1
|
Najafi-Ghalehlou N, Baharvand F, Pourmohammadi-Bejarpasi Z, Roushandeh AM, Roudkenar MH. The importance of platelet-derived mitochondrial transplantation in ischemic heart disease: A clinical study. Int J Cardiol 2024; 413:132408. [PMID: 39074618 DOI: 10.1016/j.ijcard.2024.132408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Affiliation(s)
| | - Fatemeh Baharvand
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Iran
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mehryar Habibi Roudkenar
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Iran; Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
2
|
Castillo-Galán S, Parra V, Cuenca J. Unraveling the pathogenesis of viral-induced pulmonary arterial hypertension: Possible new therapeutic avenues with mesenchymal stromal cells and their derivatives. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167519. [PMID: 39332781 DOI: 10.1016/j.bbadis.2024.167519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024]
Abstract
Pulmonary hypertension (PH) is a severe condition characterized by elevated pressure in the pulmonary artery, where metabolic and mitochondrial dysfunction may contribute to its progression. Within the PH spectrum, pulmonary arterial hypertension (PAH) stands out with its primary pulmonary vasculopathy. PAH's prevalence varies from 0.4 to 1.4 per 100,000 individuals and is associated with diverse conditions, including viral infections such as HIV. Notably, recent observations highlight an increased occurrence of PAH among COVID-19 patients, even in the absence of pre-existing cardiopulmonary disorders. While current treatments offer partial relief, there's a pressing need for innovative therapeutic strategies, among which mesenchymal stromal cells (MSCs) and their derivatives hold promise. This review critically evaluates recent investigations into viral-induced PAH, encompassing pathogens like human immunodeficiency virus, herpesvirus, Cytomegalovirus, Hepatitis B and C viruses, SARS-CoV-2, and Human endogenous retrovirus K (HERKV), with a specific emphasis on mitochondrial dysfunction. Furthermore, we explore the underlying rationale driving novel therapeutic modalities, including MSCs, extracellular vesicles, and mitochondrial interventions, within the framework of PAH management.
Collapse
Affiliation(s)
- Sebastián Castillo-Galán
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
| | - Valentina Parra
- Laboratory of Differentiation and Cell Metabolism (D&M), Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile; SYSTEMIX Center for Systems Biology, O'Higgins University, Rancagua, Chile
| | - Jimena Cuenca
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CIIB), Faculty of Medicine, Universidad de los Andes, Chile; IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile; Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile; Cells for Cells, Santiago, Chile.
| |
Collapse
|
3
|
Baharvand F, Habibi Roudkenar M, Pourmohammadi-Bejarpasi Z, Najafi-Ghalehlou N, Feizkhah A, Bashiri Aliabadi S, Salari A, Mohammadi Roushandeh A. Safety and efficacy of platelet-derived mitochondrial transplantation in ischaemic heart disease. Int J Cardiol 2024; 410:132227. [PMID: 38844091 DOI: 10.1016/j.ijcard.2024.132227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 04/26/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Acute ST-elevation myocardial infarction (STEMI) remains a globally significant health challenge in spite of improvement in management strategy. Being aware that mitochondrial dysfunction plays a crucial role in ischaemia-reperfusion injury (IRI) modulation, empirical evidence suggests functional mitochondrial transplantation strikes as a reliable therapeutic approach for patients with acute myocardial infarction. METHODS AND RESULTS We conducted a prospective, triple-blinded, parallel-group, blocked randomised clinical trial to investigate the therapeutic effects and clinical outcomes of platelet-derived mitochondrial transplantation in 30 patients with acute STEMI, such that the 15 subjects in the control group were given standard of care treatment, whereas the subjects in the intervention group received autologous platelet-derived mitochondria through the intracoronary injection. We observed that within 40 days, the intervention group had a slightly greater improvement in the left ventricular ejection fraction (LVEF) compared to the control group and experienced a significant enhancement in the exercise capacity (p < 0.001). Moreover, major adverse cardiac events (MACE), arrhythmia, fever, and tachycardia were compared between the groups and lack of significant difference marks the safety of mitochondrial transplantation (p > 0.05). Furthermore, the two groups were not significantly distinct as regards the average length of stay for a hospitalisation (p > 0.05). CONCLUSION We suggest platelet-derived mitochondrial transplantation appears as a beneficial and highly promising therapeutic option for patients of ischaemic heart disease (IHD); however, we are aware that further in-depth studies with larger sample sizes along with longer follow-up periods are necessary for validating the clinical implications of our findings.
Collapse
Affiliation(s)
- Fatemeh Baharvand
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Iran
| | - Mehryar Habibi Roudkenar
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Iran; Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Biomedical Engineering, School of Engineering, Tufts University, Medford, MA 02155, USA
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Somaye Bashiri Aliabadi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, Heshmat Hospital, School of Medicine, Guilan University of Medical Sciences, Iran
| | - Amaneh Mohammadi Roushandeh
- Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Khaghani F, Hemmati M, Ebrahimi M, Salmaninejad A. Emerging Multi-omic Approaches to the Molecular Diagnosis of Mitochondrial Disease and Available Strategies for Treatment and Prevention. Curr Genomics 2024; 25:358-379. [PMID: 39323625 PMCID: PMC11420563 DOI: 10.2174/0113892029308327240612110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/03/2024] [Accepted: 05/21/2024] [Indexed: 09/27/2024] Open
Abstract
Mitochondria are semi-autonomous organelles present in several copies within most cells in the human body that are controlled by the precise collaboration of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoding mitochondrial proteins. They play important roles in numerous metabolic pathways, such as the synthesis of adenosine triphosphate (ATP), the predominant energy substrate of the cell generated through oxidative phosphorylation (OXPHOS), intracellular calcium homeostasis, metabolite biosynthesis, aging, cell cycles, and so forth. Previous studies revealed that dysfunction of these multi-functional organelles, which may arise due to mutations in either the nuclear or mitochondrial genome, leads to a diverse group of clinically and genetically heterogeneous disorders. These diseases include neurodegenerative and metabolic disorders as well as cardiac and skeletal myopathies in both adults and newborns. The plethora of phenotypes and defects displayed leads to challenges in the diagnosis and treatment of mitochondrial diseases. In this regard, the related literature proposed several diagnostic options, such as high throughput mitochondrial genomics and omics technologies, as well as numerous therapeutic options, such as pharmacological approaches, manipulating the mitochondrial genome, increasing the mitochondria content of the affected cells, and recently mitochondrial diseases transmission prevention. Therefore, the present article attempted to review the latest advances and challenges in diagnostic and therapeutic options for mitochondrial diseases.
Collapse
Affiliation(s)
- Faeze Khaghani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboobeh Hemmati
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoumeh Ebrahimi
- Department of Animal Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Arash Salmaninejad
- Medical Genetic Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Kim MJ, Lee JM, Min K, Choi YS. Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy. J Muscle Res Cell Motil 2024; 45:53-68. [PMID: 36802005 DOI: 10.1007/s10974-023-09643-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/16/2023] [Indexed: 02/21/2023]
Abstract
Muscle atrophy significantly impairs health and quality of life; however, there is still no cure. Recently, the possibility of regeneration in muscle atrophic cells was suggested through mitochondrial transfer. Therefore, we attempted to prove the efficacy of mitochondrial transplantation in animal models. To this end, we prepared intact mitochondria from umbilical cord-derived mesenchymal stem cells maintaining their membrane potential. To examine the efficacy of mitochondrial transplantation on muscle regeneration, we measured muscle mass, cross-sectional area of muscle fiber, and changes in muscle-specific protein. In addition, changes in the signaling mechanisms related to muscle atrophy were evaluated. As a result, in mitochondrial transplantation, the muscle mass increased by 1.5-fold and the lactate concentration decreased by 2.5-fold at 1 week in dexamethasone-induced atrophic muscles. In addition, a 2.3-fold increase in the expression of desmin protein, a muscle regeneration marker, showed a significant recovery in MT 5 µg group. Importantly, the muscle-specific ubiquitin E3-ligases MAFbx and MuRF-1 were significantly decreased through AMPK-mediated Akt-FoxO signaling pathway by mitochondrial transplantation compared with the saline group, reaching a level similar to that in the control. Based on these results, mitochondrial transplantation may have therapeutic applications in the treatment of atrophic muscle disorders.
Collapse
Affiliation(s)
- Mi Jin Kim
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Ji Min Lee
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea
| | - Kyunghoon Min
- Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University School of Medicine, 13496, Seongnam, Korea
| | - Yong-Soo Choi
- Department of Biotechnology, CHA University, 13488, Seongnam, Korea.
| |
Collapse
|
6
|
Chen R, Chen J. Mitochondrial transfer - a novel promising approach for the treatment of metabolic diseases. Front Endocrinol (Lausanne) 2024; 14:1346441. [PMID: 38313834 PMCID: PMC10837849 DOI: 10.3389/fendo.2023.1346441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Metabolic disorders remain a major global health concern in the 21st century, with increasing incidence and prevalence. Mitochondria play a critical role in cellular energy production, calcium homeostasis, signal transduction, and apoptosis. Under physiological conditions, mitochondrial transfer plays a crucial role in tissue homeostasis and development. Mitochondrial dysfunction has been implicated in the pathogenesis of metabolic disorders. Numerous studies have demonstrated that mitochondria can be transferred from stem cells to pathologically injured cells, leading to mitochondrial functional restoration. Compared to cell therapy, mitochondrial transplantation has lower immunogenicity, making exogenous transplantation of healthy mitochondria a promising therapeutic approach for treating diseases, particularly metabolic disorders. This review summarizes the association between metabolic disorders and mitochondria, the mechanisms of mitochondrial transfer, and the therapeutic potential of mitochondrial transfer for metabolic disorders. We hope this review provides novel insights into targeted mitochondrial therapy for metabolic disorders.
Collapse
Affiliation(s)
- Ruijing Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Jun Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine and Health, Jinan, Shandong, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong, China
| |
Collapse
|
7
|
Hu C, Shi Z, Liu X, Sun C. The Research Progress of Mitochondrial Transplantation in the Treatment of Mitochondrial Defective Diseases. Int J Mol Sci 2024; 25:1175. [PMID: 38256247 PMCID: PMC10816172 DOI: 10.3390/ijms25021175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Mitochondria are double-membrane organelles that are involved in energy production, apoptosis, and signaling in eukaryotic cells. Several studies conducted over the past decades have correlated mitochondrial dysfunction with various diseases, including cerebral ischemia, myocardial ischemia-reperfusion, and cancer. Mitochondrial transplantation entails importing intact mitochondria from healthy tissues into diseased tissues with damaged mitochondria to rescue the injured cells. In this review, the different mitochondrial transplantation techniques and their clinical applications have been discussed. In addition, the challenges and future directions pertaining to mitochondrial transplantation and its potential in the treatment of diseases with defective mitochondria have been summarized.
Collapse
Affiliation(s)
- Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Shi
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Z.S.); (X.L.)
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou 730000, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Caicedo A, Morales E, Moyano A, Peñaherrera S, Peña-Cisneros J, Benavides-Almeida A, Pérez-Meza ÁA, Haro-Vinueza A, Ruiz C, Robayo P, Tenesaca D, Barba D, Zambrano K, Castañeda V, Singh KK. Powering prescription: Mitochondria as "Living Drugs" - Definition, clinical applications, and industry advancements. Pharmacol Res 2024; 199:107018. [PMID: 38013162 DOI: 10.1016/j.phrs.2023.107018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Mitochondria's role as engines and beacons of metabolism and determinants of cellular health is being redefined through their therapeutic application as "Living Drugs" (LDs). Artificial mitochondrial transfer/transplant (AMT/T), encompassing various techniques to modify, enrich, or restore mitochondria in cells and tissues, is revolutionizing acellular therapies and the future of medicine. This article proposes a necessary definition for LDs within the Advanced Therapeutic Medicinal Products (ATMPs) framework. While recognizing different types of LDs as ATMPs, such as mesenchymal stem cells (MSCs) and chimeric antigen receptor T (CAR T) cells, we focus on mitochondria due to their unique attributes that distinguish them from traditional cell therapies. These attributes include their inherent living nature, diverse sources, industry applicability, validation, customizability for therapeutic needs, and their capability to adapt and respond within recipient cells. We trace the journey from initial breakthroughs in AMT/T to the current state-of-the-art applications by emerging innovative companies, highlighting the need for manufacturing standards to navigate the transition of mitochondrial therapies from concept to clinical practice. By providing a comprehensive overview of the scientific, clinical, and commercial landscape of mitochondria as LDs, this article contributes to the essential dialogue among regulatory agencies, academia, and industry to shape their future in medicine.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Emilia Morales
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Aldana Moyano
- Mito-Act Research Consortium, Quito, Ecuador; Instituto de investigaciones biotecnológicas IIB, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Sebastian Peñaherrera
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - José Peña-Cisneros
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Abigail Benavides-Almeida
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Álvaro A Pérez-Meza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Alissen Haro-Vinueza
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | | | - Doménica Tenesaca
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, the Netherlands; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Biología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador; PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Santos RT, de Sá Freire Onofre ME, de Assis Fernandes Caldeira D, Klein AB, Rocco PRM, Cruz FF, Silva PL. Pharmacological Agents and Potential New Therapies in Pulmonary Arterial Hypertension. Curr Vasc Pharmacol 2024; 22:155-170. [PMID: 38115617 DOI: 10.2174/0115701611266576231211045731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by an imbalance between vasoactive mediators, which causes vascular remodeling, increased pulmonary vascular resistance, and right ventricular overload, ultimately leading to heart failure and death. A metabolic theory has been suggested to explain the pathophysiology of PAH whereby abnormalities in mitochondrial biogenesis can trigger a hyperproliferative and apoptosis-resistant phenotype in cardiopulmonary and malignant cells, leading to mitochondrial dysfunction, which in turn causes the Warburg effect. This can culminate in the mitophagy of pulmonary vessels and cardiomyocytes. The present narrative review focuses on the pathophysiology of PAH, the pharmacological agents currently available for its treatment, and promising and challenging areas of therapeutic investigation.
Collapse
Affiliation(s)
- Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Eduarda de Sá Freire Onofre
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dayene de Assis Fernandes Caldeira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane Bello Klein
- Laboratory of Cardiovascular Physiology and Reactive Oxygen Species, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Jain R, Begum N, Rajan S, Tryphena KP, Khatri DK. Role of F-actin-mediated endocytosis and exercise in mitochondrial transplantation in an experimental Parkinson's disease mouse model. Mitochondrion 2024; 74:101824. [PMID: 38040169 DOI: 10.1016/j.mito.2023.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/16/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Dopaminergic neurons gradually deteriorate in Parkinson's Disease (PD), which is characterized by the intracellular accumulation of Lewy bodies that are enriched with α-synuclein protein. Mitochondrial dysfunction is one of the primary contributors to this and is considered as the central player in the pathogenesis of PD. Recently, improving mitochondrial function has been extensively explored as a therapeutic strategy in various preclinical PD models. Mitochondrial transplantation is one such naïve yet highly efficient technique that has been well explored in diseases like diabetes, NAFLD, and cardiac ischemia but not in PD. Here, we compared the effects of transplanting normal allogenic mitochondria to those of transplanting exercise-induced allogenic mitochondria isolated from the liver into the PD mouse model. It is already known that normal Mitochondrial Transplant (MT) reduces the PD pathology, but our research found out that exercise-induced mitochondria were more effective in treating the PD pathology because they had higher respiratory capacities. Additionally, compared to a standard transplant, this therapy significantly boosted the rate of mitochondrial biogenesis and the quantity of mitochondrial subunits in PD mice. Further, we also explored the mechanism of mitochondrial uptake into the cells and found that F-actin plays a key role in the internalization of mitochondria. This study is the first to demonstrate the relevance of exercise-induced allogenic MT and the function of F-actin in the internalization of mitochondria in PD mice.
Collapse
Affiliation(s)
- Rachit Jain
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Nusrat Begum
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Shruti Rajan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
11
|
McCully JD, del Nido PJ, Emani SM. Mitochondrial transplantation: the advance to therapeutic application and molecular modulation. Front Cardiovasc Med 2023; 10:1268814. [PMID: 38162128 PMCID: PMC10757322 DOI: 10.3389/fcvm.2023.1268814] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mitochondrial transplantation provides a novel methodology for rescue of cell viability and cell function following ischemia-reperfusion injury and applications for other pathologies are expanding. In this review we present our methods and acquired data and evidence accumulated to support the use of mitochondrial transplantation.
Collapse
Affiliation(s)
- James D. McCully
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Pedro J. del Nido
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Sitaram M. Emani
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Paliwal S, Jain S, Mudgal P, Verma K, Paliwal S, Sharma S. Mitochondrial transfer restores impaired liver functions by AMPK/ mTOR/PI3K-AKT pathways in metabolic syndrome. Life Sci 2023; 332:122116. [PMID: 37739165 DOI: 10.1016/j.lfs.2023.122116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
AIM We investigated the effect of mitochondria transfer in high fat diet and streptozotocin (HFD + STZ) induced metabolic syndrome (MeS) in rats. The effect of mitochondria transfer in MeS with co-existing hypertension, hyperlipidaemia, diabetes and fatty liver together, has not been reported. MATERIALS AND METHODS Heathy mitochondria was transferred intravenously and the effect on several physiological parameters and biochemical parameters were examined in HFD + STZ rats. In addition, RNA-sequencing of healthy liver tissues was performed to elucidate the molecular pathways affected by mitochondria transfer in restoring metabolic health. KEY FINDINGS We observed reduction in both systolic and diastolic blood pressure levels, reduced blood glucose levels, and a marked reduction in serum lipid profiles. The levels of alanine transaminase (ALT) and aspartate transaminase (AST) also improved along with evident restoration of liver morphology demonstrated by histopathological analysis. Enhanced mitochondrial biogenetics and reduction in oxidative stress and inflammatory markers was also observed. The pathway enrichment analysis revealed reduction in insulin resistance, inflammatory markers, regulation of mitochondrial bioenergetics, calcium ion homeostasis, fatty-acid β-oxidation, cytokine immune regulators, and enhanced lipid solubilisation. The significant effect of healthy mitochondria transfer in restoration of metabolic functions was observed by the activation of PI3K-AKT, AMPK/mTOR pathways and cytokine immune regulators, suggesting that inflammatory mediators were also significantly affected after mitochondria transfer. SIGNIFICANCE This study, provides insights on molecular processes triggered by mitochondria transfer in fatty liver regeneration and improvement of overall metabolic health.
Collapse
Affiliation(s)
- Swati Paliwal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India.
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Pallavi Mudgal
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Rajasthan 304022, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan 304022, India
| |
Collapse
|
13
|
Ibi Y, Nishinakamura R. Kidney Bioengineering for Transplantation. Transplantation 2023; 107:1883-1894. [PMID: 36717963 DOI: 10.1097/tp.0000000000004526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The kidney is an important organ for maintenance of homeostasis in the human body. As renal failure progresses, renal replacement therapy becomes necessary. However, there is a chronic shortage of kidney donors, creating a major problem for transplantation. To solve this problem, many strategies for the generation of transplantable kidneys are under investigation. Since the first reports describing that nephron progenitors could be induced from human induced pluripotent stem cells, kidney organoids have been attracting attention as tools for studying human kidney development and diseases. Because the kidney is formed through the interactions of multiple renal progenitors, current studies are investigating ways to combine these progenitors derived from human induced pluripotent stem cells for the generation of transplantable kidney organoids. Other bioengineering strategies, such as decellularization and recellularization of scaffolds, 3-dimensional bioprinting, interspecies blastocyst complementation and progenitor replacement, and xenotransplantation, also have the potential to generate whole kidneys, although each of these strategies has its own challenges. Combinations of these approaches will lead to the generation of bioengineered kidneys that are transplantable into humans.
Collapse
Affiliation(s)
- Yutaro Ibi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | | |
Collapse
|
14
|
Ying Z, Ye N, Ma Q, Chen F, Li N, Zhen X. Targeted to neuronal organelles for CNS drug development. Adv Drug Deliv Rev 2023; 200:115025. [PMID: 37516410 DOI: 10.1016/j.addr.2023.115025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Significant evidences indicate that sub-cellular organelle dynamics is critical for both physiological and pathological events and therefore may be attractive drug targets displaying great therapeutic potential. Although the basic biological mechanism underlying the dynamics of intracellular organelles has been extensively studied, relative drug development is still limited. In the present review, we show that due to the development of technical advanced imaging tools, especially live cell imaging methods, intracellular organelle dynamics (including mitochondrial dynamics and membrane contact sites) can be dissected at the molecular level. Based on these identified molecular targets, we review and discuss the potential of drug development to target organelle dynamics, especially mitochondria dynamics and ER-organelle membrane contact dynamics, in the central nervous system for treating human diseases, including neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Na Ye
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qilian Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Fan Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
15
|
Chen Q, Young L, Barsotti R. Mitochondria in cell senescence: A Friend or Foe? ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:35-91. [PMID: 37437984 DOI: 10.1016/bs.apcsb.2023.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Cell senescence denotes cell growth arrest in response to continuous replication or stresses damaging DNA or mitochondria. Mounting research suggests that cell senescence attributes to aging-associated failing organ function and diseases. Conversely, it participates in embryonic tissue maturation, wound healing, tissue regeneration, and tumor suppression. The acute or chronic properties and microenvironment may explain the double faces of senescence. Senescent cells display unique characteristics. In particular, its mitochondria become elongated with altered metabolomes and dynamics. Accordingly, mitochondria reform their function to produce more reactive oxygen species at the cost of low ATP production. Meanwhile, destructed mitochondrial unfolded protein responses further break the delicate proteostasis fostering mitochondrial dysfunction. Additionally, the release of mitochondrial damage-associated molecular patterns, mitochondrial Ca2+ overload, and altered NAD+ level intertwine other cellular organelle strengthening senescence. These findings further intrigue researchers to develop anti-senescence interventions. Applying mitochondrial-targeted antioxidants reduces cell senescence and mitigates aging by restoring mitochondrial function and attenuating oxidative stress. Metformin and caloric restriction also manifest senescent rescuing effects by increasing mitochondria efficiency and alleviating oxidative damage. On the other hand, Bcl2 family protein inhibitors eradicate senescent cells by inducing apoptosis to facilitate cancer chemotherapy. This review describes the different aspects of mitochondrial changes in senescence and highlights the recent progress of some anti-senescence strategies.
Collapse
Affiliation(s)
- Qian Chen
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States.
| | - Lindon Young
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Robert Barsotti
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| |
Collapse
|
16
|
Clemente-Suárez VJ, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24108848. [PMID: 37240194 DOI: 10.3390/ijms24108848] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of numerous diseases, including neurodegenerative disorders, metabolic disorders, and cancer. Mitochondrial transfer, the transfer of mitochondria from one cell to another, has recently emerged as a potential therapeutic approach for restoring mitochondrial function in diseased cells. In this review, we summarize the current understanding of mitochondrial transfer, including its mechanisms, potential therapeutic applications, and impact on cell death pathways. We also discuss the future directions and challenges in the field of mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
17
|
Bamshad C, Habibi Roudkenar M, Abedinzade M, Yousefzadeh Chabok S, Pourmohammadi-Bejarpasi Z, Najafi-Ghalehlou N, Sato T, Tomita K, Jahanian-Najafabadi A, Feizkhah A, Mohammadi Roushandeh A. Human umbilical cord-derived mesenchymal stem cells-harvested mitochondrial transplantation improved motor function in TBI models through rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation. Int Immunopharmacol 2023; 118:110106. [PMID: 37015158 DOI: 10.1016/j.intimp.2023.110106] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Each year, traumatic brain injury (TBI) causes a high rate of mortality throughout the world and those who survive have lasting disabilities. Given that the brain is a particularly dynamic organ with a high energy consumption rate, the inefficiency of current TBI treatment options highlights the necessity of repairing damaged brain tissue at the cellular and molecular levels, which according to research is aggravated due to ATP deficiency and reactive oxygen species surplus. Taking into account that mitochondria contribute to generating energy and controlling cellular stress, mitochondrial transplantation as a new treatment approach has lately reduced complications in a number of diseases by supplying healthy and functional mitochondria to the damaged tissue. For this reason, in this study, we used this technique to transplant human umbilical cord-derived mesenchymal stem cells (hUC-MSCs)-derived mitochondria as a suitable source for mitochondrial isolation into rat models of TBI to examine its therapeutic benefit and the results showed that the successful mitochondrial internalisation in the neuronal cells significantly reduced the number of brain cells undergoing apoptosis, alleviated astrogliosis and microglia activation, retained normal brain morphology and cytoarchitecture, and improved sensorimotor functions in a rat model of TBI. These data indicate that human umbilical cord-derived mesenchymal stem cells-isolated mitochondrial transplantation improves motor function in a rat model of TBI via rescuing neuronal cells from apoptosis and alleviating astrogliosis and microglia activation, maybe as a result of restoring the lost mitochondrial content.
Collapse
Affiliation(s)
- Chia Bamshad
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmoud Abedinzade
- Department of Operation Room, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Zahra Pourmohammadi-Bejarpasi
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tomoaki Sato
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Alireza Feizkhah
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
18
|
Davies SJ, DiNardo JA, Emani SM, Brown ML. A Review of Biventricular Repair for the Congenital Cardiac Anesthesiologist. Semin Cardiothorac Vasc Anesth 2023; 27:51-63. [PMID: 36470215 DOI: 10.1177/10892532221143880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The management of children with a borderline ventricle has been debated for many years. The pursuit of a biventricular repair in these children aims to avoid the long-term sequelae of single ventricle palliation. There is a lack of anesthesia literature relating to the care of this complex heterogenous patient population. Anesthesiologists caring for these patients should have an understanding on the many different forms of physiology and the impact on provision of anesthesia and hemodynamic parameters, the goals of biventricular staging and completion as well as the pre-operative, intra-operative, and post-operative considerations relating to this high-risk group of patients.
Collapse
Affiliation(s)
- Sean J Davies
- Department of Anesthesiology, Critical Care and Pain Medicine, 1862Boston Children's Hospital, Boston, MA, USA
| | - James A DiNardo
- Department of Anesthesiology, Critical Care and Pain Medicine, 1862Boston Children's Hospital, Boston, MA, USA
| | - Sitaram M Emani
- Department of Anesthesiology, Critical Care and Pain Medicine, 1862Boston Children's Hospital, Boston, MA, USA
| | - Morgan L Brown
- Department of Anesthesiology, Critical Care and Pain Medicine, 1862Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
19
|
Caicedo A, Singh KK. Advancing mitochondria as a therapeutic agent. Mitochondrion 2023; 69:33-35. [PMID: 36657505 DOI: 10.1016/j.mito.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
This article intends to provide an update of the needs in the field working in the artificial mitochondrial transfer/transplant (AMT/T), and an overview of the highlights from the articles in the special issue "Advances of Mitochondria as a therapeutic agent". In the last 4 decades, scientists have developed innovative therapeutic applications based on the AMT/T, inspired by the natural transfer of mitochondria between cells to repair cellular damage or treat diseases. The clinical application of AMT has become the priority for the field involving the replacement or augmentation of healthy mitochondria in the harmed tissue, especially in the treatment of organ ischemia-reperfusion injury. However, we remark in our article that key questions remain to be answered such as which one is the best isolation protocol, tissue or cell source for isolation, and others of great importance to move the field forward.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
20
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
21
|
Alway SE, Paez HG, Pitzer CR, Ferrandi PJ, Khan MM, Mohamed JS, Carson JA, Deschenes MR. Mitochondria transplant therapy improves regeneration and restoration of injured skeletal muscle. J Cachexia Sarcopenia Muscle 2023; 14:493-507. [PMID: 36604839 PMCID: PMC9891964 DOI: 10.1002/jcsm.13153] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Injection of exogenous mitochondria has been shown to improve the ischaemia-damaged myocardium, but the effect of mitochondrial transplant therapy (MTT) to restore skeletal muscle mass and function has not been tested following neuromuscular injury. Therefore, we tested the hypothesis that MTT would improve the restoration of muscle function after injury. METHODS BaCl2 was injected into the gastrocnemius muscle of one limb of 8-12-week-old C57BL/6 mice to induce damage without injury to the resident stem cells. The contralateral gastrocnemius muscle was injected with phosphate-buffered saline (PBS) and served as the non-injured intra-animal control. Mitochondria were isolated from donor mice. Donor mitochondria were suspended in PBS or PBS without mitochondria (sham treatment) and injected into the tail vein of BaCl2 injured mice 24 h after the initial injury. Muscle repair was examined 7, 14 and 21 days after injury. RESULTS MTT did not increase systemic inflammation in mice. Muscle mass 7 days following injury was 21.9 ± 2.1% and 17.4 ± 1.9% lower (P < 0.05) in injured as compared with non-injured intra-animal control muscles in phosphate-buffered saline (PBS)- and MTT-treated animals, respectively. Maximal plantar flexor muscle force was significantly lower in injured as compared with uninjured muscles of PBS-treated (-43.4 ± 4.2%, P < 0.05) and MTT-treated mice (-47.7 ± 7.3%, P < 0.05), but the reduction in force was not different between the experimental groups. The percentage of collagen and other non-contractile tissue in histological muscle cross sections, was significantly greater in injured muscles of PBS-treated mice (33.2 ± 0.2%) compared with MTT-treated mice (26.5 ± 0.2%) 7 days after injury. Muscle wet weight and maximal muscle force from injured MTT-treated mice had recovered to control levels by 14 days after the injury. However, muscle mass and force had not improved in PBS-treated animals by 14 days after injury. The non-contractile composition of the gastrocnemius muscle tissue cross sections was not different between control, repaired PBS-treated and repaired MTT-treated mice 14 days after injury. By 21 days following injury, PBS-treated mice had fully restored gastrocnemius muscle mass of the injured muscle to that of the uninjured muscle, although maximal plantar flexion force was still 19.4 ± 3.7% (P < 0.05) lower in injured/repaired gastrocnemius as compared with uninjured intra-animal control muscles. CONCLUSIONS Our results suggest that systemic mitochondria delivery can enhance the rate of muscle regeneration and restoration of muscle function following injury.
Collapse
Affiliation(s)
- Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Tennessee Institute of Regenerative Medicine, Memphis, TN, USA
| | - Hector G Paez
- Laboratory of Muscle Biology and Sarcopenia, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Christopher R Pitzer
- Laboratory of Muscle Biology and Sarcopenia, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Peter J Ferrandi
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA.,Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mohammad Moshahid Khan
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Department of Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Junaith S Mohamed
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Tennessee Institute of Regenerative Medicine, Memphis, TN, USA.,Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | - James A Carson
- Center for Muscle, Metabolism and Neuropathology, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA.,Tennessee Institute of Regenerative Medicine, Memphis, TN, USA.,Integrative Muscle Biology Laboratory, Division of Regenerative and Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, TN, USA
| | | |
Collapse
|
22
|
Liang X, Zhang Y, Lin F, Li M, Li X, Chen Y, Liu J, Meng Q, Ma X, Wang E, Wei L, He Z, Fan H, Zhou X, Ding Y, Liu Z. Direct administration of mesenchymal stem cell-derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence. Bioeng Transl Med 2023; 8:e10365. [PMID: 36684073 PMCID: PMC9842017 DOI: 10.1002/btm2.10365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/01/2022] [Accepted: 06/12/2022] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial dysfunction is considered to be a key contributor to the development of heart failure. Replacing injured mitochondria with healthy mitochondria to restore mitochondrial bioenergy in myocardium holds great promise for cardioprotection after infarction. This study aimed to investigate whether direct transplantation of exogenous mitochondria derived from mesenchymal stem cells (MSC-mt) is beneficial and superior in protecting cardiac function in a mouse model of myocardial infarction (MI) compared to mitochondria derived from skin fibroblast (FB-mt) and to explore the underlying mechanisms from their effects on the endothelial cells. The isolated MSC-mt presented intact mitochondrial morphology and activity, as determined by electron microscopy, JC-1 mitochondrial membrane potential assay, and seahorse assay. Direct injection of MSC-mt into the peri-infarct region in a mouse MI model enhanced blood vessel density, inhibited cardiac remodeling and apoptosis, thus improving heart function compared with FB-mt group. The injected MSC-mt can be tracked in the endothelial cells. In vitro, the fluorescence signal of MSC-mt can be detected in human umbilical vein endothelial cells (HUVECs) by confocal microscopy and flow cytometry after coculture. Compared to FB-mt, MSC-mt more effectively protected the HUVECs from oxidative stress-induced apoptosis and reduced mitochondrial production of reactive oxygen species. MSC-mt presented superior capacity in inducing tube formation, enhancing SCF secretion, ATP content and cell proliferation in HUVECs compared to FB-mt. Mechanistically, MSC-mt administration alleviated oxidative stress-induced endothelial senescence via activation of ERK pathway. These findings suggest that using MSCs as sources of mitochondria is feasible and that proangiogenesis could be the mechanism by which MSC-mt transplantation attenuates MI. MSC-mt transplantation might serve as a new therapeutic strategy for treating MI.
Collapse
Affiliation(s)
- Xiaoting Liang
- Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiPeople's Republic of China
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Yuelin Zhang
- Department of Emergency MedicineGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongPeople's Republic of China
| | - Fang Lin
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Mimi Li
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Xin Li
- Department of Emergency MedicineGuangdong Provincial People's Hospital, Guangdong Academy of Medical SciencesGuangzhouGuangdongPeople's Republic of China
| | - Yu Chen
- Department of Organ TransplantationChangzheng Hospital, Second Military Medical UniversityShanghaiPeople's Republic of China
| | - Jing Liu
- Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiPeople's Republic of China
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Qingshu Meng
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Xiaoxue Ma
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Enhao Wang
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Lu Wei
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Zhiying He
- Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiPeople's Republic of China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiPeople's Republic of China
| | - Huimin Fan
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Xiaohui Zhou
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| | - Yue Ding
- Department of Organ TransplantationChangzheng Hospital, Second Military Medical UniversityShanghaiPeople's Republic of China
| | - Zhongmin Liu
- Institute for Regenerative MedicineShanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiPeople's Republic of China
- Clinical Translational Medical Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
- Department of Cardiovascular and Thoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiPeople's Republic of China
| |
Collapse
|
23
|
Patel SP, Michael FM, Gollihue JL, Brad Hubbard W, Sullivan PG, Rabchevsky AG. Delivery of mitoceuticals or respiratory competent mitochondria to sites of neurotrauma. Mitochondrion 2023; 68:10-14. [PMID: 36371072 PMCID: PMC9805511 DOI: 10.1016/j.mito.2022.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Herein, we review evidence that targeting mitochondrial dysfunction with 'mitoceuticals' is an effective neuroprotective strategy following neurotrauma, and that isolated exogenous mitochondria can be effectively transplanted into host spinal cord parenchyma to increase overall cellular metabolism. We further discuss control measures to ensure greatest potential for mitochondrial transfer, notably using erodible thermogelling hydrogels to deliver respiratory competent mitochondria to the injured spinal cord.
Collapse
Affiliation(s)
- Samir P Patel
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States
| | - Felicia M Michael
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States
| | - Jenna L Gollihue
- Sanders-Brown Center on Aging, College of Medicine, Lexington, KY 40536-0230, United States
| | - W Brad Hubbard
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States
| | - Patrick G Sullivan
- Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States
| | - Alexander G Rabchevsky
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States.
| |
Collapse
|
24
|
Ucar Z, Akbaba TH, Aydinoglu AT, Onder SC, Balci-Peynircioglu B, Demircin M, Balci-Hayta B. Mitochondrial Dysfunction in Cyanotic Congenital Heart Disease: A Promising Therapeutic Approach for the Future. Pediatr Cardiol 2022; 43:1870-1878. [PMID: 35538321 DOI: 10.1007/s00246-022-02926-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Congenital heart disease (CHD) is one of the most specific and yet challenging fields of heart surgery. Apart from the known clinical approaches, including surgery, a significant scale of regenerative therapeutic options is available, which increase the number of cardiomyocytes and restore cardiac function. Although it has been revealed in recent years that mitochondrial transplantation can be used as a promising treatment option in this disease group, there is no clinical evidence for the significance of mitochondrial function in myocardial tissue of patients with CHD regarding cardiac surgery. In this study, mitochondrial morphology and function, myocardial fibrosis, and myocyte atypia were evaluated in myocardial biopsy tissue of pediatric patients with cyanotic and acyanotic CHD, five from each group. After histopathological evaluation of myocardial tissue specimens, mitochondrial morphology and network were analyzed by immunofluorescence staining using an anti-Tom20 antibody, electron transport chain complexes of myocardium were examined by cytochrome c oxidase/succinate dehydrogenase staining, and the amount of ATP was measured by bioluminescence assay. In addition, cardiac markers have been tested to be reviewed as a potential indicator for postoperative follow-up. Myocyte atypia and fibrosis were classified on a scale of 1 to 4. In this study, unlike patients with acyanotic CHD, alterations in mitochondrial network and reduction in ATP production were detected in all pediatric patients with cyanotic CHD. A statistically significant correlation was also determined between mitochondrial dysfunction and cardiac markers. These findings may be assumed as a promising pathway for evaluating the relationship between mitochondrial dysfunction and cyanotic CHD.
Collapse
Affiliation(s)
- Zeynep Ucar
- Department of Cardiovascular Surgery, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| | - Tayfun Hilmi Akbaba
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Ayse Tulay Aydinoglu
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Sevgen Celik Onder
- Department of Pathology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Banu Balci-Peynircioglu
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Metin Demircin
- Department of Cardiovascular Surgery, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Burcu Balci-Hayta
- Department of Medical Biology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| |
Collapse
|
25
|
Wu SF, Lin CY, Tsai RK, Wen YT, Lin FH, Chang CY, Shen CI, Lin SZ, Harn HJ, Chiou TW, Liu CS, Chen YT, Su HL. Mitochondrial Transplantation Moderately Ameliorates Retinal Degeneration in Royal College of Surgeons Rats. Biomedicines 2022; 10:2883. [PMID: 36359403 PMCID: PMC9687640 DOI: 10.3390/biomedicines10112883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/09/2022] [Accepted: 11/03/2022] [Indexed: 01/26/2024] Open
Abstract
Retinal pigmented epithelial (RPE) cells possess high mitochondria content for energy production, which is required for phagocytosis and vision cycle metabolism. The mitochondrial integrity in RPE cells helps the homeostasis of photoreceptor turnover and prevents retina aging and degeneration. Mitochondrial transplantation benefits the recovery of several acute inflammatory diseases, leading us to investigate the effects of mitochondrial transplantation on retina degeneration. Allogeneic mitochondria were isolated and delivered into the vitreous chamber in the Royal College of Surgeons (RCS) rats, which exhibit inherited and early-onset retina degeneration. The progress of retina degeneration was examined with optical coherence tomography (OCT) and visual evoked potential (VEP) to determine the retina thickness and integrity of afferent electrical signals from affected eyes, respectively. We found that mitochondria engraftment moderately attenuated the degeneration of retinal layers in RCS rats by histological examination. This result was consistent with the OCT measurement of retina thickness around the optic disc. The VEP analysis revealed that the peak one (N1) latency, representing the arriving time of electrical impulse from the retina to cortex, was substantially maintained as the normal value after the mitochondrial transplantation. This result suggests that the intra-vitreous transplanted mitochondria ameliorate the degeneration of photoreceptors in RCS rats and might be potential for clinical application.
Collapse
Affiliation(s)
- Shih-Fang Wu
- The Joint Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Health Research Institutes and National Chung Hsing University, Taichung 402, Taiwan
| | - Chih-Yao Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| | - Rong-Kung Tsai
- Institute of Eye Research, Buddhist Tzu Chi Hospital, Hualien 970, Taiwan
| | - Yao-Tseng Wen
- Institute of Eye Research, Buddhist Tzu Chi Hospital, Hualien 970, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Ching-I Shen
- Duogenic Stem Cells Corporation, Taichung 402, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Neurosurgery, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Department of Pathology, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science and Graduate Institute of Biotechnology, National Dong Hwa University, Hualien 974, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Center, Changhua Christian Hospital, Changhua 500, Taiwan
- Departments of Neurology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Yan-Ting Chen
- Departments of Ophthalmology, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
26
|
Mitochondrial Transfer from Menstrual Blood Stromal/Stem Cells Promotes Survival of Cardiomyocytes Following Myocardial Infarction. Avicenna J Med Biotechnol 2022; 14:321-322. [PMID: 36504566 PMCID: PMC9706244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 12/15/2022] Open
|
27
|
Petrosyan A, Montali F, Peloso A, Citro A, Byers LN, La Pointe C, Suleiman M, Marchetti A, Mcneill EP, Speer AL, Ng WH, Ren X, Bussolati B, Perin L, Di Nardo P, Cardinale V, Duisit J, Monetti AR, Savino JR, Asthana A, Orlando G. Regenerative medicine technologies applied to transplant medicine. An update. Front Bioeng Biotechnol 2022; 10:1015628. [PMID: 36263358 PMCID: PMC9576214 DOI: 10.3389/fbioe.2022.1015628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Regenerative medicine (RM) is changing how we think and practice transplant medicine. In regenerative medicine, the aim is to develop and employ methods to regenerate, restore or replace damaged/diseased tissues or organs. Regenerative medicine investigates using tools such as novel technologies or techniques, extracellular vesicles, cell-based therapies, and tissue-engineered constructs to design effective patient-specific treatments. This review illustrates current advancements in regenerative medicine that may pertain to transplant medicine. We highlight progress made and various tools designed and employed specifically for each tissue or organ, such as the kidney, heart, liver, lung, vasculature, gastrointestinal tract, and pancreas. By combing both fields of transplant and regenerative medicine, we can harbor a successful collaboration that would be beneficial and efficacious for the repair and design of de novo engineered whole organs for transplantations.
Collapse
Affiliation(s)
- Astgik Petrosyan
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Filippo Montali
- Department of General Surgery, di Vaio Hospital, Fidenza, Italy
| | - Andrea Peloso
- Visceral Surgery Division, University Hospitals of Geneva, Geneva, Switzerland
| | - Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Lori N. Byers
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | | | - Mara Suleiman
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alice Marchetti
- Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Eoin P. Mcneill
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Allison L Speer
- Department of Pediatric Surgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, United States
| | - Wai Hoe Ng
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Xi Ren
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics in Urology, Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Paolo Di Nardo
- Centro Interdipartimentale per la Medicina Rigenerativa (CIMER), Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Jerome Duisit
- Department of Plastic, Reconstructive and Aesthetic Surgery, CHU Rennes, University of Rennes I, Rennes, France
| | | | | | - Amish Asthana
- Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Giuseppe Orlando
- Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
28
|
Iacobazzi D, Alvino VV, Caputo M, Madeddu P. Accelerated Cardiac Aging in Patients With Congenital Heart Disease. Front Cardiovasc Med 2022; 9:892861. [PMID: 35694664 PMCID: PMC9177956 DOI: 10.3389/fcvm.2022.892861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 01/03/2023] Open
Abstract
An increasing number of patients with congenital heart disease (CHD) survive into adulthood but develop long-term complications including heart failure (HF). Cellular senescence, classically defined as stable cell cycle arrest, is implicated in biological processes such as embryogenesis, wound healing, and aging. Senescent cells have a complex senescence-associated secretory phenotype (SASP), involving a range of pro-inflammatory factors with important paracrine and autocrine effects on cell and tissue biology. While senescence has been mainly considered as a cause of diseases in the adulthood, it may be also implicated in some of the poor outcomes seen in patients with complex CHD. We propose that patients with CHD suffer from multiple repeated stress from an early stage of the life, which wear out homeostatic mechanisms and cause premature cardiac aging, with this term referring to the time-related irreversible deterioration of the organ physiological functions and integrity. In this review article, we gathered evidence from the literature indicating that growing up with CHD leads to abnormal inflammatory response, loss of proteostasis, and precocious age in cardiac cells. Novel research on this topic may inspire new therapies preventing HF in adult CHD patients.
Collapse
Affiliation(s)
| | | | | | - Paolo Madeddu
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
29
|
Patel SP, Michael FM, Arif Khan M, Duggan B, Wyse S, Darby DR, Chaudhuri K, Pham JT, Gollihue J, DeRouchey JE, Sullivan PG, Dziubla TD, Rabchevsky AG. Erodible thermogelling hydrogels for localized mitochondrial transplantation to the spinal cord. Mitochondrion 2022; 64:145-155. [DOI: 10.1016/j.mito.2022.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
|
30
|
Alexander JF, Mahalingam R, Seua AV, Wu S, Arroyo LD, Hörbelt T, Schedlowski M, Blanco E, Kavelaars A, Heijnen CJ. Targeting the Meningeal Compartment to Resolve Chemobrain and Neuropathy via Nasal Delivery of Functionalized Mitochondria. Adv Healthc Mater 2022; 11:e2102153. [PMID: 35007407 PMCID: PMC9803615 DOI: 10.1002/adhm.202102153] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/03/2022] [Indexed: 01/03/2023]
Abstract
Cognitive deficits (chemobrain) and peripheral neuropathy occur in ∼75% of patients treated for cancer with chemotherapy and persist long-term in >30% of survivors. Without preventive or curative interventions and with increasing survivorship rates, the population debilitated by these neurotoxicities is rising. Platinum-based chemotherapeutics, including cisplatin, induce neuronal mitochondrial defects leading to chemobrain and neuropathic pain. This study investigates the capacity of nasally administered mesenchymal stem cell-derived mitochondria coated with dextran-triphenylphosphonium polymer (coated mitochondria) to reverse these neurotoxicities. Nasally administered coated mitochondria are rapidly detectable in macrophages in the brain meninges but do not reach the brain parenchyma. The coated mitochondria change expression of >2400 genes regulating immune, neuronal, endocrine and vascular pathways in the meninges of mice treated with cisplatin. Nasal administration of coated mitochondria reverses cisplatin-induced cognitive deficits and resolves neuropathic pain at a >55-times lower dose compared to uncoated mitochondria. Reversal of these neuropathologies is associated with resolution of cisplatin-induced deficits in myelination, synaptosomal mitochondrial integrity and neurogenesis. These findings demonstrate that nasally administered coated mitochondria promote resolution of chemobrain and peripheral neuropathy, thereby identifying a novel facile strategy for clinical application of mitochondrial donation and treating central and peripheral nervous system pathologies by targeting the brain meninges.
Collapse
Affiliation(s)
- Jenolyn F. Alexander
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States,Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Rajasekaran Mahalingam
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Alexandre V. Seua
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Suhong Wu
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas, 77030, United States
| | - Luis D. Arroyo
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Tina Hörbelt
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstr. 55, D-45147, Essen, Germany
| | - Elvin Blanco
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, Texas, 77030, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas, M.D. Anderson Cancer Center, 6565 MD Anderson Blvd., Houston, Texas, 77030, United States,Corresponding Author
| |
Collapse
|
31
|
Oxidative stress facilitates exogenous mitochondria internalization and survival in retinal ganglion precursor-like cells. Sci Rep 2022; 12:5122. [PMID: 35332189 PMCID: PMC8948238 DOI: 10.1038/s41598-022-08747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Ocular cells are highly dependent on mitochondrial function due to their high demand of energy supply and their constant exposure to oxidative stress. Indeed, mitochondrial dysfunction is highly implicated in various acute, chronic, and genetic disorders of the visual system. It has recently been shown that mitochondrial transplantation (MitoPlant) temporarily protects retinal ganglion cells (RGCs) from cell death during ocular ischemia. Here, we characterized MitoPlant dynamics in retinal ganglion precursor-like cells, in steady state and under oxidative stress. We developed a new method for detection of transplanted mitochondria using qPCR, based on a difference in the mtDNA sequence of C57BL/6 and BALB/c mouse strains. Using this approach, we show internalization of exogenous mitochondria already three hours after transplantation, and a decline in mitochondrial content after twenty four hours. Interestingly, exposure of target cells to moderate oxidative stress prior to MitoPlant dramatically enhanced mitochondrial uptake and extended the survival of mitochondria in recipient cells by more than three fold. Understanding the factors that regulate the exogenous mitochondrial uptake and their survival may promote the application of MitoPlant for treatment of chronic and genetic mitochondrial diseases.
Collapse
|
32
|
Velarde F, Ezquerra S, Delbruyere X, Caicedo A, Hidalgo Y, Khoury M. Mesenchymal stem cell-mediated transfer of mitochondria: mechanisms and functional impact. Cell Mol Life Sci 2022; 79:177. [PMID: 35247083 PMCID: PMC11073024 DOI: 10.1007/s00018-022-04207-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/27/2022] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
There is a steadily growing interest in the use of mitochondria as therapeutic agents. The use of mitochondria derived from mesenchymal stem/stromal cells (MSCs) for therapeutic purposes represents an innovative approach to treat many diseases (immune deregulation, inflammation-related disorders, wound healing, ischemic events, and aging) with an increasing amount of promising evidence, ranging from preclinical to clinical research. Furthermore, the eventual reversal, induced by the intercellular mitochondrial transfer, of the metabolic and pro-inflammatory profile, opens new avenues to the understanding of diseases' etiology, their relation to both systemic and local risk factors, and also leads to new therapeutic tools for the control of inflammatory and degenerative diseases. To this end, we illustrate in this review, the triggers and mechanisms behind the transfer of mitochondria employed by MSCs and the underlying benefits as well as the possible adverse effects of MSCs mitochondrial exchange. We relay the rationale and opportunities for the use of these organelles in the clinic as cell-based product.
Collapse
Affiliation(s)
- Francesca Velarde
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Sarah Ezquerra
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Xavier Delbruyere
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Yessia Hidalgo
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| | - Maroun Khoury
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile.
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Cells for Cells and REGENERO, The Chilean Consortium for Regenerative Medicine, Santiago, Chile.
| |
Collapse
|
33
|
McCully JD, Del Nido PJ, Emani SM. Mitochondrial Transplantation for Organ Rescue. Mitochondrion 2022; 64:27-33. [PMID: 35217248 DOI: 10.1016/j.mito.2022.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 01/19/2023]
Abstract
Mitochondrial transplantation involves the replacement or augmentation of native mitochondria damaged, by ischemia, with viable, respiration-competent mitochondria isolated from non-ischemic tissue obtained from the patient's own body. The uptake and cellular functional integration of the transplanted mitochondria appears to occur in all cell types. Efficacy and safety have been demonstrated in cell culture, isolated perfused organ, in vivo large animal studies and in a first-human clinical study. Herein, we review our findings and provide insight for use in the treatment of organ ischemia- reperfusion injury.
Collapse
Affiliation(s)
- James D McCully
- Department of Cardiac Surgery, Boston Children's Hospita; Harvard Medical School, Boston, MA.
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospita; Harvard Medical School, Boston, MA
| | - Sitaram M Emani
- Department of Cardiac Surgery, Boston Children's Hospita; Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Vodičková A, Koren SA, Wojtovich AP. Site-specific mitochondrial dysfunction in neurodegeneration. Mitochondrion 2022; 64:1-18. [PMID: 35182728 PMCID: PMC9035127 DOI: 10.1016/j.mito.2022.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/18/2022] [Accepted: 02/14/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are essential for neuronal survival and mitochondrial dysfunction is a hallmark of neurodegeneration. The loss in mitochondrial energy production, oxidative stress, and changes in calcium handling are associated with neurodegenerative diseases; however, different sites and types of mitochondrial dysfunction are linked to distinct neuropathologies. Understanding the causal or correlative relationship between changes in mitochondria and neuropathology will lead to new therapeutic strategies. Here, we summarize the evidence of site-specific mitochondrial dysfunction and mitochondrial-related clinical trials for neurodegenerative diseases. We further discuss potential therapeutic approaches, such as mitochondrial transplantation, restoration of mitochondrial function, and pharmacological alleviation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anežka Vodičková
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Shon A Koren
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| | - Andrew P Wojtovich
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Rochester, NY, USA; Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
35
|
Sfera A, Osorio C, Rahman L, Zapata-Martín del Campo CM, Maldonado JC, Jafri N, Cummings MA, Maurer S, Kozlakidis Z. PTSD as an Endothelial Disease: Insights From COVID-19. Front Cell Neurosci 2021; 15:770387. [PMID: 34776871 PMCID: PMC8586713 DOI: 10.3389/fncel.2021.770387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 virus, the etiologic agent of COVID-19, has affected almost every aspect of human life, precipitating stress-related pathology in vulnerable individuals. As the prevalence rate of posttraumatic stress disorder in pandemic survivors exceeds that of the general and special populations, the virus may predispose to this disorder by directly interfering with the stress-processing pathways. The SARS-CoV-2 interactome has identified several antigens that may disrupt the blood-brain-barrier by inducing premature senescence in many cell types, including the cerebral endothelial cells. This enables the stress molecules, including angiotensin II, endothelin-1 and plasminogen activator inhibitor 1, to aberrantly activate the amygdala, hippocampus, and medial prefrontal cortex, increasing the vulnerability to stress related disorders. This is supported by observing the beneficial effects of angiotensin receptor blockers and angiotensin converting enzyme inhibitors in both posttraumatic stress disorder and SARS-CoV-2 critical illness. In this narrative review, we take a closer look at the virus-host dialog and its impact on the renin-angiotensin system, mitochondrial fitness, and brain-derived neurotrophic factor. We discuss the role of furin cleaving site, the fibrinolytic system, and Sigma-1 receptor in the pathogenesis of psychological trauma. In other words, learning from the virus, clarify the molecular underpinnings of stress related disorders, and design better therapies for these conditions. In this context, we emphasize new potential treatments, including furin and bromodomains inhibitors.
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
- Patton State Hospital, San Bernardino, CA, United States
| | - Carolina Osorio
- Department of Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Leah Rahman
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Jose Campo Maldonado
- Department of Medicine, The University of Texas Rio Grande Valley, Edinburg, TX, United States
| | - Nyla Jafri
- Patton State Hospital, San Bernardino, CA, United States
| | | | - Steve Maurer
- Patton State Hospital, San Bernardino, CA, United States
| | - Zisis Kozlakidis
- International Agency For Research On Cancer (IARC), Lyon, France
| |
Collapse
|
36
|
Nguyen H, Zerimech S, Baltan S. Astrocyte Mitochondria in White-Matter Injury. Neurochem Res 2021; 46:2696-2714. [PMID: 33527218 PMCID: PMC8935665 DOI: 10.1007/s11064-021-03239-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
This review summarizes the diverse structure and function of astrocytes to describe the bioenergetic versatility required of astrocytes that are situated at different locations. The intercellular domain of astrocyte mitochondria defines their roles in supporting and regulating astrocyte-neuron coupling and survival against ischemia. The heterogeneity of astrocyte mitochondria, and how subpopulations of astrocyte mitochondria adapt to interact with other glia and regulate axon function, require further investigation. It has become clear that mitochondrial permeability transition pores play a key role in a wide variety of human diseases, whose common pathology may be based on mitochondrial dysfunction triggered by Ca2+ and potentiated by oxidative stress. Reactive oxygen species cause axonal degeneration and a reduction in axonal transport, leading to axonal dystrophies and neurodegeneration including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and Huntington's disease. Developing new tools to allow better investigation of mitochondrial structure and function in astrocytes, and techniques to specifically target astrocyte mitochondria, can help to unravel the role of mitochondrial health and dysfunction in a more inclusive context outside of neuronal cells. Overall, this review will assess the value of astrocyte mitochondria as a therapeutic target to mitigate acute and chronic injury in the CNS.
Collapse
Affiliation(s)
- Hung Nguyen
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Sarah Zerimech
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA
| | - Selva Baltan
- Anesthesiology and Peri-Operative Medicine (APOM), Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
37
|
ÇİÇEK Z, TEKİN V. Sisplatin ve insan mezenkimal kök hücrelerden izole edilen mitokondri naklinin DU-145 hücre proliferasyonuna etkisi. CUKUROVA MEDICAL JOURNAL 2021. [DOI: 10.17826/cumj.912336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
38
|
Xu Y, Yu Y, Yang B, Hui J, Zhang C, Fang H, Bian X, Tao M, Lu Y, Shang Z. Extracellular Mitochondrial Components and Effects on Cardiovascular Disease. DNA Cell Biol 2021; 40:1131-1143. [PMID: 34370602 DOI: 10.1089/dna.2021.0087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Besides being powerhouses of the cell, mitochondria released into extracellular space act as intercellular signaling. Mitochondria and their components mediate cell-to-cell communication in free form or embedded in a carrier. The pathogenesis of cardiovascular disease is complex, which shows close relationship with inflammation and metabolic abnormalities. Since mitochondria sustain optimal function of the heart, extracellular mitochondria are emerging as a key regulator in the development of cardiovascular disease. In this review, we provide recent findings in the presence and forms of mitochondria transfer between cells, as well as the effects of these mitochondria on vascular inflammation and ischemic myocardium. Mitochondrial transplantation is a novel treatment paradigm for patients suffering from acute cardiovascular accident and challenges the traditional methods of mitochondria isolation.
Collapse
Affiliation(s)
- Yu Xu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yanhua Yu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Bowen Yang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Jingjiao Hui
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Cai Zhang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Hua Fang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Xiaoyun Bian
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Min Tao
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Yipeng Lu
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| | - Zhenglu Shang
- Department of Cardiology, Wuxi Huishan District People's Hospital, Wuxi, China
| |
Collapse
|
39
|
Ono M, Burri M, Mayr B, Anderl L, Strbad M, Cleuziou J, Hager A, Hörer J, Lange R. Risk Factors for Failed Fontan Procedure After Stage 2 Palliation. Ann Thorac Surg 2021; 112:610-618. [DOI: 10.1016/j.athoracsur.2020.06.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 11/25/2022]
|
40
|
Doulamis IP, Guariento A, Duignan T, Orfany A, Kido T, Zurakowski D, Del Nido PJ, McCully JD. Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardiothorac Surg 2021; 57:836-845. [PMID: 31782771 DOI: 10.1093/ejcts/ezz326] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Type 2 diabetes causes mitochondrial dysfunction, which increases myocardial susceptibility to ischaemia-reperfusion injury. We investigated the efficacy of transplantation of mitochondria isolated from diabetic or non-diabetic donors in providing cardioprotection from warm global ischaemia and reperfusion in the diabetic rat heart. METHODS Ex vivo perfused hearts from Zucker diabetic fatty (ZDF fa/fa) rats (n = 6 per group) were subjected to 30 min of warm global ischaemia and 120 min reperfusion. Immediately prior to reperfusion, vehicle alone (VEH) or vehicle containing mitochondria isolated from either ZDF (MTZDF) or non-diabetic Zucker lean (ZL +/?) (MTZL) skeletal muscle were delivered to the coronary arteries via the aortic cannula. RESULTS Following 30-min global ischaemia and 120-min reperfusion, left ventricular developed pressure was significantly increased in MTZDF and MTZL groups compared to VEH group (MTZDF: 92.8 ± 5.2 mmHg vs MTZL: 110.7 ± 2.4 mmHg vs VEH: 44.3 ± 5.9 mmHg; P < 0.01 each); and left ventricular end-diastolic pressure was significantly decreased (MTZDF 12.1 ± 1.3 mmHg vs MTZL 8.6 ± 0.8 mmHg vs VEH: 18.6 ± 1.5 mmHg; P = 0.016 for MTZDF vs VEH and P < 0.01 for MTZL vs VEH). Total tissue ATP content was significantly increased in both MT groups compared to VEH group (MTZDF: 18.9 ± 1.5 mmol/mg protein/mg tissue vs MTZL: 28.1 ± 2.3 mmol/mg protein/mg tissue vs VEH: 13.1 ± 0.5 mmol/mg protein/mg tissue; P = 0.018 for MTZDF vs VEH and P < 0.01 for MTZL vs VEH). Infarct size was significantly decreased in the MT groups (MTZDF: 11.8 ± 0.7% vs MTZL: 9.9 ± 0.5% vs VEH: 52.0 ± 1.4%; P < 0.01 each). CONCLUSIONS Mitochondrial transplantation significantly enhances post-ischaemic myocardial functional recovery and significantly decreases myocellular injury in the diabetic heart.
Collapse
Affiliation(s)
- Ilias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alvise Guariento
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Thomas Duignan
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arzoo Orfany
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Takashi Kido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Zurakowski
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro J Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Popov LD. One step forward: extracellular mitochondria transplantation. Cell Tissue Res 2021; 384:607-612. [PMID: 33660051 DOI: 10.1007/s00441-021-03428-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Mitochondria play a key role in cellular energy production and contribute to cell metabolism, homeostasis, intracellular signalling and organelle's quality control, among other roles. Viable, respiratory-competent mitochondria exist also outside the cells. Such extracellular/exogenous mitochondria occur in the bloodstream, being released by platelets, activated monocytes and endothelial progenitor cells. In the nervous system, the cerebrospinal fluid contains mitochondria discharged by astrocytes. Various pathologies, including the cardiovascular and neurodegenerative diseases, are associated with mitochondrial dysfunction. A strategy to reverse dysfunction and restore cell normality is the transplantation of mitochondria (freshly isolated from a healthy tissue) into the zone at risk, such as the ischemic heart and/or damaged nervous tissue. The functional exogenous mitochondria will replace the harmed ones, ensuing cardioprotective and neuroprotective effects. The diversity of transplantation settings (in vitro, in animal models and patients) offered variable answers (including lack of consensus) on efficacy of this strategy. Therefore, a critical overview of the current and future trends in mitochondrial transplantation seems to be required. Here, we outline the recent developments on (i) extracellular mitochondria types and roles, (ii) transplantation protocols, (iii) mechanisms of mitochondrial incorporation, (iv) the benefit of extracellular mitochondria transplantation in human health and diseases and (v) open questions that deserve urgent answers.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568, Bucharest, Romania.
| |
Collapse
|
42
|
Mitochondrial Transfer Improves Cardiomyocyte Bioenergetics and Viability in Male Rats Exposed to Pregestational Diabetes. Int J Mol Sci 2021; 22:ijms22052382. [PMID: 33673574 PMCID: PMC7956857 DOI: 10.3390/ijms22052382] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Offspring born to diabetic or obese mothers have a higher lifetime risk of heart disease. Previously, we found that rat offspring exposed to late-gestational diabetes mellitus (LGDM) and maternal high-fat (HF) diet develop mitochondrial dysfunction, impaired cardiomyocyte bioenergetics, and cardiac dysfunction at birth and again during aging. Here, we compared echocardiography, cardiomyocyte bioenergetics, oxidative damage, and mitochondria-mediated cell death among control, pregestational diabetes mellitus (PGDM)-exposed, HF-diet-exposed, and combination-exposed newborn offspring. We hypothesized that PGDM exposure, similar to LGDM, causes mitochondrial dysfunction to play a central, pathogenic role in neonatal cardiomyopathy. We found that PGDM-exposed offspring, similar to LGDM-exposed offspring, have cardiac dysfunction at birth, but their isolated cardiomyocytes have seemingly less bioenergetics impairment. This finding was due to confounding by impaired viability related to poorer ATP generation, more lipid peroxidation, and faster apoptosis under metabolic stress. To mechanistically isolate and test the role of mitochondria, we transferred mitochondria from normal rat myocardium to control and exposed neonatal rat cardiomyocytes. As expected, transfer provides a respiratory boost to cardiomyocytes from all groups. They also reduce apoptosis in PGDM-exposed males, but not in females. Findings highlight sex-specific differences in mitochondria-mediated mechanisms of developmentally programmed heart disease and underscore potential caveats of therapeutic mitochondrial transfer.
Collapse
|
43
|
Abstract
Mitochondrial transplantation is a novel therapeutic intervention to treat ischemia-reperfusion-related disorders. This approach uses replacement of native mitochondria with viable, respiration-competent mitochondria isolated from non-ischemic tissue obtained from the patient's own body, to overcome the many deleterious effects of ischemia-reperfusion injury on native mitochondria. The safety and efficacy of this methodology has been demonstrated in cell culture, animal models and has been shown to be safe and efficacious in a phase I clinical trial in pediatric cardiac patients with ischemia-reperfusion injury. These studies have demonstrated that mitochondrial transplantation rescues myocardial cellular viability and significantly enhances postischemic myocardial function following ischemia-reperfusion injury. Herein, we describe methodologies for the delivery of isolated mitochondria.
Collapse
Affiliation(s)
- Ilias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Transplantation of platelet-derived mitochondria alleviates cognitive impairment and mitochondrial dysfunction in db/db mice. Clin Sci (Lond) 2020; 134:2161-2175. [PMID: 32794577 DOI: 10.1042/cs20200530] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
Diabetes-associated cognitive impairment (DACI) can increase the risk of major cardiovascular events and death. Neuronal functionality is highly dependent on mitochondria and emerging evidence has shown that mitochondrial transplantation is a potential and effective strategy that can reduce brain injury and associated disorders. Platelets are abundant in blood and can be considered a readily available source of small-size mitochondria. These cells can be easily acquired from the peripheral blood with minimal invasion via simple venipuncture. The present study aimed to investigate whether transplantation of platelet-derived mitochondria (Mito-Plt) could improve DACI. Cognitive behaviors were assessed using the Morris water maze test in db/db mice. The results demonstrated that Mito-Plt was internalized into hippocampal neurons 24 h following intracerebroventricular injection. Importantly, one month following Mito-Plt transplantation, DACI was alleviated in db/db mice and the effect was accompanied with increased mitochondrial number, restored mitochondrial function, attenuated oxidative stress and neuronal apoptosis, as well as decreased accumulation of Aβ and Tau in the hippocampus. Taken together, the data demonstrated that transplantation of Mito-Plt attenuated cognitive impairment and mitochondrial dysfunction in db/db mice. This method may be a potential therapeutic application for the treatment of DACI.
Collapse
|
45
|
Espino De la Fuente-Muñoz C, Arias C. The therapeutic potential of mitochondrial transplantation for the treatment of neurodegenerative disorders. Rev Neurosci 2020; 32:203-217. [PMID: 33550783 DOI: 10.1515/revneuro-2020-0068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial activity is essential to support neural functions, and changes in the integrity and activity of the mitochondria can contribute to synaptic damage and neuronal death, especially in degenerative diseases associated with age, such as Alzheimer's and Parkinson's disease. Currently, different approaches are used to treat these conditions, and one strategy under research is mitochondrial transplantation. For years, mitochondria have been shown to be transferred between cells of different tissues. This process has allowed several attempts to develop transplantation schemes by isolating functional mitochondria and introducing them into damaged tissue in particular to counteract the harmful effects of myocardial ischemia. Recently, mitochondrial transfer between brain cells has also been reported, and thus, mitochondrial transplantation for disorders of the nervous system has begun to be investigated. In this review, we focus on the relevance of mitochondria in the nervous system, as well as some mitochondrial alterations that occur in neurodegenerative diseases associated with age. In addition, we describe studies that have performed mitochondrial transplantation in various tissues, and we emphasize the advances in mitochondrial transplantation aimed at treating diseases of the nervous system.
Collapse
Affiliation(s)
- César Espino De la Fuente-Muñoz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510, Ciudad de México, México
| |
Collapse
|
46
|
Guariento A, Piekarski BL, Doulamis IP, Blitzer D, Ferraro AM, Harrild DM, Zurakowski D, Del Nido PJ, McCully JD, Emani SM. Autologous mitochondrial transplantation for cardiogenic shock in pediatric patients following ischemia-reperfusion injury. J Thorac Cardiovasc Surg 2020; 162:992-1001. [PMID: 33349443 DOI: 10.1016/j.jtcvs.2020.10.151] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/09/2020] [Accepted: 10/27/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To report outcomes in a pilot study of autologous mitochondrial transplantation (MT) in pediatric patients requiring postcardiotomy extracorporeal membrane oxygenation (ECMO) for severe refractory cardiogenic shock after ischemia-reperfusion injury (IRI). METHODS A single-center retrospective study of patients requiring ECMO for postcardiotomy cardiogenic shock following IRI between May 2002 and December 2018 was performed. Postcardiotomy IRI was defined as coronary artery compromise followed by successful revascularization. Patients undergoing revascularization and subsequent MT were compared with those undergoing revascularization alone (Control). RESULTS Twenty-four patients were included (MT, n = 10; Control, n = 14). Markers of systemic inflammatory response and organ function measured 1 day before and 7 days following revascularization did not differ between groups. Successful separation from ECMO-defined as freedom from ECMO reinstitution within 1 week after initial separation-was possible for 8 patients in the MT group (80%) and 4 in the Control group (29%) (P = .02). Median circumferential strain immediately following IRI but before therapy was not significantly different between groups. Immediately following separation from ECMO, ventricular strain was significantly better in the MT group (-23.0%; range, -20.0% to -28.8%) compared with the Control group (-16.8%; range, -13.0% to -18.4%) (P = .03). Median time to functional recovery after revascularization was significantly shorter in the MT group (2 days vs 9 days; P = .02). Cardiovascular events were lower in the MT group (20% vs 79%; P < .01). Cox regression analysis showed higher composite estimated risk of cardiovascular events in the Control group (hazard ratio, 4.6; 95% confidence interval, 1.0 to 20.9; P = .04) CONCLUSIONS: In this pilot study, MT was associated with successful separation from ECMO and enhanced ventricular strain in patients requiring postcardiotomy ECMO for severe refractory cardiogenic shock after IRI.
Collapse
Affiliation(s)
- Alvise Guariento
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Breanna L Piekarski
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Ilias P Doulamis
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - David Blitzer
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Alessandra M Ferraro
- Department of Cardiology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - David M Harrild
- Department of Cardiology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - David Zurakowski
- Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Pedro J Del Nido
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - James D McCully
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass
| | - Sitaram M Emani
- Department of Cardiovascular Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
47
|
Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med 2020; 5:22. [PMID: 33298971 PMCID: PMC7683736 DOI: 10.1038/s41536-020-00107-x] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are fundamental for metabolic homeostasis in all multicellular eukaryotes. In the nervous system, mitochondria-generated adenosine triphosphate (ATP) is required to establish appropriate electrochemical gradients and reliable synaptic transmission. Notably, several mitochondrial defects have been identified in central nervous system disorders. Membrane leakage and electrolyte imbalances, pro-apoptotic pathway activation, and mitophagy are among the mechanisms implicated in the pathogenesis of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's disease, as well as ischemic stroke. In this review, we summarize mitochondrial pathways that contribute to disease progression. Further, we discuss pathological states that damaged mitochondria impose on normal nervous system processes and explore new therapeutic approaches to mitochondrial diseases.
Collapse
|
48
|
Caldaroni F, d'Udekem Y. Commentary: Spinach for Popeye, autogenous mitochondria for us!! J Thorac Cardiovasc Surg 2020; 162:e123-e124. [PMID: 33972117 DOI: 10.1016/j.jtcvs.2020.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Federica Caldaroni
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia
| | - Yves d'Udekem
- Department of Cardiac Surgery, Royal Children's Hospital, Melbourne, Australia; Heart Research, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
49
|
Mesenchymal stem cells-derived mitochondria transplantation mitigates I/R-induced injury, abolishes I/R-induced apoptosis, and restores motor function in acute ischemia stroke rat model. Brain Res Bull 2020; 165:70-80. [PMID: 33010349 DOI: 10.1016/j.brainresbull.2020.09.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/24/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022]
Abstract
Acute ischemia stroke (AIS) is one of the leading causes of mortality and disability worldwide, and its neurological impacts are devastating and permanent. There is no efficient and real treatment for acute ischemia stroke so far. Therefore, development of efficient therapeutic strategies is under focus of investigations by basic and clinical scientists. Brain is one of the organs with high energy consumption and metabolism. Hence, its functionality is highly dependent on mitochondrial activity and integrity. Therefore, mitochondria play a vital homeostatic role in neurons physiology and mitochondrial dysfunction implications have been reported in a variety of nervous system diseases including acute ischemia stroke. In an attempt to investigate and introduce a novel potential therapeutic strategy for AIS, we isolated healthy mitochondria from human umbilical cord derived mesenchymal stem cells (hUC-MSCs) followed by their intracerebroventricular transplantation in a rat model of ischemia, i.e. middle cerebral artery occlusion (MCAO). Here we report that the mitochondrial transplantation ameliorated the reperfusion/ischemia-induced damages as reflected by declined blood creatine phosphokinase level, abolished apoptosis, decreased astroglyosis and microglia activation, reduced infarct size, and improved motor function. Although further preclinical and clinical studies are required, our findings strongly suggest that transplantation of MSCs-derived mitochondria is a suitable, potential and efficient therapeutic option for acute ischemia stroke.
Collapse
|
50
|
McCully JD, Doulamis IP. Commentary: Independent, additive or linked: A novel therapeutic option for the treatment of pulmonary hypertension may involve more than one mechanism. J Thorac Cardiovasc Surg 2020; 163:e375-e376. [PMID: 32919766 DOI: 10.1016/j.jtcvs.2020.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Affiliation(s)
- James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass.
| | - Ilias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, Mass; Department of Surgery, Harvard Medical School, Boston, Mass
| |
Collapse
|