1
|
Chen J, Wang RH, Xie S, Xiang JJ, Zheng FK, Huang QM, Mo QL, Wei QG, Liu ZL. Causal relationship between lymphocyte subsets and the risk of sepsis: A Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39871. [PMID: 39465765 PMCID: PMC11460878 DOI: 10.1097/md.0000000000039871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Indexed: 10/29/2024] Open
Abstract
Recent empirical research posits a link between lymphocyte subgroups and both the incidence and prognosis of sepsis. Nevertheless, the potential influence of multiple confounding variables obscures any clear causative correlation. Utilizing a 2-sample Mendelian randomization approach, we conducted a meta-analysis of lymphocyte subgroups. In a genome-wide association study, flow cytometry was applied to a lymphocyte subgroup comprising 3757 Sardinians to identify genes influenced by blood immune cells. The sepsis meta-analysis data were sourced from the UK Biobank database, including 11,643 treatment groups and 47,841 control groups. Inverse variance-weighted, Mendelian randomization-Egger regression, weighted median, simple mode, and weighted mode methods were deployed to ascertain the causative relationship between lymphocyte subgroup and sepsis. Cochran Q test, the Mendelian randomization-Egger intercept test, and funnel plots were leveraged to assess the robustness of study findings. The inverse variance-weighted analysis disclosed that the absolute count of CD4 regulatory T cells (CD4 Treg AC) within the lymphocyte subgroup has a causative link to an elevated risk of sepsis, with an odds ratio of 1.08 and a 95% confidence interval of 1.02 to 1.15 (P = .011). Compared to individuals not subjected to this factor, those exposed to CD4 Treg AC have a marginally elevated sepsis risk by approximately 0.08%. No causative relationships were observed between sepsis risk and the absolute counts of other lymphocyte subgroups such as CD8+ T cells, CD4+ CD8dim T cells, natural killer T cells, B cells (B cell absolute count), and HLA DR+ natural killer cells. The 2-sample Mendelian randomization study indicated a causal relationship between the level of CD4 Treg AC and the increased risk of sepsis. The elevation in circulating lymphocyte subgroups suggests higher susceptibility to sepsis, affirming the immune susceptibility inherent to this condition. The findings from our study may propose potential targets for diagnosis and intervention of sepsis.
Collapse
Affiliation(s)
- Jing Chen
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Rong Hui Wang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Sheng Xie
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Jun Jun Xiang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Fu Kui Zheng
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Qiao Ming Huang
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Qiu Lan Mo
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Qiu Gui Wei
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Zu Lu Liu
- The First Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Wang Z, Zhang W, Chen L, Lu X, Tu Y. Lymphopenia in sepsis: a narrative review. Crit Care 2024; 28:315. [PMID: 39304908 DOI: 10.1186/s13054-024-05099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024] Open
Abstract
This narrative review provides an overview of the evolving significance of lymphopenia in sepsis, emphasizing its critical function in this complex and heterogeneous disease. We describe the causal relationship of lymphopenia with clinical outcomes, sustained immunosuppression, and its correlation with sepsis prediction markers and therapeutic targets. The primary mechanisms of septic lymphopenia are highlighted. In addition, the paper summarizes various attempts to treat lymphopenia and highlights the practical significance of promoting lymphocyte proliferation as the next research direction.
Collapse
Affiliation(s)
- Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China.
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Linlin Chen
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai, 200433, China
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
3
|
Chenoweth JG, Colantuoni C, Striegel DA, Genzor P, Brandsma J, Blair PW, Krishnan S, Chiyka E, Fazli M, Mehta R, Considine M, Cope L, Knight AC, Elayadi A, Fox A, Hertzano R, Letizia AG, Owusu-Ofori A, Boakye I, Aduboffour AA, Ansong D, Biney E, Oduro G, Schully KL, Clark DV. Gene expression signatures in blood from a West African sepsis cohort define host response phenotypes. Nat Commun 2024; 15:4606. [PMID: 38816375 PMCID: PMC11139862 DOI: 10.1038/s41467-024-48821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Our limited understanding of the pathophysiological mechanisms that operate during sepsis is an obstacle to rational treatment and clinical trial design. There is a critical lack of data from low- and middle-income countries where the sepsis burden is increased which inhibits generalized strategies for therapeutic intervention. Here we perform RNA sequencing of whole blood to investigate longitudinal host response to sepsis in a Ghanaian cohort. Data dimensional reduction reveals dynamic gene expression patterns that describe cell type-specific molecular phenotypes including a dysregulated myeloid compartment shared between sepsis and COVID-19. The gene expression signatures reported here define a landscape of host response to sepsis that supports interventions via targeting immunophenotypes to improve outcomes.
Collapse
Affiliation(s)
- Josh G Chenoweth
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Carlo Colantuoni
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Deborah A Striegel
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Pavol Genzor
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Joost Brandsma
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Paul W Blair
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
- Department of Pathology, Uniformed Services University, Bethesda, MD, USA
| | - Subramaniam Krishnan
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Elizabeth Chiyka
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Mehran Fazli
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Rittal Mehta
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Michael Considine
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Leslie Cope
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Audrey C Knight
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anissa Elayadi
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Anne Fox
- Naval Medical Research Unit EURAFCENT Ghana detachment, Accra, Ghana
| | - Ronna Hertzano
- Section on Omics and Translational Science of Hearing, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andrew G Letizia
- Naval Medical Research Unit EURAFCENT Ghana detachment, Accra, Ghana
| | - Alex Owusu-Ofori
- Laboratory Services Directorate, Komfo Anokye Teaching Hospital (KATH), Kumasi, Ghana
- Department of Clinical Microbiology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Isaac Boakye
- Research and Development Unit, KATH, Kumasi, Ghana
| | - Albert A Aduboffour
- Laboratory Services Directorate, Komfo Anokye Teaching Hospital (KATH), Kumasi, Ghana
| | - Daniel Ansong
- Child Health Directorate, KATH, Kumasi, Ghana
- Department of Child Health, KNUST, Kumasi, Ghana
| | - Eno Biney
- Accident and Emergency Department, KATH, Kumasi, Ghana
| | - George Oduro
- Accident and Emergency Department, KATH, Kumasi, Ghana
| | - Kevin L Schully
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), Biological Defense Research Directorate, Naval Medical Research Command-Frederick, Ft. Detrick, MD, USA
| | - Danielle V Clark
- Austere environments Consortium for Enhanced Sepsis Outcomes (ACESO), The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| |
Collapse
|
4
|
Hohlstein P, Schumacher E, Abu Jhaisha S, Adams JK, Pollmanns MR, Schneider CV, Hamesch K, Horvathova K, Wirtz TH, Tacke F, Trautwein C, Weiskirchen R, Koch A. Soluble Neuropilin-1 Is Elevated in Sepsis and Correlates with Organ Dysfunction and Long-Term Mortality in Critical Illness. Int J Mol Sci 2024; 25:5438. [PMID: 38791476 PMCID: PMC11121523 DOI: 10.3390/ijms25105438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Critical illness and sepsis may cause organ failure and are recognized as mortality drivers in hospitalized patients. Neuropilin-1 (NRP-1) is a multifaceted transmembrane protein involved in the primary immune response and is expressed in immune cells such as T and dendritic cells. The soluble form of NRP-1 (sNRP-1) acts as an antagonist to NRP-1 by scavenging its ligands. The aim of this study was to determine the value of sNRP-1 as a biomarker in critical illness and sepsis. We enrolled 180 critically ill patients admitted to a medical intensive care unit and measured serum sNRP-1 concentrations at admission, comparing them to 48 healthy individuals. Critically ill and septic patients showed higher levels of sNRP-1 compared to healthy controls (median of 2.47 vs. 1.70 nmol/L, p < 0.001). Moreover, sNRP-1 was also elevated in patients with sepsis compared to other critical illness (2.60 vs. 2.13 nmol/L, p = 0.01), irrespective of disease severity or organ failure. In critically ill patients, sNRP-1 is positively correlated with markers of kidney and hepatic dysfunction. Most notably, critically ill patients not surviving in the long term (one year after admission) showed higher concentrations of sNRP-1 at the time of ICU admission (p = 0.036), with this association being dependent on the presence of organ failure. Critically ill and septic patients exhibit higher serum concentrations of circulating sNRP-1, which correlates to organ failure, particularly hepatic and kidney dysfunction.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Eileen Schumacher
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Jule K. Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Maike R. Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Carolin V. Schneider
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | | | - Theresa H. Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian Trautwein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (E.S.); (S.A.J.); (J.K.A.); (M.R.P.); (C.V.S.); (K.H.); (T.H.W.); (C.T.)
| |
Collapse
|
5
|
Yue Y, Yang HJ, Zhang T, Li C, Kim MJ, Kim KN, Park S. Porcine Brain Enzyme Hydrolysate Enhances Immune Function and Antioxidant Defense via Modulation of Gut Microbiota in a Cyclophosphamide-Induced Immunodeficiency Model. Antioxidants (Basel) 2024; 13:476. [PMID: 38671923 PMCID: PMC11047735 DOI: 10.3390/antiox13040476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
This study examined how consuming porcine brain enzyme hydrolysate (PBEH) affects the immune function and composition of the gut microbiota in an immunodeficient animal model. Male Wistar rats aged 6 weeks were fed casein (control), 100 mg/kg body weight (BW), red ginseng extract (positive-control), and 6, 13, and 26 mg PBEH per kg BW (PBEH-L, PBEH-M, and PBEH-H, respectively) daily for 4 weeks. At 30 min after consuming assigned compounds, they were orally administered cyclophosphamide (CTX; 5 mg/kg BW), an immunosuppressive agent, to suppress the immune system by inhibiting the proliferation of lymphocytes. The normal-control rats were fed casein and water instead of CTX. Natural killer cell activity and splenocyte proliferation induced by 1 μg/mL lipopolysaccharide were lower in the control group than the normal-control group, and they significantly increased with PBEH consumption, particularly at high doses. The PBEH consumption increased dose-dependently in the Th1/Th2 ratio compared to the control. The lipid peroxide contents were lower in the PBEH group than in the control group. Moreover, PBEH m and PBEH-H consumption mitigated white pulp cell damage, reduced red pulp congestion, and increased spleen mast cells in the histological analysis. Intestinal microbiota composition demonstrated differences between the groups at the genus levels, with Akkermansia being more abundant in the control group than the normal-control group and the PBEH-H group showing a decrease. However, Bifidobacterium decreased in the control group but increased in the PBEH-H group. The β-diversity revealed distinct microbial communities of PBEH and positive-control groups compared to the control group (p < 0.05). The metagenome predictions revealed that PBEH-H influenced amino acid metabolism, antioxidant defense, insulin sensitivity, and longevity pathways. In conclusion, PBEH-H intake boosted immune responses and reduced lipid peroxides by modulating gut microbiota composition. These findings suggest that PBEH-H has the potential as a dietary supplement for improving immune function and gut health in individuals with immunodeficiency.
Collapse
Affiliation(s)
- Yu Yue
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| | - Hye Jeong Yang
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.J.Y.); (M.J.K.)
| | - Ting Zhang
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| | - Chen Li
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| | - Min Jung Kim
- Food Functionality Research Division, Korea Food Research Institute, Wanju 55365, Republic of Korea; (H.J.Y.); (M.J.K.)
| | - Keun-Nam Kim
- Department of R&D, UNIMED PHARM Inc., Seoul 05567, Republic of Korea;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, Asan 31499, Republic of Korea; (Y.Y.); (T.Z.); (C.L.)
| |
Collapse
|
6
|
Hohlstein P, Abu Jhaisha S, Yagmur E, Wawer D, Pollmanns MR, Adams JK, Wirtz TH, Brozat JF, Bündgens L, Hamesch K, Weiskirchen R, Tacke F, Trautwein C, Koch A. Elevated Midkine Serum Levels Are Associated with Long-Term Survival in Critically Ill Patients. Int J Mol Sci 2023; 25:454. [PMID: 38203625 PMCID: PMC10779074 DOI: 10.3390/ijms25010454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Midkine (Mdk) is a multifunctional protein involved in inflammatory processes. Hence, circulating Mdk is increased in sepsis and has been previously suggested as a potential biomarker in these patients. The aim of this study was to elucidate the role of Mdk serum concentrations in critical illness and sepsis and to verify its value as a prognostic biomarker. Thus, we analyzed the Mdk serum concentrations of 192 critically ill patients on admission to the medical intensive care unit (ICU). While the serum levels of Mdk at admission were similar in septic and nonseptic critical illness (362 vs. 337 ng/L, p = 0.727), we found several interesting correlations of Mdk to laboratory and clinical markers associated with ischemia or hypoxia, e.g., to renal failure and hepatic injury. Mdk serum concentrations at admission did not differ between various causes of sepsis or other critical illness. Most noticeable, we observed upregulated Mdk serum concentrations at admission in patients surviving in the long-term, which was only seen in nonseptic critical illness but not in sepsis. Our study suggests a relevant role of Mdk in critically ill patients in general and highlights the possible protective features of Mdk in critical illness.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Eray Yagmur
- Institute of Laboratory Medicine, Western Palatinate Hospital, 67655 Kaiserslautern, Germany;
| | - Dennis Wawer
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Maike R. Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Jule K. Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Theresa H. Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Jonathan F. Brozat
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Lukas Bündgens
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Christian Trautwein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (S.A.J.); (D.W.); (M.R.P.); (J.K.A.); (T.H.W.); (J.F.B.); (L.B.); (K.H.); (C.T.)
| |
Collapse
|
7
|
Li X, Yin Z, Yan W, Wang M, Chang C, Guo C, Xue L, Zhou Q, Sun Y. Association between Changes in Plasma Metabolism and Clinical Outcomes of Sepsis. Emerg Med Int 2023; 2023:2590115. [PMID: 37346225 PMCID: PMC10281824 DOI: 10.1155/2023/2590115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 06/23/2023] Open
Abstract
Current prognostic biomarkers for sepsis have limited sensitivity and specificity. This study aimed to investigate dynamic lipid metabolomics and their association with septic immune response and clinical outcomes of sepsis. This prospective cohort study included patients with sepsis who met the Sepsis 3.0 criteria. On hospitalization days 1 (D1) and 7 (D7), plasma samples were collected, and patients underwent liquid chromatography with tandem mass spectrometry. A total of 40 patients were enrolled in the study, 24 (60%) of whom were men. The median age of the enrolled patients was 81 (68-84) years. Thirty-one (77.5%) patients had a primary infection site of the lung. Participants were allocated to the survivor (25 cases) and nonsurvivor (15 cases) groups based on their 28-day survival status. Ultimately, a total of 113 lipids were detected in plasma samples on D 1 and D 7, of which 42 lipids were most abundant in plasma samples. The nonsurvival group had significantly lower lipid expression levels in lysophosphatidylcholine (LysoPC) (16 : 0, 17 : 0,18 : 0) and 18 : 1 SM than those in the survival group (p < 0.05) on D7-D1. The correlation analysis showed that D7-D1 16 : 0 LysoPC (r = 0.367, p = 0.036),17 : 0 LysoPC (r = 0.389, p = 0.025) and 18 : 0 LysoPC(r = 0.472, p = 0.006) levels were positively correlated with the percentage of CD3+ T cell in the D7-D1. Plasma LysoPC and SM changes may serve as prognostic biomarkers for sepsis, and lipid metabolism may play a role in septic immune disturbances.
Collapse
Affiliation(s)
- Xin Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Zhongnan Yin
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Wei Yan
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Chenglin Guo
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Lixiang Xue
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
- Biobank, Peking University Third Hospital, Beijing 100191, China
| | - Qingtao Zhou
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| |
Collapse
|
8
|
Cui Z, Wang L, Li H, Feng M. Study on immune status alterations in patients with sepsis. Int Immunopharmacol 2023; 118:110048. [PMID: 36989895 DOI: 10.1016/j.intimp.2023.110048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
Sepsis, characterized by cytokine-mediated hyper-inflammation and a consistent decline in immune responsiveness, is associated with a high risk of death in the intensive care unit (ICU). Here, we for the first time investigated the changes in immune and inflammatory responses to understand the interactions between immune and inflammatory biomarkers and their association with patient outcomes. The cytokine and lymphocyte subset levels were analyzed in healthy donors (HD) and patients with sepsis upon admission to the ICU (D0), D3, D7, D14, and D28 using flow cytometry. The primary endpoint was mortality on day 90. The trends in lymphocyte subsets and cytokine levels in all patients (n = 47), HD (n = 27), and patient subgroups (surviving, n = 30; dead, n = 17) were analyzed using an independent sample t-test and principal component analysis. Age, steroids (steroids used > 48 h), secondary infection, acute heart failure, acute kidney injury, coagulopathy, hypohepatia, organ transplant and septic shock (when transferred to the ICU) were associated with mortality. Absolute lymphocyte counts and lymphocyte subsets levels were reduced in most patients with sepsis. The proportion of Tregs in the patients increased with disease progression and was associated with immunosuppression. In conclusion, sepsis downregulated adaptive immunity, and induced the transition of the patients to prolonged immune suppression. The study suggests that while cellular immunity recovered within 2 weeks of admission, humoral and innate immunity recovery takes longer. These findings may assist in developing appropriate therapeutic approaches to improve the immune responses in patients with sepsis.
Collapse
|
9
|
Tang Y, Wu J, Tian Y, Wang J, Wang M, Zong S, Wan C, Wang M, Zhu J. Predictive value of peripheral lymphocyte subsets for the disease progression in patients with sepsis. Int Immunopharmacol 2023; 117:109922. [PMID: 37012888 DOI: 10.1016/j.intimp.2023.109922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/04/2023] [Accepted: 02/17/2023] [Indexed: 03/17/2023]
Abstract
OBJECTIVE To investigate the predictive value of peripheral lymphocyte subsets for sepsis progression. METHODS Patients with sepsis were divided into the improved group (n = 46) and severe group (n = 39) according to disease progression. Flow cytometric analysis was performed to enumerate absolute counts of peripheral lymphocyte subsets. Logistic regression analyses were conducted to identify clinical factors linked to sepsis progression. RESULTS The absolute counts of peripheral lymphocyte subsets were markedly decreased in septic patients compared with healthy controls. After treatment, the absolute counts of lymphocytes, CD3+ T cells, and CD8+ T cells were restored in the improved group, and reduced in the severe group. Logistic regression analysis indicated that a low CD8+ T cells count was a risk factor for sepsis progression. Receiver operating characteristic curve analysis revealed that CD8+ T cells count had the greatest ability to predict sepsis progression. CONCLUSIONS The absolute counts of CD3+ T cells, CD4+ T cells, CD8+ T cells, B cells, and natural killer cells were significantly higher in the improved group than the severe group. CD8+ T cells count was predictive of sepsis progression. Lymphopenia and CD8+ T cells depletion were associated with the clinical outcomes of sepsis, suggesting that CD8+ T cells have potential as a predictive biomarker and therapeutic target for patients with sepsis.
Collapse
Affiliation(s)
- Yawei Tang
- Department of Flow Cytometry Center, Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China
| | - Jingxue Wu
- Department of Flow Cytometry Center, Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China
| | - Yao Tian
- Department of Flow Cytometry Center, Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China
| | - Jiao Wang
- Department of Flow Cytometry Center, Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China
| | - Mingjie Wang
- Nanjing Huaixi Medical Technology Co., Ltd., Nanjing, China
| | - Shouyang Zong
- Department of Clinical Laboratory, Jinhu County People's Hospital, Huai'an, China
| | - Changchun Wan
- Department of Clinical Laboratory, Jinhu County People's Hospital, Huai'an, China
| | - Min Wang
- Department of Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China.
| | - Jie Zhu
- Department of Flow Cytometry Center, Clinical Laboratory, the Second Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
10
|
Secreted Frizzled Related Protein 5 (SFRP5) Serum Levels Are Decreased in Critical Illness and Sepsis and Are Associated with Short-Term Mortality. Biomedicines 2023; 11:biomedicines11020313. [PMID: 36830849 PMCID: PMC9953555 DOI: 10.3390/biomedicines11020313] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Sepsis is a major health burden with insufficiently understood mechanisms of inflammation and immune paralysis, leading to a life-threatening critical illness. The secreted frizzled related protein 5 (SFRP5) acts as an anti-inflammatory adipokine by antagonizing the Wnt5a pathway. The aim of this study was to elucidate the role of SFRP5 in critical illness and sepsis and to determine its value as a prognostic biomarker for mortality. We analyzed SFRP5 serum concentrations of 223 critically ill patients at admission to a medical intensive care unit (ICU) and compared those to 24 healthy individuals. SFRP5 serum concentrations were significantly decreased in critical illness as compared to healthy controls (24.66 vs. 100 ng/mL, p = 0.029). Even lower serum concentrations were found in septic as compared to nonseptic critically ill patients (19.21 vs. 32.83 ng/mL, p = 0.031). SFRP5 concentrations correlated with liver disease, age, anti-inflammation, and metabolic parameters. Furthermore, patients with sepsis recovered levels of SFRP5 in the first week of ICU treatment. SFRP5 levels at admission predicted short-term mortality in critically ill but not in septic patients. This study points to the role of the anti-inflammatory mediator SFRP5 not only in sepsis but also in nonseptic critically ill patients and associates high levels of SFRP5 to worse outcomes, predominantly in nonseptic critically ill patients.
Collapse
|
11
|
Gao Y, Lin L, Zhao J, Peng X, Li L. Neutrophil CD64 index as a superior indicator for diagnosing, monitoring bacterial infection, and evaluating antibiotic therapy: a case control study. BMC Infect Dis 2022; 22:892. [PMID: 36443747 PMCID: PMC9703738 DOI: 10.1186/s12879-022-07725-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Neutrophil CD64 (nCD64) index has been widely studied as an indication of bacteria-infected diseases, but the exact usage of nCD64 index in monitoring infections remains debated. So this study aims to investigate the functionality of nCD64 index in tracking infections' progression and evaluating antibiotic therapy. METHODS 160 participants (36 healthy controls, 34 culture-negative patients, 56 respiratory tract infected patients, and 34 bloodstream infected patients) were recruited and divided into groups. Data on nCD64 index, T lymphocyte subsets, and conventional indicators, including white blood cell count, neutrophil to lymphocyte ratio, procalcitonin, and C-reactive protein, were tested and compared. RESULTS Bacteria-infected patients had significantly higher nCD64 indexes (p < 0.05), especially patients with both bloodstream and respiratory tract infections. The nCD64 index could identify infected patients from culture-negative patients or controls, which conventional indicators cannot achieve. We followed up with 24 infected patients and found that their nCD64 indexes were promptly down-regulated after effective antibiotic therapy (3.16 ± 3.01 vs. 1.20 ± 1.47, p < 0.001). CONCLUSION The nCD64 index is a sensitive indicator for clinical diagnosis of bacterial infection, especially in monitoring infection and evaluating antibiotics' efficacy. Therefore, nCD64 has the potential to improve diagnostic accuracy and provide rapid feedback on monitoring disease progression in infected patients.
Collapse
Affiliation(s)
- Yanting Gao
- grid.412478.c0000 0004 1760 4628Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, 200080 Shanghai, China
| | - Lihui Lin
- grid.412478.c0000 0004 1760 4628Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, 200080 Shanghai, China
| | - Jinyan Zhao
- grid.412478.c0000 0004 1760 4628Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, 200080 Shanghai, China
| | - Xia Peng
- grid.412478.c0000 0004 1760 4628Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, 200080 Shanghai, China
| | - Li Li
- grid.412478.c0000 0004 1760 4628Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiaotong University, 85 Wujin Road, 200080 Shanghai, China
| |
Collapse
|
12
|
Geng S, Pradhan K, Li L. Signal-Strength and History-Dependent Innate Immune Memory Dynamics in Health and Disease. Handb Exp Pharmacol 2022; 276:23-41. [PMID: 34085119 DOI: 10.1007/164_2021_485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Innate immunity exhibits memory characteristics, reflected not only in selective recognition of external microbial or internal damage signals, but more importantly in history and signal-strength dependent reprogramming of innate leukocytes characterized by priming, tolerance, and exhaustion. Key innate immune cells such as monocytes and neutrophils can finely discern and attune to the duration and intensity of external signals through rewiring of internal signaling circuitries, giving rise to a vast array of discreet memory phenotypes critically relevant to managing tissue homeostasis as well as diverse repertoires of inflammatory conditions. This review will highlight recent advances in this rapidly expanding field of innate immune programming and memory, as well as its translational implication in the pathophysiology of selected inflammatory diseases.
Collapse
Affiliation(s)
- Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Kisha Pradhan
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
13
|
Murphy DM, Mills KHG, Basdeo SA. The Effects of Trained Innate Immunity on T Cell Responses; Clinical Implications and Knowledge Gaps for Future Research. Front Immunol 2021; 12:706583. [PMID: 34489958 PMCID: PMC8417102 DOI: 10.3389/fimmu.2021.706583] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 12/16/2022] Open
Abstract
The burgeoning field of innate immune training, also called trained immunity, has given immunologists new insights into the role of innate responses in protection against infection and in modulating inflammation. Moreover, it has led to a paradigm shift in the way we think about immune memory and the interplay between innate and adaptive immune systems in conferring immunity against pathogens. Trained immunity is the term used to describe the medium-term epigenetic and metabolic reprogramming of innate immune cells in peripheral tissues or in the bone marrow stem cell niche. It is elicited by an initial challenge, followed by a significant period of rest that results in an altered response to a subsequent, unrelated challenge. Trained immunity can be associated with increased production of proinflammatory mediators, such as IL-1β, TNF and IL-6, and increased expression of markers on innate immune cells associated with antigen presentation to T cells. The microenvironment created by trained innate immune cells during the secondary challenge may have profound effects on T cell responses, such as altering the differentiation, polarisation and function of T cell subtypes, including Th17 cells. In addition, the Th1 cytokine IFN-γ plays a critical role in establishing trained immunity. In this review, we discuss the evidence that trained immunity impacts on or can be impacted by T cells. Understanding the interplay between innate immune training and how it effects adaptive immunity will give insights into how this phenomenon may affect the development or progression of disease and how it could be exploited for therapeutic interventions or to enhance vaccine efficacy.
Collapse
Affiliation(s)
- Dearbhla M Murphy
- Human and Translational Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Kingston H G Mills
- Immune Regulation Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Sharee A Basdeo
- Human and Translational Immunology Group, Department of Clinical Medicine, Trinity Translational Medicine Institute, St James's Hospital, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Keane C, Coalter M, Martin-Loeches I. Immune System Disequilibrium-Neutrophils, Their Extracellular Traps, and COVID-19-Induced Sepsis. Front Med (Lausanne) 2021; 8:711397. [PMID: 34485339 PMCID: PMC8416266 DOI: 10.3389/fmed.2021.711397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Equilibrium within the immune system can often determine the fate of its host. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) pandemic. Immune dysregulation remains one of the main pathophysiological components of SARS-CoV-2-associated organ injury, with over-activation of the innate immune system, and induced apoptosis of adaptive immune cells. Here, we provide an overview of the innate immune system, both in general and relating to COVID-19. We specifically discuss "NETosis," the process of neutrophil release of their extracellular traps, which may be a more recently described form of cell death that is different from apoptosis, and how this may propagate organ dysfunction in COVID-19. We complete this review by discussing Stem Cell Therapies in COVID-19 and emerging COVID-19 phenotypes, which may allow for more targeted therapy in the future. Finally, we consider the array of potential therapeutic targets in COVID-19, and associated therapeutics.
Collapse
Affiliation(s)
- Colm Keane
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
- Multidisciplinary Intensive Care Research Organization (MICRO), Trinity College Dublin, Dublin, Ireland
| | - Matthew Coalter
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
| | - Ignacio Martin-Loeches
- Department of Anaesthesia and Intensive Care, St. James's Hospital, Dublin, Ireland
- Multidisciplinary Intensive Care Research Organization (MICRO), Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
16
|
Magrone T, Jirillo E. Sepsis: From Historical Aspects to Novel Vistas. Pathogenic and Therapeutic Considerations. Endocr Metab Immune Disord Drug Targets 2020; 19:490-502. [PMID: 30857516 DOI: 10.2174/1871530319666181129112708] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Sepsis is a clinical condition due to an infectious event which leads to an early hyper-inflammatory phase followed by a status of tolerance or immune paralysis. Hyper-inflammation derives from a massive activation of immune (neutrophils, monocytes/macrophages, dendritic cells and lymphocytes) and non-immune cells (platelets and endothelial cells) in response to Gram-negative and Gram-positive bacteria and fungi. DISCUSSION A storm of pro-inflammatory cytokines and reactive oxygen species accounts for the systemic inflammatory response syndrome. In this phase, bacterial clearance may be associated with a severe organ failure development. Tolerance or compensatory anti-inflammatory response syndrome (CARS) depends on the production of anti-inflammatory mediators, such as interleukin-10, secreted by T regulatory cells. However, once triggered, CARS, if prolonged, may also be detrimental to the host, thus reducing bacterial clearance. CONCLUSION In this review, the description of pathogenic mechanisms of sepsis is propaedeutic to the illustration of novel therapeutic attempts for the prevention or attenuation of experimental sepsis as well as of clinical trials. In this direction, inhibitors of NF-κB pathway, cell therapy and use of dietary products in sepsis will be described in detail.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari, School of Medicine, Bari, Italy
| |
Collapse
|
17
|
Li X, Li M, Liu L, Tian X, Liang Y. Protective effects of glucocorticoid on liver injury in a rat sepsis model. Exp Ther Med 2019; 18:3153-3160. [PMID: 31572556 DOI: 10.3892/etm.2019.7899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 07/12/2019] [Indexed: 01/01/2023] Open
Abstract
Sepsis is one of the leading causes of death with unsatisfactory current treatments. The present study assessed the liver protective effect of glucocorticoids on different levels of inflammation in septic shock rats. A rat septic shock model was established by lipopolysaccharide (LPS) injection. Rats were divided into control (Control), high-inflammation treated with hydrocortisone (HT), high-inflammation non-treatment (HNT), low-inflammation treated with hydrocortisone (LT) and low-inflammation non-treatment (LNT) groups according to the levels of serum C-reactive protein (CRP), interleukin (IL)-6 and interferon (IFN)-γ. The mean arterial pressure and heart rate changes were continuously monitored and aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were measured by an automatic biochemical analyzer. Hematoxylin and eosin (H&E) staining was performed to observe the pathological changes of liver tissue. Western blot analysis was used to detect the expression of p38 mitogen-activated protein kinase (MAPK) and NF-κB protein. The results demonstrated that following 7 days of treatment, there were no obvious differences in the serum CRP, IL-6 and IFN-γ levels between the HT group and the control group, whilst the HNT group, LT group and LNT group were significantly different compared with the HT and control groups. H&E staining demonstrated that the liver cells in the HT group were homogeneous following 7 days of treatment. Western blot analysis determined that the phosphorylation levels of p38MAPK and NF-κB in HT group were reduced significantly compared with the LT group, while there was no obvious difference with the control group after 7 days treatment. The present results indicated that glucocorticoids have better therapeutic effect on septic shock rats with high-inflammation compared with low-inflammation rats. The present study provides a novel approach for glucocorticoid treatment of septic shock.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Meifeng Li
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Luyi Liu
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Xinghan Tian
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Yafeng Liang
- Department of Critical Care Medicine, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
18
|
Keane S, Martin-Loeches I. Host-pathogen interaction during mechanical ventilation: systemic or compartmentalized response? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:134. [PMID: 31200727 PMCID: PMC6570626 DOI: 10.1186/s13054-019-2410-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022]
Abstract
Patients admitted to the intensive care unit (ICU) often require invasive mechanical ventilation. Ventilator-associated lower respiratory tract infections (VA-LRTI), either ventilator-associated tracheobronchitis (VAT) or ventilator-associated pneumonia (VAP), are the most common complication among this patient cohort. VAT and VAP are currently diagnosed and treated as separate entities, viewed as binary disease elements despite an inherent subjectivity in distinguishing them clinically. This paper describes a new approach to pulmonary infections in critically ill patients. Our conjecture is that the host-pathogen interaction during mechanical ventilation determines a local compartmentalized or systemic de-compartmentalized response, based on host immunity and inflammation, and the pathogenic potential of the infecting organism. This compartmentalized or de-compartmentalized response establishes disease severity along a continuum of colonization, VAT or VAP. This change in approach is underpinned by the dissemination hypothesis, which acknowledges the role of immune and inflammatory systems in determining host response to pathogenic organisms in the lower respiratory tract. Those with intact immune and inflammatory pathways may limit infection to a compartmentalized VAT, while immunosuppressed mechanically ventilated patients are at greater risk of a de-compartmentalized VAP. Taking this model from the realm of theory to the bedside will require a greater understanding of inflammatory and immune pathways, and the development of novel disease-specific biomarkers and diagnostic techniques. Advances will lead to early initiation of optimal bespoke antimicrobial therapy, where the intensity and duration of therapy are tailored to clinical, immune and biomarker response. This approach will benefit towards a personalized treatment.
Collapse
Affiliation(s)
- Sean Keane
- Department of Anaesthesia and Critical Care Medicine, St. James's Hospital, Dublin 8, Ireland
| | - Ignacio Martin-Loeches
- Department of Anaesthesia and Critical Care Medicine, St. James's Hospital, Dublin 8, Ireland. .,Multidisciplinary Intensive Care Research Organization (MICRO), St James's Hospital, Dublin 8, Ireland. .,Pulmonary Intensive Care Unit, Respiratory Institute, Hospital Clinic of Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
19
|
Hohlstein P, Gussen H, Bartneck M, Warzecha KT, Roderburg C, Buendgens L, Trautwein C, Koch A, Tacke F. Prognostic Relevance of Altered Lymphocyte Subpopulations in Critical Illness and Sepsis. J Clin Med 2019; 8:jcm8030353. [PMID: 30871101 PMCID: PMC6463123 DOI: 10.3390/jcm8030353] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 12/29/2022] Open
Abstract
Lymphopenia and functional defects in lymphocytes may impact the prognosis in patients with critical illness or sepsis. Therefore, we prospectively analyzed peripheral blood leukocytes from 63 healthy volunteers, 50 non-critically ill standard care (SC) patients with infections, and 105 intensive care unit (ICU) patients (52 with sepsis, 53 without sepsis) using flow cytometry. Compared to healthy volunteers, SC and ICU patients showed significant leukocytosis, especially in sepsis, while lymphocyte numbers were significantly decreased. All major lymphocyte populations (B, T, and natural killer (NK) cells) decreased in ICU patients. However, we observed a relative reduction of T cells, alongside decreased CD8+ T cells, in critically ill patients, independent of sepsis. High absolute T cell counts (>0.36/nL) at ICU admission were associated with a significantly reduced mortality, independent of patient’s age. Moreover, patients that survived ICU treatment showed dynamic changes within 48 h towards restoration of lymphopenia and T cell depletion, while non-surviving patients failed to restore lymphocyte counts. In conclusion, the flow-cytometric analysis of peripheral blood revealed striking changes in circulating lymphocyte subsets in critically ill patients, independent of sepsis. Lymphopenia and T cell depletion at ICU admission were associated with increased mortality, supporting their relevance as predictive biomarkers and potential therapeutic targets in intensive care medicine.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | - Hendrik Gussen
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | - Matthias Bartneck
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | | | - Christoph Roderburg
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | - Lukas Buendgens
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | - Christian Trautwein
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | - Alexander Koch
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
| | - Frank Tacke
- Department of Medicine III, RWTH-University Hospital Aachen, 52074 Aachen, Germany.
- Department of Gastroenterology/Hepatology, Charité University Medical Center Berlin, 13353 Berlin, Germany.
| |
Collapse
|
20
|
Pica F, Gaziano R, Casalinuovo IA, Moroni G, Buè C, Limongi D, D'Agostini C, Tomino C, Perricone R, Palamara AT, Sinibaldi Vallebona P, Garaci E. Serum thymosin alpha 1 levels in normal and pathological conditions. Expert Opin Biol Ther 2019; 18:13-21. [PMID: 30063864 DOI: 10.1080/14712598.2018.1474197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Thymosin alpha 1 (Ta1) is a natural occurring peptide hormone that is crucial for the maintenance of the organism homeostasis. It has been chemically synthesized and used in diseases where the immune system is hindered or malfunctioning. AREAS COVERED Many clinical trials investigate the Ta1 effects in patients with cancer, infectious diseases and as a vaccine enhancer. The number of diseases that could benefit from Ta1 treatment is increasing. To date, questions remain about the physiological basal levels of Ta1 and the most effective dose and schedule of treatment. Evidence is growing that diseases characterized by deregulation of immune and/or inflammatory responses are associated with serum levels of Ta1 significantly lower than those of healthy individuals: to date, B hepatitis, psoriatic arthritis, multiple sclerosis and sepsis. The sputum of cystic fibrosis patients contains lower levels of Ta1 than healthy controls. These data are consistent with the role of Ta1 as a regulator of immunity, tolerance and inflammation. EXPERT OPINION Low serum Ta1 levels are predictive and/or associated with different pathological conditions. In case of Ta1 treatment, it is crucial to know the patient's baseline serum Ta1 level to establish effective treatment protocols and monitor their effectiveness over time.
Collapse
Affiliation(s)
- Francesca Pica
- a Departments of Experimental Medicine and Surgery , University Tor Vergata , Rome , Italy
| | - Roberta Gaziano
- a Departments of Experimental Medicine and Surgery , University Tor Vergata , Rome , Italy
| | | | - Gabriella Moroni
- a Departments of Experimental Medicine and Surgery , University Tor Vergata , Rome , Italy
| | - Cristina Buè
- a Departments of Experimental Medicine and Surgery , University Tor Vergata , Rome , Italy
| | - Dolores Limongi
- b IRCCS San Raffaele Pisana , Telematic University , Rome , Italy
| | - Cartesio D'Agostini
- a Departments of Experimental Medicine and Surgery , University Tor Vergata , Rome , Italy
| | - Carlo Tomino
- b IRCCS San Raffaele Pisana , Telematic University , Rome , Italy
| | - Roberto Perricone
- c Medicine of Systems, Rheumatology, Allergology and Clinical Immunology , University Tor Vergata , Rome , Italy
| | - Anna Teresa Palamara
- b IRCCS San Raffaele Pisana , Telematic University , Rome , Italy.,d Department of Public Health and Infectious Diseases , Sapienza University of Rome , Rome , Italy
| | | | - Enrico Garaci
- a Departments of Experimental Medicine and Surgery , University Tor Vergata , Rome , Italy.,b IRCCS San Raffaele Pisana , Telematic University , Rome , Italy
| |
Collapse
|