1
|
Thongararm P, Chancharoen M, Suwanwong N, Ruchirawat S, Ruchirawat M, Fedeles BI, Croy RG, Essigmann JM. Structurally Similar Mycotoxins Aflatoxin B 1 and Sterigmatocystin Trigger Different and Distinctive High-Resolution Mutational Spectra in Mammalian Cells. Toxins (Basel) 2025; 17:112. [PMID: 40137885 PMCID: PMC11945433 DOI: 10.3390/toxins17030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/29/2025] Open
Abstract
Aflatoxin B1 (AFB1) and sterigmatocystin (ST) are mycotoxins that pose significant threats to human and animal health owing to their mutagenic, carcinogenic, and toxic properties. They are structurally similar and widely believed to exert their biological effects via the generation of DNA-damaging epoxides at their respective terminal furan rings. Despite structural identity in the warhead portion of each toxin, this work shows that distal parts of each molecule are responsible for the distinctive mutational fingerprints seen in gptΔ C57BL/6J mouse embryo fibroblasts (MEFs). The two toxins differ structurally in the puckered cyclopentenone ring of AFB1 and in the planar xanthone functionality of ST. While both toxins mainly induce GC→TA mutations, the aforementioned differences in structure apparently trigger unique patterns of mutations, as revealed by high-resolution duplex sequencing of MEF genomes. AFB1 is more mutagenic than ST and displays its transversion mutations in a pattern with primary and secondary hotspots (underscored) in 5'-CGC-3' and 5'-CGG-3' contexts, respectively. ST displays a modest 5'-CGG-3' hotspot while its other GC→TA transversions are more uniformly distributed in a pattern resembling established oxidative stress mutational spectra. This research delineates the mutational spectra of AFB1 and ST, establishing these patterns as possible early-onset biomarkers of exposure.
Collapse
Affiliation(s)
- Pennapa Thongararm
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand;
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.C.); (B.I.F.); (R.G.C.)
| | - Marisa Chancharoen
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.C.); (B.I.F.); (R.G.C.)
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand
| | - Nutchapong Suwanwong
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; (N.S.); (S.R.)
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand; (N.S.); (S.R.)
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok 10210, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Bogdan I. Fedeles
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.C.); (B.I.F.); (R.G.C.)
| | - Robert G. Croy
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.C.); (B.I.F.); (R.G.C.)
| | - John M. Essigmann
- Department of Biological Engineering, Department of Chemistry, and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; (M.C.); (B.I.F.); (R.G.C.)
| |
Collapse
|
2
|
Hussain MK, Khatoon S, Khan MF, Akhtar MS, Ahamad S, Saquib M. Coumarins as versatile therapeutic phytomolecules: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155972. [PMID: 39265442 DOI: 10.1016/j.phymed.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/23/2024] [Accepted: 07/11/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Coumarins, abundantly distributed in a plethora of biologically active compounds, serve as a fundamental motif in numerous natural products, drugs, and therapeutic leads. Despite their small size, they exhibit a diverse range of biological activities, intriguing researchers with their immense pharmacological potential. PURPOSE This study consolidates the evidence regarding the essential role of coumarins in modern drug discovery, exploring their broad-spectrum pharmaceutical effects, structural versatility, and mechanisms of action across various domains. METHODS For literature search, we utilized PubMed, Google scholar, and SciFinder databases. Keyword and keyword combinations such as "coumarins", "natural coumarins", "specific natural coumarins for particular diseases", and "therapeutic effects" were employed to retrieve relevant studies. The search encompassed articles published between 2005 and 2023. Selection criteria included studies reporting on the pharmacological activities of natural coumarins against various diseases. RESULTS The results highlight the therapeutic potential of natural coumarins against various diseases, demonstrating anti-cancer, anti-oxidant, and anti-inflammatory activities. They also act as monoamine oxidase inhibitors and phosphodiesterase inhibitors, and as anti-thrombotic, anti-diabetic, and hepatoprotective agents. They also show efficacy against diabetic nephropathy, neurodegenerative diseases, microbial infections and many other diseases. CONCLUSION This review underscores the significant role of natural coumarins in medicinal chemistry and drug discovery. Their diverse biological activities and structural versatility make them promising therapeutic agents. This study serves as a catalyst for further research in the field, aiming to address emerging challenges and opportunities in drug development.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur 244901, M.J.P Rohil Khand University, Bareilly, India.
| | | | - Mohammad Faheem Khan
- Department of Biotechnology, Era's Lucknow Medical College, Era University, Lucknow 226003, India
| | - Mohd Sayeed Akhtar
- Department of Botany, Gandhi Faiz-e-Aam College, Shahjahanpur 242001, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, India.
| |
Collapse
|
3
|
Lei H, Su H, Cao L, Zhou X, Liu Y, Li Y, Song X, Wang Y, Guan Q. Investigating Xiaochaihu Decoction's fever-relieving mechanism via network pharmacology, molecular docking, dynamics simulation, and experiments. Anal Biochem 2024; 694:115629. [PMID: 39069245 DOI: 10.1016/j.ab.2024.115629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Xiaochaihu Decoction(XCHD)is a classic prescription for the treatment of fever, but the mechanism is not clear. In this study, We elucidated the mechanism of action through network pharmacology and molecular docking. A rat fever model was established to verify the prediction results of network pharmacology. The analysis revealed that 120 intersection targets existed between XCHD and fever. The TP53, STAT3, RELA, MAPK1, AKT1, TNF and MAPK14 as potential core targets of XCHD in fever treatment. GO and KEGG pathway enrichment analyses indicated that XCHD may act through pathways such as the AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway. Molecular docking results demonstrated that quercetin, kaempferol, β-sitosterol, stigmasterol and baicalein exhibited strong binding activity to key targets. Animal experiments showed that XCHD significantly reduced body temperature and levels of IL-1β, IL-6, TNF-α, NO, PGE2, and cAMP in rats with fever. Importantly, no significant difference was observed between the XCHD self-emulsifying nano phase plus suspension phase and XCHD group. XCHD exerts its therapeutic effects on fever through a multi-ingredient, multi-target, and multi-pathway approach.
Collapse
Affiliation(s)
- Hong Lei
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Hongbing Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Ling Cao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Xiaoying Zhou
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Yumeng Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Ying Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Xiaoxue Song
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Yanhong Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China
| | - Qingxia Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, Heilongjiang, 150066, China.
| |
Collapse
|
4
|
Mouchtaris Michailidis T, De Saeger S, Khoueiry R, Odongo GA, Bader Y, Dhaenens M, Herceg Z, De Boevre M. The interplay of dietary mycotoxins and oncogenic viruses toward human carcinogenesis: a scoping review. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39422902 DOI: 10.1080/10408398.2024.2414828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Mycotoxins, fungal metabolites prevalent in many foods, are recognized for their role in carcinogenesis, especially when interacting with oncogenic viruses. OBJECTIVES This scoping review synthesizes current evidence on the human cancer risk associated with mycotoxin exposure and oncogenic virus infections. METHODS Searches were conducted on PubMed, Embase, and Web of Science. Studies were selected based on the PECOS framework. Data extraction involved narrative and qualitative presentation of findings, with meta-analysis where feasible. Risk of bias and outcome quality were assessed using the OHAT tool and GRADE approach. RESULTS From 25 included studies, 18 focused on aflatoxins and hepatitis viruses in hepatocellular carcinoma (HCC). Four studies examined aflatoxin B1 (AFB1) and human papilloma virus (HPV) in cervical cancer, while three investigated AFB1 with Epstein-Barr virus (EBV) in lymphomagenesis. The review highlights a significant synergistic effect between AFB1 and hepatitis B and C viruses in HCC development. Significant interactions between AFB1 and HPV, as well as AFB1 and EBV, were observed, but further research is needed. CONCLUSIONS The synergistic impact of mycotoxins and oncogenic viruses is a critical public health concern. Future research, especially prospective cohort studies and investigations into molecular mechanisms, is essential to address this complex issue.
Collapse
Affiliation(s)
- Thanos Mouchtaris Michailidis
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Sarah De Saeger
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Grace A Odongo
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
- Institute of Cancer Research and Genomics Sciences, University of Birmingham, Birmingham, UK
| | - Yasmine Bader
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| | - Maarten Dhaenens
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer/World Health Organization, Lyon, France
| | - Marthe De Boevre
- Faculty of Pharmaceutical Sciences, Centre of Excellence in Mycotoxicology and Public Health, Ghent University, Ghent, Belgium
- CRIG, Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Jiang L, Meng Q, Liu L, Li W. A Comprehensive Review on Molecular Mechanisms, Treatments, and Brief Role of Natural Products in Hepatocellular Cancer. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241284873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Most initial liver cancers are hepatocellular carcinomas (HCC), which make up the vast majority of cases. Hepatitis B or C virus infection as well as alcohol consumption is among the key risk factors. The significance of the most intriguing soluble factors as indicators for early diagnosis and as suggested targets for therapy in light of the increasing challenges in precision medicine. The development of HCC is influenced by a complex combination between pro-inflammatory and anti-inflammatory cytokines and their signalling cascades. Recently,researchers are aims to assess the potential of a number of distinct molecular cascade/cascade including cytokines to function as key players with particular underlying etiologies. Increasing our knowledge of the signaling network that links retro differentiation and inflammationmay help us find novel therapeutic targets and develop combined therapies or treatments that work against tumors with a significant degree of heterogeneity. With nursing processes at its center, comprehensive nursing care is a new nursing paradigm that combines the benefits of primary and group nursin g as well as a perfect synthesis of many nursing metrics like nursing philosophy, nursing plan, and nursing quality evaluation. In order to treat patients with serious liver diseases like cancer, it can conduct nursing interventions item by item in accordance with the unique disease conditions of each patient and combine efficient therapeutic approaches with high-quality nursing modes. Dietary natural products, including fruits, vegetables, and spices, may prevent and treat liver cancer by inhibiting tumor growth, protecting the liver, and enhancing chemotherapy.
Collapse
Affiliation(s)
- Linlin Jiang
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Qin Meng
- Department of Nursing, Huaian Hospital of Huaian City, Huaian Jiangsu,China
| | - Lixiu Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Weihang Li
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| |
Collapse
|
6
|
Chen J, Liao X, Wu Y, Ou S, Qin W, Yang C, Tan Y, Lao Q, Peng M, Peng T, Ye X. Hepatic Artery Infusion Chemotherapy Sequential Hepatic Artery Embolization Combined with Operation in the Treatment of Recurrent Massive Hepatocellular Carcinoma Achieved Pathological Complete Response: A Case Report. Pharmgenomics Pers Med 2023; 16:949-958. [PMID: 37933333 PMCID: PMC10625750 DOI: 10.2147/pgpm.s426791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/06/2023] [Indexed: 11/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) recurrence, which encompasses both true recurrence resulting from cancer spread and de novo tumors developing within the same cancer-prone liver, presents a complication in approximately 70% of cases within a 5-year timeframe. The efficacy of neoadjuvant therapy for recurrence after hepatectomy for hepatocellular carcinoma is still unclear. We report a case of recurrent massive advanced hepatocellular carcinoma with pathological complete remission was treated by continuous hepatic arterial infusion chemotherapy (HAIC) and sequential transcatheter arterial embolization (TAE) combined with secondary operation. One month after resection, the patient recurred (massive type 141mm×76mm). After 4 times of HAIC sequential TAE conversion therapy, the tumor shrank significantly (70mm×29mm), alpha-fetoprotein(AFP) and protein induced by vitamin K absence or antagonist-II (PIVKA-II) levels decreased significantly, residual liver volume[left half liver accounted for 39.85% of standard liver volume(left half liver + right anterior lobe) accounted for 80.17% of standard liver volume] and Indocyanine green 15-minute retention(ICG R15 8.0%) complies with surgical requirement.The second operation was performed, and the tumor was completely resected after hepatic blood flow occlusion Requirement. The postoperative pathological results showed complete remission (PCR) of the tumor, and no recurrence was found during the follow-up of 16 months. In this case, HAIC sequential TAE conversion therapy has good short-term effect on patients with postoperative recurrence of hepatocellular carcinoma, tumor burden is significantly reduced, the second surgery pathology achieves complete remission, safety and tolerance, it is worthy of study and promotion.
Collapse
Affiliation(s)
- Junjie Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
| | - Yining Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Shenjian Ou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
| | - Yufeng Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Quan Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Minhao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, People’s Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, People’s Republic of China
| |
Collapse
|
7
|
Pauletto M, Giantin M, Tolosi R, Bassan I, Bardhi A, Barbarossa A, Montanucci L, Zaghini A, Dacasto M. Discovering the Protective Effects of Quercetin on Aflatoxin B1-Induced Toxicity in Bovine Foetal Hepatocyte-Derived Cells (BFH12). Toxins (Basel) 2023; 15:555. [PMID: 37755981 PMCID: PMC10534839 DOI: 10.3390/toxins15090555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Aflatoxin B1 (AFB1) induces lipid peroxidation and mortality in bovine foetal hepatocyte-derived cells (BFH12), with underlying transcriptional perturbations associated mainly with cancer, cellular damage, inflammation, bioactivation, and detoxification pathways. In this cell line, curcumin and resveratrol have proven to be effective in mitigating AFB1-induced toxicity. In this paper, we preliminarily assessed the potential anti-AFB1 activity of a natural polyphenol, quercetin (QUE), in BFH12 cells. To this end, we primarily measured QUE cytotoxicity using a WST-1 reagent. Then, we pre-treated the cells with QUE and exposed them to AFB1. The protective role of QUE was evaluated by measuring cytotoxicity, transcriptional changes (RNA-sequencing), lipid peroxidation (malondialdehyde production), and targeted post-transcriptional modifications (NQO1 and CYP3A enzymatic activity). The results demonstrated that QUE, like curcumin and resveratrol, reduced AFB1-induced cytotoxicity and lipid peroxidation and caused larger transcriptional variations than AFB1 alone. Most of the differentially expressed genes were involved in lipid homeostasis, inflammatory and immune processes, and carcinogenesis. As for enzymatic activities, QUE significantly reverted CYP3A variations induced by AFB1, but not those of NQO1. This study provides new knowledge about key molecular mechanisms involved in QUE-mediated protection against AFB1 toxicity and encourages in vivo studies to assess QUE's bioavailability and beneficial effects on aflatoxicosis.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Irene Bassan
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| | - Anisa Bardhi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Andrea Barbarossa
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA;
| | - Anna Zaghini
- Department of Veterinary Medical Sciences, Alma Mater Studiorum—University of Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, I-40064 Bologna, Italy; (A.B.); (A.B.); (A.Z.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell’Università 16, I-35020 Legnaro, Italy; (M.G.); (R.T.); (I.B.); (M.D.)
| |
Collapse
|
8
|
Secreted protease ADAMTS18 in development and disease. Gene 2023; 858:147169. [PMID: 36632911 DOI: 10.1016/j.gene.2023.147169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
ADAMTS18 was identified in 2002 as a member of the ADAMTS family of 19 secreted Zinc-dependent metalloproteinases. Prior to 2016, ADAMTS18 was known as a candidate gene associated with a wide range of pathologies, particularly various malignancies and eye disorders. However, functions and substrates of ADAMTS18 in normal conditions were unknown. Since 2016, with the development of Adamts18 knockout models, many studies had been conducted on the Adamts18 gene in vivo. These studies revealed that ADAMTS18 is essential for the morphology and organogenesis of several epithelial organs (e.g., lung, kidney, breast, salivary glands, and lacrimal glands), vascular and neuronal systems, adipose tissue, and reproductive tracts. In this review, we describe the current understanding of ADAMTS18 and its substrates and regulators. Limitations in translating new findings on ADAMTS18 to clinical practice are also discussed.
Collapse
|
9
|
Transcriptomic Profile of Canine Mammary Ductal Carcinoma. Int J Mol Sci 2023; 24:ijms24065212. [PMID: 36982287 PMCID: PMC10049542 DOI: 10.3390/ijms24065212] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 03/11/2023] Open
Abstract
Dogs can be excellent models for spontaneous studies about breast cancers, presenting similarities in clinical behavior and molecular pathways of the disease. Thus, analyses of the canine transcriptome can identify deregulated genes and pathways, contributing to the identification of biomarkers and new therapeutic targets, benefiting humans and animals. In this context, this study aimed to determine the transcriptional profile of canine mammary ductal carcinoma and contribute to the clarification of the importance of deregulated molecules in the molecular pathways involved in the disease. Therefore, we used mammary ductal carcinoma tissue samples and non-tumor mammary tissue from the radical mastectomy of six female dogs. Sequencing was performed on the NextSeq-500 System platform. A comparison of carcinoma tissue and normal tissue revealed 633 downregulated and 573 upregulated genes, which were able to differentiate the groups by principal component analysis. Gene ontology analysis indicated that inflammatory, cell differentiation and adhesion, and extracellular matrix maintenance pathways were mainly deregulated in this series. The main differentially expressed genes observed in this research can indicate greater disease aggressiveness and worse prognosis. Finally, the study of the canine transcriptome indicates that it is an excellent model to generate information relevant to oncology in both species.
Collapse
|
10
|
Wu Y, Ou S, Liao X, Han C, Yang C, Qin W, Tan Y, Lao Q, Peng T, Ye X. Massive Hepatocellular Carcinoma with Situs Inversus Totalis Achieved a Complete Response Following Camrelizumab Plus Apatinib and Combined with Two-Stage Hepatectomy: A Case Report. Pharmgenomics Pers Med 2023; 16:111-120. [PMID: 36785780 PMCID: PMC9921441 DOI: 10.2147/pgpm.s376596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/18/2022] [Indexed: 02/10/2023] Open
Abstract
Situs inversus totalis (SIT) is a rare congenital condition in which abdominal and thoracic organs are transposed from normal positions. Two-stage hepatectomy (TSH) combined with translational therapy for hepatocellular carcinoma (HCC) with SIT has been rarely reported. We report a 41-year-old man with giant hepatocellular carcinoma (71 mm × 55 mm × 51 mm) whose future residual liver (FLR) and standard liver volume (SLV) ratio at first diagnosis was 37.4%. Preoperative volume assessment of portal vein ligation (PVL) revealed inadequate hypertrophy of FLR. After a multidisciplinary group discussion (MDT), the patient decided to follow conversion therapy. Three months later, ratio of the FLR/SLV increased from 37.4% to 71% after operation, which met the surgical requirements. Second hepatectomy, right lobectomy was successful. There was no recurrence after six months of follow-up. In our case, conversion therapy appears to be effective in maintaining residual liver hyperplasia, reducing tumor load, and preventing tumor progression in patients with large HCC during TSH.
Collapse
Affiliation(s)
- Yining Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Shenjian Ou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Wei Qin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Yufeng Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Quan Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
11
|
Micali C, Russotto Y, Caci G, Ceccarelli M, Marino A, Celesia BM, Pellicanò GF, Nunnari G, Venanzi Rullo E. Loco-Regional Treatments for Hepatocellular Carcinoma in People Living with HIV. Infect Dis Rep 2022; 14:43-55. [PMID: 35076514 PMCID: PMC8788283 DOI: 10.3390/idr14010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for approximately 75–90% of primary liver cancers and is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. In the HIV-positive population, the risk of HCC is approximately four times higher than in the general population, with higher cancer-specific mortality than in HIV-negative patients. In most cases, HCC diagnosis is made in patients younger than the HIV-negative population and in the intermediate-advanced stage, thus limiting the therapeutic possibilities. Treatment choice in HIV-positive patients with HCC is subject to cancer staging, liver function and health status, as for HIV-negative and non-HIV-negative HCC patients. There are relatively few studies on the efficacy and safety in HIV-positive patients to date in loco-regional treatments for HCC. So far, literature shows that curative treatments such as radiofrequency ablation (RFA) have no significant differences in overall survival between HIV-positive and HIV-negative patients, as opposed to palliative treatments such as TACE, where there is a significant difference in overall survival. Although it can be assumed that the most recently discovered loco-regional therapies are applicable to HIV-positive patients with HCC in the same way as HIV-negative patients, further studies are needed to confirm this hypothesis. The purpose of our review is to evaluate these treatments, their efficacy, effectiveness, safety and their applicability to HIV-positive patients.
Collapse
Affiliation(s)
- Cristina Micali
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
- Correspondence: ; Tel.: +39-090-2212032
| | - Ylenia Russotto
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Grazia Caci
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Manuela Ceccarelli
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (M.C.); (A.M.); (B.M.C.)
- Unit of Infectious Diseases, Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Andrea Marino
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (M.C.); (A.M.); (B.M.C.)
| | - Benedetto Maurizio Celesia
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Catania, 95131 Catania, Italy; (M.C.); (A.M.); (B.M.C.)
| | - Giovanni Francesco Pellicanò
- Unit of Infectious Diseases, Department of Adult and Childhood Human Pathology “Gaetano Barresi”, University of Messina, 98124 Messina, Italy;
| | - Giuseppe Nunnari
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| | - Emmanuele Venanzi Rullo
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (Y.R.); (G.C.); (G.N.); (E.V.R.)
| |
Collapse
|
12
|
Moldogazieva NT, Zavadskiy SP, Terentiev AA. Genomic Landscape of Liquid Biopsy for Hepatocellular Carcinoma Personalized Medicine. Cancer Genomics Proteomics 2021; 18:369-383. [PMID: 33994362 DOI: 10.21873/cgp.20266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most frequently diagnosed cancer and the third leading cause of cancer-related deaths worldwide. Advanced-stage HCC patients have poor survival rates and this requires the discovery of novel clear biomarkers for HCC early diagnosis and prognosis, identifying risk factors, distinguishing HCC from non-HCC liver diseases, and assessment of treatment response. Liquid biopsy has emerged as a novel minimally invasive approach to enable monitoring tumor progression, metastasis, and recurrence. Since the liquid biopsy analysis has relatively high specificity and low sensitivity in cancer early detection, there is a risk of bias. Next-generation sequencing (NGS) technologies provide accurate and comprehensive gene expression and mutational profiling of liquid biopsies including cell-free circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and genomic components of extracellular vesicles (EVs) including micro-RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). Since HCC is a highly heterogeneous cancer, HCC patients can display various genomic, epigenomic, and transcriptomic patterns and exhibit varying sensitivity to treatment options. Identification of individual variabilities in genomic signatures in liquid biopsy has the potential to greatly enhance precision oncology capabilities. In this review, we highlight and critically discuss the latest progress in characterizing the genomic landscape of liquid biopsy, which can advance HCC personalized medicine.
Collapse
Affiliation(s)
- Nurbubu T Moldogazieva
- Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
| | - Sergey P Zavadskiy
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
13
|
Yang P, Xiao W, Lu S, Jiang S, Zheng Z, Zhang D, Zhang M, Jiang S, Jiang S. Recombinant Expression of Trametes versicolor Aflatoxin B 1-Degrading Enzyme (TV-AFB 1D) in Engineering Pichia pastoris GS115 and Application in AFB 1 Degradation in AFB 1-Contaminated Peanuts. Toxins (Basel) 2021; 13:toxins13050349. [PMID: 34068167 PMCID: PMC8153001 DOI: 10.3390/toxins13050349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 11/22/2022] Open
Abstract
Aflatoxins seriously threaten the health of humans and animals due to their potential carcinogenic properties. Enzymatic degradation approach is an effective and environmentally friendly alternative that involves changing the structure of aflatoxins. In this study, Trametes versicolor aflatoxin B1-degrading enzyme gene (TV-AFB1D) was integrated into the genome of Pichia pastoris GS115 by homologous recombination approach. The recombinant TV-AFB1D was expressed in engineering P. pastoris with a size of approximately 77 kDa under the induction of methanol. The maximum activity of TV-AFB1D reached 17.5 U/mL after the induction of 0.8% ethanol (v/v) for 84 h at 28 °C. The AFB1 proportion of 75.9% was degraded using AFB1 standard sample after catalysis for 12 h. In addition, the AFB1 proportion was 48.5% using AFB1-contaminated peanuts after the catalysis for 18 h at 34 °C. The recombinant TV-AFB1D would have good practical application value in AFB1 degradation in food crops. This study provides an alternative degrading enzyme for the degradation of AFB1 in aflatoxin-contaminated grain and feed via enzymatic degradation approach.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
- Correspondence:
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuhua Lu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Suwei Jiang
- School of Biological, Food and Environment Engineering, Hefei University, 158 Jinxiu Avenue, Hefei 230601, China;
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Danfeng Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Min Zhang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| | - Shuying Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, 420 Feicui Road, Shushan District, Hefei 230601, China; (W.X.); (S.L.); (Z.Z.); (D.Z.); (M.Z.); (S.J.); (S.J.)
| |
Collapse
|