1
|
Yu X, Zhou J, Zhao F, Liu X, Mao Y, Diao L, Wen C, Liu M. Tomatidine Suppresses the Destructive Behaviors of Fibroblast-Like Synoviocytes and Ameliorates Type II Collagen-Induced Arthritis in Rats. Front Pharmacol 2021; 12:670707. [PMID: 34512321 PMCID: PMC8426578 DOI: 10.3389/fphar.2021.670707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/12/2021] [Indexed: 12/29/2022] Open
Abstract
Fibroblast-like synoviocytes (FLSs) are the prominent non-immune cells in synovium and play a pivotal role in rheumatoid arthritis (RA) pathogenesis. Searching for natural compounds that may suppress the pathological phenotypes of FLSs is important for the development of RA treatment. Tomatidine (Td), a steroidal alkaloid derived from the solanaceae family, has been reported to have anti-inflammatory, anti-tumor and immunomodulatory effects. However, its effect on RA remains unknown. Here, we examined the inhibitory effect of Td on TNFα-induced arthritic FLSs, and subsequently investigated its therapeutic effect on collagen-induced arthritis (CIA) rats. Our results revealed that Td significantly inhibited TNFα-induced proliferation and migration of arthritic FLSs. In addition, we found that Td treatment could efficaciously ameliorate synovial inflammation and joint destruction of rats with CIA. Both in vitro and in vivo studies showed that Td significantly suppressed the production of pro-inflammatory cytokines including IL-1β, IL-6 and TNFα, and downregulated the expression of MMP-9 and RANKL. Further molecular mechanism studies revealed that the inhibitory effect of Td on RA might attribute to the decreased activations of MAPKs (ERK and JNK) and NF-κB. These findings provide evidence that Td has the potential to be developed into a complementary or alternative agent for RA therapy.
Collapse
Affiliation(s)
- Xiaolu Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Junnan Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fuli Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xuan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yuhang Mao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Li Diao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuanjun Wen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mei Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Mechanical Stress Induce PG-E2 in Murine Synovial Fibroblasts Originating from the Temporomandibular Joint. Cells 2021; 10:cells10020298. [PMID: 33535605 PMCID: PMC7912861 DOI: 10.3390/cells10020298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Genetic predisposition, traumatic events, or excessive mechanical exposure provoke arthritic changes in the temporomandibular joint (TMJ). We analysed the impact of mechanical stress that might be involved in the development and progression of TMJ osteoarthritis (OA) on murine synovial fibroblasts (SFs) of temporomandibular origin. SFs were subjected to different protocols of mechanical stress, either to a high-frequency tensile strain for 4 h or to a tensile strain of varying magnitude for 48 h. The TMJ OA induction was evaluated based on the gene and protein secretion of inflammatory factors (Icam-1, Cxcl-1, Cxcl-2, Il-1ß, Il-1ra, Il-6, Ptgs-2, PG-E2), subchondral bone remodelling (Rankl, Opg), and extracellular matrix components (Col1a2, Has-1, collagen and hyaluronic acid deposition) using RT-qPCR, ELISA, and HPLC. A short high-frequency tensile strain had only minor effects on inflammatory factors and no effects on the subchondral bone remodelling induction or matrix constituent production. A prolonged tensile strain of moderate and advanced magnitude increased the expression of inflammatory factors. An advanced tensile strain enhanced the Ptgs-2 and PG-E2 expression, while the expression of further inflammatory factors were decreased. The tensile strain protocols had no effects on the RANKL/OPG expression, while the advanced tensile strain significantly reduced the deposition of matrix constituent contents of collagen and hyaluronic acid. The data indicates that the application of prolonged advanced mechanical stress on SFs promote PG-E2 protein secretion, while the deposition of extracellular matrix components is decreased.
Collapse
|
3
|
Liu W, Di Q, Li K, Li J, Ma N, Huang Z, Chen J, Zhang S, Zhang W, Zhang Y. The synergistic role of Pu.1 and Fms in zebrafish osteoclast-reducing osteopetrosis and possible therapeutic strategies. J Genet Genomics 2020; 47:535-546. [PMID: 33184003 DOI: 10.1016/j.jgg.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/19/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022]
Abstract
Osteoclasts are bone resorption cells of myeloid origin. Osteoclast defects can lead to osteopetrosis, a genetic disorder characterized by bone sclerosis for which there is no effective drug treatment. It is known that Pu.1 and Fms are key regulators in myelopoiesis, and their defects in mice can lead to reduced osteoclast numbers and consequent osteopetrosis. Yet how Pu.1 and Fms genetically interact in the development of osteoclasts and the pathogenesis of osteopetrosis is still unclear. Here, we characterized pu.1G242D;fmsj4e1 double-deficient zebrafish, which exhibited a greater deficiency of functional osteoclasts and displayed more severe osteopetrotic symptoms than the pu.1G242D or fmsj4e1 single mutants, suggesting a synergistic function of Pu.1 and Fms in the regulation of osteoclast development. We further demonstrated that Pu.1 plays a dominant role in osteoclastogenesis, whereas Fms plays a dominant role in osteoclast maturation. Importantly, treatment with the drug retinoic acid significantly relieved the different degrees of osteopetrosis symptoms in these models by increasing the number of functional osteoclasts. Thus, we report the development of valuable animal models of osteopetrosis, and our results shed light on drug development for antiosteopetrosis therapy.
Collapse
Affiliation(s)
- Wei Liu
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Qianqian Di
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kailun Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jing Li
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ning Ma
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhibin Huang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jiahao Chen
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Sheng Zhang
- Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Jang JS, Kang IS, Cha YN, Lee ZH, Dinauer MC, Kim YJ, Kim C. Vav1 inhibits RANKL-induced osteoclast differentiation and bone resorption. BMB Rep 2020. [PMID: 31072447 PMCID: PMC6889896 DOI: 10.5483/bmbrep.2019.52.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vav1 is a Rho/Rac guanine nucleotide exchange factor primarily expressed in hematopoietic cells. In this study, we investigated the potential role of Vav1 in osteoclast (OC) differentiation by comparing the ability of bone marrow mononuclear cells (BMMCs) obtained from Vav1-deficient (Vav1-/-) and wild-type (WT) mice to differentiate into mature OCs upon stimulation with macrophage colony stimulating factor and receptor activator of nuclear kappa B ligand in vitro. Our results suggested that Vav1 deficiency promoted the differentiation of BMMCs into OCs, as indicated by the increased expression of tartrate-resistant acid phosphatase, cathepsin K, and calcitonin receptor. Therefore, Vav1 may play a negative role in OC differentiation. This hypothesis was supported by the observation of more OCs in the femurs of Vav1-/- mice than in WT mice. Furthermore, the bone status of Vav1-/- mice was analyzed in situ and the femurs of Vav1-/- mice appeared abnormal, with poor bone density and fewer number of trabeculae. In addition, Vav1-deficient OCs showed stronger adhesion to vitronectin, an αvβ3 integrin ligand important in bone resorption. Thus, Vav1 may inhibit OC differentiation and protect against bone resorption. [BMB Reports 2019; 52(11): 659-664].
Collapse
Affiliation(s)
- Jin Sun Jang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - In Soon Kang
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - Young-Nam Cha
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| | - Zang Hee Lee
- Department of Cell and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Korea
| | - Mary C Dinauer
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63100, USA
| | - Young-June Kim
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chaekyun Kim
- Laboratory for Leukocyte Signaling Research, Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
5
|
Geetha B, Premkumar J, Pradeep JP, Krishnakumar S. Synthesis and characterization of bioscaffolds using freeze drying technique for bone regeneration. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
Koehler MI, Hartmann ES, Schluessel S, Beck F, Redeker JI, Schmitt B, Unger M, van Griensven M, Summer B, Fottner A, Mayer-Wagner S. Impact of Periprosthetic Fibroblast-Like Cells on Osteoclastogenesis in Co-Culture with Peripheral Blood Mononuclear Cells Varies Depending on Culture System. Int J Mol Sci 2019; 20:E2583. [PMID: 31130703 PMCID: PMC6567687 DOI: 10.3390/ijms20102583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022] Open
Abstract
Co-culture studies investigating the role of periprosthetic fibroblasts (PPFs) in inflammatory osteoclastogenesis reveal contrary results, partly showing an osteoprotective function of fibroblasts and high OPG expression in monolayer. These data disagree with molecular analyses of original periosteolytic tissues. In order to find a more reliable model, PPFs were co-cultivated with peripheral blood mononuclear cells (PBMCs) in a transwell system and compared to conventional monolayer cultures. The gene expression of key regulators of osteoclastogenesis (macrophage colony-stimulating factor (MCSF), receptor activator of NF-κB ligand (RANK-L), osteoprotegerin (OPG), and tumor necrosis factor alpha (TNFα)) as well as the ability of bone resorption were analyzed. In monolayer co-cultures, PPFs executed an osteoprotective function with high OPG-expression, low RANK-L/OPG ratios, and a resulting inhibition of osteolysis even in the presence of MCSF and RANK-L. For transwell co-cultures, profound changes in gene expression, with a more than hundredfold decrease of OPG and a significant upregulation of TNFα were observed. In conclusion, we were able to show that a change of culture conditions towards a transwell system resulted in a considerably more osteoclastogenic gene expression profile, being closer to findings in original periosteolytic tissues. This study therefore presents an interesting approach for a more reliable in vitro model to examine the role of fibroblasts in periprosthetic osteoclastogenesis in the future.
Collapse
Affiliation(s)
- Miriam I Koehler
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Eliza S Hartmann
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Sabine Schluessel
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Felicitas Beck
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Julia I Redeker
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Baerbel Schmitt
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Marina Unger
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Martijn van Griensven
- Experimental Trauma Surgery, Department of Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Burkhard Summer
- Department of Dermatology, Ludwig-Maximilians-University, Frauenlobstr. 9-11, 80337 Munich, Germany.
| | - Andreas Fottner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| | - Susanne Mayer-Wagner
- Department of Orthopaedics, Physical Medicine and Rehabilitation, University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany.
| |
Collapse
|
7
|
Lin X, Hunziker EB, Liu T, Hu Q, Liu Y. Enhanced biocompatibility and improved osteogenesis of coralline hydroxyapatite modified by bone morphogenetic protein 2 incorporated into a biomimetic coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 96:329-336. [PMID: 30606540 DOI: 10.1016/j.msec.2018.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES (1) To determine whether the biocompatibility of coralline hydroxyapatite (CHA) granules could be improved by using an octacalcium phosphate (OCP) coating layer, and/or functionalized with bone morphogenetic protein 2 (BMP-2), and (2) to investigate if BMP-2 incorporated into this coating is able to enhance its osteoinductive efficiency, in comparison to its surface-adsorbed delivery mode. METHODS CHA granules (0.25 g per sample) bearing a coating-incorporated depot of BMP-2 (20 μg/sample) together with the controls (CHA bearing an adsorbed depot of BMP-2; CHA granules with an OCP coating without BMP-2; pure CHA granules) were implanted subcutaneously in rats (n = 6 animals per group). Five weeks later, the implants were retrieved for histomorphometric analysis to quantify the volume of newly generated bone, bone marrow, fibrous tissue and foreign body giant cells (FBGCs). The osteoinductive efficiency of BMP-2 and the rates of CHA degradation were also determined. RESULTS The group with an OCP coating-incorporated depot of BMP-2 showed the highest volume and quality or bone, and the highest osteoinductive efficacy. OCP coating was able to reduce inflammatory responses (improve biocompatibility), and also simple adsorption of BMP-2 to CHA achieved this. CONCLUSIONS The biocompatibility of CHA granules (reduction of inflammation) was significantly improved by coating with a layer of OCP. Pure surface adsorption of BMP-2 to CHA also reduced inflammation. Incorporation of BMP-2 into the OCP coatings was associated with the highest volume and quality of bone, and the highest biocompatibility degree of the CHA granules. CLINICAL SIGNIFICANCE Higher osteoinductivity and improved biocompatibility of CHA can be obtained when a layer of BMP-2 functionalized OCP is deposited on the surfaces of CHA granules.
Collapse
Affiliation(s)
- Xingnan Lin
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, 210008 Nanjing, China; Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, 1081LA Amsterdam, the Netherlands.
| | - Ernst B Hunziker
- Departments of Osteoporosis and Orthopaedic Surgery, Inselspital (University Hospital), Bern, 3010 Bern, Switzerland.
| | - Tie Liu
- Department of Oral Implantology, Hospital/School of Stomatology, Zhejiang University, 310003 Hangzhou, Zhejiang, China
| | - Qingang Hu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Medical School, Nanjing University, 210008 Nanjing, China.
| | - Yuelian Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre of Dentistry Amsterdam (ACTA), VU University and University of Amsterdam, 1081LA Amsterdam, the Netherlands.
| |
Collapse
|
8
|
Abstract
BACKGROUND Periprosthetic osteolysis by polyethylene wear debris-triggered osteoclasts is viewed as the main pathophysiological pathway in aseptic loosening in total hip arthroplasty. The present aim was to study osteoclast occurrence in osteolytic lesions in early and late revisions of the Charnley low-friction torque arthroplasty (CLFA). METHODS Biopsies of the soft interface membrane and the adjacent bone were taken from osteolytic lesions during revision of 16 loose CLFA, early (2-6 years) or late (>10 years) after primary surgery. By light microscopy (LM), cell-dense regions with signs of osteoclast-mediated bone resorption were selected for transmission electron microscopy. Three additional patients were studied in LM for osteoclast markers (tartrate-resistant acid phosphatase and Cathepsin K). RESULTS LM disclosed a low-grade chronic inflammation and birefringent particles in most sections. Multiple conglomerates of tartrate-resistant acid phosphatase positive and Cathepsin K positive mononuclear and multinucleated cells were found deep in the fibrous interface membrane. Transmission electron microscopy showed traces of polyethylene-like particles in 67%-100% of the cells. Osteoclast-like cells exhibiting resorptive activity were few (mean, 0.7%; standard deviation, 0.2%), and multinucleated cells, possibly osteoclast precursor cells, located immediately on the bone were also scarce (mean, 2.7%; standard deviation, 5.3%). Multinucleated (odds ratio, 3.0; 95% confidence interval, 1.7-5.5) and macrophage-like cells (odds ratio, 3.6; 95% confidence interval, 2.2-5.6) were typically located deeper in the inflammatory interface membrane with a pathologic appearance with distension and abundance of phagocytic vacuoles. There were no systematic differences in cell populations between early or late revisions. CONCLUSION Despite probable ongoing osteoclastogenesis in the osteolytic lesions, there were few sites of osteoclast-mediated bone resorption. These findings attach a contributing biological explanation to the longevity of the CLFA.
Collapse
|
9
|
Miron RJ, Zohdi H, Fujioka-Kobayashi M, Bosshardt DD. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells? Acta Biomater 2016; 46:15-28. [PMID: 27667014 DOI: 10.1016/j.actbio.2016.09.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. STATEMENT OF SIGNIFICANCE This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. The proposed concepts and guidelines aims to guide the next wave of research facilitating the differentiation between osteoclast/MNGCs formation, as well as provides the basis for increasing our understanding of the exact function of MNGCs in bone tissue/biomaterial homeostasis.
Collapse
|
10
|
Zhou Y, Deng HW, Shen H. Circulating monocytes: an appropriate model for bone-related study. Osteoporos Int 2015; 26:2561-72. [PMID: 26194495 DOI: 10.1007/s00198-015-3250-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 10/23/2022]
Abstract
Peripheral blood monocytes (PBMs) are an important source of precursors of osteoclasts, the bone-resorbing cells and the cytokines produced by PBMs that have profound effects on osteoclast differentiation, activation, and apoptosis. So PBMs represent a highly valuable and unique working cell model for bone-related study. Finding an appropriate working cell model for clinical and (epi-)genomic studies of human skeletal disorders is a challenge. Peripheral blood monocytes (PBMs) can give rise to osteoclasts, the bone-resorbing cells. Particularly, PBMs provide the sole source of osteoclast precursors for adult peripheral skeleton where the bone marrow is normally hematopoietically inactive. PBMs can secrete potent pro- and anti-inflammatory cytokines, which are important for osteoclast differentiation, activation, and apoptosis. Reduced production of PBM cytokines represents a major mechanism for the inhibitory effects of sex hormones on osteoclastogenesis and bone resorption. Abnormalities in PBMs have been linked to various skeletal disorders/traits, strongly supporting for the biological relevance of PBMs with bone metabolism and disorders. Here, we briefly review the origin and further differentiation of PBMs. In particular, we discuss the close relationship between PBMs and osteoclasts, and highlight the utility of PBMs in study the pathophysiological mechanisms underlying various skeletal disorders.
Collapse
Affiliation(s)
- Y Zhou
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H-W Deng
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA
| | - H Shen
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, Tulane University, New Orleans, LA, 70112, USA.
- Cell and Molecular Biology Department, Tulane University, New Orleans, LA, 70118, USA.
- Center for Bioinformatics and Genomics, Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, 1440 Canal St., Suite 2001, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Kamat M, Puranik R, Vanaki S, Kamat S. An insight into the regulatory mechanisms of cells involved in resorption of dental hard tissues. J Oral Maxillofac Pathol 2014; 17:228-33. [PMID: 24250084 PMCID: PMC3830232 DOI: 10.4103/0973-029x.119736] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Dental resorptions constitute a challenge to dentistry due to the complexity of cellular and molecular biology. The various cells involved in resorption, collectively orchestrate the interplay between various cytokines, hormones, enzymes, and hard tissues influencing the progression of resorption. The concern and curiosity on this subject are not new. This paper attempts to review the various regulatory mechanisms of cells involved in resorption of mineralized dental tissues.
Collapse
Affiliation(s)
- Mamata Kamat
- Department of Oral and Maxillofacial Pathology, Modern Dental College and Hospital, Gandhinagar, Indore, India
| | | | | | | |
Collapse
|
12
|
Wang A, Midura RJ, Vasanji A, Wang AJ, Hascall VC. Hyperglycemia diverts dividing osteoblastic precursor cells to an adipogenic pathway and induces synthesis of a hyaluronan matrix that is adhesive for monocytes. J Biol Chem 2014; 289:11410-11420. [PMID: 24569987 DOI: 10.1074/jbc.m113.541458] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Isolated rat bone marrow stromal cells cultured in osteogenic medium in which the normal 5.6 mm glucose is changed to hyperglycemic 25.6 mm glucose greatly increase lipid formation between 21-31 days of culture that is associated with decreased biomineralization, up-regulate expression of cyclin D3 and two adipogenic markers (CCAAT/enhancer binding protein α and peroxisome proliferator-activated receptor γ) within 5 days of culture, increase neutral and polar lipid synthesis within 5 days of culture, and form a monocyte-adhesive hyaluronan matrix through an endoplasmic reticulum stress-induced autophagic mechanism. Evidence is also provided that, by 4 weeks after diabetes onset in the streptozotocin-induced diabetic rat model, there is a large loss of trabecular bone mineral density without apparent proportional changes in underlying collagen matrices, a large accumulation of a hyaluronan matrix within the trabecular bone marrow, and adipocytes and macrophages embedded in this hyaluronan matrix. These results support the hypothesis that hyperglycemia in bone marrow diverts dividing osteoblastic precursor cells (bone marrow stromal cells) to a metabolically stressed adipogenic pathway that induces synthesis of a hyaluronan matrix that recruits inflammatory cells and establishes a chronic inflammatory process that demineralizes trabecular cancellous bone.
Collapse
Affiliation(s)
- Aimin Wang
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195.
| | - Ronald J Midura
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Amit Vasanji
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Andrew J Wang
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| | - Vincent C Hascall
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
13
|
Liu T, Wu G, Wismeijer D, Gu Z, Liu Y. Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 2013; 56:110-8. [PMID: 23732874 DOI: 10.1016/j.bone.2013.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 05/22/2013] [Accepted: 05/24/2013] [Indexed: 10/26/2022]
Abstract
As an alternative to an autologous bone graft, deproteinized bovine bone (DBB) is widely used in the clinical dentistry. Although DBB provides an osteoconductive scaffold, it is not capable of enhancing bone regeneration because it is not osteoinductive. In order to render DBB osteoinductive, bone morphogenetic protein 2 (BMP-2) has previously been incorporated into a three dimensional reservoir (a biomimetic calcium phosphate coating) on DBB, which effectively promoted the osteogenic response by the slow delivery of BMP-2. The aim of this study was to investigate the therapeutic effectiveness of such coating on the DBB granules in repairing a large cylindrical bone defect (8 mm diameter, 13 mm depth) in sheep. Eight groups were randomly assigned to the bone defects: (i) no graft material; (ii) autologous bone; (iii) DBB only; (iv) DBB mixed with autologous bone; (v) DBB bearing adsorbed BMP-2; (vi) DBB bearing a coating but no BMP-2; (vii) DBB bearing a coating with adsorbed BMP-2; and (viii) DBB bearing a coating-incorporated depot of BMP-2. 4 and 8 weeks after implantation, samples were withdrawn for a histological and a histomorphometric analysis. Histological results confirmed the excellent biocompatibility and osteoconductivity of all the grafts tested. At 4 weeks, DBB mixed with autologous bone or functionalized with coating-incorporated BMP-2 showed more newly-formed bone than the other groups with DBB. At 8 weeks, the volume of newly-formed bone around DBB that bore a coating-incorporated depot of BMP-2 was greatest among the groups with DBB, and was comparable to the autologous bone group. The use of autologous bone and BMP-2 resulted in more bone marrow formation. Multinucleated giant cells were observed in the resorption process around DBB, whereas histomorphometric analysis revealed no significant degradation of DBB. In conclusion, it was shown that incorporating BMP-2 into the calcium phosphate coating of DBB induced strong bone formation around DBB for repairing a critical-sized bone defect.
Collapse
Affiliation(s)
- Tie Liu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Dickerson TJ, Suzuki E, Stanecki C, Shin HS, Qui H, Adamopoulos IE. Rheumatoid and pyrophosphate arthritis synovial fibroblasts induce osteoclastogenesis independently of RANKL, TNF and IL-6. J Autoimmun 2012; 39:369-76. [PMID: 22867712 DOI: 10.1016/j.jaut.2012.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/04/2012] [Accepted: 06/06/2012] [Indexed: 11/30/2022]
Abstract
Bone destruction is a common feature of inflammatory arthritis and is mediated by osteoclasts, the only specialized cells to carry out bone resorption. Aberrant expression of receptor activator of nuclear factor kappa β ligand (RANKL), an inducer of osteoclast differentiation has been linked with bone pathology and the synovial fibroblast in rheumatoid arthritis (RA). In this manuscript, we challenge the current concept that an increase in RANKL expression governs osteoclastogenesis and bone destruction in autoimmune arthritis. We isolated human fibroblasts from RA, pyrophosphate arthropathy (PPA) and osteoarthritis (OA) patients and analyzed their RANKL/OPG expression profile and the capacity of their secreted factors to induce osteoclastogenesis. We determined a 10-fold increase of RANKL mRNA and protein in fibroblasts isolated from RA relative to PPA and OA patients. Peripheral blood mononuclear cells (PBMC) from healthy volunteers were cultured in the presence of RA, PPA and OA synovial fibroblast conditioned medium. Osteoclast differentiation was assessed by expression of tartrate-resistant acid phosphatase (TRAP), vitronectin receptor (VNR), F-actin ring formation and bone resorption assays. The formation of TRAP(+), VNR(+) multinucleated cells, capable of F-actin ring formation and lacunar resorption in synovial fibroblast conditioned medium cultures occured in the presence of osteoprotegerin (OPG) a RANKL antagonist. Osteoclasts did not form in these cultures in the absence of macrophage colony stimulating factor (M-CSF). Our data suggest that the conditioned medium of pure synovial fibroblast cultures contain inflammatory mediators that can induce osteoclast formation in human PBMC independently of RANKL. Moreover inhibition of the TNF or IL-6 pathway was not sufficient to abolish osteoclastogenic signals derived from arthritic synovial fibroblasts. Collectively, our data clearly show that alternate osteoclastogenic pathways exist in inflammatory arthritis and place the synovial fibroblast as a key regulatory cell in bone and joint destruction, which is a hallmark of autoimmune arthritis.
Collapse
Affiliation(s)
- Tiffany J Dickerson
- University of California, Davis, Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
15
|
Taylor RM, Kashima TG, Hemingway FKE, Dongre A, Knowles HJ, Athanasou NA. CD14- mononuclear stromal cells support (CD14+) monocyte-osteoclast differentiation in aneurysmal bone cyst. J Transl Med 2012; 92:600-5. [PMID: 22330339 DOI: 10.1038/labinvest.2012.5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aneurysmal bone cyst (ABC) is a benign osteolytic bone lesion in which there are blood-filled spaces separated by fibrous septa containing giant cells. The nature of the giant cells in this lesion and the mechanism of bone destruction in ABC is not certain. In this study, we have analysed several characteristics of mononuclear and multinucleated cells in the ABC and examined the cellular and molecular mechanisms of ABC osteolysis. The antigenic and functional phenotype of giant cells in ABC was determined by histochemistry/immunohistochemistry using antibodies to macrophage and osteoclast markers. Giant cells and CD14+ and CD14- mononuclear cells were isolated from ABC specimens and cultured on dentine slices and coverslips with receptor activator of nuclear factor κB ligand (RANKL)+/- macrophage-colony stimulating factor (M-CSF) and functional and cytochemical evidence of osteoclast differentiation sought. Giant cells in ABC expressed an osteoclast-like phenotype (CD51+, CD14-, cathepsin K+, TRAP+) and were capable of lacunar resorption, which was inhibited by zoledronate, calcitonin and osteoprotegerin (OPG). When cultured with RANKL±M-CSF, CD14+, but not CD14-, mononuclear cells differentiated into TRAP+ multinucleated cells that were capable of lacunar resorption. M-CSF was not necessary for osteoclast formation from CD14+ cell cultures. CD14- cells variably expressed RANKL, OPG and M-CSF but supported osteoclast differentiation. Our findings show that the giant cells in ABC express an osteoclast-like phenotype and are formed from CD14+ macrophage precursors. CD14- mononuclear stromal cells express osteoclastogenic factors and most likely interact with CD14+ cells to form osteoclast-like giant cells by a RANKL-dependent mechanism.
Collapse
Affiliation(s)
- Richard Mi Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | | | | | | | | | | |
Collapse
|
16
|
Crotti TN, O'Sullivan RP, Shen Z, Flannery MR, Fajardo RJ, Ross FP, Goldring SR, McHugh KP. Bone matrix regulates osteoclast differentiation and annexin A8 gene expression. J Cell Physiol 2011; 226:3413-21. [PMID: 21344395 DOI: 10.1002/jcp.22699] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While attachment to bone is required for optimal osteoclast function, the molecular events that underlie this fact are unclear, other than that the cell requires adhesion to mineralized matrix to assume a fully differentiated phenotype. To address this issue, we cultured murine bone marrow-derived osteoclasts on either cell culture plastic or devitalized mouse calvariae to identify the distinct genetic profile induced by interaction with bone. Among a number of genes previously unknown to be expressed in osteoclasts we found that Annexin A8 (AnxA8) mRNA was markedly up-regulated by bone. AnxA8 protein was present at high levels in osteoclasts present in human tissues recovered from sites of pathological bone loss. The presence of bone mineral was required for up-regulation of AnxA8 mRNA since osteoclasts plated on decalcified bone express AnxA8 at low levels as did osteoclasts plated on native or denatured type I collagen. Finally, AnxA8-regulated cytoskeletal reorganization in osteoclasts generated on a mineralized matrix. Thus, we used a novel approach to define a distinct bone-dependent genetic program associated with terminal osteoclast differentiation and identified Anxa8 as a gene strongly induced late in osteoclast differentiation and a protein that regulates formation of the cell's characteristic actin ring.
Collapse
Affiliation(s)
- Tania N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Athanasou NA. The osteoclast--what's new? Skeletal Radiol 2011; 40:1137-40. [PMID: 21847745 DOI: 10.1007/s00256-011-1180-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 04/11/2011] [Accepted: 04/13/2011] [Indexed: 02/02/2023]
Abstract
Bone resorption is required for skeletal modelling during bone growth and for mineral homeostasis and bone remodelling throughout life. Osteoclasts are multinucleated cells that are uniquely specialised to carry out this physiological bone resorption. As osteolysis is a feature of most diseases of bone and joint, osteoclasts also play a role in pathological bone resorption, the extent of which is a function of the cellular and molecular mechanisms that govern their formation and function.
Collapse
Affiliation(s)
- Nicolas A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK.
| |
Collapse
|
18
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants. Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/000164702760300297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Akiyama N, Takemoto M, Fujibayashi S, Neo M, Hirano M, Nakamura T. Difference between dogs and rats with regard to osteoclast-like cells in calcium-deficient hydroxyapatite-induced osteoinduction. J Biomed Mater Res A 2010; 96:402-12. [PMID: 21171160 DOI: 10.1002/jbm.a.32995] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 09/06/2010] [Accepted: 10/04/2010] [Indexed: 11/11/2022]
Abstract
Material-induced osteoinduction is reported in comparatively large animals such as dogs and pigs; however, it does not often occur in small animals such as rodents. In this study, we implanted porous calcium-deficient hydroxyapatite (CDHA) in the dorsal muscles of dogs and rats and compared the two species, with emphasis on multinucleated cells, by using hematoxylin and eosin (HE) staining, tartrate-resistant acid phosphatase (TRAP) staining, transmission electron microscope (TEM) observation, and reverse transcription-polymerase chain reaction (RT-PCR). In CDHA extracted from dogs, numerous TRAP-positive multinucleated cells were detected after 2 weeks and new bone formation was observed after 4 weeks. In contrast, in rats, only a small number of TRAP-positive cells were detected and no bone formation was observed within 6 weeks. CDHA was more degraded in dogs than in rats. TEM observation of the multinucleated cells in CDHA extracted from dogs after 3 weeks revealed osteoclast-like features such as ruffled borders. However, CDHA extracted from rats did not exhibit osteoclast-like features. RT-PCR evaluation showed that the expression of cathepsin K was higher in dogs than in rats. These results indicate that TRAP-positive cells might be one of the main factors responsible for the cross-species difference in material-induced osteoinduction.
Collapse
Affiliation(s)
- Norihiro Akiyama
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Shogoin, Kawahara-cho 54, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Mordenfeld A, Hallman M, Johansson CB, Albrektsson T. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone. Clin Oral Implants Res 2010; 21:961-70. [PMID: 20497443 DOI: 10.1111/j.1600-0501.2010.01939.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE The purpose of the present study was to histologically and histomorphometrically evaluate the long-term tissue response to deproteinized bovine bone (DPBB) particles used in association with autogenous bone and to compare particle size after 6 months and 11 years, in the same patients, in order to determine possible resorption. MATERIAL AND METHODS Twenty consecutive patients (14 women and six men) with a mean age of 62 years (range 48-69 years) with severe atrophy of the posterior maxilla were included in this study. Thirty maxillary sinuses with <5 mm subantral alveolar bone were augmented with a mixture of 80% DPBB and 20% autogenous bone. Eleven years (mean 11.5 years) after augmentation, biopsies were taken from the grafted areas of the 11 patients who volunteered to participate in this new surgical intervention. The following histomorphometrical measurements were performed in these specimens: total bone area in percentage, total area of the DPBB, total area of marrow space, the degree of DPBB-bone contact (percentage of the total surface length for each particle), the length of all DPBB particles and the area of all DPBB particles. The length and the area of the particles were compared with samples harvested from the same patients at 6 months (nine samples) and pristine particles from the manufacturer. RESULTS The biopsies consisted of 44.7+/-16.9% lamellar bone, 38+/-16.9% marrow space and 17.3+/-13.2% DPBB. The degree of DPBB to bone contact was 61.5+/-34%. There were no statistically significant differences between the length and area of the particles after 11 years compared with those measured after 6 months in the same patients or to pristine particles from the manufacturer. CONCLUSION DPBB particles were found to be well integrated in lamellar bone, after sinus floor augmentation in humans, showing no significant changes in particle size after 11 years. To cite this article: Mordenfeld A, Hallman M, Johansson CB, Albrektsson T. Histological and histomorphometrical analyses of biopsies harvested 11 years after maxillary sinus floor augmentation with deproteinized bovine and autogenous bone.
Collapse
Affiliation(s)
- Arne Mordenfeld
- Department of Oral and Maxillofacial Surgery, Public Health Service, Gävle, Sweden.
| | | | | | | |
Collapse
|
21
|
Osteoclast-like cells in soft tissue leiomyosarcomas. Virchows Arch 2010; 456:317-23. [DOI: 10.1007/s00428-010-0882-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/17/2009] [Accepted: 01/06/2010] [Indexed: 10/19/2022]
|
22
|
Bone regeneration in long-bone defects: tissue compartmentalisation? In vivo study on bone defects in sheep. Injury 2009; 40 Suppl 4:S95-102. [PMID: 19895960 DOI: 10.1016/j.injury.2009.10.043] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Regeneration of living tissue varies with species, age and type of tissue, and undoubtedly with the biological and mechanical environment of the precise tissue. Autologous cancellous bone grafting is a well-known technique that provides bony regeneration. We investigated the efficiency of autologous bone grafting in a well-vascularised muscle environment, and additionally when isolated from the muscle and connected only to the bony environment. We designed a reproducible animal model producing a stable 3cm middiaphyseal bone and periosteal defect on sheep femurs and created a foreign-body membrane with a temporary poly-methylmethacrylate spacer. The foreign-body membrane had the outer dimension of the removed bone segment. We then ascertained the bony regeneration potential within the bone defect using autologous cancellous bone graft. Regeneration of bone is enhanced considerably by an autologous foreign-body membrane that separates the interfragmentary space from the muscular environment. This effect is independent of the autologous bone graft. The results suggest that bone behaves like a compartment that protects its specific humoral or its cellular environment, or both. Regeneration of bone can be enhanced by compartmentalisation of the bone defect.
Collapse
|
23
|
Jiang J, Lv HS, Lin JH, Jiang DF, Chen ZK. LTB4 Can Directly Stimulate Human Osteoclast Formation from PBMC Independent of RANKL. ACTA ACUST UNITED AC 2009; 33:391-403. [PMID: 16317958 DOI: 10.1080/10731190500289784] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Leukotriene B4, as a kind of 5-lipoxygenase metabolite of arachidonic acid, is known to influence osteoclast formation and bone resorption. In order to determine whether Leukotriene B4 could directly stimulate human osteoclast differentiation and activation independent of RANKL (ODF), three different concentrations of Leukotriene B4 (10(-9)M, 10(-8)M, 10(-7)M) were added to the culture of CD14+ monocyte fraction of peripheral blood mononuclear cell (PBMC) in the presence of macrophage colony-stimulating factor (M-CSF). Under these conditions, Leukotriene B4 could induce multinucleated cells, which were positive for Tartrate-resistant acidic phosphatase (TRAP) staining and capable of bone resorption. Addition of osteoprotegerin (OPG) to PBMC cultures does not abrogate osteoclast formation induced by LTB4. Osteoclastogenesis induced by Leukotriene B4 were dose-dependently increased and weaker than that of RANKL. These results indicated that Leukotriene B4, elevated in many inflammatory diseases, is directly capable of inducing osteoclast formation by a RANKL-independent mechanism.
Collapse
Affiliation(s)
- Jun Jiang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
24
|
Overgaard S. Calcium phosphate coatings for fixation of bone implants: Evaluated mechanically and histologically by stereological methods. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/000164700753759574] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Ekrol I, Hajducka C, Court-Brown C, McQueen MM. A comparison of RhBMP-7 (OP-1) and autogenous graft for metaphyseal defects after osteotomy of the distal radius. Injury 2008; 39 Suppl 2:S73-82. [PMID: 18804577 DOI: 10.1016/s0020-1383(08)70018-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
UNLABELLED SUMMARY AIM: The aim of the study was to demonstrate whether RhBMP-7 is an effective alternative to autogenous bone graft in the healing of metaphyseal defects in the distal radius following corrective osteotomies for symptomatic malunion after distal radial fractures. PATIENTS AND METHODS Thirty patients were entered into the study and were randomised to receive either RhBMP-7 or autogenous bone graft harvested from the ipsilateral iliac crest. Stabilisation of the osteotomy was either carried out with non- bridging external fixation or the pi-plate. Clinical, radiographic and functional review were carried out at regular intervals up to 1 year. RESULTS The first 10 patients were treated using non-bridging external fixation of the osteotomy. Two of the 4 patients treated with RhBMP-7 developed excessive osteolysis around the osteotomy site resulting in loss of the corrected position and non-union of the osteotomy. The other 2 patients healed at 13 weeks. The 6 patients treated with autogenous bone graft all healed at an average of 7 weeks, without any complications. It was postulated that the osteolysis was related to instability of the osteotomy site, and the use of external fixation was abandoned and replaced with internal fixation with a dorsal pi-plate. In the pi-plate group of patients, 10 were treated with autogenous bone graft and 10 with RhBMP-7. The bone graft patients healed at 7 weeks compared to 18 weeks for the RhBMP-7 patients, which was statistically significant (p = 0.019). The patients who received bone graft had complete filling of the metaphyseal defect radiologically. Five patients treated with RhBMP-7 healed at the volar cortex with a dorsal defect remaining at 1 year. Two patients developed non-union radiologically. Ten patients (3 in the RhBMP-7 and 7 in the bone graft groups) required plate removal for soft tissue complications. CONCLUSION RhBMP-7 does not confer the same stability as bone graft, allowing shear forces across the osteotomy site when used in conjunction with non-bridging external fixation, reducing the capacity for healing and resulting in osteolysis. Using the RhBMP-7 with a pi-plate resulted in healing of the osteotomy, but at a slower rate than autogenous bone graft.
Collapse
Affiliation(s)
- Ingri Ekrol
- Orthopaedic Trauma Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | |
Collapse
|
26
|
Takahashi N, Kojima T, Ogawa H, Ishiguro N. Correlation between parathyroid hormone, bone alkaline phosphatase and N-telopeptide of type 1 collagen in diabetic and non-diabetic haemodialysis patients. Nephrology (Carlton) 2008; 12:539-45. [PMID: 17995578 DOI: 10.1111/j.1440-1797.2007.00829.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Haemodialysis (HD) patients with diabetes mellitus often have renal osteodystrophy (ROD) characterized by reduced bone turnover, but little is known about the correlation between bone formation and bone resorption in this population. METHODS The authors measured serum parathyroid hormone (PTH), bone alkaline phosphatase (BAP), N-telopeptides of type 1 collagen (NTx) and fasting glucose in 48 patients with diabetic nephropathy (DN) and 80 patients with glomerulonephritis (non-DN) who had received <or=10 years of regular HD. Spearman's correlation coefficients (r) were derived. RESULTS In the whole patients, the DN group had a lower PTH and NTx level than the non-DN group. Serum PTH was not correlated with NTx in the DN group, whereas all three markers were correlated with each other in the non-DN group. Subdividing the DN patients according to HD duration revealed remarkable differences in the correlation between BAP and NTx: in patients receiving >or=5 years HD (r = 0.568) this correlation was similar to that in the non-DN group (r = 0.653), whereas there was no significant correlation in those receiving <5 years HD. Patients receiving >or=5 years HD had a comparable glucose level (111.1 +/- 19.2 mg/dL) to the non-DN group, whereas those receiving <5 years had a higher level (196.1 +/- 53.1 mg/dL). CONCLUSION Differences in the interaction between bone cells between DN and non-DN patients are one potential cause of lower bone turnover in the former group. Research of this correlation is needed to increase understanding of the complexities of bone metabolism in DN patients.
Collapse
Affiliation(s)
- Nobunori Takahashi
- Department of Orthopaedic Surgery, Nagoya University School of Medicine, Nagoya, Japan.
| | | | | | | |
Collapse
|
27
|
Takagi K, Kudo A. Bone marrow stromal cell lines having high potential for osteoclast-supporting activity express PPARgamma1 and show high potential for differentiation into adipocytes. J Bone Miner Metab 2008; 26:13-23. [PMID: 18095059 DOI: 10.1007/s00774-007-0787-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 06/21/2007] [Indexed: 11/30/2022]
Abstract
Bone marrow stromal cells support osteoclast differentiation by expressing receptor activator of NF-kB ligand (RANKL). Although several bone marrow stromal cell lines have been established and characterized, the differentiation stage of the supporting cells for osteoclast differentiation remains unclear. We have established several bone marrow stromal cell lines from transgenic mice harboring the temperature-sensitive SV40 large T antigen. Some of these temperature-sensitive bone marrow stromal cell lines (TSB cell lines) support osteoclast differentiation and differentiate into osteoblasts, suggesting that osteoblast precursor cells support osteoclast differentiation. Here we show that the TSB cell lines that support osteoclast differentiation also expressed peroxisome proliferator-activated receptor gamma1 (PPARgamma1) and were able to differentiate into adipocytes. PPARgamma1 is an alternatively spliced form of PPARgamma that is responsible for the adipocyte differentiation and expressed in the adipocyte precursor cells. Immunofluorescence analysis of TSB cell lines and primary bone marrow stromal cells by use of anti-PPARgamma and anti-RANKL antibodies showed that fluorescent signals for RANKL were observed in the cells that expressed PPARgamma. Furthermore, activation of adipocyte differentiation by a PPARgamma agonist led to decreased RANKL expression. These results demonstrate that PPARgamma1-positive precursor cells for osteoblasts and adipocytes expressed RANKL and supported osteoclastogenesis.
Collapse
Affiliation(s)
- Katsuhisa Takagi
- Department of Biological Information, Tokyo Institute of Technology, 4259-B-33 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | |
Collapse
|
28
|
Herde K, Hartmann S, Brehm R, Kilian O, Heiss C, Hild A, Alt V, Bergmann M, Schnettler R, Wenisch S. Connexin 43 expression of foreign body giant cells after implantation of nanoparticulate hydroxyapatite. Biomaterials 2007; 28:4912-21. [PMID: 17719629 DOI: 10.1016/j.biomaterials.2007.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Accepted: 07/15/2007] [Indexed: 12/28/2022]
Abstract
In bone a role of connexin 43 has been implicated with the fusion of mononuclear precursors of the monocyte/macrophage lineage into multinucleated cells. In order to investigate the putative role of connexin 43 in formation of bone osteoclast-like foreign body giant cells which are formed in response to implantation of biomaterials, nanoparticulate hydroxyapatite had been implanted into defects of minipig femura. After 20 days the defect areas were harvested and connexin 43 expression and synthesis were investigated by using immunohistochemistry, Western Blot, and in situ hybridization within macrophages and osteoclast-like foreign body giant cells. Morphological analysis of gap junctions is performed ultrastructurally. As shown on protein and mRNA level numerous connexin 43 positive macrophages and foreign body giant cells (FBGC) were localized within the granulation tissue and along the surfaces of the implanted hydroxyapatite (HA). Besides, the formation of FBGC by fusion of macrophages could be shown ultrastructurally. Connexin 43 labeling observed on the protein and mRNA level could be attributed to gap junctions identified ultrastructurally between macrophages, between FBGC, and between FBGC and macrophages. Annular gap junctions in the cytoplasm of FBGC pointed to degradation of the channels, and the ubiquination that had occurred in the course of degradation was confirmed by Western blot analysis. All in all, the presently observed pattern of connexin 43 labeling refers to an functional role of gap junctional communication in the formation of osteoclast-like foreign body giant cells formed in response to implantation of the nanoparticulate HA.
Collapse
Affiliation(s)
- Katja Herde
- Institute of Veterinary Anatomy, University of Giessen, Frankfurter Str 98, 35392, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Alnaeeli M, Park J, Mahamed D, Penninger JM, Teng YTA. Dendritic cells at the osteo-immune interface: implications for inflammation-induced bone loss. J Bone Miner Res 2007; 22:775-80. [PMID: 17352656 DOI: 10.1359/jbmr.070314] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Within the past decade, the critical roles of T cells and T cell-mediated immunity in inflammation-induced osteoclastogenesis and subsequent bone loss have been extensively studied, thereby establishing the new paradigm of osteoimmunology. Therefore, dendritic cells (DCs), the most potent antigen-presenting cells, responsible for activation of naïve T cells and orchestration of the immune response, became critically situated at the osteo-immune interface. Today, emerging new evidence suggests that DC may be directly involved in inflammation-induced osteoclastogenesis and bone loss, by acting as osteoclast (OC) precursors that can further develop into DC-derived OCs (DDOC) under inflammatory conditions. These findings have tremendous implications, because in addition to DC's important roles in regulating innate and adaptive immunity, a direct contribution by these cells to inflammation-induced bone loss may provide a promising therapeutic target not only for controlling inflammation but also for modulating bone destruction.
Collapse
Affiliation(s)
- Mawadda Alnaeeli
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620, USA
| | | | | | | | | |
Collapse
|
30
|
Lau YS, Adamopoulos IE, Sabokbar A, Giele H, Gibbons CLMH, Athanasou NA. Cellular and humoral mechanisms of osteoclast formation in Ewing's sarcoma. Br J Cancer 2007; 96:1716-22. [PMID: 17533390 PMCID: PMC2359921 DOI: 10.1038/sj.bjc.6603774] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cellular mechanisms that account for tumour osteolysis associated with Ewing's sarcoma are uncertain. Osteoclasts are marrow-derived multinucleated cells (MNCs) that effect tumour osteolysis. Osteoclasts are known to form from macrophages by both receptor activator for nuclear factor-κB (RANK) ligand (RANKL)-dependent and -independent mechanisms. In this study, our aim has been to determine whether tumour-associated macrophages (TAMs) isolated from Ewing's sarcoma are capable of differentiating into osteoclasts and to characterise the cellular and humoral mechanisms whereby this occurs. Tumour-associated macrophages were isolated from two Ewing's sarcomas and cultured on both coverslips and dentine slices for up to 21 days with soluble RANKL and macrophage colony stimulating factor (M-CSF). Osteoclast formation from TAMs (CD14+) was evidenced by the formation of tartrate-resistant acid phosphatase (TRAP) and vitronectin receptor (VNR)-positive MNCs, which were capable of carrying out lacunar resorption. This osteoclast formation was inhibited by the addition of bisphosphonates. Both Ewing's sarcoma-derived fibroblasts and some bone stromal cells expressed RANKL and supported osteoclast formation by a contact-dependent mechanism. We also found that osteoclast differentiation occurred when Ewing's TAMs were cultured with tumour necrosis factor (TNF)-α in the presence of M-CSF and that TC71 Ewing's sarcoma cells stimulated osteoclast formation through the release of a soluble factor, the action of which was abolished by an antibody to TNF-α. These results indicate that TAMs in Ewing's sarcoma are capable of osteoclast differentiation by both RANKL-dependent and TNF-α-dependent mechanisms and that Ewing's sarcoma cells produce osteoclastogenic factor(s). Our findings suggest that anti-resorptive and anti-osteoclastogenic therapies may be useful in inhibiting the osteolysis of Ewing's sarcoma.
Collapse
Affiliation(s)
- Y S Lau
- Department of Pathology, Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - I E Adamopoulos
- Department of Pathology, Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - A Sabokbar
- Department of Pathology, Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - H Giele
- Nuffield Department of Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - C L M H Gibbons
- Nuffield Department of Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - N A Athanasou
- Department of Pathology, Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
- E-mail:
| |
Collapse
|
31
|
Xue M, March L, Sambrook PN, Fukudome K, Jackson CJ. Endothelial protein C receptor is overexpressed in rheumatoid arthritic (RA) synovium and mediates the anti-inflammatory effects of activated protein C in RA monocytes. Ann Rheum Dis 2007; 66:1574-80. [PMID: 17491095 PMCID: PMC2095329 DOI: 10.1136/ard.2006.068239] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES (1) To investigate whether inflammatory synovial tissues from patients with rheumatoid arthritis (RA) express endothelial protein C receptor (EPCR) and (2) to determine the major cell type(s) that EPCR is associated with and whether EPCR functions to mediate the effects of activated protein C (APC) on these cells. METHODS EPCR, CD68 and PC/APC in synovial tissues were detected by immunostaining and in situ PCR. Monocytes were isolated from peripheral blood of patients with RA and treated with APC, lipopolysaccharide (LPS), and/or EPCR blocking antibody RCR252. Cells and supernatants were collected for RT-PCR, western blotting, enzyme-linked immuosorbent assay and chemotaxis assay. RESULTS EPCR was expressed by both OA and RA synovial tissues but was markedly increased in RA synovium. EPCR was colocalised with PC/APC mostly on CD68 positive cells in synovium. In RA monocytes, APC upregulated EPCR expression and reduced monocyte chemoattractant protein-1-induced chemotaxis of monocytes by approximately 50%. APC also completely suppressed LPS-stimulated NF-kappaB activation and attenuated TNF-alpha protein by more than 40% in RA monocytes. The inhibitory effects of APC were reversed by RCR252, indicating that EPCR is required. CONCLUSIONS Our results demonstrate for the first time that EPCR is expressed by synovial tissues, particularly in RA, where it co-localises with PC/APC on monocytes/macrophages. In addition, APC inhibits the migration and activation of RA monocytes via EPCR. These inhibitory effects on RA monocytes suggest that PC pathway may have a beneficial therapeutic effect in RA.
Collapse
MESH Headings
- Activated Protein C Resistance
- Adult
- Analysis of Variance
- Antigens, CD/analysis
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/analysis
- Arthritis, Rheumatoid/metabolism
- Blotting, Western/methods
- Chemokine CCL2/pharmacology
- Chemotaxis, Leukocyte
- Endothelial Protein C Receptor
- Endothelium, Vascular/immunology
- Endothelium, Vascular/metabolism
- Female
- Humans
- Immunohistochemistry
- Lipopolysaccharides/pharmacology
- Male
- Middle Aged
- Monocytes/metabolism
- NF-kappa B/analysis
- NF-kappa B/metabolism
- Osteoarthritis/metabolism
- Protein C/analysis
- Protein C/metabolism
- Receptors, Cell Surface/analysis
- Receptors, Cell Surface/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Synovial Membrane/chemistry
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Tumor Necrosis Factor-alpha/analysis
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratories, Level 1, Block 4, University of Sydney at Royal North Shore Hospital, St Leonards NSW, 2065 Australia.
| | | | | | | | | |
Collapse
|
32
|
Dias AG, Gibson IR, Santos JD, Lopes MA. Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system. Acta Biomater 2007; 3:263-9. [PMID: 17150421 DOI: 10.1016/j.actbio.2006.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 09/08/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
The aim of this work was to evaluate the in vitro degradation behaviour of a 45CaO-37P(2)O(5)-5MgO-13TiO(2) (mol.%) glass ceramic, under two different simulated physiological conditions: normal physiological pH 7.4, and pH 3.0, which was designed to simulate the acidic conditions produced by osteoclast cells. The in vitro testing was carried out at 37 degrees C for up to 42 days for the pH 7.4 solution and for up to 1 day for the pH 3.0 solution. The incorporation of TiO(2) into the glass structure leads to the precipitation of specific crystalline phases in the glass matrix, namely alpha- and beta-Ca(2)P(2)O(7), TiP(2)O(7) and CaTi(4)(PO(4))(6). The degradation testing at pH 3.0 showed a higher weight loss compared with degradation testing at pH 7.4; the weight loss under the acidic condition after 1 day (24 h) was about 10 times higher than the weight loss after 42 days of immersion at pH 7.4. The ionic release profile of Ca(2+), PO(4)(3-), Mg(2+) and Ti(4+) showed a continuous increase in concentration over all immersion times for both testing solutions. After 1 day of immersion at pH 3.0, the concentration levels of Mg(2+), Ca(2+), PO(4)(3-) were about six times higher than the levels achieved after 42 days of immersion at pH 7.4. The glass ceramic showed similar degradation to hydroxyapatite, and therefore has potential to be used in certain clinical applications where relatively slow resorption of the implant and replacement by bone is required, e.g. cranioplasty.
Collapse
Affiliation(s)
- A G Dias
- Instituto de Engenharia Biomédica (INEB), Laboratório de Biomateriais, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
33
|
Takano H, Ariyoshi W, Kanno T, Fukuhara E, Ichimiya H, Matayoshi T, Goto T, Takahashi T. Induction of osteoclast-like cells derived from the synovial lavage fluids of patients with temporomandibular joint disorders. Osteoarthritis Cartilage 2007; 15:291-9. [PMID: 16979913 DOI: 10.1016/j.joca.2006.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2005] [Accepted: 08/01/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Although biochemical studies have examined the synovial fluid (SF) of patients with temporomandibular joint (TMJ) disorders (TMDs), the details of the molecular mechanism of bone destruction and remodeling remain unknown. In this study, we induced and characterized osteoclast-like cells from the SF of patients with TMD and investigated the participation of these cells in the pathogenesis of TMD. METHODS We collected SF cells from patients with TMD after a pumping procedure, cultured osteoclast-like cells, and examined their characteristics, including osteoclast markers and bone resorption activities. In addition, we obtained fibroblastic cells from the SF of TMD patients by continuous sub-culturing. Using these fibroblastic cells, we examined fibroblast markers using immunocytochemical staining and analyzed the receptor activator of nuclear-factor-kappaB ligand (RANKL) mRNA levels. Detection of soluble form of RANKL (sRANKL) in the SF was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS Osteoclast-like cells were induced from the SF cells of patients with TMD by adding recombinant human (rh) macrophage colony stimulating factor (M-CSF) and either 1,25-dihydroxy vitamin D3 [1,25(OH)2D3] or prostaglandin E2 (PGE2). These multinucleated giant cells were positive for tartrate-resistant acid phosphatase (TRAP) and had the ability to absorb bone. The fibroblastic cells from the SF of TMD patients were positive for fibroblast markers and RANKL mRNA was up-regulated. Detection of sRANKL in SF of patient group was significantly higher than control group. CONCLUSION The results suggest that the joint-infiltrating SF cells from TMD patients play important roles in the pathogenesis of these disorders, which is characterized by progressive bone destruction or remodeling.
Collapse
Affiliation(s)
- H Takano
- Division of Oral and Maxillofacial Reconstructive Surgery, Kyushu Dental College, 2-6-1 Manazuru, Kitakyushu, Fukuoka 803-8580, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ogawa K, Mawatari M, Komine M, Shigematsu M, Kitajima M, Kukita A, Hotokebuchi T. Mature and activated osteoclasts exist in the synovium of rapidly destructive coxarthrosis. J Bone Miner Metab 2007; 25:354-60. [PMID: 17968487 DOI: 10.1007/s00774-007-0761-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 04/05/2007] [Indexed: 11/29/2022]
Abstract
We compared histological and functional findings in rapidly destructive coxarthrosis (RDC) and slowly progressive osteoarthritis (OA) to investigate whether osteoclasts contribute to the extensive bone destruction observed in RDC. A histological analysis of tissue specimens from the synovium obtained from 10 cases of RDC and 40 cases with OA of the hip was performed after staining for tartrate-resistant acid phosphatase (TRAP). The cells isolated from these tissue specimens from the synovium were cultured for 24 h, and the numbers of TRAP-positive giant cells were counted. Thereafter, we performed a resorption pit formation assay by isolated cells cultured on dentine slices for 7 days. The number of TRAP-positive multinuclear giant cells present in the synovial membrane obtained from RDC patients was significantly larger than that obtained from OA patients. Large lacunar resorption pits were only seen on the dentin slices in a culture of isolated cells from RDC patients without any stimulators. This is the first report, to our knowledge, to reveal that mature and activated osteoclasts exist only in the synovium of RDC and not in the OA synovium. This result might suggest that the underlying mechanism of RDC is therefore associated with osteoclastogenesis in the synovium.
Collapse
Affiliation(s)
- Kenji Ogawa
- Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Xia Z, Taylor PR, Locklin RM, Gordon S, Cui Z, Triffitt JT. Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. J Cell Biochem 2006; 98:966-80. [PMID: 16795075 DOI: 10.1002/jcb.20730] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Immunocompromised mouse models have been extensively used to assess human cell implantation for evaluation of cytotherapy, gene therapy and tissue engineering strategies, as these mice are deficient in T and B lymphoid cells. However, the innate immune response and its effect on human cell xenotransplantation in these mouse models are mainly unknown. The aim of this study is to characterise the myeloid populations in the spleen and blood of CB17 scid beige (CB17 sb) mice, and to study the inflammatory cell responses to xenogeneic implantation of enhanced green fluorescent protein (GFP)-labelled human bone marrow fibroblastic (HBMF) cells into CB17 sb mice. The results indicate that even though CB17 sb mice are deficient in B- and T-cells, they exhibit some increases in their monocyte (Mo), macrophage (Mphi) and neutrophil (Neu) populations. NK cell and eosinophil populations show no differences compared with wild-type Balb/C mice. An innate immune response, identified by CR3 (CD11b/CD18)-positive myeloid inflammatory cells and F4/80-positive macrophages, was evident in the tissues where HBMF cells were implanted. As a consequence, the majority of implanted HBMF cells were eliminated by 4 weeks after implantation. Interestingly, the mineralised matrix formed by osteogenic HBMF cells was also eroded by multinuclear Mphi-like giant cells. We conclude that CB17 sb mice retain active innate immune cells, which respond to HBMF cell xenotransplantation. This study highlights the importance of the innate immune cells in the anti-xenograft response and suggests that strategies to block the activities of these cells may ameliorate the progressive long-term elimination of xenotransplants.
Collapse
Affiliation(s)
- Zhidao Xia
- Botnar Research Centre, Institute of Musculoskeletal Science, Nuffield Department of Orthopaedic Surgery, The University of Oxford, Oxford, OX3 7LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
36
|
Adamopoulos IE, Danks L, Itonaga I, Locklin RM, Sabokbar A, Ferguson DJP, Athanasou NA. Stimulation of osteoclast formation by inflammatory synovial fluid. Virchows Arch 2006; 449:69-77. [PMID: 16642388 DOI: 10.1007/s00428-006-0200-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 03/08/2006] [Indexed: 10/24/2022]
Abstract
Peri-articular bone resorption is a feature of arthritis due to crystal deposition and rheumatoid disease. Under these conditions, the synovial fluid contains numerous inflammatory cells that produce cytokines and growth factors which promote osteoclast formation. The aim of this study was to determine whether inflammatory synovial fluid stimulates the formation of osteoclasts. Synovial fluid from rheumatoid arthritis (RA), pyrophosphate arthropathy (PPA) and osteoarthritis (OA) patients was added to cultures (n=8) of human peripheral blood mononuclear cells (PBMCs) in the presence and absence of macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-kappaB ligand (RANKL). Osteoclast formation was assessed by the formation of cells positive for tartrate-resistant acid phosphatase (TRAP) and vitronectin receptor (VNR) and the extent of lacunar resorption. The addition of 10% OA, RA and PPA synovial fluid to PBMC cultures resulted in the formation of numerous multinucleated or mononuclear TRAP(+) and VNR(+) cells which were capable of lacunar resorption. In contrast to PBMC cultures incubated with OA synovial fluid, there was marked stimulation of osteoclast formation and resorption in cultures containing inflammatory RA and PPA synovial fluid which contained high levels of tumour necrosis factor alpha, a factor which is known to stimulate RANKL-induced osteoclast formation.
Collapse
Affiliation(s)
- Iannis E Adamopoulos
- Institute of Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Shen Z, Crotti TN, McHugh KP, Matsuzaki K, Gravallese EM, Bierbaum BE, Goldring SR. The role played by cell-substrate interactions in the pathogenesis of osteoclast-mediated peri-implant osteolysis. Arthritis Res Ther 2006; 8:R70. [PMID: 16613614 PMCID: PMC1526628 DOI: 10.1186/ar1938] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 02/22/2006] [Accepted: 03/14/2006] [Indexed: 01/02/2023] Open
Abstract
Prosthetic wear debris-induced peri-implant osteolysis is a major cause of aseptic loosening after total joint replacement. In this condition, wear particles released from the implant components induce a granulomatous inflammatory reaction at the interface between implant and adjacent bone, leading to progressive bone resorption and loss of fixation. The present study was undertaken to characterize definitively the phenotype of osteoclast-like cells associated with regions of peri-implant focal bone resorption and to compare the phenotypic features of these cells with those of mononucleated and multinucleated cells associated with polyethylene wear particles. Peri-implant tissues were obtained from patients undergoing hip revision surgery for aseptic loosening after total joint replacement. Cells were examined for the expression of several markers associated with the osteoclast phenotype using immunohistochemistry, histochemistry, and/or in situ hybridization. CD68 protein, a marker expressed by multiple macrophage lineage cell types, was detected in mononucleated and multinucleated cells associated with polyethylene particles and the bone surface. Cathepsin K and tartrate-resistant acid phosphatase were expressed highly in both mononucleated and multinucleated cells associated with the bone surface. Levels of expression were much lower in cells associated with polyethylene particles. High levels of β3 integrin protein were detected in cells in contact with bone. Multinucleated cells associated with polyethylene particles exhibited faint positive staining. Calcitonin receptor mRNA expression was detected solely in multinucleated cells present in resorption lacunae on the bone surface and was absent in cells associated with polyethylene particles. Our findings provide further evidence that cells expressing the full repertoire of osteoclast phenotypic markers are involved in the pathogenesis of peri-implant osteolysis after total joint replacement. They also demonstrate that foreign body giant cells, although believed to be phenotypically and functionally distinct from osteoclasts, express many osteoclast-associated genes and gene products. However, the levels and patterns of expression of these genes in the two cell types differ. We speculate that, in addition to the role of cytokines and growth factors, the substrate with which these cells interact plays a critical role in their differential phenotypic and functional properties.
Collapse
Affiliation(s)
- Zhenxin Shen
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Tania N Crotti
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin P McHugh
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kenichiro Matsuzaki
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ellen M Gravallese
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin E Bierbaum
- Department of Orthopedics, New England Baptist Hospital, Boston, Massachusetts, USA
| | - Steven R Goldring
- New England Baptist Bone and Joint Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
38
|
Adamopoulos IE, Sabokbar A, Wordsworth BP, Carr A, Ferguson DJ, Athanasou NA. Synovial fluid macrophages are capable of osteoclast formation and resorption. J Pathol 2006; 208:35-43. [PMID: 16278818 DOI: 10.1002/path.1891] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To determine whether synovial fluid (SF) macrophages isolated from the SF of osteoarthritis (OA), rheumatoid arthritis (RA) and pyrophosphate arthropathy (PPA) joints are capable of osteoclast formation, and to investigate the cellular and humoral factors required for this to occur, SF macrophages (CD14+) were isolated from the knee joint SF from patients with OA, RA and PPA and cultured for up to 14 days with macrophage-colony stimulating factor (M-CSF) and soluble receptor activator for nuclear factor-kappaB ligand (RANKL) or tumour-necrosis factor-alpha (TNFalpha) and interleukin-1alpha (IL-1alpha). Osteoclast differentiation was assessed by expression of tartrate-resistant acid phosphatase (TRAP) and vitronectin receptor (VNR), F-actin ring formation and lacunar resorption. Osteoclast formation and lacunar resorption was seen in RANKL-treated cultures of SF macrophages isolated from OA, RA and PPA joints with the largest amount of resorption noted in RA and PPA SF macrophage cultures. In TNFalpha/IL-1alpha-treated RA and PPA SF macrophage cultures, osteoclasts capable of lacunar resorption were also formed. Lacunar resorption was more extensive in RANKL than TNFalpha/IL-1alpha-treated cultures. These findings indicate that SF macrophages are capable of differentiating into mature osteoclasts capable of lacunar resorption. M-CSF in combination with RANKL or TNFalpha/IL-1alpha was required for osteoclast formation. As inflammatory synovial fluids contain an increase in the number of macrophages and an increase in the amounts of RANKL, TNFalpha and IL-1alpha, these findings suggest that one means whereby bone erosions may form in rheumatoid or crystal arthritis is by differentiation of synovial fluid macrophages into osteoclasts.
Collapse
Affiliation(s)
- I E Adamopoulos
- Department of Pathology, University of Oxford, Nuffield Orthopaedic Centre, Oxford OX3 7LD, UK
| | | | | | | | | | | |
Collapse
|
39
|
Shih HN, Shih LY, Sung TH, Chang YC. Restoration of bone defect and enhancement of bone ingrowth using partially demineralized bone matrix and marrow stromal cells. J Orthop Res 2005; 23:1293-9. [PMID: 15946821 DOI: 10.1016/j.orthres.2005.04.005.1100230609] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 03/15/2005] [Accepted: 04/07/2005] [Indexed: 02/04/2023]
Abstract
PURPOSE This study aimed to investigate the capability of combining marrow stromal cells (MSC) and partially demineralized bone matrix (PDBM) to fill bone defect and enhance bone ingrowth using a canine non-weight-bearing gap model. METHODS Custom-made implants with 3mm gap between the porous surface and the host bone were used. The implants were inserted into the distal femurs of 25 mongrel dogs and the gaps were randomly assigned to be filled with culture-expanded autologous MSC-loaded PDBM, autograft, fresh-frozen allograft, PDBM alone, or nothing as controls. Histomorphometry using backscattered scanning electron microscopic examination, and mechanical push-out test were performed at 6 months after surgery. RESULTS Histomorphometry showed that amounts of bone regeneration in the gap and bone ingrowth into the porous-coated surface in the MSC-loaded PDBM-treated group were comparable to those of autograft-treated group and were significantly greater than those of allograft-treated, PDBM-treated, or non-grafted groups. Mechanical test showed the same differences. CONCLUSION The results of this study showed that combining PDBM and autologous culture-expanded MSC restored bone stock and enhanced bone ingrowth into the porous-coated area in a canine non-weight-bearing gap model. This combination may provide an option for reconstructing bone defect when we perform a cementless revision arthroplasty.
Collapse
Affiliation(s)
- Hsin-Nung Shih
- Department of Orthopedic Surgery, Chang-Gung Memorial Hospital, Chang-Gung University, No 5, Fu-Hsing Street, Kwei-Shan, Tao-Yuan 333, Taiwan.
| | | | | | | |
Collapse
|
40
|
Yamakawa T, Sudo A, Tanaka M, Uchida A. Microvascular density of rapidly destructive arthropathy of the hip joint. J Orthop Surg (Hong Kong) 2005; 13:40-5. [PMID: 15872399 DOI: 10.1177/230949900501300107] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To assess the vascularity of the femoral head and determine how it is related to the destruction of the arthritic hip joint. The process of destructive arthropathy in arthritic hip joints is variable. Some patients with osteoarthritis of the hip have rapidly progressive destructive changes resulting in the disappearance of the femoral head. METHOD Six femoral heads from patients diagnosed with rapidly destructive arthropathy and 6 femoral heads from patients with secondary osteoarthritis caused by acetabular dysplasia were analysed to reveal the association between blood capillaries and osteoclasts. The von Willebrand Factor immunostaining and counterstaining with Mayer's haematoxylin were used to label the microvessels and osteoclasts in formalin-fixed, paraffin-embedded specimens of femoral heads. The numbers of immunostained microvessels and osteoclasts in selected regions were counted. RESULT The microvascular density of the bone surfaces of rapidly progressive arthritic hips was hypervascular. Osteoclasts were also found in increased numbers on the bone surfaces of rapidly progressive arthritic hips. The higher microvascular density coincided with extensive bone destruction and with the increased osteoclast count. CONCLUSION These findings suggested that hypervascularity of the granulation in the femoral head may be associated with bone and joint destruction.
Collapse
Affiliation(s)
- T Yamakawa
- Department of Orthopedic Surgery, Mie University Faculty of Medicine, Mie University Hospital, Tsu, Mie, Japan.
| | | | | | | |
Collapse
|
41
|
Naudie DDR, Engh CA. Surgical management of polyethylene wear and pelvic osteolysis with modular uncemented acetabular components. J Arthroplasty 2004; 19:124-9. [PMID: 15190567 DOI: 10.1016/j.arth.2004.02.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Osteolysis, usually associated with polyethylene wear, has become one of the most prevalent complications associated with total hip arthroplasty inserted without cement. Management of osteolysis is challenging because the disorder tends to develop silently and surgical intervention can result in complications. In addition, long-term outcomes are unknown. We discuss the current knowledge and data available on polyethylene wear and pelvic osteolysis with modular uncemented acetabular components. We also outline an algorithm for evaluation and treatment of patients. In general, we see patients with well-fixed components every 2 years, and we base follow-up visits after 6 years on predicted polyethylene wear rates and the presence or absence of pelvic osteolysis.
Collapse
Affiliation(s)
- Douglas D R Naudie
- Department of Orthopaedic Surgery, Anderson Orthopaedic Research Institute, INOVA Center for Joint Replacement, Alexandria, Virginia 22307, USA
| | | |
Collapse
|
42
|
Chazono M, Tanaka T, Komaki H, Fujii K. Bone formation and bioresorption after implantation of injectable ?-tricalcium phosphate granules-hyaluronate complex in rabbit bone defects. ACTA ACUST UNITED AC 2004; 70:542-9. [PMID: 15307158 DOI: 10.1002/jbm.a.30094] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The objective of this study was to evaluate the effects of a complex of beta-tricalcium phosphate (beta-TCP) granules and 3.5% hyaluronate (beta-TCP granules-HY complex) compared with a beta-TCP block, in terms of osteoconductivity and biodegradability, to determine whether this complex would be a good candidate for bone void filler. Both materials were implanted into cavities drilled in rabbit femoral condyles. New bone formation and mineral apposition rate were evaluated to analyze osteoconductivity, whereas residual beta-TCP within the defects and tartrate-resistant acid phosphatase (TRAP) cellular activity were studied for beta-TCP resorption. The results show that both the beta-TCP block and the beta-TCP granules-HY complex support bone ingrowth; however, bioresorption was rapid for beta-TCP granules-HY but weak for beta-TCP block. This biodegradation mechanism was considered to be a cell-mediated disintegration by numerous TRAP-positive giant cells. The time lag between the peak value of TRAP-positive giant cell population and that of new bone formation rate suggests that a coupling-like phenomenon could be occurring in the beta-TCP-filled bone defects. In addition, beta-TCP granules-HY complex, which is an injectable, pastelike material, has similar osteoconductive properties to beta-TCP block. Thus, this complex may be useful as a bone filler in clinical application.
Collapse
Affiliation(s)
- Masaaki Chazono
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | |
Collapse
|
43
|
Danks L, Sabokbar A, Gundle R, Athanasou NA. Synovial macrophage-osteoclast differentiation in inflammatory arthritis. Ann Rheum Dis 2002; 61:916-21. [PMID: 12228163 PMCID: PMC1753924 DOI: 10.1136/ard.61.10.916] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pathological bone resorption (marginal erosions and juxta-articular osteoporosis) by osteoclasts commonly occurs in rheumatoid arthritis (RA). OBJECTIVES To define the nature of the mononuclear precursor cells from which osteoclasts are formed in inflamed synovial tissues and to determine the cellular and humoral factors which influence osteoclast differentiation. METHOD Macrophage (CD14+), non-macrophage (CD14-), and unsorted (CD14+/CD14-) synovial cell populations from RA and inflammatory/non-inflammatory osteoarthritis (OA) synovium were cultured in the presence of receptor activator for nuclear factor kappaB ligand (RANKL) and monocyte-colony stimulating factor (M-CSF; in the presence/absence of prostaglandin E(2) (PGE(2)), interleukin 1beta (IL1beta), tumour necrosis factor alpha (TNFalpha), and IL6). Osteoclast differentiation was assessed by expression of tartrate resistant acid phosphatase (TRAP), vitronectin receptor (VNR), and lacunar resorption. RESULTS TRAP+ and VNR+ multinucleated cells capable of lacunar resorption were only formed in cultures of CD14+-containing synovial cell populations (that is, CD14+ and CD14+/CD14- cells). No difference in the extent of osteoclast formation was noted in cultures of CD14+ cells isolated from RA, inflammatory OA, and non-inflammatory OA synovium. However, more TRAP+/VNR+ cells and more lacunar resorption was noted in CD14+/CD14- cells from RA and inflammatory OA synovial tissues. The addition of PGE(2), IL1beta, TNFalpha, and IL6 did not increase RANKL/M-CSF-induced osteoclast formation and lacunar resorption of both CD14+/CD14- and CD14+ synovial cell populations. CONCLUSIONS Osteoclast precursors in synovial tissues are CD14+ monocyte/macrophages. The increase in osteoclast formation in cultures of CD14+/CD14- compared with CD14+ synovial cells in RA and inflammatory OA points to a role for CD14- cells in promoting osteoclast differentiation and bone resorption in inflamed synovial tissues by a mechanism which does not involve a direct effect of proinflammatory cytokines/prostaglandins on RANKL-induced macrophage-osteoclast differentiation.
Collapse
Affiliation(s)
- L Danks
- Nuffield Department of Orthopaedic Surgery, Nuffield Orthopaedic Centre, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
44
|
Li L, Khansari A, Shapira L, Graves DT, Amar S. Contribution of interleukin-11 and prostaglandin(s) in lipopolysaccharide-induced bone resorption in vivo. Infect Immun 2002; 70:3915-22. [PMID: 12065535 PMCID: PMC128103 DOI: 10.1128/iai.70.7.3915-3922.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously demonstrated that interleukin-1 (IL-1) and tumor necrosis factor (TNF) activities only partially account for calvarial bone resorption induced by local application of lipopolysaccharide (LPS) in mice. The present study was undertaken to determine the role and relative contribution of IL-11 and prostaglandin(s) (PG[s]) in LPS-induced bone resorption in vivo. A one-time dose of LPS was injected into the subcutaneous tissue overlying calvaria of mice lacking IL-1 receptor type I (IL-1RI(-/-)), mice lacking TNF receptor p55 and IL-1RI (TNFRp55(-/-)-IL-1RI(-/-)), and wild-type mice. Mice were then treated with injections of anti-IL-11 monoclonal antibody (MAb), indomethacin, or phosphate-buffered saline (PBS) and sacrificed 5 days later. Histological sections stained for tartrate-resistant acid phosphatase (TRAP) were quantified by histomorphometric analysis. At low doses of LPS (100 microg/mouse), the percentages of bone surface covered by osteoclasts were found to be similar in three strains of mice. The increase was reduced by 37% with anti-IL-11 MAb and by 46% with indomethacin. At higher doses of LPS (500 microg/mouse), we found an eightfold increase in these percentages in wild-type mice and a fivefold increase in these percentages in IL-1RI(-/-) and TNFRp55(-/-)-IL-1RI(-/-) mice after normalizing with the value from the saline-PBS control group in the same strain of mice. The increase was reduced by 55 and 69% in wild-type mice and by 50 and 57% in IL-1RI(-/-) and TNFRp55(-/-)-IL-1RI(-/-) mice treated with anti-IL-11 MAb or indomethacin, respectively. Our findings suggest that in vivo, at low doses of LPS (100 microg/mouse), LPS-induced bone resorption is mediated by IL-11 and PGs, while at high doses of LPS (500 microg/mouse), it is mediated by IL-11, PGs, IL-1, and TNF signaling. IL-11 and PGs mediate LPS-induced bone resorption by enhancing osteoclastogenesis independently of the IL-1 or TNF signaling.
Collapse
MESH Headings
- Acid Phosphatase/metabolism
- Animals
- Antigens, CD/genetics
- Antigens, CD/physiology
- Bone Resorption/metabolism
- Bone Resorption/pathology
- Cyclooxygenase Inhibitors/pharmacology
- Indomethacin/pharmacology
- Interleukin-11/metabolism
- Isoenzymes/metabolism
- Lipopolysaccharides/administration & dosage
- Lipopolysaccharides/adverse effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Osteoclasts/cytology
- Osteoclasts/physiology
- Prostaglandins/metabolism
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/physiology
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Signal Transduction
- Skull/metabolism
- Skull/pathology
- Tartrate-Resistant Acid Phosphatase
Collapse
Affiliation(s)
- Li Li
- Department of Periodontology and Oral Biology, School of Dental Medicine, Boston University, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
45
|
Miao D, Scutt A. Recruitment, augmentation and apoptosis of rat osteoclasts in 1,25-(OH)2D3 response to short-term treatment with 1,25-dihydroxyvitamin D3 in vivo. BMC Musculoskelet Disord 2002; 3:16. [PMID: 12052261 PMCID: PMC116579 DOI: 10.1186/1471-2474-3-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2001] [Accepted: 06/07/2002] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Although much is known about the regulation of osteoclast (OC) formation and activity, little is known about OC senescence. In particular, the fate of of OC seen after 1,25-(OH)2D3 administration in vivo is unclear. There is evidence that the normal fate of OC is to undergo apoptosis (programmed cell death). We have investigated the effect of short-term application of high dose 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) on OC apoptosis in an experimental rat model. METHODS OC recruitment, augmentation and apoptosis was visualised and quantitated by staining histochemically for tartrate resistant acid phosphatase (TRAP), double staining for TRAP/ED1 or TRAP/DAPI, in situ DNA fragmentation end labelling and histomorphometric analysis. RESULTS Short-term treatment with high-dose 1,25-(OH)2D3 increased the recruitment of OC precursors in the bone marrow resulting in a short-lived increase in OC numbers. This was rapidly followed by an increase in the number of apoptotic OC and their subsequent removal. The response of OC to 1,25-(OH)2D3 treatment was dose and site dependent; higher doses producing stronger, more rapid responses and the response in the tibiae being consistently stronger and more rapid than in the vertebrae. CONCLUSIONS This study demonstrates that (1) after recruitment, OC are removed from the resorption site by apoptosis (2) the combined use of TRAP and ED1 can be used to identify OC and their precursors in vivo (3) double staining for TRAP and DAPI or in situ DNA fragmentation end labelling can be used to identify apoptotic OC in vivo.
Collapse
Affiliation(s)
- Dengshun Miao
- Royal Victoria Hospital, Montreal QC, H3A 1A1, Canada
| | - Andrew Scutt
- Tissue Engineering/Department of Engineering Materials University of Sheffield Sheffield S1 3JD, UK
| |
Collapse
|
46
|
Witten PE, Hansen A, Hall BK. Features of mono- and multinucleated bone resorbing cells of the zebrafish Danio rerio and their contribution to skeletal development, remodeling, and growth. J Morphol 2001; 250:197-207. [PMID: 11746460 DOI: 10.1002/jmor.1065] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To provide basic data about bone resorbing cells in the skeleton during the life cycle of Danio rerio, larvae, juveniles, and adults (divided into six age groups) were studied by histological procedures and by demonstration of the osteoclast marker enzyme tartrate-resistant acid phosphatase (TRAP). Special attention was paid to the lower jaw, which is a standard element for fish bone studies. The presence of osteoclasts at endosteal surfaces of growing bones of all animals older than 20 days reveals that resorption is an important part of zebrafish skeletal development. The first bone-resorbing cells to form are mononucleated. They appear in 20-day-old animals concurrently in the craniofacial skeleton and vertebral column. Mononucleated osteoclasts are predominant in juveniles. Regional differences characterize the appearance of osteoclasts; at thin skeletal elements (neural arches, nasal) mononucleated osteoclasts are predominant even in adults. Multinucleated bone-resorbing cells were first observed in 40-day-old animals and are the predominant osteoclast type of adults. Both mono- and multinucleated osteoclasts contribute to allometric bone growth but multinucleated osteoclasts are also involved in lacunar bone resorption and repeated bone remodeling. Resorption of the dentary follows the pattern described above (mononucleated osteoclasts precede multinucleated cells) and includes the partial removal of Meckel's cartilage. Bone marrow spaces created by resorption are usually filled with adipose tissue. In conclusion, bone resorption is primarily subjected to the demands of growth, the appearance of mono- and multinucleated osteoclasts is site- and age-related, and bone remodeling occurs. The results are discussed in relation to findings in other teleosts and in mammals.
Collapse
Affiliation(s)
- P E Witten
- Department of Biology, Dalhousie University, 1355 Oxford St., Halifax Nova Scotia, Canada B3H 4J1.
| | | | | |
Collapse
|
47
|
Grimaud E, Redini F, Heymann D. Osteoprotegerin: a new therapeutic agent for the treatment of bone disease. Drug Discov Today 2001; 6:1241-1242. [PMID: 11722878 DOI: 10.1016/s1359-6446(01)02037-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Eva Grimaud
- Pathophysiology of Bone Resorption Laboratory, Medicine Faculty, 1 Rue Gaston Veil, 44035 Cedex 1, Nantes, France
| | | | | |
Collapse
|
48
|
Lean JM, Fuller K, Chambers TJ. FLT3 ligand can substitute for macrophage colony-stimulating factor in support of osteoclast differentiation and function. Blood 2001; 98:2707-13. [PMID: 11675341 DOI: 10.1182/blood.v98.9.2707] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although bone resorption and osteoclast numbers are reduced in osteopetrotic (op/op) mice, osteoclasts are nevertheless present and functional, despite the absence of macrophage colony-stimulating factor (M-CSF). This suggests that alternative factors can partly compensate for the crucial actions of M-CSF in osteoclast induction. It was found that when nonadherent bone marrow cells were incubated in RANKL with Flt3 ligand (FL) without exogenous M-CSF, tartrate-resistance acid phosphatase (TRAP)-positive cells were formed, and bone resorption occurred. Without FL, only macrophagelike TRAP-negative cells were present. Granulocyte-macrophage CSF, stem cell factor, interleukin-3, and vascular endothelial growth factor could not similarly replace the need for M-CSF. TRAP-positive cell induction in FL was not due to synergy with M-CSF produced by the bone marrow cells themselves because FL also enabled their formation from the hemopoietic cells of op/op mice, which lack any M-CSF. FL appeared to substitute for M-CSF by supporting the differentiation of adherent cells that express mRNA for RANK and responsiveness to RANKL. To determine whether FL can account for the compensation for M-CSF deficiency that occurs in vivo, FL signaling was blockaded in op/op mice by the injection of soluble recombinant Flt3. It was found that the soluble receptor induced a substantial decrease in osteoclast number, strongly suggesting that FL is responsible for the partial compensation for M-CSF deficiency that occurs in these mice.
Collapse
Affiliation(s)
- J M Lean
- Department of Cellular Pathology, St George's Hospital Medical School, London, United Kingdom
| | | | | |
Collapse
|
49
|
Zerbo IR, Bronckers AL, de Lange GL, van Beek GJ, Burger EH. Histology of human alveolar bone regeneration with a porous tricalcium phosphate. A report of two cases. Clin Oral Implants Res 2001; 12:379-84. [PMID: 11488868 DOI: 10.1034/j.1600-0501.2001.012004379.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Porous beta-phase tricalcium phosphate particles (pTCP) (Cerasorb) were used in two patients to restore or augment alveolar bone prior to the placement of dental implants. In one patient, pTCP was used to fill a large alveolar defect in the posterior mandible after the removal of a residual cyst, and in another patient to augment the sinus floor. Biopsies were taken at the time of implant placement, 9.5 and 8 months after grafting, respectively, and processed for hard tissue histology. Goldner-stained histological sections showed considerable replacement of the bone substitute by bone and bone marrow. In the 9.5 months biopsy of the mandible, 34% of the biopsy consisted of mineralised bone tissue and 29% of remaining pTCP, while the biopsy at 8 months after sinus floor augmentation consisted of 20% mineralised bone and 44% remaining pTCP. Bone and osteoid were lying in close contact with the remaining pTCP and were also seen within the micropores of the grafted particles. Tartrate resistant-acid phosphatase (TRAP) multinuclear cells, presumably osteoclasts, were found surrounding, within and in close contact with the pTCP particles, suggesting active resorption of the bone substitute. Remodelling of immature woven bone into mature lamellar bone was also found. No histological signs of inflammation were detected. The limited data presented from these two cases suggest that this graft material, possibly by virtue of its porosity and chemical nature, may be a suitable bone substitute that can biodegrade and be replaced by new mineralising bone tissue.
Collapse
Affiliation(s)
- I R Zerbo
- Department of Oral Cell Biology, ACTA, Vrije Universiteit, Vander Boechorststraat 7, 1081 BT Amsterdam, Netherlands.
| | | | | | | | | |
Collapse
|
50
|
Hunt NC, Fujikawa Y, Sabokbar A, Itonaga I, Harris A, Athanasou NA. Cellular mechanisms of bone resorption in breast carcinoma. Br J Cancer 2001; 85:78-84. [PMID: 11437406 PMCID: PMC2363911 DOI: 10.1054/bjoc.2001.1856] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cellular mechanisms that account for the increase in osteoclast numbers and bone resorption in skeletal breast cancer metastasis are unclear. Osteoclasts are marrow-derived cells which form by fusion of mononuclear phagocyte precursors that circulate in the monocyte fraction. In this study we have determined whether circulating osteoclast precursors are increased in number or have an increased sensitivity to humoral factors for osteoclastogenesis in breast cancer patients with skeletal metastases (+/- hypercalcaemia) compared to patients with primary breast cancer and age-matched normal controls. Monocytes were isolated and cocultured with UMR 106 osteoblastic cells in the presence of 1,25 dihydroxyvitamin D3[1,25(OH)2D3] and human macrophage colony stimulating factor (M-CSF) on coverslips and dentine slices. Limiting dilution experiments showed that there was no increase in the number of circulating osteoclast precursors in breast cancer patients with skeletal metastases (+/- hypercalcaemia) compared to controls. Osteoclast precursors in these patients also did not exhibit increased sensitivity to 1,25(OH)2D3or M-CSF in terms of osteoclast formation. The addition of parathyroid hormone-related protein and interleukin-6 did not increase osteoclast formation. The addition of the supernatant of cultured breast cancer cell lines (MCF-7 and MDA-MB-435), however, significantly increased monocyte-osteoclast formation in a dose-dependent fashion. These results indicate that the increase in osteoclast formation in breast cancer is not due to an increase in the number/nature of circulating osteoclast precursors. They also suggest that tumour cells promote osteoclast formation in the bone microenvironment by secreting soluble osteoclastogenic factor(s).
Collapse
Affiliation(s)
- N C Hunt
- Nuffield Department of Pathology and Bacteriology, University of Oxford, John Radcliffe Hospital, Oxford, Headington, OX3 9DU, UK
| | | | | | | | | | | |
Collapse
|