1
|
Ding Y, Jie K, Xin L, Shao B. Astragaloside IV plays a neuroprotective role by promoting PPARγ in cerebral ischemia-reperfusion rats. Behav Brain Res 2025; 476:115267. [PMID: 39341463 DOI: 10.1016/j.bbr.2024.115267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion injury (CIRI) usually occurs during the treatment phase of ischemic disease, which is closely related to high morbidity and mortality. Promoting neurogenesis and synaptic plasticity are effective neural recovery strategies for CIRI. Astragaloside IV (AS-IV) has been shown to play a neuroprotective role in some neurological diseases. In the current study, we evaluated the effect and possible mechanism of AS-IV in CIRI rats. METHODS The middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats to simulate the occurrence of human CIRI. First, we determined the cerebral injury on the 1st, 3rd, 5th and 7th day after cerebral ischemia-reperfusion (I/R) surgery by neurological deficit detection, TTC staining, TUNEL staining and Western blot analysis. Furthermore, rats were pre administered with AS-IV and then subjected to cerebral I/R surgery. Brains were collected on the 3rd day to evaluate the neuroprotective effect of AS-IV. RESULTS Our results showed that on the 3rd day after I/R, the neurological impairment score and infarct volume were highest, the levels of apoptosis and expression of Caspase3 and Bax reached the peak. AS-IV treatment apparently attenuated neurological dysfunction, reduced infarct volume and pathological damage, promoted the neurogenesis, and alleviated the pathological damage caused by cerebral I/R involved in thickening and blurring of synaptic membranes, reduction of microtubules and synaptic vesicles, and loss of synaptic cleft. Our study also showed that AS-IV promoted the transcription and expression of the peroxisome proliferators-activated receptors γ (PPARγ) and brain-derived neurotrophic factor (BDNF), increased the expression of phosphorylation of tyrosine kinase receptor B (TrkB) and downstream PI3K/Akt/mTOR pathway proteins. Notably, when GW9662, an inhibitor of PPARγ was administered with AS-IV, the neuroprotective effect of AS-IV was reduced. CONCLUSIONS These findings suggested that AS-IV has neuroprotective function in CIRI rats, and its molecular mechanism may depend on the phosphatidylinositide 3-kinase (PI3K)/protein kinase B (PKB)/Akt signalling pathway activated by PPARγ. AS-IV could be an effective therapeutic drug candidate for CIRI treatment.
Collapse
Affiliation(s)
- Yanping Ding
- School of Life Science, Northwest Normal University, Lanzhou 730000, China
| | - Kang Jie
- School of Life Science, Northwest Normal University, Lanzhou 730000, China
| | - Liu Xin
- School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Baoping Shao
- School of Life Science, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
2
|
Liu X, Yao L, Ye X, Qin Y, Chen S, Jiang Q, Liu M, Chen X, Li W, Lin C, Zhu C, Zhao W, Wang Q. Danggui-Shaoyao-San (DSS) ameliorating cognitive impairment in ischemia-reperfusion vascular dementia mice through miR-124 regulating PI3K/Akt signaling pathway. Brain Res 2024; 1845:149135. [PMID: 39155035 DOI: 10.1016/j.brainres.2024.149135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
Vascular dementia (VD) is a disease characterized by cognitive impairment and memory loss due to brain cell damage caused by cerebral vascular ischemia. Danggui-Shaoyao-San (DSS) has been used clinically to treat diseases for centuries. The VD model was established by bilateral common carotid artery (BCCA) repeated ischemia-reperfusion (I/R) and caudal bleeding. Target prediction of DSS and miR-124 in PI3K/Akt signaling pathway by network pharmacology. The effect of DSS on cognitive dysfunction were evaluated through methods such as behavioral experiments, cerebral blood flow monitoring, HE and Nissl staining, western blot, and q-PCR. Prediction result showed that both DSS and miR-124 could target Akt1. DSS treatment significantly reduced hippocampal cell damage, improved learning and memory ability. Mechanically, DSS treatment up-regulated the expression levels of PI3K and Akt protein, and its gene. Bcl-2/Bax index is up-regulated and cell apoptosis reduced. LC3II/LC3I index decreased and autophagy of brain cells increased. Moreover, DSS down-regulated the expression level of miR-124. And inhibition of miR-124 up-regulate the expression of PI3K, Akt. These results suggested that DSS can reduce the content of miR-124 in the hippocampus of VD mice, thus regulating the PI3K/Akt signaling pathway and improving the learning and memory ability of VD mice.
Collapse
Affiliation(s)
- Xian Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, CACMS, Beijing 100029, China.
| | - Liwei Yao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xinyi Ye
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Yuyun Qin
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Shuyun Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Meng Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Xiaotong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Chaozhan Lin
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine 510405, China.
| | - Chenchen Zhu
- College of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine 510405, China.
| | - Wei Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
3
|
Mu D, Liu J, Mi Y, Wang D, Xu L, Yang Y, Liu Y, Liang D, Hou Y. Gnetupendin A protects against ischemic stroke through activating the PI3K/AKT/mTOR-dependent autophagy pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156233. [PMID: 39550921 DOI: 10.1016/j.phymed.2024.156233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Autophagy has been recently emerged as a prominent factor in the pathogenesis of ischemic stroke (IS) and is increasingly being considered as a potential therapeutic target for IS. Gnetum parvifolium has been identified as a potential therapeutic agent for inflammatory diseases such as rheumatism and traumatic injuries. However, the pharmacological effects of Gnetupindin A (GA), a stilbene compound isolated from Gnetum parvifolium, have not been fully elucidated until now. OBJECTIVE Here we identified the therapeutic potential of GA for IS, deeply exploring the possible mechanisms related to its regulation of autophagy. METHODS The mouse model of middle cerebral artery occlusion-reperfusion (MCAO/R) and the oxygen-glucose deprivation reperfusion (OGD/R)-exposed cells served as models to study the protection of GA against IS. The adeno-associated virus (AAV) encoding shAtg5, in conjunction with autophagy inhibitor 3-Methyladenine (3-MA) were utilized to explore the role of GA in regulating autophagy following IS. Molecular docking, CETSA, and DARTS were used to identify the specific therapeutic target of GA. PI3K inhibitor LY294002 was employed to test the participation of PI3K in GA-mediated autophagy and neuroprotective effects following IS. RESULTS Our findings revealed that treatment with GA significantly alleviated the brain infract volume, edema, improved neurological deficits and attenuated apoptosis. Mechanistically, we found that GA promoted autophagic flow both in vivo and in vitro after IS. Notably, neural-targeted knockdown of Atg5 abolished the neuroprotective effects mediated by GA. Inhibition of autophagy using 3-MA blocked the attenuation on apoptosis induced by GA. Moreover, molecular docking, CETSA, and DARTS analysis demonstrated that GA specifically targeted PI3K and further inhibited the activation of PI3K/AKT/mTOR signaling pathway. LY294002, which inhibits PI3K, reversed GA-induced autophagy and neuroprotective effects on OGD/R-treated cells. CONCLUSION We demonstrated, for the first time, that GA protects against IS through promoting the PI3K/AKT/mTOR-dependent autophagy pathway. Our findings provide a novel mechanistic insight into the anti-IS effect of GA in regulating autophagy.
Collapse
Affiliation(s)
- Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Shenyang Key Laboratory of Vascular Biology, Science and Research Center, Department of Pharmacology, Shenyang Medical College, Shenyang, China.
| | - Dong Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
4
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
5
|
Liu K, Yao X, Gao J, Wang J, Qi J. A study on the mechanism of Beclin-1 m6A modification mediated by catalpol in protection against neuronal injury and autophagy following cerebral ischemia. Mol Med 2024; 30:65. [PMID: 38773376 PMCID: PMC11107004 DOI: 10.1186/s10020-024-00818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVE Catalpol (CAT) has various pharmacological activities and plays a protective role in cerebral ischemia. It has been reported that CAT played a protective role in cerebral ischemia by upregulaing NRF1 expression. Bioinformatics analysis reveals that NRF1 can be used as a transcription factor to bind to the histone acetyltransferase KAT2A. However, the role of KAT2A in cerebral ischemia remains to be studied. Therefore, we aimed to investigate the role of CAT in cerebral ischemia and its related mechanism. METHODS In vitro, a cell model of oxygen and glucose deprivation/reperfusion (OGD/R) was constructed, followed by evaluation of neuronal injury and the expression of METTL3, Beclin-1, NRF1, and KAT2A. In vivo, a MCAO rat model was prepared by means of focal cerebral ischemia, followed by assessment of neurological deficit and brain injury in MCAO rats. Neuronal autophagy was evaluated by observation of autophagosomes in neurons or brain tissues by TEM and detection of the expression of LC3 and p62. RESULTS In vivo, CAT reduced the neurological function deficit and infarct volume, inhibited neuronal apoptosis in the cerebral cortex, and significantly improved neuronal injury and excessive autophagy in MCAO rats. In vitro, CAT restored OGD/R-inhibited cell viability, inhibited cell apoptosis, LDH release, and neuronal autophagy. Mechanistically, CAT upregulated NRF1, NRF1 activated METTL3 via KAT2A transcription, and METTL3 inhibited Beclin-1 via m6A modification. CONCLUSION CAT activated the NRF1/KAT2A/METTL3 axis and downregulated Beclin-1 expression, thus relieving neuronal injury and excessive autophagy after cerebral ischemia.
Collapse
Affiliation(s)
- Kan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Xinyan Yao
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China
| | - Jun Gao
- Department of Neurosurgery, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Jinxi Wang
- Center for Medical Research and Innovation, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410007, Hunan, People's Republic of China
| | - Jing Qi
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, No. 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Jiang W, Jia Q, Ma H, Han S, Bi S, Zhu K, Chen L, Liang G. MicroRNA-124 conducts neuroprotective effect via inhibiting AK4/ATF3 after subarachnoid hemorrhage. Exp Brain Res 2024; 242:33-45. [PMID: 37932484 DOI: 10.1007/s00221-023-06682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 11/08/2023]
Abstract
Spontaneous subarachnoid hemorrhage (SAH) accounts for approximately 5% of all cases of stroke. SAH is correlated with elevated rates of mortality and disability. Despite significant advancements in comprehending the pathogenesis and surgical management, efficacious clinical interventions remain restricted, and the prognosis is yet to be enhanced. MicroRNAs play a crucial role in various pathological processes in organisms. Revealing these regulatory processes is conducive to the development of new treatment methods. MicroRNA-124 is highly expressed in the nervous system and has significant research value for SAH. This study aims to explore the role of miR-124 in the early post-SAH period on neural function and verify whether it is involved in the pathological and physiological processes of SAH. In this study, we used methods such as comparing the expression levels of miR-124 in cerebrospinal fluid, establishing a rat SAH model, and a mouse embryonic primary neuron hemoglobin stimulation model to verify the downstream proteins of miR-124 in SAH. Through transfection techniques, we adjusted the expression of this small RNA in Vitro and in Vivo models using miR-124 inhibitor and mimic in the primary neuron hemoglobin stimulation model and rat SAH model, and observed the phenotype. Finally, by consulting the literature and verifying in Vivo and in Vitro methods, AK4 and downstream molecule ATF3 were identified as downstream targets of miR-124.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Qingge Jia
- Department of Reproductive Endocrinology, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China
| | - Hongxin Ma
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Song Han
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Shijun Bi
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Kunyuan Zhu
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China
| | - Ligang Chen
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China.
| | - Guobiao Liang
- Department of Neurosurgery, General Hospital of Northern Theater Command, Wenhua Rd. No.83, Shenyang, 110000, Liaoning, China.
| |
Collapse
|
7
|
Liu T, Wang W, Li X, Chen Y, Mu F, Wen A, Liu M, Ding Y. Advances of phytotherapy in ischemic stroke targeting PI3K/Akt signaling. Phytother Res 2023; 37:5509-5528. [PMID: 37641491 DOI: 10.1002/ptr.7994] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.
Collapse
Affiliation(s)
- Tianlong Liu
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Li
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yidan Chen
- Department of Pharmacy, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Minna Liu
- Department of Nephrology, The 940th Hospital Joint Logistics Support Forces of PLA, Lanzhou, China
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
8
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
9
|
Lu X, Xu G, Lin Z, Zou F, Liu S, Zhang Y, Fu W, Jiang J, Ma X, Song J. Engineered exosomes enriched in netrin-1 modRNA promote axonal growth in spinal cord injury by attenuating inflammation and pyroptosis. Biomater Res 2023; 27:3. [PMID: 36647161 PMCID: PMC9843879 DOI: 10.1186/s40824-023-00339-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/01/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) brings a heavy burden to individuals and society, and there is no effective treatment at present. Exosomes (EX) are cell secreted vesicles containing molecules such as nucleic acids and proteins, which hold promise for the treatment of SCI. Netrin-1 is an axon guidance factor that regulates neuronal growth. We investigated the effects of engineered EX enriched in netrin-1 chemically synthetic modified message RNA (modRNA) in treating SCI in an attempt to find a novel therapeutic approach for SCI. METHODS Netrin-1 modRNA was transfected into bone marrow mesenchymal stem cells to obtain EX enriched with netrin-1 (EX-netrin1). We built an inflammatory model in vitro with lipopolysaccharide (LPS) in vitro to study the therapeutic effect of EX-netrin1 on SCI. For experiments in vitro, ELISA, CCK-8 assay, immunofluorescence staining, lactate dehydrogenase release experiments test, real-time quantitative polymerase chain reaction, and western blot were conducted. At the same time, we constructed a rat model of SCI. MRI, hematoxylin-eosin and Nissl staining were used to assess the extent of SCI in rats. RESULTS In vitro experiments showed that EX had no effect on the viability of oligodendrocytes and PC12 cells. EX-netrin1 could attenuate LPS-induced inflammation and pyroptosis and accelerate axonal/dentritic growth in PC12 cells/oligodendrocytes. In addition, netrin-1 could activate the PI3K/AKT/mTOR signalling pathway upon binding to its receptor unc5b. When Unc5b and PI3K were inhibited, the effect of EX-netrin1 was weakened, which could be reversed by PI3K or mTOR activator. Our in vivo experiments indicated that EX-netrin1 could promote recovery in rats with SCI. CONCLUSION We found that EX-netrin1 regulated inflammation, pyroptosis and axon growth in SCI via the Unc5b/PI3K/AKT/mTOR pathway, which provides a new strategy for the treatment of SCI.
Collapse
Affiliation(s)
- Xiao Lu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Guangyu Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Zhidi Lin
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Fei Zou
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Siyang Liu
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuxuan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Wei Fu
- Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianyuan Jiang
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Xiaosheng Ma
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| | - Jian Song
- Department of Orthopedics, Huashan Hospital, Fudan University, No. 12, Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
10
|
Xu B, Bai L, Chen L, Tong R, Feng Y, Shi J. Terpenoid natural products exert neuroprotection via the PI3K/Akt pathway. Front Pharmacol 2022; 13:1036506. [PMCID: PMC9606746 DOI: 10.3389/fphar.2022.1036506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
PI3K/Akt, an essential signaling pathway widely present in cells, has been shown to be relevant to neurological disorders. As an important class of natural products, terpenoids exist in large numbers and have diverse backbones, so they have a great chance to be identified as neuroprotective agents. In this review, we described and summarized recent research for a range of terpenoid natural products associated with the PI3K/Akt pathway by classifying their basic chemical structures of the terpenes, identified by electronic searches on PubMed, Web of Science for research, and Google Scholar websites. Only articles published in English were included. Our discussion here concerned 16 natural terpenoids and their mechanisms of action, the associated diseases, and the methods of experimentation used. We also reviewed the discovery of their chemical structures and their derivatives, and some compounds have been concluded for their structure–activity relationships (SAR). As a result, terpenoids are excellent candidates for research as natural neuroprotective agents, and our content will provide a stepping stone for further research into these natural products. It may be possible for more terpenoids to serve as neuroprotective agents in the future.
Collapse
Affiliation(s)
- Bingyao Xu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Rongsheng Tong, ; Yibin Feng, ; Jianyou Shi,
| |
Collapse
|
11
|
Liang H, Guo W, He H, Zhang H, Ye Q, Zhang Q, Liao J, Shen Y, Wang J, Xiao Y, Qin C. Decreased soluble Nogo-B in serum as a promising biomarker for Parkinson's disease. Front Neurosci 2022; 16:894454. [PMID: 35958994 PMCID: PMC9360801 DOI: 10.3389/fnins.2022.894454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022] Open
Abstract
BackgroundRecently, the neurite outgrowth inhibitor-B (Nogo-B) receptor has been reported as a novel candidate gene for Parkinson's disease (PD). Nogo-B receptors need to combine with soluble Nogo-B to exert their physiological function. However, little is known about the relationship between serum soluble Nogo-B and PD.MethodsSerum levels of sNogo-B and α-Synuclein (α-Syn) were measured in a cohort of 53 patients with PD and 49 healthy controls with the ELISA kit method.ResultsSerum sNogo-B level is significantly lower in the PD group than that in healthy controls and is negatively correlated with UPDRS-III score (p = 0.049), H&Y stage (p = 0.0108) as well as serum α-Syn level (p = 0.0001). The area under the curve (AUC) of serum sNogo-B in differentiating patients with PD from controls was 0.801 while the AUC of serum α-Syn was 0.93. Combining serum sNogo-B and α-Syn in differentiating patients with PD from HC presented higher discriminatory potential (AUC = 0.9534).ConclusionDecreased serum sNogo-B may be a potential biomarker for PD. Lower Nogo-B level reflects worse motor function and disease progression of PD. Serum sNogo-B is of added value to serum α-Syn panel in distinguishing PD from controls. Future studies are needed to confirm in larger samples and different populations.
Collapse
Affiliation(s)
- Hongming Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Neurology, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Honghu He
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Department of Rehabilitation Medicine, The First People's Hospital of Yulin, The Sixth Affiliated Hospital of Guangxi Medical University, Yulin, China
| | - Qiongyu Ye
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qingxin Zhang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiajia Liao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuefei Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jin Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Chao Qin
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Yousheng Xiao
| |
Collapse
|
12
|
Kang EM, Jia YB, Wang JY, Wang GY, Chen HJ, Chen XY, Ye YQ, Zhang X, Su XH, Wang JY, He XS. Downregulation of microRNA-124-3p promotes subventricular zone neural stem cell activation by enhancing the function of BDNF downstream pathways after traumatic brain injury in adult rats. CNS Neurosci Ther 2022; 28:1081-1092. [PMID: 35481944 PMCID: PMC9160452 DOI: 10.1111/cns.13845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022] Open
Abstract
Aims In this study, the effect of intracerebral ventricle injection with a miR‐124‐3p agomir or antagomir on prognosis and on subventricular zone (SVZ) neural stem cells (NSCs) in adult rats with moderate traumatic brain injury (TBI) was investigated. Methods Model rats with moderate controlled cortical impact (CCI) were established and verified as described previously. The dynamic changes in miR‐124‐3p and the status of NSCs in the SVZ were analyzed. To evaluate the effect of lateral ventricle injection with miR‐124‐3p analogs and inhibitors after TBI, modified neurological severity scores (mNSSs) and rotarod tests were used to assess motor function prognosis. The variation in SVZ NSC marker expression was also explored. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of predicted miR‐124‐3p targets was performed to infer miR‐124‐3p functions, and miR‐124‐3p effects on pivotal predicted targets were further explored. Results Administration of miR‐124 inhibitors enhanced SVZ NSC proliferation and improved the motor function of TBI rats. Functional analysis of miR‐124 targets revealed high correlations between miR‐124 and neurotrophin signaling pathways, especially the TrkB downstream pathway. PI3K, Akt3, and Ras were found to be crucial miR‐124 targets and to be involved in most predicted functional pathways. Interference with miR‐124 expression in the lateral ventricle affected the PI3K/Akt3 and Ras pathways in the SVZ, and miR‐124 inhibitors intensified the potency of brain‐derived neurotrophic factor (BDNF) in SVZ NSC proliferation after TBI. Conclusion Disrupting miR‐124 expression through lateral ventricle injection has beneficial effects on neuroregeneration and TBI prognosis. Moreover, the combined use of BDNF and miR‐124 inhibitors might lead to better outcomes in TBI than BDNF treatment alone.
Collapse
Affiliation(s)
- En-Ming Kang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yi-Bin Jia
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jia-You Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Guan-Yi Wang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Hui-Jun Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xiao-Yan Chen
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Yu-Qin Ye
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China.,Department of Neurosurgery, PLA 163rd Hospital (Second Affiliated Hospital of Hunan Normal University), Changsha, China
| | - Xin Zhang
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Xin-Hong Su
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| | - Jing-Yu Wang
- Teaching and Research Support Center, Engineering University of Chinese Armed Police Force, Xi'an, Shaanxi, China
| | - Xiao-Sheng He
- Department of Neurosurgery, Xijing Hospital, Airforce Military Medical University (Fourth Military Medical University), Xi'an, China
| |
Collapse
|
13
|
Gu C, Zhang Q, Li Y, Li R, Feng J, Chen W, Ahmed W, Soufiany I, Huang S, Long J, Chen L. The PI3K/AKT Pathway-The Potential Key Mechanisms of Traditional Chinese Medicine for Stroke. Front Med (Lausanne) 2022; 9:900809. [PMID: 35712089 PMCID: PMC9194604 DOI: 10.3389/fmed.2022.900809] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2022] [Indexed: 12/16/2022] Open
Abstract
Stroke is associated with a high disability and fatality rate, and adversely affects the quality of life of patients and their families. Traditional Chinese Medicine (TCM) has been used effectively in the treatment of stroke for more than 2000 years in China and surrounding countries and regions, and over the years, this field has gleaned extensive clinical treatment experience. The Phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway is important for regulation of cell migration, proliferation, differentiation, and apoptosis, and plays a vital role in vascularization and oxidative stress in stroke. Current Western medicine treatment protocols for stroke include mainly pharmacologic or mechanical thrombectomy to restore blood flow. This review collates recent advances in the past 5 years in the TCM treatment of stroke involving the PI3K/AKT pathway. TCM treatment significantly reduces neuronal damage, inhibits cell apoptosis, and delays progression of stroke via various PI3K/AKT-mediated downstream pathways. In the future, TCM can provide new perspectives and directions for exploring the key factors, and effective activators or inhibitors that affect occurrence and progression of stroke, thereby facilitating treatment.
Collapse
Affiliation(s)
- Chenyang Gu
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qiankun Zhang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yajing Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Li
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jia Feng
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wanghao Chen
- Department of Neurosurgery, Shanghai 9th People Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, China
| | | | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jun Long
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
14
|
Zhu T, Wang L, Wang LP, Wan Q. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother 2022; 148:112719. [DOI: 10.1016/j.biopha.2022.112719] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
|
15
|
Wang J, Chen R, Liu C, Wu X, Zhang Y. Antidepressant mechanism of catalpol: Involvement of the PI3K/Akt/Nrf2/HO-1 signaling pathway in rat hippocampus. Eur J Pharmacol 2021; 909:174396. [PMID: 34332921 DOI: 10.1016/j.ejphar.2021.174396] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/07/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Catalpol is a major compound in Rehmanniae Radix with outstanding medicinal and nutritional values. Our previous studies have demonstrated catalpol's antidepressant effect, but its mechanisms remain unclear. This study aimed to explore the antidepressant mechanisms of catalpol via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/nuclear factor E2-related factor 2(Nrf2)/heme oxygenase-1 (HO-1) pathway. Results demonstrated that chronic unpredictable mild stress (CUMS) for 5 consecutive weeks caused significant decreases in the sucrose preference and the horizontal and vertical scores of open-field test, as well as a significant increase in the swimming-immobility time of rats; catalpol administration significantly reversed the abnormality of these indicators. Further real-time fluorescent quantitative polymerase chain reaction and Western blotting results together showed that CUMS significantly downregulated the expression levels of hippocampal genes and proteins, including PI3K, Akt, Nrf2, HO-1, tropomyosin-related kinase B (TrkB), and brain-derived neurotrophic factor; catalpol administration significantly reversed the abnormal expression of these genes and proteins. CUMS also caused a significant decrease in the hippocampal superoxide dismutase, catalase, glutathione peroxidase, glutathione-s transferase, and reduced glutathione levels, as well as a significant increase in thiobarbituric acid reactive substances level in rats; catalpol administration significantly reversed the abnormality of these indicators. Taken together, this study confirmed for the first time that the antidepressant effect of catalpol on CUMS-induced depression involved the upregulation of the PI3K/Akt/Nrf2/HO-1 signaling pathway, thereby improving the hippocampal neurotrophic, neuroprotective, and antioxidant levels. The PI3K/Akt/Nrf2/HO-1 pathway-related molecules may serve as potential new biomarkers and candidate molecular targets for catalpol's antidepressant effects.
Collapse
Affiliation(s)
- Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of PR China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Rongxing Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
16
|
Catalpol protects rat ovarian granulosa cells against oxidative stress and apoptosis through modulating the PI3K/Akt/mTOR signaling pathway. Biosci Rep 2021; 40:222506. [PMID: 32227125 PMCID: PMC7167250 DOI: 10.1042/bsr20194032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/20/2022] Open
Abstract
Disrupted follicular development may result in increased follicular atresia, which is a crucial mechanism of various ovarian pathologies. It has been demonstrated that oxidative stress is associated with disrupted follicular development. Catalpol is a natural compound that has been found to possess antioxidative stress. However, the effects of catalpol on oxidative stress-induced disrupted follicular development remain unclear. In the present study, we evaluated the protective effect of catalpol on hydrogen peroxide (H2O2)-induced oxidative damage in granulosa cells (GCs), which play crucial roles in the follicular development. Our results showed that catalpol significantly improved cell viability, reduced reactive oxygen species (ROS) and malondialdehyde (MDA) production, and elevated superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in H2O2-induced GCs. Catalpol treatment caused significant increase in bcl-2 expression, and decreases in bax and caspase-9 expressions. Compared with the H2O2-induced GCs, caspase-3 activity in catalpol-treated cells was markedly decreased. Furthermore, catalpol caused significant activation of PI3K/Akt/mTOR pathway in GCs in response to H2O2 stimulation. Additionally, inhibition of this pathway reversed the inhibitory effects of catalpol on H2O2-induced oxidative injury and apoptosis in GCs. In conclusion, these findings suggested that catalpol protected GCs from H2O2-induced oxidative injury and apoptosis via activating PI3K/Akt/mTOR signaling pathway. Thus, catalpol might serve as a therapeutic approach for regulating disrupted follicular development.
Collapse
|
17
|
Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG. Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 2021; 1761:147399. [PMID: 33662337 DOI: 10.1016/j.brainres.2021.147399] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The cerebral ischemic reperfusion injury may leads to morbidity and mortality in patients. phosphatidylinositol 3-kinase (PI3K) signaling pathway has been believed to work in association with its downstream targets, other receptors, and pathways that may offer antioxidant, anti-inflammatory, anti-apoptotic effects, neuroprotective role in neuronal excitotoxicity. This review elaborates the mechanistic interventions of the PI3K pathway in cerebral ischemic injury in context to nuclear factor erythroid 2-related factor 2 (Nrf2) regulation, Hypoxia-inducible factor 1 signaling (HIF-1), growth factors, Endothelial NOS (eNOS) proinflammatory cytokines, Erythropoietin (EPO), Phosphatase and tensin homologous protein of chromosome 10 gene (PTEN) signaling, NF-κB/Notch signaling, c-Jun N-terminal kinase (JNK) and Glycogen synthase kinase-3β (GSK-3β) signaling pathway. Evidences showing the activation of PI3K inhibits apoptotic pathway, which results in its neuroprotective effect in ischemic injury. Despite discussing the therapeutic role of the PI3K pathway in treating cerebral ischemic injury, the review also enlighten the selective modulation of PI3K pathway with activators and inhibitors which may provide promising results in clinical and preclinical settings.
Collapse
Affiliation(s)
- Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anjali Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Komal Thapa
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | | |
Collapse
|
18
|
Xia H, Wang D, Guo X, Wu K, Huang F, Feng Y. Catalpol Protects Against Spinal Cord Injury in Mice Through Regulating MicroRNA-142-Mediated HMGB1/TLR4/NF-κB Signaling Pathway. Front Pharmacol 2021; 11:630222. [PMID: 33628189 PMCID: PMC7898164 DOI: 10.3389/fphar.2020.630222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Spinal cord injury (SCI) is a devastating condition that leads to paralysis, disability and even death in severe cases. Inflammation, apoptosis and oxidative stress in neurons are key pathogenic processes in SCI. Catalpol (CTP), an iridoid glycoside extracted from Rehmannia glutinosa, has many pharmacological activities, such as anti-inflammatory, anti-oxidative and anti-apoptotic properties. Purpose: Here, we investigated whether CTP could exert neuroprotective effects against SCI, and explored the underlying mechanism involved. Methods: SCI was induced by a weight-drop device and treated with CTP (10 mg and 60 mg/kg). Then the locomotor function of SCI mice was evaluated by the BBB scores, spinal cord edema was measured by the wet/dry weight method, oxidative stress markers and inflammatory factors were detected by commercial kits and neuronal death was measured by TUNEL staining. Moreover, the microRNA expression profile in spinal cords from mice following SCI was analyzed using miRNA microarray. In addition, reactive oxygen species (ROS) generation, inflammatory response and cell apoptosis were detected in murine microglia BV2 cells under oxygen-glucose deprivation (OGD) and CTPtreatment. Results: Our data showed that CTP treatment could improve the functional recovery, as well as suppress the apoptosis, alleviate inflammatory and oxidative response in SCI mice. In addition, CTP was found to be up-regulated miR-142 and the protective effects of CTP on apoptosis, inflammatory and oxidative response may relate to its regulation of HMGB1/TLR4/NF-κB pathway through miR-142. Conclusion: Our findings suggest that CTP may protect the spinal cord from SCI by suppression of apoptosis, oxidative stress and inflammatory response via miR-142/HMGB1/TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Hougang Xia
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Dandan Wang
- Department of Nursing, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Xiaohui Guo
- Department of Spinal Surgery, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Kaidi Wu
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Fuwei Huang
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Yanjiang Feng
- Department of Rehabilitation Medicine, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital), Luoyang, China
| |
Collapse
|
19
|
Wang J, Wu X. Traditional Chinese Medicine Jiuwei Zhenxin Granules in Treating Depression: An Overview. Neuropsychiatr Dis Treat 2020; 16:2237-2255. [PMID: 33116523 PMCID: PMC7541918 DOI: 10.2147/ndt.s273324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
Depression is known as "Yu Zheng" in traditional Chinese medicine (TCM). Jiuwei Zhenxin granules (JZG) is a type of TCM. According to TCM theory, it nourishes the heart and spleen, tonifies Qi, and tranquilizes the spirit, and may also has effects in the treatment of depression. Here, we systematically reviewed recent basic and clinical experimental studies of JZG and depression, including studies of the pharmacological mechanisms, active ingredients, and clinical applications of JZG in depression treatment. This review will deepen our understanding of the pharmacological mechanisms, drug interactions, and clinical applications of TCM prescriptions and provide a basis for the development of new drugs in the treatment of depression.
Collapse
Affiliation(s)
- Jing Wang
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| | - Xingmao Wu
- Department of Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
20
|
Gu F, Zhang J, Yan L, Li D. CircHIPK3/miR-381-3p axis modulates proliferation, migration, and glycolysis of lung cancer cells by regulating the AKT/mTOR signaling pathway. Open Life Sci 2020; 15:683-695. [PMID: 33817257 PMCID: PMC7747506 DOI: 10.1515/biol-2020-0070] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a lethal malignancy. Plenty of circular RNAs (circRNAs) have been identified to be the vital regulators in lung cancer development. Here, we intended to clarify the functional role of circRNA HIPK3 (circHIPK3, also called hsa_circ_0021593) and its underlying mechanism of action. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was employed to evaluate the levels of circHIPK3 and miR-381-3p. Cell viability and apoptosis rate were monitored by Cell Counting Kit-8 assay and flow cytometry, respectively. Cell migration was estimated through the Transwell assay. To assess glycolysis, commercial kits were utilized to measure the levels of glucose and lactate and the enzyme activity of hexokinase-2 (HK2). Expression of related proteins was detected via western blot analysis. The target connection between circHIPK3 and miR-381-3p was validated by dual-luciferase reporter, RIP, and pull-down assays. The role of circHIPK3 in vivo was determined via the xenograft assay. CircHIPK3 was upregulated, while miR-381-3p was downregulated in lung cancer tissues and cells. And circHIPK3 deficiency inhibited lung cancer progression by lowering cell proliferation, migration, glycolysis, and promoting apoptosis of lung cancer cells in vitro. MiR-381-3p was a target of circHIPK3, and miR-381-3p interference alleviated circHIPK3 knockdown-induced lung cancer progression inhibition. CircHIPK3 could activate the protein kinase B/mammalian target of rapamycin (AKT/mTOR) signaling pathway. Moreover, circHIPK3 knockdown suppressed tumor growth in vivo by inactivating the AKT/mTOR signaling pathway. In conclusion, the silencing of circHIPK3 inhibited lung cancer progression, at least in part, by sponging miR-381-3p and inactivating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Feng Gu
- Department of Aspiration Oncology, Gansu Provincial Tumor Hospital, Lanzhou, Gansu, China
| | - Junhan Zhang
- Department of Research and Experimental Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lin Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| | - Dong Li
- Department of Thoracic Surgery, Gansu Provincial Tumor Hospital, No. 2 Xiaoxihu East Street, Qilihe District, Lanzhou, Gansu, China
| |
Collapse
|
21
|
Li Y, Sun Q, Li H, Yang B, Wang M. Vitexin suppresses renal cell carcinoma by regulating mTOR pathways. Transl Androl Urol 2020; 9:1700-1711. [PMID: 32944531 PMCID: PMC7475661 DOI: 10.21037/tau-20-1094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the most common malignant tumors in the world. Vitexin (apigenin-8-C-D-glucopyranoside), a bioactive compound isolated from a variety of plants, has multiple protective effects on human health. The purpose of this study was to investigate the role of vitexin in RC and the related molecular mechanism. Methods Proliferation was tested with Cell Counting Kit-8 and Edu staining. Apoptosis was studied with flow cytometry. Immunofluorescent was applied to show LC3 spots. BALB/c nude mice bearing ACHN cells were established and immunohistochemical staining was applied to validate the in vivo effects of vitexin. All the effects and possible signaling pathways involved were validated with western blotting. Results Seventy micromole of vitexin started to show significant effect on the growth of normal renal tubular epithelial cells (HK-2), so 0, 10, 20 and 40 µM of vitexin were used in later experiments. Vitexin inhibited growth and induced apoptosis of ACHN and OS-RC-2 cells in a dose-dependent manner, and promoted excessive autophagy by reducing p62 levels and increasing Beclin1 and LC3II levels. Western blotting revealed that vitexin significantly increased the phosphorylation levels of Adenosine Monophosphate Activated Protein Kinase (AMPK) and c-Jun N-terminal kinase (JNK) in ACHN and OS-RC-2 cells, while decreasing the phosphorylation levels of phosphatidylinositol 3-kinase/activates protein kinase/mammalian target of rapamycin (PI3K/AKT/mTOR). In BALB/c nude mice bearing ACHN cells, vitexin inhibited tumor growth, reduced Ki67 and increased caspase-3 levels in the tumor tissues. Conclusions The results indicated that the tumor suppressive role of vitexin in ACHN and OS-RC-2 cells involved AMPK/mTOR, PI3K/AKT/mTOR, and JNK pathways. Therefore, vitexin may be a promising drug for the treatment of RCC.
Collapse
Affiliation(s)
- Yuhong Li
- Department of Pharmacy, The First People's Hospital of Jingmen, Jingmen, China
| | - Qinghai Sun
- Clinical Medicine Discipline, Weifang Traditional Chinese Hospital, Weifang, China
| | - Hui Li
- Department of Medicine, Jining No. 1 People's Hospital, Jining, China
| | - Bin Yang
- Department of Vascular Surgery, Jining No. 1 People's Hospital, Jining, China
| | - Meng Wang
- Department of Medicine, Jining No. 1 People's Hospital, Jining, China
| |
Collapse
|
22
|
Bertogliat MJ, Morris-Blanco KC, Vemuganti R. Epigenetic mechanisms of neurodegenerative diseases and acute brain injury. Neurochem Int 2020; 133:104642. [PMID: 31838024 PMCID: PMC8074401 DOI: 10.1016/j.neuint.2019.104642] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
Epigenetic modifications are emerging as major players in the pathogenesis of neurodegenerative disorders and susceptibility to acute brain injury. DNA and histone modifications act together with non-coding RNAs to form a complex gene expression machinery that adapts the brain to environmental stressors and injury response. These modifications influence cell-level operations like neurogenesis and DNA repair to large, intricate processes such as brain patterning, memory formation, motor function and cognition. Thus, epigenetic imbalance has been shown to influence the progression of many neurological disorders independent of aberrations in the genetic code. This review aims to highlight ways in which epigenetics applies to several commonly researched neurodegenerative diseases and forms of acute brain injury as well as shed light on the benefits of epigenetics-based treatments.
Collapse
Affiliation(s)
- Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton VA Hospital, Madison, WI, USA.
| |
Collapse
|
23
|
Liu X, Feng Z, Du L, Huang Y, Ge J, Deng Y, Mei Z. The Potential Role of MicroRNA-124 in Cerebral Ischemia Injury. Int J Mol Sci 2019; 21:ijms21010120. [PMID: 31878035 PMCID: PMC6981583 DOI: 10.3390/ijms21010120] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia injury, the leading cause of morbidity and mortality worldwide, initiates sequential molecular and cellular pathologies that underlie ischemic encephalopathy (IE), such as ischemic stroke, Alzheimer disease (AD), Parkinson's disease (PD), epilepsy, etc. Targeted therapeutic treatments are urgently needed to tackle the pathological processes implicated in these neurological diseases. Recently, accumulating studies demonstrate that microRNA-124 (miR-124), the most abundant miRNA in brain tissue, is aberrant in peripheral blood and brain vascular endothelial cells following cerebral ischemia. Importantly, miR-124 regulates a variety of pathophysiological processes that are involved in the pathogenesis of age-related IE. However, the role of miR-124 has not been systematically illustrated. Paradoxically, miR-124 exerts beneficial effects in the age-related IE via regulating autophagy, neuroinflammation, oxidative stress, neuronal excitability, neurodifferentiation, Aβ deposition, and hyperphosphorylation of tau protein, while it may play a dual role via regulating apoptosis and exerts detrimental effects on synaptic plasticity and axonal growth. In the present review, we thus focus on the paradoxical roles of miR-124 in age-related IE, as well as the underlying mechanisms. A great understanding of the effects of miR-124 on the hypoxic-ischemic brain will open new avenues for therapeutic approaches to protect against cerebral ischemia injury.
Collapse
Affiliation(s)
- Xiaolu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Zhitao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Lipeng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Yaguang Huang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
| | - Jinwen Ge
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Yihui Deng
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
| | - Zhigang Mei
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang 443002, China; (X.L.); (Z.F.); (L.D.); (Y.H.)
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha 410208, China (Y.D.)
- Correspondence:
| |
Collapse
|