1
|
Date S, Bhatt LK. Targeting high-mobility-group-box-1-mediated inflammation: a promising therapeutic approach for myocardial infarction. Inflammopharmacology 2024:10.1007/s10787-024-01586-w. [PMID: 39487941 DOI: 10.1007/s10787-024-01586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024]
Abstract
Myocardial ischemia, resulting from coronary artery blockage, precipitates cardiac arrhythmias, myocardial structural changes, and heart failure. The pathophysiology of MI is mainly based on inflammation and cell death, which are essential in aggravating myocardial ischemia and reperfusion injury. Emerging research highlights the functionality of high mobility group box-1, a non-histone nucleoprotein functioning as a chromosomal stabilizer and inflammatory mediator. HMGB1's release into the extracellular compartment during ischemia acts as damage-associated molecular pattern, triggering immune reaction by pattern recognition receptors and exacerbating tissue inflammation. Its involvement in signaling pathways like PI3K/Akt, TLR4/NF-κB, and RAGE/HMGB1 underscores its significance in promoting angiogenesis, apoptosis, and reducing inflammation, which is crucial for MI treatment strategies. This review highlights the complex function of HMGB1 in the pathogenesis of myocardial infarction by summarizing novel findings on the protein in ischemic situations. Understanding the mechanisms underlying HMGB1 could widen the way to specific treatments that minimize the severity of MI and enhance patient outcomes.
Collapse
Affiliation(s)
- Shrutika Date
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India.
| |
Collapse
|
2
|
Zhang C, Wang J, Wang H, Li J. Interference of the Circular RNA Sperm Antigen With Calponin Homology and Coiled-Coil Domains 1 Suppresses Growth and Promotes Apoptosis of Breast Cancer Cells Partially Through Targeting miR-1236-3p/Chromobox 8 Pathway. Clin Breast Cancer 2024; 24:e138-e151.e2. [PMID: 38341369 DOI: 10.1016/j.clbc.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 02/12/2024]
Abstract
Noncoding RNAs and RNA modifiers are implicated in cancer radiotherapy. Here, we aimed to investigate the role of sperm antigen with calponin homology and coiled-coil domains 1 (SPECC1)-derived circular RNA (circSPECC1; hsa_circ_0000745) in breast cancer (BC) cells under radiation treatment. Based on quantitative real-time PCR, circSPECC1 was highly upregulated in BC patients' tumors and cells, and circSPECC1 expression was further increased with the dosage of radiation in BC cells. Moreover, circSPECC1 upregulation was found to be concomitant with higher chromobox 8 (CBX8) and lower microRNA (miR)-1236-3p expression. Functionally, 3-(4, 5-dimethylthiazol-2-y1)-2, 5-diphenyl tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays showed that circSPECC1 interference suppressed cell proliferation and long-term survival in BC cells and irradiated BC cells. Xenograft tumor model experiments showed that circSPECC1 knockdown restrained BC tumor growth in vivo. Meanwhile, flow cytometry assay and western blotting revealed an enhanced apoptosis by silencing circSPECC1. Moreover, miR-1236-3p overexpression, similar to circSPECC1 silencing, displayed anti-growth and proapoptosis roles in irradiated BC cells. Mechanistically, dual-luciferase reporter assay and RNA immunoprecipitation assay identified a target relationship between miR-1236-3p and circSPECC1 or CBX8. Also, CBX8 expression could be modulated by circSPECC1 via miR-1236-3p regulation. Collectively, we indicated that inhibiting circSPECC1 could suppress growth and promote apoptosis of BC cells in both irradiated and nonirradiated conditions at least partially via miR-1236-3p/CBX8 axis, confirming that circSPECC1 might be target to develop anticancer drug in BC.
Collapse
Affiliation(s)
- Cuipeng Zhang
- Department of Oncology, Second Affiliated Hospital of Guizhou Medical University, Guizhou Province, China.
| | - Jing Wang
- Department of Oncology, The Second People's Hospital of Liaocheng, Linqing, Shandong Province, China
| | - Hongwei Wang
- Department of Oncology, Lianyungang No. 2 Hospital of Jiangsu Province, China
| | - Jing Li
- Department of Oncology, Shandong Energy Zaozhuang Mining Group Central Hospital, China
| |
Collapse
|
3
|
Miao Z, Gu M, Raza F, Zafar H, Huang J, Yang Y, Sulaiman M, Yan J, Xu Y. Isoliquiritin Ameliorates Ulcerative Colitis in Rats through Caspase 3/HMGB1/TLR4 Dependent Signaling Pathway. Curr Gene Ther 2024; 24:73-92. [PMID: 37526181 DOI: 10.2174/1566523223666230731115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Isoliquiritin belongs to flavanol glycosides and has a strong antiinflammatory activity. This study sought to investigate the anti-inflammatory effect of isoliquiritin and its underlying mechanism. METHODS The inflammatory (trinitro-benzene-sulfonic acid-TNBS-induced ulcerative colitis (UC)) model was established to ascertain the effect of isoliquiritin on the caspase-3/HMGB1/TLR4 pathway in rats. We also explored its protective effect on intestinal inflammation and its underlying mechanism using the LPS-induced inflammation model of Caco-2 cells. Besides, Deseq2 was used to analyze UCassociated protein levels. RESULTS Isoliquiritin treatment significantly attenuated shortened colon length (induced by TNBS), disease activity index (DAI) score, and body weight loss in rats. A decrease in the levels of inflammatory mediators (IL-1β, I IL-4, L-6, IL-10, PGE2, and TNF-α), coupled with malondialdehyde (MDA) and superoxide dismutase (SOD), was observed in colon tissue and serum of rats after they have received isoliquiritin. Results of techniques (like western blotting, real-time PCR, immunohistochemistry, and immunofluorescence-IF) demonstrated the potential of isoliquiritin to decrease expressions of key genes in the TLR4 downstream pathways, viz., MyD88, IRAK1, TRAF6, NF-κB, p38, and JNK at mRNA and protein levels as well as inhibit HMGB1 expression, which is the upstream ligand of TLR4. Bioinformational analysis showed enteritis to be associated with a high expression of HMGB1, TLR4, and caspase-3. CONCLUSION Isoliquiritin could reduce intestinal inflammation and mucosal damage of TNBS-induced colitis in rats with a certain anti-UC effect. Meanwhile, isoliquiritin treatment also inhibited the expression of HMGB1, TLR4, and MyD88 in LPS-induced Caco-2 cells. These results indicated that isoliquiritin could ameliorate UC through the caspase-3/HMGB1/TLR4-dependent signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese medicine, Changshu, 215500, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianyi Huang
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, 318000, China
| | - Yuhang Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | | | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yi Xu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| |
Collapse
|
4
|
Mukherjee S, Patra R, Behzadi P, Masotti A, Paolini A, Sarshar M. Toll-like receptor-guided therapeutic intervention of human cancers: molecular and immunological perspectives. Front Immunol 2023; 14:1244345. [PMID: 37822929 PMCID: PMC10562563 DOI: 10.3389/fimmu.2023.1244345] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Toll-like receptors (TLRs) serve as the body's first line of defense, recognizing both pathogen-expressed molecules and host-derived molecules released from damaged or dying cells. The wide distribution of different cell types, ranging from epithelial to immune cells, highlights the crucial roles of TLRs in linking innate and adaptive immunity. Upon stimulation, TLRs binding mediates the expression of several adapter proteins and downstream kinases, that lead to the induction of several other signaling molecules such as key pro-inflammatory mediators. Indeed, extraordinary progress in immunobiological research has suggested that TLRs could represent promising targets for the therapeutic intervention of inflammation-associated diseases, autoimmune diseases, microbial infections as well as human cancers. So far, for the prevention and possible treatment of inflammatory diseases, various TLR antagonists/inhibitors have shown to be efficacious at several stages from pre-clinical evaluation to clinical trials. Therefore, the fascinating role of TLRs in modulating the human immune responses at innate as well as adaptive levels directed the scientists to opt for these immune sensor proteins as suitable targets for developing chemotherapeutics and immunotherapeutics against cancer. Hitherto, several TLR-targeting small molecules (e.g., Pam3CSK4, Poly (I:C), Poly (A:U)), chemical compounds, phytocompounds (e.g., Curcumin), peptides, and antibodies have been found to confer protection against several types of cancers. However, administration of inappropriate doses of such TLR-modulating therapeutics or a wrong infusion administration is reported to induce detrimental outcomes. This review summarizes the current findings on the molecular and structural biology of TLRs and gives an overview of the potency and promises of TLR-directed therapeutic strategies against cancers by discussing the findings from established and pipeline discoveries.
Collapse
Affiliation(s)
- Suprabhat Mukherjee
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Ritwik Patra
- Integrative Biochemistry & Immunology Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Alessandro Paolini
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital-IRCCS, Rome, Italy
| |
Collapse
|
5
|
TSLP and HMGB1: Inflammatory Targets and Potential Biomarkers for Precision Medicine in Asthma and COPD. Biomedicines 2023; 11:biomedicines11020437. [PMID: 36830972 PMCID: PMC9953666 DOI: 10.3390/biomedicines11020437] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The airway epithelium, through pattern recognition receptors expressed transmembrane or intracellularly, acts as a first line of defense for the lungs against many environmental triggers. It is involved in the release of alarmin cytokines, which are important mediators of inflammation, with receptors widely expressed in structural cells as well as innate and adaptive immune cells. Knowledge of the role of epithelial cells in orchestrating the immune response and mediating the clearance of invading pathogens and dead/damaged cells to facilitate resolution of inflammation is necessary to understand how, in many chronic lung diseases, there is a persistent inflammatory response that becomes the basis of underlying pathogenesis. This review will focus on the role of pulmonary epithelial cells and of airway epithelial cell alarmins, in particular thymic stromal lymphopoietin (TSLP) and high mobility group box 1 (HMGB1), as key mediators in driving the inflammation of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD), evaluating the similarities and differences. Moreover, emerging concepts regarding the therapeutic role of molecules that act on airway epithelial cell alarmins will be explored for a precision medicine approach in the context of pulmonary diseases, thus allowing the use of these molecules as possible predictive biomarkers of clinical and biological response.
Collapse
|
6
|
Wang L, Geng G, Zhu T, Chen W, Li X, Gu J, Jiang E. Progress in Research on TLR4-Mediated Inflammatory Response Mechanisms in Brain Injury after Subarachnoid Hemorrhage. Cells 2022; 11:cells11233781. [PMID: 36497041 PMCID: PMC9740134 DOI: 10.3390/cells11233781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is one of the common clinical neurological emergencies. Its incidence accounts for about 5-9% of cerebral stroke patients. Even surviving patients often suffer from severe adverse prognoses such as hemiplegia, aphasia, cognitive dysfunction and even death. Inflammatory response plays an important role during early nerve injury in SAH. Toll-like receptors (TLRs), pattern recognition receptors, are important components of the body's innate immune system, and they are usually activated by damage-associated molecular pattern molecules. Studies have shown that with TLR 4 as an essential member of the TLRs family, the inflammatory transduction pathway mediated by it plays a vital role in brain injury after SAH. After SAH occurrence, large amounts of blood enter the subarachnoid space. This can produce massive damage-associated molecular pattern molecules that bind to TLR4, which activates inflammatory response and causes early brain injury, thus resulting in serious adverse prognoses. In this paper, the process in research on TLR4-mediated inflammatory response mechanism in brain injury after SAH was reviewed to provide a new thought for clinical treatment.
Collapse
Affiliation(s)
- Lintao Wang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- School of Clinical Medicine, Henan University, Kaifeng 475004, China
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangping Geng
- Henan Technician College of Medicine and Health, Kaifeng 475000, China
| | - Tao Zhu
- Department of Geriatrics, Kaifeng Traditional Chinese Medicine Hospital, Kaifeng 475001, China
| | - Wenwu Chen
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Xiaohui Li
- Department of Neurology, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Jianjun Gu
- Department of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Enshe Jiang
- Institute of Nursing and Health, Henan University, Kaifeng 475004, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng 475004, China
- Correspondence:
| |
Collapse
|
7
|
Vitkin E, Singh A, Wise J, Ben-Elazar S, Yakhini Z, Golberg A. Nondestructive protein sampling with electroporation facilitates profiling of spatial differential protein expression in breast tumors in vivo. Sci Rep 2022; 12:15835. [PMID: 36151122 PMCID: PMC9508265 DOI: 10.1038/s41598-022-19984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Excision tissue biopsy, while central to cancer treatment and precision medicine, presents risks to the patient and does not provide a sufficiently broad and faithful representation of the heterogeneity of solid tumors. Here we introduce e-biopsy—a novel concept for molecular profiling of solid tumors using molecular sampling with electroporation. As e-biopsy provides access to the molecular composition of a solid tumor by permeabilization of the cell membrane, it facilitates tumor diagnostics without tissue resection. Furthermore, thanks to its non tissue destructive characteristics, e-biopsy enables probing the solid tumor multiple times in several distinct locations in the same procedure, thereby enabling the spatial profiling of tumor molecular heterogeneity.We demonstrate e-biopsy in vivo, using the 4T1 breast cancer model in mice to assess its performance, as well as the inferred spatial differential protein expression. In particular, we show that proteomic profiles obtained via e-biopsy in vivo distinguish the tumors from healthy breast tissue and reflect spatial tumor differential protein expression. E-biopsy provides a completely new molecular sampling modality for solid tumors molecular cartography, providing information that potentially enables more rapid and sensitive detection at lesser risk, as well as more precise personalized medicine.
Collapse
Affiliation(s)
- Edward Vitkin
- School of Computer Science, Reichman University (IDC Herzliya), Herzliya, Israel
| | - Amrita Singh
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Julia Wise
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shay Ben-Elazar
- School of Computer Science, Reichman University (IDC Herzliya), Herzliya, Israel
| | - Zohar Yakhini
- School of Computer Science, Reichman University (IDC Herzliya), Herzliya, Israel. .,Computer Science Faculty, Technion, Haifa, Israel.
| | - Alexander Golberg
- Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Di Lorenzo A, Bolli E, Ruiu R, Ferrauto G, Di Gregorio E, Avalle L, Savino A, Poggio P, Merighi IF, Riccardo F, Brancaccio M, Quaglino E, Cavallo F, Conti L. Toll-like receptor 2 promotes breast cancer progression and resistance to chemotherapy. Oncoimmunology 2022; 11:2086752. [PMID: 35756841 PMCID: PMC9225225 DOI: 10.1080/2162402x.2022.2086752] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Cancer stem cells (CSCs) are the main drivers of disease progression and chemotherapy resistance in breast cancer. Tumor progression and chemoresistance might then be prevented by CSC-targeted therapies. We previously demonstrated that Toll-like Receptor (TLR)2 is overexpressed in CSCs and fuels their self-renewal. Here, we show that high TLR2 expression is linked to poor prognosis in breast cancer patients, therefore representing a candidate target for breast cancer treatment. By using a novel mammary cancer-prone TLR2KO mouse model, we demonstrate that TLR2 is required for CSC pool maintenance and for regulatory T cell induction. Accordingly, cancer-prone TLR2KO mice display delayed tumor onset and increased survival. Transplantation of TLR2WT and TLR2KO cancer cells in either TLR2WT or TLR2KO hosts shows that tumor initiation is mostly sustained by TLR2 expression in cancer cells. TLR2 host deficiency partially impairs cancer cell growth, implying a pro-tumorigenic effect of TLR2 expression in immune cells. Finally, we demonstrate that doxorubicin-induced release of HMGB1 activates TLR2 signaling in cancer cells, leading to a chemotherapy-resistant phenotype. Unprecedented use of TLR2 inhibitors in vivo reduces tumor growth and potentiates doxorubicin efficacy with no negative impact on the host immune system, opening new perspectives for the treatment of breast cancer patients.
Collapse
Affiliation(s)
- Antonino Di Lorenzo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Enza Di Gregorio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Pietro Poggio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
9
|
Abstract
Sepsis, a systemic inflammatory response disease, is the most severe complication of infection and a deadly disease. High mobility group proteins (HMGs) are non-histone nuclear proteins binding nucleosomes and regulate chromosome architecture and gene transcription, which act as a potent pro-inflammatory cytokine involved in the delayed endotoxin lethality and systemic inflammatory response. HMGs increase in serum and tissues during infection, especially in sepsis. A growing number of studies have demonstrated HMGs are not only cytokines which can mediate inflammation, but also potential therapeutic targets in sepsis. To reduce sepsis-related mortality, a better understanding of HMGs is essential. In this review, we described the structure and function of HMGs, summarized the definition, epidemiology and pathophysiology of sepsis, and discussed the HMGs-related mechanisms in sepsis from the perspectives of non-coding RNAs (microRNA, long non-coding RNA, circular RNA), programmed cell death (apoptosis, necroptosis and pyroptosis), drugs and other pathophysiological aspects to provide new targets and ideas for the diagnosis and treatment of sepsis.
Collapse
Affiliation(s)
- Guibin Liang
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhihui He
- Department of Critical Care Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Li Y, Zhang K, Wu Y, Yue Y, Cheng K, Feng Q, Ma X, Liang J, Ma N, Liu G, Nie G, Ren L, Zhao X. Antigen Capture and Immune Modulation by Bacterial Outer Membrane Vesicles as In Situ Vaccine for Cancer Immunotherapy Post-Photothermal Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107461. [PMID: 35152555 DOI: 10.1002/smll.202107461] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Tumor antigens released from tumor cells after local photothermal therapy (PTT) can activate the tumor-specific immune responses, which are critical for eliminating the residual lesions and distant metastases. However, the limited recognition efficiency of released tumor antigens by the immune system and the immunosuppressive microenvironment lead to ineffective antitumor immunity. Here, an in situ multifunctional vaccine based on bacterial outer membrane vesicles (OMVs, 1-MT@OMV-Mal) is developed by surface conjunction of maleimide groups (Mal) and interior loading with inhibitor of indoleamine 2, 3-dioxygenase (IDO), 1-methyl-tryptophan (1-MT). 1-MT@OMV-Mal can bind to the released tumor antigens after PTT, and be efficiently recognized and taken up by dendritic cells. Furthermore, in situ injection of 1-MT@OMV-Mal simultaneously overcomes the immune inhibition of IDO on tumor-infiltrating effector T cells, leading to remarkable inhibition on both primary and distant tumors. Together, a promising in situ vaccine based on OMVs to facilitate immune-mediated tumor clearance after PTT through orchestrating antigen capture and immune modulation is presented.
Collapse
Affiliation(s)
- Yao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Kaiyue Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Yao Wu
- State Key Laboratory of Plant Genomic, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yale Yue
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Qingqing Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Xiaotu Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Nana Ma
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- The GBA National Institute for Nanotechnology Innovation, Guangdong, 510700, China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- IGDB-NCNST Joint Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
11
|
Pullikuth AK, Routh ED, Zimmerman KD, Chifman J, Chou JW, Soike MH, Jin G, Su J, Song Q, Black MA, Print C, Bedognetti D, Howard-McNatt M, O’Neill SS, Thomas A, Langefeld CD, Sigalov AB, Lu Y, Miller LD. Bulk and Single-Cell Profiling of Breast Tumors Identifies TREM-1 as a Dominant Immune Suppressive Marker Associated With Poor Outcomes. Front Oncol 2021; 11:734959. [PMID: 34956864 PMCID: PMC8692779 DOI: 10.3389/fonc.2021.734959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundTriggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors.MethodsBreast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student’s t-test and Chi-square test.ResultsIn pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically “hot” tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions.ConclusionsTogether, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.
Collapse
Affiliation(s)
- Ashok K. Pullikuth
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Eric D. Routh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kip D. Zimmerman
- Center for Precision Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Julia Chifman
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Mathematics and Statistics, American University, Washington, DC, United States
| | - Jeff W. Chou
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Michael H. Soike
- Department of Radiation Oncology, University of Alabama-Birmingham, Birmingham, AL, United States
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | - Jing Su
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qianqian Song
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Center for Cancer Genomics and Precision Oncology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Michael A. Black
- Department of Biochemistry, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - Cristin Print
- Department of Molecular Medicine and Pathology and Maurice Wilkins Institute, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Davide Bedognetti
- Cancer Program, Sidra Medicine, Doha, Qatar & Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Marissa Howard-McNatt
- Surgical Oncology Service, Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Stacey S. O’Neill
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Alexandra Thomas
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Section of Hematology and Oncology, Department of Internal Medicine, Wake Forest Baptist Medical Center, Winston Salem, NC, United States
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
| | | | - Yong Lu
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, United States
- The Comprehensive Cancer Center of Wake Forest University, Winston Salem, NC, United States
- *Correspondence: Lance D. Miller,
| |
Collapse
|
12
|
Techarang T, Jariyapong P, Viriyavejakul P, Glaharn S, Srisook C, Punsawad C. Protective Effect of an Anti-HMGB-1 Neutralizing Antibody on Hemozoin-Induced Alveolar Epithelial Cell in a Model of Malaria Associated ALI/ARDS. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:366-376. [PMID: 34630581 PMCID: PMC8476737 DOI: 10.18502/ijpa.v16i3.7089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/11/2021] [Indexed: 11/24/2022]
Abstract
Background: We aimed to determine whether neutralizing high mobility group box-1 (HMGB-1) prevents the release of HMGB-1 and proinflammatory cytokines on hemozoin (Hz)-induced alveolar epithelial cell in a model of malaria associated ALI/ARDS. Methods: This study was conducted in the Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand in 2020. Human pulmonary alveolar epithelial cells (HPAEpiCs) were exposed to medium alone or 20 μM Hz for 24 h and incubated with different concentrations (1, 5, and 10 μg/ml) of anti-HMGB-1 monoclonal antibody (mAb) for various times (0, 4, 12, 24, and 48 h). The levels of HMGB-1, TNF-α and IFN-γ in the supernatants were measured by ELISA. The mRNA expression of RAGE, TLR-2 and TLR-4 were analyzed by real-time PCR. Results: The HPAEpiCs treated with 10 μg/ml anti-HMGB-1 mAb showed a significant reduction in HMGB-1 release into the supernatant compared with those treated with 1 and 5 μg/ml anti-HMGB-1 mAb. The levels of TNF-α and IFN-γ were significantly decreased in the supernatant of HPAEpiCs treated with 1, 5, and 10 μg/ml anti-HMGB-1 mAb for 4, 12, 24, and 48 h compared with those stimulated with Hz alone. The mRNA expression levels of RAGE, TLR-2, and TLR-4 were significantly decreased after 24 h of anti-HMGB-1 antibody treatment at all concentrations. Conclusion: An anti-HMGB-1 antibody could be an effective agent for inhibiting the release of HMGB-1, TNF-α and IFN-γ. Furthermore, a neutralizing anti-HMGB-1 antibody could be applicable for the treatment of malaria-associated ALI/ARDS.
Collapse
Affiliation(s)
- Tachpon Techarang
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.,Tropical Medicine Research Unit, Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Pitchanee Jariyapong
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supattra Glaharn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Charit Srisook
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Chuchard Punsawad
- Department of Medical Sciences, School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand.,Tropical Medicine Research Unit, Research Institute for Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| |
Collapse
|
13
|
Kim R, Kin T. Current and Future Therapies for Immunogenic Cell Death and Related Molecules to Potentially Cure Primary Breast Cancer. Cancers (Basel) 2021; 13:cancers13194756. [PMID: 34638242 PMCID: PMC8507525 DOI: 10.3390/cancers13194756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary How a cure for primary breast cancer after (neo)adjuvant therapy can be achieved at the molecular level remains unclear. Immune activation by anticancer drugs may contribute to the eradication of residual tumor cells by postoperative (neo)adjuvant chemotherapy. In addition, chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation by memory effector T cells, leading to the curing of primary breast cancer. In this review, we discuss the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted therapy against damage-associated molecular patterns. Our aim was to gain a better understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines. Abstract How primary breast cancer can be cured after (neo)adjuvant therapy remains unclear at the molecular level. Immune activation by anticancer agents may contribute to residual tumor cell eradication with postsurgical (neo)adjuvant chemotherapy. Chemotherapy-induced immunogenic cell death (ICD) may result in long-term immune activation with memory effector T cells, leading to a primary breast cancer cure. Anthracycline and taxane treatments cause ICD and immunogenic modulations, resulting in the activation of antitumor immunity through damage-associated molecular patterns (DAMPs), such as adenosine triphosphate, calreticulin, high mobility group box 1, heat shock proteins 70/90, and annexin A1. This response may eradicate residual tumor cells after surgical treatment. Although DAMP release is also implicated in tumor progression, metastasis, and drug resistance, thereby representing a double-edged sword, robust immune activation by anticancer agents and the subsequent acquisition of long-term antitumor immune memory can be essential components of the primary breast cancer cure. This review discusses the molecular mechanisms by which anticancer drugs induce ICD and immunogenic modifications for antitumor immunity and targeted anti-DAMP therapy. Our aim was to improve the understanding of how to eradicate residual tumor cells treated with anticancer drugs and cure primary breast cancer by enhancing antitumor immunity with immune checkpoint inhibitors and vaccines.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, 1-4-3F, 2-Chome Ohte-machi, Naka-ku, Hiroshima 730-0051, Japan
- Correspondence:
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, 7-33, Moto-machi, Naka-ku, Hiroshima 730-8518, Japan;
| |
Collapse
|
14
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
15
|
Ning J, Yang R, Wang H, Cui L. HMGB1 enhances chemotherapy resistance in multiple myeloma cells by activating the nuclear factor-κB pathway. Exp Ther Med 2021; 22:705. [PMID: 34007314 PMCID: PMC8120504 DOI: 10.3892/etm.2021.10137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy resistance is a main obstacle in the clinical chemotherapeutic treatment of multiple myeloma (MM). High-mobility group box 1 (HMGB1) has been revealed to be associated with the sensitivity of MM cells to chemotherapy, but how HMGB1 regulates chemotherapy resistance in MM has yet to be fully elucidated. In the present study, the exact molecular mechanism underlying HMGB1-mediated drug resistance in MM was explored using three chemotherapy-resistant MM cells (RPMI8226/ADR, RPMI8226/BOR and RPMI8226/DEX) that were successfully established. Reverse transcription-quantitative polymerase chain reaction revealed that the three chemotherapy-resistant MM cells exhibited a higher release of HMGB1 compared with the parental RPMI8226 cells. Interference with endogenous HMGB1 increased the sensitivity of drug-resistant MM cells to chemotherapy, which was supported by the low IC50 value and the enlargement of cell apoptosis. Furthermore, short hairpin (sh)RNA-transfected MM cells showed an obvious elevation in phosphorylated (p)-IKKα/β, p-IκBα and p-p65 in whole cell lysate and/or nucleus, and treatment of nuclear factor (NF)-κB activator reversed the effect of shHMGB1-mediated cell viability and apoptosis in MM cells. In conclusion, HMGB1 regulates drug resistance in MM cells by regulating NF-κB signaling pathway, suggesting that HMGB1 has the potential to serve as a target for MM treatment.
Collapse
Affiliation(s)
- Jing Ning
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Rui Yang
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Hainan Wang
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lijuan Cui
- Department of Hematology, The General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
16
|
Katsushima K, Jallo G, Eberhart CG, Perera RJ. Long non-coding RNAs in brain tumors. NAR Cancer 2021; 3:zcaa041. [PMID: 34316694 PMCID: PMC8210177 DOI: 10.1093/narcan/zcaa041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/09/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been found to be central players in the epigenetic, transcriptional and post-transcriptional regulation of gene expression. There is an accumulation of evidence on newly discovered lncRNAs, their molecular interactions and their roles in the development and progression of human brain tumors. LncRNAs can have either tumor suppressive or oncogenic functions in different brain cancers, making them attractive therapeutic targets and biomarkers for personalized therapy and precision diagnostics. Here, we summarize the current state of knowledge of the lncRNAs that have been implicated in brain cancer pathogenesis, particularly in gliomas and medulloblastomas. We discuss their epigenetic regulation as well as the prospects of using lncRNAs as diagnostic biomarkers and therapeutic targets in patients with brain tumors.
Collapse
Affiliation(s)
- Keisuke Katsushima
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St Petersburg, FL 33701, USA
| | - Charles G Eberhart
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| | - Ranjan J Perera
- Department of Oncology, Johns Hopkins University School of Medicine, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
17
|
Rapoport BL, Steel HC, Theron AJ, Heyman L, Smit T, Ramdas Y, Anderson R. High Mobility Group Box 1 in Human Cancer. Cells 2020; 9:E1664. [PMID: 32664328 PMCID: PMC7407638 DOI: 10.3390/cells9071664] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022] Open
Abstract
High mobility group box 1 (HMGB1) is an extremely versatile protein that is located predominantly in the nucleus of quiescent eukaryotic cells, where it is critically involved in maintaining genomic structure and function. During cellular stress, however, this multifaceted, cytokine-like protein undergoes posttranslational modifications that promote its translocation to the cytosol, from where it is released extracellularly, either actively or passively, according to cell type and stressor. In the extracellular milieu, HMGB1 triggers innate inflammatory responses that may be beneficial or harmful, depending on the magnitude and duration of release of this pro-inflammatory protein at sites of tissue injury. Heightened awareness of the potentially harmful activities of HMGB1, together with a considerable body of innovative, recent research, have revealed that excessive production of HMGB1, resulting from misdirected, chronic inflammatory responses, appears to contribute to all the stages of tumorigenesis. In the setting of established cancers, the production of HMGB1 by tumor cells per se may also exacerbate inflammation-related immunosuppression. These pro-inflammatory mechanisms of HMGB1-orchestrated tumorigenesis, as well as the prognostic potential of detection of elevated expression of this protein in the tumor microenvironment, represent the major thrusts of this review.
Collapse
Affiliation(s)
- Bernardo L. Rapoport
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Helen C. Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Annette J. Theron
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| | - Liezl Heyman
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Teresa Smit
- The Medical Oncology Centre of Rosebank, Johannesburg 2196, South Africa; (L.H.); (T.S.)
| | - Yastira Ramdas
- The Breast Care Centre, Netcare Milpark, 9 Guild Road, Parktown, Johannesburg 2193, South Africa;
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (H.C.S.); (A.J.T.); (R.A.)
| |
Collapse
|
18
|
Cristóbal-Luna JM, Correa-Basurto J, Mendoza-Figueroa HL, Chamorro-Cevallos G. Anti-epileptic activity, toxicity and teratogenicity in CD1 mice of a novel valproic acid arylamide derivative, N-(2-hydroxyphenyl)-2-propylpentanamide. Toxicol Appl Pharmacol 2020; 399:115033. [PMID: 32387339 DOI: 10.1016/j.taap.2020.115033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/07/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
N-(2-hydroxyphenyl)-2-propylpentamide (HO-AAVPA) is a novel arylamide derivative of valproic acid (VPA) designed in silico, with better antioxidant and antiproliferative effect on cancer cell lines than VPA. This study was aimed to evaluate the anticonvulsant activity, the toxicity and teratogenicity produced in HO-AAVPA-treated CD1 mice using VPA as positive control. With the maximal electroshock (MES)- and pentylenetetrazole (PTZ)-induced seizure models, HO-AAVPA reduced the time of hind limb extension, stupor and recovery, the number of clonic and tonic seizures and the mortality rate in a dose-dependent manner, obtaining an ED50 of 370 and 348 mg/kg for MES and PTZ, respectively. On the rotarod test, mice administered with 600 mg/kg HO-AAVPA manifested reduced locomotor activity (2.78%); while HO-AAVPA at 300 mg/kg and VPA at 500 mg/kg gave a similar outcome (∼60%). The LD50 of 936.80 mg/kg herein found for HO-AAVPA reflects moderate toxicity. Concerning teratogenicity, the administration of HO-AAVPA to pregnant females at 300 and 600 mg/kg on gestation day (GD) 8.5 generated less visceral and skeletal alterations in the fetuses, as well as, minor rate of modifications in the expression pattern of the neuronal marker Tuj1 and endothelial marker PECAM1 in embryos, that those induced by VPA administration. Altered embryonic development occurred with less frequency and severity with HO-AAVPA at 600 mg/kg than VPA at 500 mg/kg. In conclusion, the protective effect against convulsions provided by HO-AAVPA was comparable to that of VPA in the MES and PZT seizure models, showed lower toxicity and less damage to embryonic and fetal development.
Collapse
Affiliation(s)
- José Melesio Cristóbal-Luna
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Farmacos e Innovación Biotecnológica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Humberto L Mendoza-Figueroa
- Laboratorio de Diseño y Desarrollo de Nuevos Farmacos e Innovación Biotecnológica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico
| | - Germán Chamorro-Cevallos
- Laboratorio de Toxicología Preclínica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Col. Zacatenco, Del. Gustavo A. Madero, Ciudad de México 07738, Mexico
| |
Collapse
|
19
|
Qian B, Huang H, Cheng M, Qin T, Chen T, Zhao J. Mechanism of HMGB1-RAGE in Kawasaki disease with coronary artery injury. Eur J Med Res 2020; 25:8. [PMID: 32183905 PMCID: PMC7079349 DOI: 10.1186/s40001-020-00406-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/18/2020] [Indexed: 01/11/2023] Open
Abstract
Background Kawasaki disease (KD) is a common, yet unknown etiology disease in Asian countries, which causes acquired heart disease in childhood. It is characterized by an inflammatory acute febrile vasculitis of medium-sized arteries, particularly the coronary arteries. High-mobility group box-1 protein (HMGB1) is a non-histone chromosomal-binding protein present in the nucleus of eukaryotic cells, which contains 215 amino acid residues. Although the cellular signal transduction mechanisms of HMGB1 are currently unclear, the important role of the receptor for advanced glycation end-products (RAGE), the main receptor for HMGB1 has been reported in detail. The purpose of our study was to verify the mechanism and clinical significance of HMGB1-RAGE in coronary artery injury of Kawasaki disease. Methods 52 blood samples of patients in KD were collected, and the coronary artery Z score was calculated according to the echocardiographic results. The Z score ≥ 2.0 was classified as coronary artery lesions (CAL); otherwise, it was no-coronary artery lesions (NCAL). In addition, the fever group and control group were set. Among them, the fever group were children with fever due to respiratory tract infection at the same time period as KD (heat peak ≥ 38.5 ℃). The normal group were children at a routine physical examination in the outpatient clinic of Nantong University and the physical examination center of the child care insurance, and there were no infectious diseases and heart diseases. The serum levels of HMGB1, RAGE, and NF-κB in each group were detected by ELISA. The animal model of KD was established using the New Zealand young rabbits. We used RT-qPCR/H&E staining/immunohistochemistry/ELISA and western blot to detect the level of HMGB1/RAGE and NF-κB. Results In this study, we found that the HMGB1/RAGE/NF-κB axis was elevated in the serum of children with KD. In addition, an animal model of KD was subsequently prepared to examine the pathological changes of the coronary arteries. We found that the serum levels of HMGB1/RAGE/NF-κB in rabbits with KD were significantly higher than those of the control group. Moreover, the lumen diameter of the coronary artery was slightly enlarged, and the wall of the tube became thinner and deformed. In addition, the HMGB1/RAGE/NF-κB levels in the coronary artery were higher in the rabbits with KD in the acute phase. Conclusions On the whole, the findings of this study demonstrate that the expression of HMGB1/RAGE/NF-κB is altered at different stages of KD, suggesting that the HMGB1/RAGE/NF-κB signaling pathway plays an important role in vascular injury in KD. The results of this study may have important implications for the early warning of coronary artery lesions in KD.
Collapse
Affiliation(s)
- Biying Qian
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China.,Department of Emergency Medicine, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, 200062, People's Republic of China
| | - Hua Huang
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Mingye Cheng
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tingting Qin
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Tao Chen
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.,Medical College of Nantong university, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianmei Zhao
- Department of Paediatrics, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
20
|
Tu L, Long X, Song W, Lv Z, Zeng H, Wang T, Liu X, Dong J, Xu P. MiR-34c acts as a tumor suppressor in non-small cell lung cancer by inducing endoplasmic reticulum stress through targeting HMGB1. Onco Targets Ther 2019; 12:5729-5739. [PMID: 31410019 PMCID: PMC6647009 DOI: 10.2147/ott.s206932] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 12/11/2022] Open
Abstract
Objective To investigate the role of miR-34c in lung cancer. Methods The levels of microRNA-34c (miR-34c) expression in non-small cell lung cancer (NSCLC) tissue and cell lines were examined by the qRT-PCR assay. High mobility group box 1 (HMGB1) expression in NSCLC was assessed by immunohistochemical analysis (IHC), qRT-PCR, and Western blot assays. The effects of miR-34c overexpression or HMGB1 knockdown on cell proliferation and apoptosis were evaluated by CCK-8 and flow cytometry analysis, respectively. Cellular reactive oxygen species (ROS) production in NSCLC cells was detected using a ROS kit. The levels of Bax, p-ERK, eIF2α, GADD153, and IRE1α expression in treated NSCLC cells were measured by Western blot assays. In addition, the interaction between miR-34c and HMGB1 was verified by the dual-luciferase reporter assay. Results miR-34c was only slightly expressed, while HMGB1 was highly expressed in NSCLC tissues and cell lines. Overexpression of miR-34c or knockdown of HMGB1 inhibited cell proliferation, promoted cell apoptosis, and induced ER stress in NSCLC cells. In terms of mechanism, miR-34c negatively regulated HMGB1 expression by directly targeting the 3ʹ-untranslated region (UTR) of HMGB1 mRNA. In addition, we proved that HMGB1 overexpression could block the effects of miR-34c on NSCLC cell proliferation, apoptosis, and ER stress. Conclusion miR-34c may suppress NSCLC tumors by targeting HMGB1 mRNA, promoting endoplasmic reticulum stress, and increasing ROS levels. Our findings suggest that miR-34c has a role in NSCLC.
Collapse
Affiliation(s)
- Li Tu
- Department of Respiratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, People's Republic of China.,Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Xiang Long
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Weidong Song
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Zhongdong Lv
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Huadong Zeng
- Department of Respiratory Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, People's Republic of China
| | - Tiezhu Wang
- Department of Respiratory Medicine, Zhangzhou Municipal Hospital of Fujian Province, Zhangzhou 363000, People's Republic of China
| | - Xianglu Liu
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Juanni Dong
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| | - Ping Xu
- Department of Respiratory Medicine, Peking University Shenzhen Hospital, Shenzhen 518000, People's Republic of China
| |
Collapse
|
21
|
Mu SW, Dang Y, Fan YC, Zhang H, Zhang JH, Wang W, Wang SS, Gu JJ. Effect of HMGB1 and RAGE on brain injury and the protective mechanism of glycyrrhizin in intracranial‑sinus occlusion followed by mechanical thrombectomy recanalization. Int J Mol Med 2019; 44:813-822. [PMID: 31257456 PMCID: PMC6657987 DOI: 10.3892/ijmm.2019.4248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
The key to successful treatment of cerebral venous-sinus occlusion (CVO) is the rapid recanalization of the sinus following venous-sinus occlusion; however, rapid recanalization of the sinus may also cause secondary cerebral injury. The present study examined mechanical thrombectomy-related brain injury and the possible molecular mechanisms following CVO recanalization, and investigated the protective effect of glycyrrhizin (GL) in CVO recanalization. The cerebral venous sinus thrombosis (CVST) model was induced in rats using 40% FeCl3. Mechanical thrombectomy was performed at 6 h post-thrombosis. GL was administered to rats following thromboembolism. Neurological function and brain water content were measured prior to sacrifice of the rats. Serum malondialdehyde, superoxide dismutase and nitric-oxide synthase concentrations were measured. The expression levels of high-mobility group box 1 (HMGB1) and receptor of advanced glycation end products (RAGE) and its downstream inflammatory mediators were measured in serum and brain tissues. Rapid CVO recanalization caused brain injury, and the brain parenchymal damage and neurological deficits caused by CVO were not completely restored following recanalization. Similarly, following rapid recanalization in the venous sinus, the expression levels of HMGB1 and RAGE were lower than those in the CVST group, but remained significantly higher than those of the sham group. The combination of mechanical thrombectomy and GL improved cerebral infarction and cerebral edema in rats, and inhibited the extracellular transport of HMGB1, and the expression of downstream inflammatory factors and oxidative-stress products. The administration of exogenous recombinant HMGB1 reversed the neural protective effects of GL. In conclusion, mechanical thrombectomy subsequent to CVO in rats can cause brain injury following recanalization. HMGB1 and RAGE promote inflammation in the process of brain injury following recanalization. GL has a relatively reliable neuroprotective effect on brain injury by inhibiting HMGB1 and its downstream inflammatory factors, and decreasing oxidative stress.
Collapse
Affiliation(s)
- Shu-Wen Mu
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian 350025, P.R. China
| | - Yuan Dang
- Department of Comparative Medicine, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian 350025, P.R. China
| | - Ya-Cao Fan
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Hao Zhang
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Jian-He Zhang
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| | - Wei Wang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University (900 Hospital of The Joint Logistics Team), Fuzhou, Fujian 350025, P.R. China
| | - Jian-Jun Gu
- Department of Neurosurgery, 900 Hospital of The Joint Logistics Team, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
22
|
Jia L, Song Y, Song H, Wang G, Fan W, Li X, Zheng H, Yao A. Overexpression of high mobility group box 1 (HMGB1) has no correlation with the prognosis in glioma. Biomark Med 2019; 13:851-863. [PMID: 31241346 DOI: 10.2217/bmm-2019-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aim: We aimed to characterize the role of HMGB1 overexpression in glioma and to evaluate its use as a biomarker. Materials & methods: We used the gene expression datasets and tissue microarray to assess the expression levels of HMGB1 among gliomas of all grades; We then assessed its correlation with the malignancy and outcome of glioma. Results: The increase in HMGB1 mRNA and protein levels was found in glioma, but there was no correlation between HMGB1 expression and glioma malignancy, and overall survival and vital status of glioma patients. Conclusion: Overexpression of HMGB1 is not associated with the malignancy and outcome in glioma. And it is not the valuable biomarker for the early diagnosis of glioma.
Collapse
Affiliation(s)
- Liyun Jia
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Yanan Song
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Huiling Song
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Gang Wang
- Henan Eye Institute, Henan Provincial People's Hospital, Zhengzhou, Henan Province, PR China
| | - Wange Fan
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Xueli Li
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Hong Zheng
- Department of Medical Genetics & Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Anhui Yao
- Department of Neurosurgery, 988th Hospital of Chinese People's Liberation Army, Zhengzhou, Henan Province, PR China.,Department of Neurosurgery, the General Hospital of PLA, Beijing, PR China
| |
Collapse
|
23
|
Rynkeviciene R, Simiene J, Strainiene E, Stankevicius V, Usinskiene J, Miseikyte Kaubriene E, Meskinyte I, Cicenas J, Suziedelis K. Non-Coding RNAs in Glioma. Cancers (Basel) 2018; 11:cancers11010017. [PMID: 30583549 PMCID: PMC6356972 DOI: 10.3390/cancers11010017] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioma is the most aggressive brain tumor of the central nervous system. The ability of glioma cells to migrate, rapidly diffuse and invade normal adjacent tissue, their sustained proliferation, and heterogeneity contribute to an overall survival of approximately 15 months for most patients with high grade glioma. Numerous studies indicate that non-coding RNA species have critical functions across biological processes that regulate glioma initiation and progression. Recently, new data emerged, which shows that the cross-regulation between long non-coding RNAs and small non-coding RNAs contribute to phenotypic diversity of glioblastoma subclasses. In this paper, we review data of long non-coding RNA expression, which was evaluated in human glioma tissue samples during a five-year period. Thus, this review summarizes the following: (I) the role of non-coding RNAs in glioblastoma pathogenesis, (II) the potential application of non-coding RNA species in glioma-grading, (III) crosstalk between lncRNAs and miRNAs (IV) future perspectives of non-coding RNAs as biomarkers for glioma.
Collapse
Affiliation(s)
- Ryte Rynkeviciene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Julija Simiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| | - Egle Strainiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, Sauletekio ave. 11, LT-10122 Vilnius, Lithuania.
| | - Vaidotas Stankevicius
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biotechnology, Vilnius University, LT-10257 Vilnius, Lithuania.
| | - Jurgita Usinskiene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
| | - Edita Miseikyte Kaubriene
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Faculty of Medicine, Vilnius University, M.K. Cˇiurlionio 21, LT-03101 Vilnius, Lithuania.
| | - Ingrida Meskinyte
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
| | - Jonas Cicenas
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Sauletekio al. 7, LT-10257 Vilnius, Lithuania.
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, 3027 Bern, Switzerland.
- Energy and Biotechnology Engineering Institute, Aleksandro Stulginskio University, Studentų g. 11, LT-53361 Akademija, Lithuania.
| | - Kestutis Suziedelis
- Nacional Cancer Institute, Santariskiu str. 1, LT-08660 Vilnius, Lithuania.
- Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekio ave. 7, LT-08412 Vilnius, Lithuania.
| |
Collapse
|
24
|
Mu SW, Dang Y, Wang SS, Gu JJ. The role of high mobility group box 1 protein in acute cerebrovascular diseases. Biomed Rep 2018; 9:191-197. [PMID: 30271593 PMCID: PMC6158396 DOI: 10.3892/br.2018.1127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022] Open
Abstract
The occurrence and development of acute cerebrovascular diseases involves an inflammatory response, and high mobility group box protein 1 (HMGB1) is a pro-inflammatory factor that is expressed not only in the early-injury stage of disease, but also during the post-repair process. In the initial stage of disease, HMGB1 is released into the outside of the cell to participate in the cascade amplification reaction of inflammation, causing vasospasm, destruction of the blood-brain barrier and apoptosis of nerve cells. In the recovery stage of disease, HMGB1 can promote tissue repair and remodeling, which can aid in nerve function recovery. This review summarizes the biological characteristics of HMGB1, and the role of HMGB1 in ischemic and hemorrhagic cerebrovascular disease, and cerebral venous thrombosis.
Collapse
Affiliation(s)
- Shu-Wen Mu
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Yuan Dang
- Department of Comparative Medicine, Dongfang Affiliated Hospital of Xiamen University, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Dongfang Affiliated Hospital of Xiamen University, Xiamen University Medical College, Fuzhou, Fujian 350025, P.R. China
| | - Jian-Jun Gu
- Department of Neuro-interventional Radiology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
25
|
Regulation of Tumor Progression by Programmed Necrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537471. [PMID: 29636841 PMCID: PMC5831895 DOI: 10.1155/2018/3537471] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022]
Abstract
Rapidly growing malignant tumors frequently encounter hypoxia and nutrient (e.g., glucose) deprivation, which occurs because of insufficient blood supply. This results in necrotic cell death in the core region of solid tumors. Necrotic cells release their cellular cytoplasmic contents into the extracellular space, such as high mobility group box 1 (HMGB1), which is a nonhistone nuclear protein, but acts as a proinflammatory and tumor-promoting cytokine when released by necrotic cells. These released molecules recruit immune and inflammatory cells, which exert tumor-promoting activity by inducing angiogenesis, proliferation, and invasion. Development of a necrotic core in cancer patients is also associated with poor prognosis. Conventionally, necrosis has been thought of as an unregulated process, unlike programmed cell death processes like apoptosis and autophagy. Recently, necrosis has been recognized as a programmed cell death, encompassing processes such as oncosis, necroptosis, and others. Metabolic stress-induced necrosis and its regulatory mechanisms have been poorly investigated until recently. Snail and Dlx-2, EMT-inducing transcription factors, are responsible for metabolic stress-induced necrosis in tumors. Snail and Dlx-2 contribute to tumor progression by promoting necrosis and inducing EMT and oncogenic metabolism. Oncogenic metabolism has been shown to play a role(s) in initiating necrosis. Here, we discuss the molecular mechanisms underlying metabolic stress-induced programmed necrosis that promote tumor progression and aggressiveness.
Collapse
|
26
|
Zhang R, Jin H, Lou F. The Long Non-Coding RNA TP73-AS1 Interacted With miR-142 to Modulate Brain Glioma Growth Through HMGB1/RAGE Pathway. J Cell Biochem 2017; 119:3007-3016. [PMID: 28379612 DOI: 10.1002/jcb.26021] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/30/2017] [Indexed: 12/17/2022]
Abstract
P73 antisense RNA 1T (non-protein coding), also known as TP73-AS1 or PDAM, is a long non-coding RNA which may regulate apoptosis via regulation of p53-dependent anti-apoptotic genes. An abnormal change of TP73-AS1 expression was noticed in cancers. The effects of TP73-AS1 in brain glioma growth and the underlying mechanism remain unclear so far. In the present study, TP73-AS1 was specifically upregulated in brain glioma tissues and cell lines, and was associated with poorer prognosis in patients with glioma. TP73-AS1 knocking down suppressed human brain glioma cell proliferation and invasion in vitro, as well as HMGB1 protein. MiR-142 has been reported to play a pivotal role in cancers; here we observed that TP73-AS1 and miR-142 could negatively regulate each other. Results from luciferase assays suggested that TP73-AS1 might compete with HMGB1 for miR-142 binding. Further, HMGB1/RAGE was involved in TP73-AS1/miR-142 regulation of glioma cell proliferation and invasion. In glioma tissues, TP73-AS1 and HMGB1 expression was up-regulated, whereas miR-142 expression was down-regulated. Data from the present study revealed that TP73-AS1 promoted the brain glioma growth and invasion through acting as a competing endogenous RNA (ceRNA) to promote HMGB1 expression by sponging miR-142. In conclusion, we regarded TP73-AS1 as an oncogenic lncRNA promoting brain glioma proliferation and invasion, and a potential target for human brain glioma treatment. J. Cell. Biochem. 119: 3007-3016, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rong Zhang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hekun Jin
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Fan Lou
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
27
|
Liu PL, Liu WL, Chang JM, Chen YH, Liu YP, Kuo HF, Hsieh CC, Ding YS, Chen WW, Chong IW. MicroRNA-200c inhibits epithelial-mesenchymal transition, invasion, and migration of lung cancer by targeting HMGB1. PLoS One 2017; 12:e0180844. [PMID: 28727734 PMCID: PMC5519074 DOI: 10.1371/journal.pone.0180844] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/22/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRs) play critical roles in cancer development, proliferation, epithelial-mesenchymal transition (EMT), invasion, and migration through regulating the expression of oncogenes and tumour suppressor genes. Previous studies have indicated that miR-200c acts as a tumour suppressor in various cancers by downregulating high-mobility group box 1 (HMGB1) and thereby suppressing EMT and metastasis. In addition, miR-200c was reported to be downregulated and correlated with poor outcomes in non-small cell lung cancer (NSCLC). However, its functional role in HMGB1 regulation in NSCLC is still unclear. This study aimed to clarify whether miR-200c acts as a tumour suppressor in NSCLC by downregulating HMGB1, which is associated with EMT, invasion, cytoskeleton rearrangement, and migration in vitro and in vivo. In order to demonstrate HMGB1 downregulation by miR-200c, the NSCLC cell line A549 was transfected with miR-200c mimic or inhibitor. The mimic significantly reduced HMGB1 expression and suppressed EMT, invasion, and migration, while the inhibitor generated the opposite effects. Additionally, using xenograft mouse models, we confirmed that HMGB1 overexpression increased tumour EMT. In summary, our results demonstrated that miR-200c could suppress EMT, invasion, and migration of NSCLC cells by downregulating HMGB1.
Collapse
Affiliation(s)
- Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Jia-Ming Chang
- Preclinical Animal Pharmacology Testing Center, National Research Project for Biopharmaceuticals, New Taipei, Taiwan
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, New Taipei, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Yu-Peng Liu
- Department of Genome Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chong-Chao Hsieh
- Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Sian Ding
- Preclinical Animal Pharmacology Testing Center, National Research Project for Biopharmaceuticals, New Taipei, Taiwan
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, New Taipei, Taiwan
| | - Wei-Wei Chen
- Preclinical Animal Pharmacology Testing Center, National Research Project for Biopharmaceuticals, New Taipei, Taiwan
- Department of Pharmacology, Institute for Drug Evaluation Platform, Development Center for Biotechnology, New Taipei, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Imbalzano E, Quartuccio S, Di Salvo E, Crea T, Casciaro M, Gangemi S. Association between HMGB1 and asthma: a literature review. Clin Mol Allergy 2017. [PMID: 28630596 PMCID: PMC5471678 DOI: 10.1186/s12948-017-0068-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Recently, some studies demonstrated that HMGB1, as proinflammatory mediator belonging to the alarmin family, has a key role in different acute and chronic immune disorders. Asthma is a complex disease characterised by recurrent and reversible airflow obstruction associated to airway hyper-responsiveness and airway inflammation. Objective This literature review aims to analyse advances on HMGB1 role, employment and potential diagnostic application in asthma. Methods We reviewed experimental studies that investigated the pathogenetic role of HMGB in bronchial airway hyper-responsiveness, inflammation and the correlation between HMGB1 level and asthma. Results A total of 19 studies assessing the association between HMGB1 and asthma were identified. Conclusions What emerged from this literature review was the confirmation of HMGB-1 involvement in diseases characterised by chronic inflammation, especially in pulmonary pathologies. Findings reported suggest a potential role of the alarmin in being a stadiation method and a marker of therapeutic efficacy; finally, inhibiting HMGB1 in humans in order to contrast inflammation should be the aim for future further studies.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sebastiano Quartuccio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Eleonora Di Salvo
- IBIM-CNR Institute of Biomedicine and Molecular Immunology, National Research Council, 90100 Palermo, Italy
| | - Teresa Crea
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Luan X, Ma C, Wang P, Lou F. HMGB1 is negatively correlated with the development of endometrial carcinoma and prevents cancer cell invasion and metastasis by inhibiting the process of epithelial-to-mesenchymal transition. Onco Targets Ther 2017; 10:1389-1402. [PMID: 28424555 PMCID: PMC5344438 DOI: 10.2147/ott.s123085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
High-mobility group box protein 1 (HMGB1), a nuclear protein that plays a significant role in DNA architecture and transcription, was correlated with the progression of some types of cancer. However, the role of HMGB1 in endometrial cancer cell invasion and metastasis remains unexplored. HMGB1 expression was initially assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in normal endometrial tissue and endometrial carcinoma tissue. High expressions of HMGB1 protein were detected in normal endometrial tissues; however, in endometrial cancer tissues, the expressions of HMGB1 were found to be very weak. Furthermore, HMGB1 expressions were negatively correlated with advanced stage and lymph node metastasis in endometrial cancer. Then by RT-qPCR, Western blot and immunocytochemistry, HMGB1 was also detected in primary cultured endometrial cells and four kinds of endometrial cancer cell lines (Ishikawa, HEC-1A, HEC-1B and KLE). We found that the expression of HMGB1 was much higher in normal endometrial cells than in endometrial cancer cells, and reduced expression levels of HMGB1 were observed especially in the highly metastatic cell lines. Using lentivirus transfection, HMGB1 small hairpin RNA was constructed, and this infected the lowly invasive endometrial cancer cell lines, Ishikawa and HEC-1B. HMGB1 knockdown significantly enhanced the proliferation, invasion and metastasis of endometrial cancer cells and induced the process of epithelial-to-mesenchymal transition. These results can contribute to the development of a new potential therapeutic target for endometrial cancer.
Collapse
Affiliation(s)
- Xiaorong Luan
- Nursing College, Shandong University.,Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Chunjing Ma
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Ping Wang
- Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | | |
Collapse
|