan syndrome (MFS) and congenital contractural arachnodactyly (CCD). Different genomic variations may lead to heterogeneous phenotypic features and functional consequences. Recent high-throughput sequencing modalities have allowed detection of novel variants that may guide the care for patients and inform the genetic counseling for their families. We performed clinical phenotyping for two newborn infants with complex congenital heart defects. For genetic investigations, we employed next-generation sequencing strategies including whole-genome Single-Nucleotide Polymorphism (SNP) microarray for infant A with valvular insufficiency, aortic sinus dilatation, hydronephrosis, and dysmorphic features, and Trio whole-exome sequencing (WES) for infant B with dextro-transposition of the great arteries (D-TGA) and both parents. Infant A is a term male with neonatal marfanoid features, left-sided hydronephrosis, and complex congenital heart defects including tricuspid regurgitation, aortic sinus dilatation, patent foramen ovale, patent ductus arteriosus, mitral regurgitation, tricuspid regurgitation, aortic regurgitation, and pulmonary sinus dilatation. He developed severe persistent pulmonary hypertension and worsening acute hypercapnic hypoxemic respiratory failure, and subsequently expired on day of life (DOL) 10 after compassionate extubation. Cytogenomic whole-genome SNP microarray analysis revealed a deletion within the FBN1 gene spanning exons 7-30, which overlapped with the exon deletion hotspot region associated with neonatal Marfan syndrome. Infant B is a term male prenatally diagnosed with isolated D-TGA. He required balloon atrial septostomy on DOL 0 and subsequent atrial switch operation, atrial septal defect repair, and patent ductus arteriosus ligation on DOL 5. Trio-WES revealed compound heterozygous c.518C>T and c.8230T>G variants in the FBN2 gene. Zygosity analysis confirmed each of the variants was inherited from one of the parents who were healthy heterozygous carriers. Since his cardiac repair at birth, he has been growing and developing well without any further hospitalization. Our study highlights novel FBN1/FBN2 variants and signifies the phenotype-genotype association in two infants affected with complex congenital heart defects with and without dysmorphic features. These findings speak to the importance of next-generation high-throughput genomics for novel variant detection and the phenotypic variability associated with FBN1/FBN2 variants, particularly in the neonatal period, which may significantly impact clinical care and family counseling.
Collapse
Affiliation(s)
- Gloria K. E. Zodanu
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - John H. Hwang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Zubin Mehta
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Carlos Sisniega
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Alexander Barsegian
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Xuedong Kang
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Reshma Biniwale
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Ming-Sing Si
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Gary M. Satou
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - Nancy Halnon
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
| | - UCLA Congenital Heart Defect BioCore Faculty
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
| | - Wayne W. Grody
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Glen S. Van Arsdell
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Stanley F. Nelson
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Marlin Touma
- Neonatal Congenital Heart Laboratory, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (G.K.E.Z.); (J.H.H.); (Z.M.); (C.S.); (A.B.); (X.K.)
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (R.B.); (G.M.S.); (N.H.); (W.W.G.); (G.S.V.A.); (S.F.N.)
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
- Children’s Discovery and Innovation Institute, University of California, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA
- Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
D'Antona S, Porro D, Gallivanone F, Bertoli G. Characterization of cell cycle, inflammation, and oxidative stress signaling role in non-communicable diseases: Insights into genetic variants, microRNAs and pathways. Comput Biol Med 2024; 174:108346. [PMID: 38581999 DOI: 10.1016/j.compbiomed.2024.108346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/16/2024] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.
Collapse
Affiliation(s)
- Salvatore D'Antona
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Danilo Porro
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesca Gallivanone
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy
| | - Gloria Bertoli
- Institute of Bioimaging and Molecular Physiology, National Research Council, Via F.lli Cervi 93, 20054, Milan, Italy; National Biodiversity Future Center (NBFC), Palermo, Italy.
| |
Collapse
|
11
|
Łukasiewicz-Śmietańska D, Godlewski D, Nowakowska E, Szpak A, Chabros E, Juszczyk G, Charzewska J, Rybaczyk-Pathak D. Association of the bitter taste genes TAS2R38 and CA6 and breast cancer risk; a case-control study of Polish women in Poland and Polish immigrants in USA. PLoS One 2024; 19:e0300061. [PMID: 38687739 PMCID: PMC11060581 DOI: 10.1371/journal.pone.0300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/21/2024] [Indexed: 05/02/2024] Open
Abstract
It is known that the perception of bitterness is mediated by type 2 bitter taste receptors (TAS2Rs). However, recent reports have suggested that the carbonic anhydrase 6 (CA6) gene may also influence bitterness sensing. Genetic variants in these genes could influence dietary intake of brassica vegetables, whose increased consumption has been observed in the literature, though inconsistently, to decrease breast cancer (BC) risk. We hypothesized that the estimated odds ratios (ORs) for the association between BC and taster diplotype (PAV/PAV) and/or genotype A/A, will be in the direction of increased BC risk, potentially due to reduced consumption of brassica vegetables. Using a case-control study of BC in Polish women in Poland (210 cases and 262 controls) and Polish immigrant women to USA (78 cases and 170 controls) we evaluated the association of the taster diplotypes in TAS2R38 gene and genotypes in the CA6 gene and BC risk in these two populations individually and jointly. No significant increase in risk was observed for the TAS2R38 PAV/PAV diplotype (tasters) in each population individually or in the joint population. For the CA6 gene, in the joint population, we observed an increased BC risk for the combined G/A and G/G genotypes (non-tasters) vs A/A (tasters), OR = 1.41 (95% CI 1.04-1.90, p = 0.026) which after adjustment for False Discovery Rate (FDR), was not significant at p≤0.05 level. However, for the joint population and for the combined genotype of the two genes AVI/AVI+G* (non-tasters) vs. PAV/*+A/A (tasters), we observed a significant increase in BC risk, OR = 1.77 (95%CI 1.47-2.74, p = 0.01), for the non-tasters, which remained significant after FDR adjustment. In conclusion for the joint population and the joint effect for the two bitter sensing genes, we observed an increase in BC risk for the bitterness non-tasters, association which is in the opposite direction to our original hypothesis.
Collapse
Affiliation(s)
- Dorota Łukasiewicz-Śmietańska
- Department of Nutrition and Nutritional Value of Food, National Institute of Public Health NIH- National Research Institute, Warsaw, Poland
| | | | | | | | | | - Grzegorz Juszczyk
- National Institute of Public Health NIH- National Research Institute, Warsaw, Poland
| | - Jadwiga Charzewska
- Department of Nutrition and Nutritional Value of Food, National Institute of Public Health NIH- National Research Institute, Warsaw, Poland
| | - Dorothy Rybaczyk-Pathak
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
12
|
Fu T, Amoah K, Chan TW, Bahn JH, Lee JH, Terrazas S, Chong R, Kosuri S, Xiao X. Massively parallel screen uncovers many rare 3' UTR variants regulating mRNA abundance of cancer driver genes. Nat Commun 2024; 15:3335. [PMID: 38637555 PMCID: PMC11026479 DOI: 10.1038/s41467-024-46795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.
Collapse
Affiliation(s)
- Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kofi Amoah
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sari Terrazas
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinshu Xiao
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Firdaus Z, Li X. Unraveling the Genetic Landscape of Neurological Disorders: Insights into Pathogenesis, Techniques for Variant Identification, and Therapeutic Approaches. Int J Mol Sci 2024; 25:2320. [PMID: 38396996 PMCID: PMC10889342 DOI: 10.3390/ijms25042320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Genetic abnormalities play a crucial role in the development of neurodegenerative disorders (NDDs). Genetic exploration has indeed contributed to unraveling the molecular complexities responsible for the etiology and progression of various NDDs. The intricate nature of rare and common variants in NDDs contributes to a limited understanding of the genetic risk factors associated with them. Advancements in next-generation sequencing have made whole-genome sequencing and whole-exome sequencing possible, allowing the identification of rare variants with substantial effects, and improving the understanding of both Mendelian and complex neurological conditions. The resurgence of gene therapy holds the promise of targeting the etiology of diseases and ensuring a sustained correction. This approach is particularly enticing for neurodegenerative diseases, where traditional pharmacological methods have fallen short. In the context of our exploration of the genetic epidemiology of the three most prevalent NDDs-amyotrophic lateral sclerosis, Alzheimer's disease, and Parkinson's disease, our primary goal is to underscore the progress made in the development of next-generation sequencing. This progress aims to enhance our understanding of the disease mechanisms and explore gene-based therapies for NDDs. Throughout this review, we focus on genetic variations, methodologies for their identification, the associated pathophysiology, and the promising potential of gene therapy. Ultimately, our objective is to provide a comprehensive and forward-looking perspective on the emerging research arena of NDDs.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
14
|
Khan R, Ji W, Guzman-Rivera J, Madhvi A, Andrews T, Richlin B, Suarez C, Gaur S, Cuddy W, Singh AR, Bukulmez H, Kaelber D, Kimura Y, Ganapathi U, Michailidis IE, Ukey R, Moroso-Fela S, Kuster JK, Casseus M, Roy J, Kleinman LC, Horton DB, Lakhani SA, Gennaro ML. A genetically modulated Toll-like-receptor-tolerant phenotype in peripheral blood cells of children with multisystem inflammatory syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.02.24301686. [PMID: 38370700 PMCID: PMC10871447 DOI: 10.1101/2024.02.02.24301686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Dysregulated innate immune responses contribute to multisystem inflammatory syndrome in children (MIS-C), characterized by gastrointestinal, mucocutaneous, and/or cardiovascular injury occurring weeks after SARS-CoV-2 exposure. To investigate innate immune functions in MIS-C, we stimulated ex vivo peripheral blood cells from MIS-C patients with agonists of Toll-like receptors (TLR), key innate immune response initiators. We found severely dampened cytokine responses and elevated gene expression of negative regulators of TLR signaling. Increased plasma levels of zonulin, a gut leakage marker, were also detected. These effects were also observed in children enrolled months after MIS-C recovery. Moreover, cells from MIS-C children carrying rare genetic variants of lysosomal trafficking regulator (LYST) were less refractory to TLR stimulation and exhibited lysosomal and mitochondrial abnormalities with altered energy metabolism. Our results strongly suggest that MIS-C hyperinflammation and/or excessive or prolonged stimulation with gut-originated TLR ligands drive immune cells to a lasting refractory state. TLR hyporesponsiveness is likely beneficial, as suggested by excess lymphopenia among rare LYST variant carriers. Our findings point to cellular mechanisms underlying TLR hyporesponsiveness; identify genetic determinants that may explain the MIS-C clinical spectrum; suggest potential associations between innate refractory states and long COVID; and highlight the need to monitor long-term consequences of MIS-C.
Collapse
Affiliation(s)
- Rehan Khan
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Jeisac Guzman-Rivera
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Abhilasha Madhvi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Tracy Andrews
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Benjamin Richlin
- Pediatric Clinical Research Center, and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Christian Suarez
- Pediatric Clinical Research Center, and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sunanda Gaur
- Department of Pediatrics, Clinical Research Center, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | | | - Aalok R Singh
- Maria Fareri Children's Hospital, Valhalla, NY
- New York Medical College, Valhalla, NY
| | - Hulya Bukulmez
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland OH
| | - David Kaelber
- Department of Pediatrics, Division of Rheumatology, MetroHealth System, Cleveland OH
- Center for Clinical Informatics Research and Education, MetroHealth System, Cleveland OH
- Department of Internal Medicine, Pediatrics, and Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland OH
| | - Yukiko Kimura
- Hackensack University Medical Center, Hackensack Meridian School of Medicine, Nutley, NJ
| | - Usha Ganapathi
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Ioannis E Michailidis
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Rahul Ukey
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| | - Sandra Moroso-Fela
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - John K Kuster
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Myriam Casseus
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jason Roy
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
| | - Lawrence C Kleinman
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Department of Global Urban Health, Rutgers School of Public Health, Piscataway, NJ
| | - Daniel B Horton
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Rutgers Center for Pharmacoepidemiology and Treatment Science, Institute for Health, Health Care Policy and Aging Research, New Brunswick, NJ
| | - Saquib A Lakhani
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT 06510
| | - Maria Laura Gennaro
- Public Health Research Institute, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
- Department of Medicine, Rutgers New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ
| |
Collapse
|
15
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Pharmacogenomics Beyond Single Common Genetic Variants: The Way Forward. Annu Rev Pharmacol Toxicol 2024; 64:33-51. [PMID: 37506333 DOI: 10.1146/annurev-pharmtox-051921-091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Interindividual variability in genes encoding drug-metabolizing enzymes, transporters, receptors, and human leukocyte antigens has a major impact on a patient's response to drugs with regard to efficacy and safety. Enabled by both technological and conceptual advances, the field of pharmacogenomics is developing rapidly. Major progress in omics profiling methods has enabled novel genotypic and phenotypic characterization of patients and biobanks. These developments are paralleled by advances in machine learning, which have allowed us to parse the immense wealth of data and establish novel genetic markers and polygenic models for drug selection and dosing. Pharmacogenomics has recently become more widespread in clinical practice to personalize treatment and to develop new drugs tailored to specific patient populations. In this review, we provide an overview of the latest developments in the field and discuss the way forward, including how to address the missing heritability, develop novel polygenic models, and further improve the clinical implementation of pharmacogenomics.
Collapse
Affiliation(s)
- Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | - Yitian Zhou
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | | |
Collapse
|
16
|
Rojas Velazquez MN, Therkelsen S, Pandey AV. Exploring Novel Variants of the Cytochrome P450 Reductase Gene ( POR) from the Genome Aggregation Database by Integrating Bioinformatic Tools and Functional Assays. Biomolecules 2023; 13:1728. [PMID: 38136599 PMCID: PMC10741880 DOI: 10.3390/biom13121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cytochrome P450 oxidoreductase (POR) is an essential redox partner for steroid and drug-metabolizing cytochromes P450 located in the endoplasmic reticulum. Mutations in POR lead to metabolic disorders, including congenital adrenal hyperplasia, and affect the metabolism of steroids, drugs, and xenobiotics. In this study, we examined approximately 450 missense variants of the POR gene listed in the Genome Aggregation Database (gnomAD) using eleven different in silico prediction tools. We found that 64 novel variants were consistently predicted to be disease-causing by most tools. To validate our findings, we conducted a population analysis and selected two variations in POR for further investigation. The human POR wild type and the R268W and L577P variants were expressed in bacteria and subjected to enzyme kinetic assays using a model substrate. We also examined the activities of several cytochrome P450 proteins in the presence of POR (WT or variants) by combining P450 and reductase proteins in liposomes. We observed a decrease in enzymatic activities (ranging from 35% to 85%) of key drug-metabolizing enzymes, supported by POR variants R288W and L577P compared to WT-POR. These results validate our approach of curating a vast amount of data from genome projects and provide an updated and reliable reference for diagnosing POR deficiency.
Collapse
Affiliation(s)
- Maria Natalia Rojas Velazquez
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3010 Bern, Switzerland
| | - Søren Therkelsen
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Department of Drug Design and Pharmacology, University of Copenhagen, 1172 Copenhagen, Denmark
| | - Amit V. Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (M.N.R.V.); (S.T.)
- Translational Hormone Research, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
17
|
Hu Y, Zhang G, Yang Q, Pu N, Li K, Li B, Cooper DN, Tong Z, Li W, Chen JM. The East Asian-specific LPL p.Ala288Thr (c.862G > A) missense variant exerts a mild effect on protein function. Lipids Health Dis 2023; 22:119. [PMID: 37550668 PMCID: PMC10405562 DOI: 10.1186/s12944-023-01875-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/17/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Lipoprotein lipase (LPL) is the key enzyme responsible for the hydrolysis of triglycerides. Loss-of-function variants in the LPL gene are associated with hypertriglyceridemia (HTG) and HTG-related diseases. Unlike nonsense, frameshift and canonical GT-AG splice site variants, a pathogenic role for clinically identified LPL missense variants should generally be confirmed by functional analysis. Herein, we describe the clinical and functional analysis of a rare LPL missense variant. METHODS Chinese patients with HTG-associated acute pancreatitis (HTG-AP) were screened for rare nonsense, frameshift, missense or canonical GT-AG splice site variants in LPL and four other lipid metabolism-related genes (APOC2, APOA5, GPIHBP1 and LMF1) by Sanger sequencing. The functional consequences of the LPL missense variant of interest were characterized by in vitro expression in HEK-293T and COS-7 cells followed by Western blot and LPL activity assays. RESULTS Five unrelated HTG-AP patients were found to be heterozygous for a rare East Asian-specific LPL missense variant, c.862G > A (p.Ala288Thr). All five patients were adult males, and all were overweight and had a long history of alcohol consumption. Transfection of LPL wild-type and c.862G > A expression vectors into two cell lines followed by Western blot analysis served to exclude the possibility that the p.Ala288Thr missense variant either impaired protein synthesis or increased protein degradation. Contrary to a previous functional study that claimed that p.Ala288Thr had a severe impact on LPL function (reportedly having 36% normal activity), our experiments consistently demonstrated that the variant had a comparatively mild effect on LPL functional activity, which was mediated through its impact upon LPL protein secretion (~ 20% reduced secretion compared to wild-type). CONCLUSIONS In this study, we identified the East Asian-specific LPL c.862G > A (p.Ala288Thr) missense variant in five unrelated HTG-AP patients. We demonstrated that this variant exerted only a relatively mild effect on LPL function in two cell lines. Heterozygosity for this LPL variant may have combined with alcohol consumption to trigger HTG-AP in these patients.
Collapse
Affiliation(s)
- Yuepeng Hu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - Guofu Zhang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - Qi Yang
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - Na Pu
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - Kaiwei Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - Baiqiang Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Zhihui Tong
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China
| | - Weiqin Li
- Department of Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No.305 East Zhongshan Road, Xuanwu District, Nanjing, 210002, Jiangsu, China.
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, F-29200, France
| |
Collapse
|
18
|
Zhan N, Sham PC, So HC, Lui SSY. The genetic basis of onset age in schizophrenia: evidence and models. Front Genet 2023; 14:1163361. [PMID: 37441552 PMCID: PMC10333597 DOI: 10.3389/fgene.2023.1163361] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Schizophrenia is a heritable neurocognitive disorder affecting about 1% of the population, and usually has an onset age at around 21-25 in males and 25-30 in females. Recent advances in genetics have helped to identify many common and rare variants for the liability to schizophrenia. Earlier evidence appeared to suggest that younger onset age is associated with higher genetic liability to schizophrenia. Clinical longitudinal research also found that early and very-early onset schizophrenia are associated with poor clinical, neurocognitive, and functional profiles. A recent study reported a heritability of 0.33 for schizophrenia onset age, but the genetic basis of this trait in schizophrenia remains elusive. In the pre-Genome-Wide Association Study (GWAS) era, genetic loci found to be associated with onset age were seldom replicated. In the post-Genome-Wide Association Study era, new conceptual frameworks are needed to clarify the role of onset age in genetic research in schizophrenia, and to identify its genetic basis. In this review, we first discussed the potential of onset age as a characterizing/subtyping feature for psychosis, and as an important phenotypic dimension of schizophrenia. Second, we reviewed the methods, samples, findings and limitations of previous genetic research on onset age in schizophrenia. Third, we discussed a potential conceptual framework for studying the genetic basis of onset age, as well as the concepts of susceptibility, modifier, and "mixed" genes. Fourth, we discussed the limitations of this review. Lastly, we discussed the potential clinical implications for genetic research of onset age of schizophrenia, and how future research can unveil the potential mechanisms for this trait.
Collapse
Affiliation(s)
- Na Zhan
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Pak C. Sham
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Hon-Cheong So
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Margaret K. L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Branch of the Chinese Academy of Sciences Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Simon S. Y. Lui
- Department of Psychiatry, School of Clinical Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Tan WX, Sim X, Khoo CM, Teo AKK. Prioritization of genes associated with type 2 diabetes mellitus for functional studies. Nat Rev Endocrinol 2023:10.1038/s41574-023-00836-1. [PMID: 37169822 DOI: 10.1038/s41574-023-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Existing therapies for type 2 diabetes mellitus (T2DM) show limited efficacy or have adverse effects. Numerous genetic variants associated with T2DM have been identified, but progress in translating these findings into potential drug targets has been limited. Here, we describe the tools and platforms available to identify effector genes from T2DM-associated coding and non-coding variants and prioritize them for functional studies. We discuss QSER1 and SLC12A8 as examples of genes that have been identified as possible T2DM candidate genes using these tools and platforms. We suggest further approaches, including the use of sequencing data with increased sample size and ethnic diversity, single-cell omics data for analyses, glycaemic trait associations to predict gene function and, potentially, human induced pluripotent stem cell 'village' cultures, to strengthen current gene functionalization workflows. Effective prioritization of T2DM-associated genes for experimental validation could expedite our understanding of the genetic mechanisms responsible for T2DM to facilitate the use of precision medicine in its treatment.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adrian K K Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
20
|
Bykova M, Hou Y, Eng C, Cheng F. Quantitative trait locus (xQTL) approaches identify risk genes and drug targets from human non-coding genomes. Hum Mol Genet 2022; 31:R105-R113. [PMID: 36018824 PMCID: PMC9989738 DOI: 10.1093/hmg/ddac208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Advances and reduction of costs in various sequencing technologies allow for a closer look at variations present in the non-coding regions of the human genome. Correlating non-coding variants with large-scale multi-omic data holds the promise not only of a better understanding of likely causal connections between non-coding DNA and expression of traits but also identifying potential disease-modifying medicines. Genome-phenome association studies have created large datasets of DNA variants that are associated with multiple traits or diseases, such as Alzheimer's disease; yet, the functional consequences of variants, in particular of non-coding variants, remain largely unknown. Recent advances in functional genomics and computational approaches have led to the identification of potential roles of DNA variants, such as various quantitative trait locus (xQTL) techniques. Multi-omic assays and analytic approaches toward xQTL have identified links between genetic loci and human transcriptomic, epigenomic, proteomic and metabolomic data. In this review, we first discuss the recent development of xQTL from multi-omic findings. We then highlight multimodal analysis of xQTL and genetic data for identification of risk genes and drug targets using Alzheimer's disease as an example. We finally discuss challenges and future research directions (e.g. artificial intelligence) for annotation of non-coding variants in complex diseases.
Collapse
Affiliation(s)
- Marina Bykova
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|