1
|
Nian FS, Liao BK, Su YL, Wu PR, Tsai JW, Hou PS. Oscillatory DeltaC Expression in Neural Progenitors Primes the Prototype of Forebrain Development. Mol Neurobiol 2024:10.1007/s12035-024-04530-9. [PMID: 39392541 DOI: 10.1007/s12035-024-04530-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Notch signaling plays a pivotal role in regulating various developmental processes, particularly in controlling the timing of neuronal production within the developing neocortex. Central to this regulatory mechanism is the oscillatory pattern of Delta, which functions as a developmental clock modulator. Its deficiency profoundly impairs mammalian brain formation, highlighting its fundamental role in brain development. However, zebrafish carrying a mutation in the functional ortholog DeltaC (dlc) within their functional ortholog exhibit an intact forebrain structure, implying evolutionary variations in Notch signaling within the forebrain. In this study, we unveil the distinct yet analogous expression profiles of Delta and Her genes in the developing vertebrate forebrain. Specifically, for the first time, we detected the oscillatory expression of the Delta gene dlc in the developing zebrafish forebrain. Although this oscillatory pattern appeared irregular and was not pervasive among the progenitor population, attenuation of the dlc-involved Notch pathway using a γ-secretase inhibitor impaired neuronal differentiation in the developing zebrafish forebrain, revealing the indispensable role of the dlc-involved Notch pathway in regulating early zebrafish neurogenesis. Taken together, our results demonstrate the foundational prototype of dlc-involved Notch signaling in the developing zebrafish forebrains, upon which the intricate patterns of the mammalian neocortex may have been sculpted.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yen-Lin Su
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Pei-Rong Wu
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jin-Wu Tsai
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Jorgewich-Cohen G, Werneburg I, Jobbins M, Ferreira GS, Taylor MD, Bastiaans D, Sánchez-Villagra MR. Morphological Diversity of Turtle Hyoid Apparatus is Linked to Feeding Behavior. Integr Org Biol 2024; 6:obae014. [PMID: 38741667 PMCID: PMC11090499 DOI: 10.1093/iob/obae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
The hyoid apparatus of tetrapods is highly diverse in its morphology. It plays an important role in feeding, breathing, sound production, and various other behaviors. Among turtles, the diversity of the hyoid apparatus has been recurrently linked to their habitat. The ossification of the hyoid corpus is often the main trait used in correlations with "niche" occupancy, an ossified corpus being associated with aquatic environments and a cartilaginous corpus with terrestrial life. Most studies conducted so far have focused on species belonging to Testudinoidea, the clade that occupies the biggest diversity of habitats (i.e., terrestrial, semi-terrestrial, and aquatic animals), while other turtle lineages have been largely understudied. We assessed the adult anatomy of the hyoid apparatus of 92 turtle species from all "families", together with ossification sequences from embryological series of 11 species, some described for the first time here. Using nearly 40 different discrete anatomical characters, we discuss the evolutionary patterns and the biological significance of morphological transformations in the turtle hyoid elements. Morphological changes are strongly associated to feeding modes, with several instances of convergent evolution within and outside the Testudines clade, and are not as strongly connected to habitat as previously thought. Some of the hyoid character states we describe are diagnostic of specific turtle clades, thus providing phylogenetically relevant information.
Collapse
Affiliation(s)
- G Jorgewich-Cohen
- Department of Paleontology, University of Zurich, 8006 Zurich, Switzerland
| | - I Werneburg
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenshcaten dr Universität Tübingen, 72074 Tübingen, Germany
| | - M Jobbins
- Department of Paleontology, University of Zurich, 8006 Zurich, Switzerland
| | - G S Ferreira
- Senckenberg Centre for Human Evolution and Palaeoenvironment an der Universität Tübingen, Tübingen, Germany
- Fachbereich Geowissenshcaten dr Universität Tübingen, 72074 Tübingen, Germany
| | - M D Taylor
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
- The UWA Oceans Institute, The University of Western Australia, Perth, WA 6009, Australia
| | - D Bastiaans
- Department of Paleontology, University of Zurich, 8006 Zurich, Switzerland
| | | |
Collapse
|
3
|
Nishihara S, Ohira T. The mechanism of pattern transitions between formation and dispersion. J Theor Biol 2024; 581:111736. [PMID: 38246485 DOI: 10.1016/j.jtbi.2024.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/10/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
On the surface of living organisms, a wide variety of patterns can be observed, some of which change during their growth process. For instance, Pelodiscus sinensis exhibits distinct black patterns on its vivid orange plastron during the embryonic and juvenile stages, but as it matures, the black patterns gradually disappear, resulting in a whitened plastron. This pattern transition is a mysterious phenomenon that forms and vanishes on the plastron, a ventral part with low visibility to both predators and peers. Our research aims to focus on understanding the mechanisms behind such pattern transitions and proposes a model capable of representing pattern formation and dispersion. To understand the changing patterns, we propose a hypothesis based on a reaction-diffusion system with a time-dependent growing spatial domain. This mathematical framework suggests the occurrence of the dispersion phenomenon. Specifically, we focus on the dilution term within the system under the growing-domain condition. While previous studies have investigated the effects of growth domains, this study specifically addresses the role of the time-dependently growing domain effects - change of diffusion coefficient and dilution - in reaction-diffusion systems. Our research sheds light on the intricate phenomenon of pattern formation and dispersion on the surface of living organisms, proposing a natural system based on the effects of growing domain, namely, a model of reaction-dilution-diffusion systems.
Collapse
Affiliation(s)
- Shin Nishihara
- Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan
| | - Toru Ohira
- Graduate School of Mathematics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602, Japan.
| |
Collapse
|
4
|
Gao Y, Wu Q, Wang G, Zhang S, Ma W, Shi X, Liu H, Wu L, Tian X, Li X, Ma X. Histomorphic analysis and expression of mRNA and miRNA in embryonic gonadal differentiation in Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2024; 893:147913. [PMID: 37866663 DOI: 10.1016/j.gene.2023.147913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is extensively cultured in Asia for its nutritional and medical value. Gonadal differentiation is fantastic in turtles, whereas morphologic, mRNA, and miRNA expressions were insufficient in the turtle. In this study, ovaries and testes histomorphology analysis of 14-23 stage embryos were performed, and mRNA and miRNA expression profiles were analyzed. Histomorphology analysis revealed that gonads were undifferentiated at embryonic stage 14. Ovarian morphological differentiation became evident from stage 15, which was characterized by the development of the cortical region and degeneration of the medullary region. Concurrently, testicular morphological differentiation was apparent from stage 15, marked by the development of the medullary region and degeneration of the cortical region. qRT-PCR results showed that Cyp19a1 and Foxl2 exhibited female-specific expression at stage 15 and the expression increased throughout most of the embryonic development. Dmrt1, Amh, and Sox9 displayed male-specific expression at stage 15 and tended to increase substantially at later developmental stages. The expression of miR-8356 and miR-3299 in ZZ gonads were significantly higher than that in ZW gonads at stage 15, 17 and 19, and they had the highest expression at stage 15. While the expression of miR-8085 and miR-7982 had the highest expression at stage 19. Furthermore, chromatin remodeler genes showed differential expression in female and male P. sinensis gonads. These results of master sex-differentiation genes and morphological characteristics would provide a reference for the research of sex differentiation and sex reversal in turtles. Additionally, the expression of chromatin remodeler genes indicated they might be involved in gonadal differentiation of P. sinensis.
Collapse
Affiliation(s)
- Yijie Gao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Qisheng Wu
- Fisheries Research Institute of Fujian, Xiamen 361000, China.
| | - Guiyu Wang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shufang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Huifen Liu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
5
|
Zhu J, Wang Y, Chen C, Ji L, Hong X, Liu X, Chen H, Wei C, Zhu X, Li W. Identification of Sex-Specific Markers and Candidate Genes Using WGS Sequencing Reveals a ZW-Type Sex-Determination System in the Chinese Soft-Shell Turtle ( Pelodiscus sinensis). Int J Mol Sci 2024; 25:819. [PMID: 38255893 PMCID: PMC10815769 DOI: 10.3390/ijms25020819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Male and female Chinese soft-shelled turtles (Pelodiscus sinensis) have sex-dimorphic growth patterns, and males have higher commercial value because of their larger size and thicker calipash. Thus, developing sex-specific markers is beneficial to studies on all-male breeding in P. sinensis. Here, we developed an accurate and efficient workflow for the screening of sex-specific sequences with ZW or XY sex determination systems. Based on this workflow, female and male P. sinensis reference genomes of 2.23 Gb and 2.26 Gb were obtained using de novo assembly. After aligning and filtering, 4.01 Mb female-specific sequences were finally identified. Subsequently, the seven developed sex-specific primer pairs were 100% accurate in preliminary, population, and embryonic validation. The presence and absence of bands for the primers of P44, P45, P66, P67, P68, and P69, as well as two and one bands for the PB1 primer, indicate that the embryos are genetically female and male, respectively. NR and functional annotations identified several sex-determining candidate genes and related pathways, including Ran, Eif4et, and Crkl genes, and the insulin signaling pathway and the cAMP signaling pathway, respectively. Collectively, our results reveal that a ZW-type sex-determination system is present in P. sinensis and provide novel insights for the screening of sex-specific markers, sex-control breeding, and the studies of the sex determination mechanism of P. sinensis.
Collapse
Affiliation(s)
- Junxian Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Xinping Zhu
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| | - Wei Li
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China;
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (Y.W.); (C.C.); (L.J.); (X.H.); (X.L.); (H.C.); (C.W.)
| |
Collapse
|
6
|
Zhu J, Wang Y, Lei L, Chen C, Ji L, Li J, Wu C, Yu W, Luo L, Chen W, Liu P, Hong X, Liu X, Chen H, Wei C, Zhu X, Li W. Comparative genomic survey and functional analysis of DKKL1 during spermatogenesis in the Chinese soft-shelled turtle (Pelodiscus sinensis). Int J Biol Macromol 2024; 254:127696. [PMID: 37913874 DOI: 10.1016/j.ijbiomac.2023.127696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/27/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
A feature of the Chinese soft-shelled turtle (Pelodiscus sinensis) is seasonal spermatogenesis; however, the underlying molecular mechanism is not well clarified. Here, we firstly cloned and characterized P. sinensis DKKL1, and then performed comparative genomic studies, expression analysis, and functional validation. P. sinensis DKKL1 had 2 putative N-glycosylation sites and 16 phosphorylation sites. DKKL1 also had classic transmembrane structures that were extracellularly localized. DKKL1's genetic distance was close to turtles, followed by amphibians and mammals, but its genetic distance was far from fishes. DKKL1 genes from different species shared distinct genomic characteristics. Meanwhile, they were also relatively conserved among themselves, at least from the perspective of classes. Notably, the transcription factors associated with spermatogenesis were also identified, containing CTCF, EWSR1, and FOXL2. DKKL1 exhibited sexually dimorphic expression only in adult gonads, which was significantly higher than that in other somatic tissues (P < 0.001), and was barely expressed in embryonic gonads. DKKL1 transcripts showed a strong signal in sperm, while faint signals were detected in other male germ cells. DKKL1 in adult testes progressively increased per month (P < 0.05), displaying a seasonal expression trait. DKKL1 was significantly downregulated in testes cells after the sex hormones (17β-estradiol and 17α-methyltestosterone) and Wnt/β-catenin inhibitor treatment (P < 0.05). Likewise, the Wnt/β-catenin inhibitor treatment dramatically repressed CTCF, EWSR1, and FOXL2 expression. Conversely, they were markedly upregulated after the 17β-estradiol and 17α-methyltestosterone treatment, suggesting that the three transcription factors might bind to different promoter regions, thereby negatively regulating DKKL1 transcription in response to the changes in the estrogen and androgen pathways, and positively controlling DKKL1 transcription in answer to the alterations in the Wnt/β-catenin pathway. Knockdown of DKKL1 significantly reduced the relative expression of HMGB2 and SPATS1 (P < 0.01), suggesting that it may be involved in seasonal spermatogenesis of P. sinensis through a positive regulatory interaction with these two genes. Overall, our findings provide novel insights into the genome evolution and potential functions of seasonal spermatogenesis of P. sinensis DKKL1.
Collapse
Affiliation(s)
- Junxian Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China
| | - Yongchang Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Life Science, Xinjiang Agricultural University, Ulumuqi, Xinjiang, PR China
| | - Luo Lei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Jiansong Li
- Huizhou Wealth Xing Industrial Co., Ltd., Huizhou, Guangdong, PR China
| | - Congcong Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Wenjun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Laifu Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Weiqin Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Pan Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Haigang Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, PR China.
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, PR China.
| |
Collapse
|
7
|
Sato H, Adachi N, Kondo S, Kitayama C, Tokita M. Turtle skull development unveils a molecular basis for amniote cranial diversity. SCIENCE ADVANCES 2023; 9:eadi6765. [PMID: 37967181 PMCID: PMC10651123 DOI: 10.1126/sciadv.adi6765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
Amniote skulls display diverse architectural patterns including remarkable variations in the number of temporal arches surrounding the upper and lower temporal fenestrae. However, the cellular and molecular basis underlying this diversification remains elusive. Turtles are a useful model to understand skull diversity due to the presence of secondarily closed temporal fenestrae and different extents of temporal emarginations (marginal reduction of dermal bones). Here, we analyzed embryos of three turtle species with varying degrees of temporal emargination and identified shared widespread coexpression of upstream osteogenic genes Msx2 and Runx2 and species-specific expression of more downstream osteogenic genes Sp7 and Sparc in the head. Further analysis of representative amniote embryos revealed differential expression patterns of osteogenic genes in the temporal region, suggesting that the spatiotemporal regulation of Msx2, Runx2, and Sp7 distinguishes the temporal skull morphology among amniotes. Moreover, the presence of Msx2- and/or Runx2-positive temporal mesenchyme with osteogenic potential may have contributed to their extremely diverse cranial morphology in reptiles.
Collapse
Affiliation(s)
- Hiromu Sato
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Noritaka Adachi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Satomi Kondo
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Byobudani, Chichi-Jima, Ogasawara, Tokyo 100-2101, Japan
| | - Chiyo Kitayama
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Byobudani, Chichi-Jima, Ogasawara, Tokyo 100-2101, Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| |
Collapse
|
8
|
Nakamuta S, Noda H, Kato H, Yokoyama T, Yamamoto Y, Nakamuta N. Expression patterns of the transcription factors Fezf1, Fezf2, and Bcl11b in the olfactory organs of turtle embryos. J Morphol 2023; 284:e21655. [PMID: 37856277 DOI: 10.1002/jmor.21655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Many tetrapod vertebrates have two distinct olfactory organs, the olfactory epithelium (OE) and vomeronasal organ (VNO). In turtles, the olfactory organ consists of two types of sensory epithelia, the upper chamber epithelium (UCE; corresponding to the OE) and the lower chamber epithelium (LCE; corresponding to the VNO). In many turtle species, the UCE contains ciliated olfactory receptor cells (ORCs) and the LCE contains microvillous ORCs. To date, several transcription factors involved in the development of the OE and VNO have been identified in mammals. Fez family zinc-finger protein 1 and 2 (Fezf1 and 2) are expressed in the OE and VNO, respectively, of mouse embryos, and are involved in the development and maintenance of ORCs. B-cell lymphoma/leukemia 11B (Bcl11b) is expressed in the mouse embryo OE except the dorsomedial parts of the nasal cavity, and regulates the expression of odorant receptors in the ORCs. In this study, we examined the expression of Fezf1, Fezf2, and Bcl11b in the olfactory organs of embryos in three turtle species, Pelodiscus sinensis, Trachemys scripta elegans, and Centrochelys sulcata, to evaluate their involvement in the development of reptile olfactory organs. In all three turtle species, Bcl11b was expressed in the UCE, Fezf2 in the LCE, and Fezf1 in both the UCE and LCE. These results imply that the roles of the transcription factors Fezf1, Fezf2, and Bcl11b in olfactory organ development are conserved among mammals and turtles.
Collapse
Affiliation(s)
- Shoko Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | | | - Hideaki Kato
- Faculty of Education, Shizuoka University, Shizuoka, Japan
| | - Takuya Yokoyama
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy, Iwate University, Morioka, Japan
| |
Collapse
|
9
|
Wang G, Lu R, Gao Y, Zhang H, Shi X, Ma W, Wu L, Tian X, Liu H, Jiang H, Li X, Ma X. Molecular characterization and potential function of Rxrγ in gonadal differentiation of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2023; 233:106360. [PMID: 37429547 DOI: 10.1016/j.jsbmb.2023.106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
Retinoid X receptor (RXR) is a member of the ligand-dependent nuclear receptor family. Previous studies revealed that RXRs are involved in reproduction in vertebrates. However, information on the function of RXRs in turtles is scarce. In this study, the Rxrγ cDNA sequence of Pelodiscus sinensis was cloned and analyzed, and a polyclonal antibody was constructed. RXRγ protein showed a positive signal in both mature and differentiated gonads of the turtle. Subsequently, the function of the Rxrγ gene in gonadal differentiation was confirmed using short interfering RNA (RNAi). The full-length cDNA sequence of the Rxrγ gene in P. sinensis was 2152 bp, encoding 407 amino acids and containing typical nuclear receptor family domains, including the DNA-binding domain (DBD), ligand-binding domain (LBD), and activation function 1 (AF1). Moreover, gonadal Ps-Rxrγ showed sexual dimorphism expression patterns in differentiated gonads. Real-time quantitative PCR results revealed that the Rxrγ gene was highly expressed in the turtle ovary. RNAi treatment increased the number of Sertoli cells in ZZ embryonic gonads. Furthermore, RNA interference upregulated Dmrt1 and Sox9 in ZZ and ZW embryonic gonads. However, Foxl2, Cyp19a1, Stra8, and Cyp26b1 were downregulated in embryonic gonads. The results indicated that Rxrγ participated in gonadal differentiation and development in P. sinensis.
Collapse
Affiliation(s)
- Guiyu Wang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Ruiyi Lu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Yijie Gao
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Haoran Zhang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xi Shi
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Wenge Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Limin Wu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xue Tian
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Huifen Liu
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Hongxia Jiang
- College of Fisheries Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- College of Fisheries Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
10
|
Liu N, Zhang P, Xue M, Xiao Z, Zhang M, Meng Y, Fan Y, Qiu J, Zhang Q, Zhou Y. Variations in the Intestinal Microbiota of the Chinese Soft-Shelled Turtle ( Trionyx sinensis) between Greenhouse and Pond Aquaculture. Animals (Basel) 2023; 13:2971. [PMID: 37760371 PMCID: PMC10525211 DOI: 10.3390/ani13182971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The microbial community structure in aquaculture water plays an important role in the intestinal microbial diversity of aquatic animals. The Chinese soft-shelled turtle (SST) (Trionyx sinensis) is an important aquaculture species of high economic value in the Asia-Pacific region. An intuitive understanding of the microbial diversity and abundances of SST aquaculture is crucial for comprehending these ecosystems. Herein, the evolutionary characteristics of the bacterial communities in the SST and its aquaculture water systems were investigated using Illumina MiSeq sequencing. This experiment sampled nine SSTs from a pond outside a greenhouse and was repeated three times. The sequencing results revealed significant differences in the microflora composition at the phylum and genus levels in both the intestine and aquaculture water of the SSTs in the greenhouse and pond aquaculture environments. A total of 1039 genera belonging to 65 phyla were identified. At the phylum level, the relative abundances of Chloroflexi (24%), Acidobacteria (5%), and Nitrospira (3%) were higher in the greenhouse water than in the pond water. The relative abundances of Bacteroidetes (35%), Actinobacteria (8%), and Cyanobacteria (4%) were higher in the pond water than in the greenhouse water. The intestinal microorganisms in the SSTs experienced significant changes after the SSTs were transferred from a greenhouse culture to a pond culture environment for 28 days. After the SSTs were cultured in the ponds, we observed decreases in the relative abundances of Actinobacteria (39% to 25%), Cyanobacteria (24% to 0.8%), Chlorobacteria (9% to 3%), and Firmicutes (5.5% to 0.8%. However, we observed increases in the relative abundances of Bacteroidetes (2% to 35%) and Acidobacteria (0.3% to 25%). These results showed that the bacterial diversity and richness compositions in the intestinal tract and aquaculture water were the same. However, the relative abundances of bacterial communities varied. The results of this study are of great significance in understanding how the environment affects SST cultures. These data may provide valuable instructions for Chinese soft-shelled turtle aquaculture management.
Collapse
Affiliation(s)
- Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Peng Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Mengjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yan Meng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| | - Junqiang Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (N.L.); (P.Z.); (M.X.); (Z.X.); (M.Z.); (Y.M.); (Y.F.)
| |
Collapse
|
11
|
Liu S, Zhao B, Gu X, Du W. Behavioral thermoregulation by reptile embryos promotes hatching success and synchronization. Commun Biol 2023; 6:848. [PMID: 37582884 PMCID: PMC10427690 DOI: 10.1038/s42003-023-05229-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023] Open
Abstract
Reptile embryos can move inside eggs to seek optimal thermal conditions, falsifying the traditional assumption that embryos are simply passive occupants within their eggs. However, the adaptive significance of this thermoregulatory behavior remains a contentious topic. Here we demonstrate that behavioral thermoregulation by turtle embryos shortened incubation periods which may reduce the duration of exposure to dangerous environments, decreased egg mortality imposed by lethally high temperatures, and synchronized hatching which reduces predation risk. Our study provides empirical evidence that behavioral thermoregulation by turtle embryos is adaptive.
Collapse
Affiliation(s)
- Shuo Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of life sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bo Zhao
- College of Fisheries, Zhejiang Ocean University, Zhoushan, 316000, China
| | - Xiaoting Gu
- College of life sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
12
|
Golkar-Narenji A, Dziegiel P, Kempisty B, Petitte J, Mozdziak PE, Bryja A. In vitro culture of reptile PGCS to preserve endangered species. Cell Biol Int 2023; 47:1314-1326. [PMID: 37178380 DOI: 10.1002/cbin.12033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/05/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023]
Abstract
Primordial germ cells (PGCs), are the source of gametes in vertebrates. There are similarities in the development of PGCs of reptiles with avian and mammalian species PGCs development. PGCs culture has been performed for avian and mammalian species but there is no report for reptilian PGCs culture. In vitro culture of PGCs is needed to produce transgenic animals, preservation of endangered animals and for studies on cell behaviour and research on fertility. Reptiles are traded as exotic pets and a source of food and they are valuable for their skin and they are useful as model for medical research. Transgenic reptile has been suggested to be useful for pet industry and medical research. In this research different aspects of PGCs development was compared in three main classes of vertebrates including mammalian, avian and reptilian species. It is proposed that a discussion on similarities between reptilian PGCs development with avian and mammalian species helps to find clues for studies of reptilian PGCs development details and finding an efficient protocol for in vitro culture of reptilian PG.
Collapse
Affiliation(s)
- Afsaneh Golkar-Narenji
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Piotr Dziegiel
- Department of Human Morphology and Embryology, Division of Histology and Embryology, Wrocław Medical University, Wroclaw, Dolnoslaskie, Poland
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Toruń, Poland
- Graduate Physiology Program NC State University North Carolina State University, Raleigh, North Carolina, USA
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| | - James Petitte
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Paul Edward Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Graduate Physiology Program NC State University North Carolina State University, Raleigh, North Carolina, USA
| | - Artur Bryja
- Department of Human Morphology and Embryology, Division of Anatomy, Wroclaw Medical University, Wroclaw, Dolnoslaskie, Poland
| |
Collapse
|
13
|
Molecular cloning and characterization of Sirt1 and its role in the follicle of juvenile Chinese soft-shelled turtle (Pelodiscus sinensis). Gene 2023; 860:147211. [PMID: 36708847 DOI: 10.1016/j.gene.2023.147211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023]
Abstract
Sirt1 is a member of the Sirtuins family that regulates ovarian senescence, follicular development, and oocyte maturation in vertebrates. To understand its role in the ovary of Pelodiscus sinensis, we cloned the full-length cDNA of Ps-Sirt1 and characterized its potential function by intraperitoneally injecting agonist (resveratrol) and antagonist (EX527) in the female juvenile turtle. The full-length cDNA of Ps-Sirt1 was 2106 bp, comprising 203 bp 5'UTR, a 226 bp 3'UTR, and a 1677 bp ORF encoding 558 amino acids. The calculated molecular weight of predicted protein was 63 kDa, and the isoelectric point was 4.65. The predicted protein comprised a conserved Sir2 domain. Amino acid sequence alignment and phylogenetic analyses showed that Ps-Sirt1 was most closely related to turtles, and distantly related to fish. Expression pattern analysis showed Ps-Sirt1 was highest expressed in ovary, followed by testis, liver, heart, and brain. In the ovarian differentiation processes, Sirt1 showed significantly higher expression at embryonic stage 15 and 21. In the testis differentiation process, Sirt1 expression was downregulated at embryonic stages 15-19. Activated and inactivated Sirt1 decreased the number of primordial follicles in juvenile turtles. Bcl2, Bax, mTOR, and rpS6 expressions were up-regulated, whereas GnRH, Fshb, p50, and p65 were down-regulated after agonist treatment. The inaction of Sirt1 with antagonist up-regulated GnRH, Fshb, p65, p53, Foxo3a, Bcl2, Bax, mTOR, and rpS6, but down-regulated p50. In summary, Sirt1 might be involved in the ovarian follicle development of P. sinensis.
Collapse
|
14
|
Zhang H, Wu H, Lu W, Chang Y, Li C, Chu D, Chen Y, Han X, Li N. Morphological changes in the digestive tract of the Chinese soft-shelled turtle ( Pelodiscus sinensis) during embryonic development. J Histotechnol 2023; 46:28-38. [PMID: 35912945 DOI: 10.1080/01478885.2022.2105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The digestive tract development of the Pelodiscus sinensis embryo is described through the observation of the embryonic morphology on hematoxylin and eosin stained tissue sections. During the first 9 days of embryonic development, the anterior intestine of the embryo divides into the oral cavity, pharyngeal cavity, esophagus, stomach, and small intestine, while the caudal intestine differentiates into the cloaca, the anterior and caudal tubes of the large intestine. Between days 10-24, the wall of the digestive tract forms a two-layer structure consisting of mucosa and submucosa. The endoderm evolves into epithelial tissue in each part of the digestive tract, the mesoderm goes from a dense cluster of cells to looser mesenchymal tissue then divides into loose connective tissue, mesothelium, and muscle tissue. There is no clear temporal boundary between development of mesenchymal tissue and the early loose connective tissue, which is a gradual process.
Collapse
Affiliation(s)
- Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Hongsong Wu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Yanli Chang
- Boshan First Middle School, Zibo, Shandong, China
| | - Chunhua Li
- Logistics Management Office, Heze University, Heze, Shandong, China
| | - Dechang Chu
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Yan Chen
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Xue Han
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| | - Na Li
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, China
| |
Collapse
|
15
|
Zhou T, Zhang H, Chen M, Zhang Y, Chen G, Zou G, Liang H. Identification and Expression Analysis of Wnt2 Gene in the Sex Differentiation of the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). LIFE (BASEL, SWITZERLAND) 2023; 13:life13010188. [PMID: 36676139 PMCID: PMC9864750 DOI: 10.3390/life13010188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
The Chinese soft-shelled turtle (Pelodiscus sinensis) is an important freshwater aquaculture animal in China. The Wnt gene family plays important regulatory roles in the development and growth of mammals. However, the precise function of these family genes has not been well understood in the sex differentiation of Chinese soft-shelled turtles. Here, we cloned a member of the Wnt family, Wnt2, which obtained a 1077 bp open reading frame that encoded a 358-aa protein. The putative amino acid sequences of proteins are exceeded 80% identical to other turtles. The expression level of Wnt2 peaked at the 14th stage both in female and male embryos during the early gonadal differentiation period of Chinese soft-shelled turtles, which occurred before gonadal differentiation. Wnt2 mRNA was expressed at higher levels in the brains and gonads of mature P. sinensis females compared with those in mature males. Wnt agonists significantly affected the expression level of Wnt2 during the gonadal differentiation period. After Wnt agonists (1.0 μg/μL, 2.5 μg/μL, 5.0 μg/μL) treatment, the expression level of the Wnt2 generally appeared to have an inverted-V trend over time in female embryonic gonads. The results suggested that Wnt2 may participate in the regulation of gonad development in P. sinensis during the early embryonic stages. These results could provide a theoretical basis for the reproduction process of the Chinese soft-shelled turtle.
Collapse
Affiliation(s)
- Tong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Haiqi Zhang
- Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Meng Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yingping Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guobin Chen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Guiwei Zou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| | - Hongwei Liang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- Correspondence: (G.Z.); (H.L.)
| |
Collapse
|
16
|
Wang P, Xiong G, Zeng D, Zhang J, Ge L, Liu L, Wang X, Hu Y. Comparative transcriptome and miRNA analysis of skin pigmentation during embryonic development of Chinese soft-shelled turtle (Pelodiscus sinensis). BMC Genomics 2022; 23:801. [PMID: 36471254 PMCID: PMC9721069 DOI: 10.1186/s12864-022-09029-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/21/2022] [Indexed: 12/10/2022] Open
Abstract
BACKGROUND Aquatic animals show diverse body coloration, and the formation of animal body colour is a complicated process. Increasing evidence has shown that microRNAs (miRNAs) play important regulatory roles in many life processes. The role of miRNAs in pigmentation has been investigated in some species. However, the regulatory patterns of miRNAs in reptile pigmentation remain to be elucidated. In this study, we performed an integrated analysis of miRNA and mRNA expression profiles to explore corresponding regulatory patterns in embryonic body colour formation in the soft-shelled turtle Pelodiscus sinensis. RESULTS We identified 8 866 novel genes and 9 061 mature miRNAs in the skin of Chinese soft-shelled turtles in three embryonic stages (initial period: IP, middle period: MP, final period: FP). A total of 16 563 target genes of the miRNAs were identified. Furthermore, we identified 2 867, 1 840 and 4 290 different expression genes (DEGs) and 227, 158 and 678 different expression miRNAs (DEMs) in IP vs. MP, MP vs. FP, and IP vs. FP, respectively. Among which 72 genes and 25 miRNAs may be related to turtle pigmentation in embryonic development. Further analysis of the novel miRNA families revealed that some novel miRNAs related to pigmentation belong to the miR-7386, miR-138, miR-19 and miR-129 families. Novel_miR_2622 and novel_miR_2173 belong to the miR-19 family and target Kit and Gpnmb, respectively. The quantification of novel_miR_2622 and Kit revealed negative regulation, indicating that novel_miR_2622 may participate in embryonic pigmentation in P. sinensis by negatively regulating the expression of Kit. CONCLUSIONS miRNA act as master regulators of biological processes by controlling the expression of mRNAs. Considering their importance, the identified miRNAs and their target genes in Chinese soft-shelled turtle might be useful for investigating the molecular processes involved in pigmentation. All the results of this study may aid in the improvement of P. sinensis breeding traits for aquaculture.
Collapse
Affiliation(s)
- Pei Wang
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Gang Xiong
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127 Hunan China
| | - Dan Zeng
- grid.440778.80000 0004 1759 9670College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000 Hunan China
| | - Jianguo Zhang
- Hunan Biological and Electromechanical Polytechnic, Changsha, 410127 Hunan China
| | - Lingrui Ge
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China ,Hunan Biological and Electromechanical Polytechnic, Changsha, 410127 Hunan China
| | - Li Liu
- grid.449642.90000 0004 1761 026XSchool of Medical Technology, Shaoyang University, Shaoyang, 422000 Hunan China
| | - Xiaoqing Wang
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| | - Yazhou Hu
- grid.257160.70000 0004 1761 0331College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128 China
| |
Collapse
|
17
|
Jin L, Sun W, Bao H, Liang X, Li P, Shi S, Wang Z, Qian G, Ge C. The forkhead factor Foxl2 participates in the ovarian differentiation of Chinese soft-shelled turtle Pelodiscus sinensis. Dev Biol 2022; 492:101-110. [DOI: 10.1016/j.ydbio.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/24/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022]
|
18
|
Oliveira MFS, Rocha LIQ, Dias LC, de Moura CEB, Vogt RC, Magalhães MS. Embryonic development of Podocnemis unifilis (Testudines: Podocnemididae). ZOOMORPHOLOGY 2022. [DOI: 10.1007/s00435-022-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2022]
|
19
|
Gene Regulation during Carapacial Ridge Development of Mauremys reevesii: The Development of Carapacial Ridge, Ribs and Scutes. Genes (Basel) 2022; 13:genes13091676. [PMID: 36140843 PMCID: PMC9498798 DOI: 10.3390/genes13091676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
The unique topological structure of a turtle shell, including the special ribs-scapula relationship, is an evolutionarily novelty of amniotes. The carapacial ridge is a key embryonic tissue for inducing turtle carapace morphologenesis. However, the gene expression profiles and molecular regulatory mechanisms that occur during carapacial ridge development, including the regulation mechanism of rib axis arrest, the development mechanism of the carapacial ridge, and the differentiation between soft-shell turtles and hard-shell turtles, are not fully understood. In this study, we obtained genome-wide gene expression profiles during the carapacial ridge development of Mauremys reevesii using RNA-sequencing by using carapacial ridge tissues from stage 14, 15 and 16 turtle embryos. In addition, a differentially expressed genes (DEGs) analysis and a gene set enrichment analysis (GSEA) of three comparison groups were performed. Furthermore, a Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was used to analyze the pathway enrichment of the differentially expressed genes of the three comparative groups. The result displayed that the Wnt signaling pathway was substantially enriched in the CrTK14 vs. the CrTK15 comparison group, while the Hedgehog signaling pathway was significantly enriched in the CrTK15 vs. the CrTK16 group. Moreover, the regulatory network of the Wnt signaling pathway showed that Wnt signaling pathways might interact with Fgfs, Bmps, and Shh to form a regulatory network to regulate the carapacial ridge development. Next, WGCNA was used to cluster and analyze the expression genes during the carapacial ridge development of M. reevesii and P. sinensis. Further, a KEGG functional enrichment analysis of the carapacial ridge correlation gene modules was performed. Interesting, these results indicated that the Wnt signaling pathway and the MAPK signaling pathway were significantly enriched in the gene modules that were highly correlated with the stage 14 and stage 15 carapacial ridge samples of the two species. The Hedgehog signaling pathway was significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of M. reevesii, however, the PI3K-Akt signaling and the TGF-β signaling pathways were significantly enriched in the modules that were strongly correlated with the stage 16 carapacial ridge samples of P. sinensis. Furthermore, we found that those modules that were strongly correlated with the stage 14 carapacial ridge samples of M. reevesii and P. sinensis contained Wnts and Lef1. While the navajo white 3 module which was strongly correlated with the stage 16 carapacial ridge samples of M. reevesii contained Shh and Ptchs. The dark green module strongly correlated with the stage 16 carapacial ridge samples of P. sinensis which contained Col1a1, Col1a2, and Itga8. Consequently, this study systematically revealed the signaling pathways and genes that regulate the carapacial ridge development of M. reevesii and P. sinensis, which provides new insights for revealing the molecular mechanism that is underlying the turtle's body structure.
Collapse
|
20
|
Wang L, Cen S, Shi X, Zhang H, Wu L, Tian X, Ma W, Li X, Ma X. Molecular characterization and functional analysis of Esr1 and Esr2 in gonads of Chinese soft-shelled turtle (Pelodiscus sinensis). J Steroid Biochem Mol Biol 2022; 222:106147. [PMID: 35714971 DOI: 10.1016/j.jsbmb.2022.106147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/12/2022] [Indexed: 11/20/2022]
Abstract
Estrogens and their receptors play crucial roles in regulating the gonadal development of vertebrates. To clarify the roles of estrogen receptors in the gonadal development of turtles, estrogen receptors (Esr1 and Esr2) in Chinese soft-shelled turtle (Pelodiscus sinensis) were identified and characterized, and their function in gonads was investigated by intraperitoneal injection of agonist propylpyrazoletriol (PPT) and diarylpropionitrile (DPN), and antagonist ICI 182,780 (ICI). Ps-Esr1 encoded a 588 amino acid protein and Ps-Esr2 encoded a 556 amino acid protein. The two receptors contained classic domains, including the DNA-binding domain and ligand-binding domain, and amino acid sequences showed high homology with other turtles. Ps-Esr1 showed the highest expression in the testis, followed by the ovary and liver. However, Ps-Esr2 showed the highest expression in the ovary, followed by the brain and testis. Ps-Esr1 expression showed an up-regulation trend in gonadal differentiation. Histomorphometric analysis showed that the number of follicles increased in female juvenile turtles treated with DPN or PPT. In addition, Tsc2, GnRH, and Fshβ were up-regulated in ovaries of turtles treated with agonists, while Sycp3 and Picalm were up-regulated in testes of turtles treated with agonists. Treatment with the antagonist decreased the number of sperm in matured turtles. Stra8, Scyp3, Dmc1, Picalm, Evl, Boule, and Cdk1 were up-regulated in testis after antagonist treatment. The results indicated that Esr1 might play an important role in gonadal differentiation, and the two estrogen receptors might be involved in the spermatogenesis of the turtle. These results could provide a reference for further research on the function of the estrogen signal in male vertebrates.
Collapse
Affiliation(s)
- Luming Wang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Shuangshuang Cen
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xi Shi
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Haoran Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Limin Wu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xue Tian
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Wenge Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Xiao Ma
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
21
|
Expression and Characterization of the Spats1 Gene and Its Response to E2/MT Treatment in the Chinese Soft-Shelled Turtle ( Pelodiscus sinensis). Animals (Basel) 2022; 12:ani12141858. [PMID: 35883403 PMCID: PMC9311554 DOI: 10.3390/ani12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Spats1 (spermatogenesis-associated, serinerich 1) has been characterized as a male-biased gene which acts an important role in the germ cell differentiation of mammals. Nevertheless, the function of Spats1 in the Chinese soft-shelled turtle (P. sinensis) has not yet been reported. To initially explore the expression of Spats1 in P. sinensis and its response to sex steroid treatment, we cloned the CDS of Spats1 for the first time and analyzed its expression profile in different tissues, including the testes in different seasons. The Spats1 cDNA fragment is 1201 base pairs (bp) in length and contains an open reading frame (ORF) of 849 bp, which codes for 283 amino acids. Spats1 mRNA was highly expressed in the testes (p < 0.01) and barely detectable in other tissues. In P. sinensis, the relative expression of Spats1 also responsive to seasonal changes in testis development. In summer (July) and autumn (October), Spats1 gene expression was significantly higher in the testes than in other seasons (p < 0.05). Spats1 mRNA was found to be specifically expressed in germ cells by chemical in situ hybridization (CISH), and it was mainly located in primary spermatocytes (Sc1), secondary spermatocytes (Sc2) and spermatozoa (St). Spats1 expression in embryos was not significantly changed after 17α-methyltestosterone (MT)and 17β-estradiol (E2) treatment. In adults, MT significantly induced Spats1 expression in male P. sinensis. However, the expression of Spats1 in testes was not responsive to E2 treatment. In addition, the expression of Spats1 in females was not affected by either MT or E2 treatment. These results imply that Spats1 is a male-specific expressed gene that is mainly regulated by MT and is closely linked to spermatogenesis and release in P. sinensis.
Collapse
|
22
|
Chronology of embryonic and gonadal development in the Reeves' turtle, Mauremys reevesii. Sci Rep 2022; 12:11619. [PMID: 35804180 PMCID: PMC9270433 DOI: 10.1038/s41598-022-15515-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/24/2022] [Indexed: 11/08/2022] Open
Abstract
Temperature-dependent sex determination (TSD) is a mechanism in which environmental temperature, rather than innate zygotic genotype, determines the fate of sexual differentiation during embryonic development. Reeves' turtle (also known as the Chinese three-keeled pond turtle, Mauremys reevesii) exhibits TSD and is the only species whose genome has been determined in Geoemydidae to date. Thus, M. reevesii occupy phylogenetically important position for the study of TSD and can be compared to other TSD species to elucidate the underlying molecular mechanism of this process. Nevertheless, neither embryogenesis nor gonadogenesis has been described in this species. Therefore, herein, we investigated the chronology of normal embryonic development and gonadal structures in M. reevesii under both female- and male-producing incubation temperatures (FPT 31 °C or MPT 26 °C, respectively). External morphology remains indistinct between the two temperature regimes throughout the studied embryonic stages. However, the gonadal ridges present on the mesonephros at stage 16 develop and sexually differentiate at FPT and MPT. Ovarian and testicular structures begin to develop at stages 18-19 at FPT and stages 20-21 at MPT, respectively, and thus, the sexual differentiation of gonadal structures began earlier in the embryos at FPT than at MPT. Our results suggest that temperature sensitive period, at which the gonadal structures remain sexually undifferentiated, spans from stage 16 (or earlier) to stages 18-19 at FPT and to stages 20-21 at MPT. Understanding the temperature-dependent differentiation in gonadal structures during embryonic development is a prerequisite for investigating molecular basis underlying TSD. Thus, the result of the present study will facilitate further developmental studies on TSD in M. reevesii.
Collapse
|
23
|
Lei L, Chen C, Zhu J, Wang Y, Liu X, Liu H, Geng L, Su J, Li W, Zhu X. Transcriptome analysis reveals key genes and pathways related to sex differentiation in the Chinese soft-shelled turtle (Pelodiscus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100986. [PMID: 35447559 DOI: 10.1016/j.cbd.2022.100986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Most vertebrates exhibit sexual dimorphisms in size, colour, behaviour, physiology and many others. The Chinese soft-shelled turtle (Pelodiscus sinensis) male individuals reach a larger size than females which produce significant economic implications in aquaculture. However, the mechanisms of sex determination and plastic patterns of sex differentiation in P. sinensis remain unclear. Here, comparative transcriptome analysis on male and female embryonic gonads prior to gonad formation and stages mediated gonadal differentiation of P. sinensis were performed to characterize the potential sex-related genes and their molecular pathways in P. sinensis. A total of 6369 differentially expressed genes (DEGs) were identified from day 9 and day 16 and assigned to 626 GO pathways and 161 KEGG signalling pathways, including ovarian steroidogenesis pathway, steroid hormone biosynthesis pathways, and the GnRH signalling pathway (P < 0.05). Moreover, protein interaction network analyses revealed that Akr1c3, Sult2b1, Sts, Cyp3a, Cyp1b1, Sox30 and Lhx9 might be key candidate genes for sex differentiation in P. sinensis. These data provide a genomic rationale for the sex differentiation of P. sinensis and enrich the candidate gene pool for sex differentiation.
Collapse
Affiliation(s)
- Luo Lei
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Chen Chen
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Junxian Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Yakun Wang
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Xiaoli Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Haiyang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Lulu Geng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China
| | - Junyu Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China
| | - Wei Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| | - Xinping Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong, Guangzhou 510380, PR China.
| |
Collapse
|
24
|
Li P, Guo Y, Jin L, Liang X, Chen G, Sun W, Xiao L, Qian G, Ge C. ESR1 mediates estrogen-induced feminization of genetic male Chinese soft-shelled turtle. Biol Reprod 2022; 107:779-789. [PMID: 35512131 DOI: 10.1093/biolre/ioac088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 04/01/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
Exogenous estrogen have shown their femininization abilities during the specific sex differentiation period in several reptiles. However, the specific regulatory mechanism and downstream regulatory genes of estrogen remain elusive. In the present study, 17β-estradiol (E2), as well as drugs of specific antagonists and/or agonists of estrogen receptors, were employed to figure out the molecular pathway involved in the E2-induced feminization in Chinese soft-shelled turtles, an important aquaculture species in China. E2 treatment led to typical female characteristics in the gonads of ZZ individuals, including thickened outer cortex containing a number of germ cells and degenerated medullary cords, as well as the disappearance of male marker SOX9, and the ectopic expression of ovarian regulator FOXL2 at the embryonic developmental stage 27 and 1 month after hatching. The specific ESR1 antagonist or a combination of three estrogen receptor antagonists could block the sex reversal of ZZ individuals induced by estrogen. In addition, specific activation of ESR1 by agonist also led to the feminization of ZZ gonads, which was similar to the effect of estrogen treatment. Furthermore, transcriptome data showed that the expression level of FOXL2 was significantly up-regulated, while mRNA levels of DMRT1, SOX9 and AMH were down-regulated after estrogen treatment. Taken together, our results indicated that E2 induced the feminization of ZZ Chinese soft-shelled turtles via ESR1, and decrease of male genes DMRT1, SOX9and AMH and increase of ovarian development regulator FOXL2 might be responsible for the initiation of E2-induced feminization.
Collapse
Affiliation(s)
- Pan Li
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China.,College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yin Guo
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China.,College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Lin Jin
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China.,College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao Liang
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Gaoan Chen
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China
| | - Wei Sun
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China.,College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Ling Xiao
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China.,College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo, 315100, China.,College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| |
Collapse
|
25
|
Temperature sensitivity of Notch signaling underlies species-specific developmental plasticity and robustness in amniote brains. Nat Commun 2022; 13:96. [PMID: 35013223 PMCID: PMC8748702 DOI: 10.1038/s41467-021-27707-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/06/2021] [Indexed: 11/08/2022] Open
Abstract
Ambient temperature significantly affects developmental timing in animals. The temperature sensitivity of embryogenesis is generally believed to be a consequence of the thermal dependency of cellular metabolism. However, the adaptive molecular mechanisms that respond to variations in temperature remain unclear. Here, we report species-specific thermal sensitivity of Notch signaling in the developing amniote brain. Transient hypothermic conditions increase canonical Notch activity and reduce neurogenesis in chick neural progenitors. Increased biosynthesis of phosphatidylethanolamine, a major glycerophospholipid components of the plasma membrane, mediates hypothermia-induced Notch activation. Furthermore, the species-specific thermal dependency of Notch signaling is associated with developmental robustness to altered Notch signaling. Our results reveal unique regulatory mechanisms for temperature-dependent neurogenic potentials that underlie developmental and evolutionary adaptations to a range of ambient temperatures in amniotes. Ambient temperature significantly affects embryogenesis, but adaptive molecular mechanisms that respond to temperature remain unclear. Here, the authors identified species-specific thermal sensitivity of Notch signaling in developing amniote brains.
Collapse
|
26
|
Global Analysis of Transcriptome and Translatome Revealed That Coordinated WNT and FGF Regulate the Carapacial Ridge Development of Chinese Soft-Shell Turtle. Int J Mol Sci 2021; 22:ijms222212441. [PMID: 34830331 PMCID: PMC8621500 DOI: 10.3390/ijms222212441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
The turtle carapace is composed of severely deformed fused dorsal vertebrae, ribs, and bone plates. In particular, the lateral growth in the superficial layer of turtle ribs in the dorsal trunk causes an encapsulation of the scapula and pelvis. The recent study suggested that the carapacial ridge (CR) is a new model of epithelial–mesenchymal transition which is essential for the arrangement of the ribs. Therefore, it is necessary to explore the regulatory mechanism of carapacial ridge development to analyze the formation of the turtle shell. However, the current understanding of the regulatory network underlying turtle carapacial ridge development is poor due to the lack of both systematic gene screening at different carapacial ridge development stages and gene function verification studies. In this study, we obtained genome-wide gene transcription and gene translation profiles using RNA sequencing and ribosome nascent-chain complex mRNA sequencing from carapacial ridge tissues of Chinese soft-shell turtle at different development stages. A correlation analysis of the transcriptome and translatome revealed that there were 129, 670, and 135 codifferentially expressed genes, including homodirection and opposite-direction differentially expressed genes, among three comparison groups, respectively. The pathway enrichment analysis of codifferentially expressed genes from the Kyoto Encyclopedia of Genes and Genomes showed dynamic changes in signaling pathways involved in carapacial ridge development. Especially, the results revealed that the Wnt signaling pathway and MAPK signaling pathway may play important roles in turtle carapacial ridge development. In addition, Wnt and Fgf were expressed during the carapacial ridge development. Furthermore, we discovered that Wnt5a regulated carapacial ridge development through the Wnt5a/JNK pathway. Therefore, our studies uncover that the morphogenesis of the turtle carapace might function through the co-operation between conserved WNT and FGF signaling pathways. Consequently, our findings revealed the dynamic signaling pathways acting on the carapacial ridge development of Chinese soft-shell turtle and provided new insights into uncover the molecular mechanism underlying turtle shell morphogenesis.
Collapse
|
27
|
Tokita M, Watanabe T, Sato H, Kondo S, Kitayama C. A comparative study of cranial osteogenesis in turtles: implications for the diversification of skull morphology. ZOOMORPHOLOGY 2021. [DOI: 10.1007/s00435-021-00544-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Zhang Y, Xiao L, Sun W, Li P, Zhou Y, Qian G, Ge C. Knockdown of R-spondin1 leads to partial sex reversal in genetic female Chinese soft-shelled turtle Pelodiscus sinensis. Gen Comp Endocrinol 2021; 309:113788. [PMID: 33865850 DOI: 10.1016/j.ygcen.2021.113788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Chinese soft-shelled turtle Pelodiscus sinensis is an important aquaculture species in China, the male individual being more valuable in aquaculture because of its larger body size, higher growth rate and less fat compared with females. Understanding the mechanism of ovarian differentiation and development is crucial for the production of mono-sex male offspring. However, little is known about the molecular mechanism underlying turtle ovarian differentiation. Here, we characterized the Rspo1 gene, an upstream regulator of vertebrate female sexual differentiation, in P. sinensis. The messenger RNA of Rspo1 was initially expressed at stage 14, preceding gonadal sex differentiation, and exhibited a sexually dimorphic expression pattern throughout the sex determination and gonadal differentiation periods. Rspo1 was rapidly downregulated during aromatase inhibitor-induced female-to-male sex reversal, which occurred prior to gonadal differentiation. Rspo1 loss of function by RNA interference led to partial female-to-male sex reversal, with masculinized changes in the phenotype of gonads, the distribution of germ cells and the expression of testicular regulators. Collectively, these findings suggest that Rspo1 is necessary for primary female sexual differentiation in P. sinensis. This study demonstrates for the first time the functional role of Rspo1 in reptilian sex determination, and is of fundamental significance for the production of fertile pseudo-female parents and mono-sex male offspring of P.sinensis.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China; College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Ling Xiao
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Pan Li
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yingjie Zhou
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- Institute of Animal Sex and Development, Zhejiang Wanli University, Ningbo 315100, China; College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China.
| |
Collapse
|
29
|
Chan ME, Bhamidipati PS, Goldsby HJ, Hintze A, Hofmann HA, Young RL. Comparative Transcriptomics Reveals Distinct Patterns of Gene Expression Conservation through Vertebrate Embryogenesis. Genome Biol Evol 2021; 13:6319027. [PMID: 34247223 PMCID: PMC8358226 DOI: 10.1093/gbe/evab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
Despite life's diversity, studies of variation often remind us of our shared evolutionary past. Abundant genome sequencing and analyses of gene regulatory networks illustrate that genes and entire pathways are conserved, reused, and elaborated in the evolution of diversity. Predating these discoveries, 19th-century embryologists observed that though morphology at birth varies tremendously, certain stages of vertebrate embryogenesis appear remarkably similar across vertebrates. In the mid to late 20th century, anatomical variability of early and late-stage embryos and conservation of mid-stages embryos (the "phylotypic" stage) was named the hourglass model of diversification. This model has found mixed support in recent analyses comparing gene expression across species possibly owing to differences in species, embryonic stages, and gene sets compared. We compare 186 microarray and RNA-seq data sets covering embryogenesis in six vertebrate species. We use an unbiased clustering approach to group stages of embryogenesis by transcriptomic similarity and ask whether gene expression similarity of clustered embryonic stages deviates from a null expectation. We characterize expression conservation patterns of each gene at each evolutionary node after correcting for phylogenetic nonindependence. We find significant enrichment of genes exhibiting early conservation, hourglass, late conservation patterns in both microarray and RNA-seq data sets. Enrichment of genes showing patterned conservation through embryogenesis indicates diversification of embryogenesis may be temporally constrained. However, the circumstances under which each pattern emerges remain unknown and require both broad evolutionary sampling and systematic examination of embryogenesis across species.
Collapse
Affiliation(s)
- Megan E Chan
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Pranav S Bhamidipati
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| | - Heather J Goldsby
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Arend Hintze
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA.,Institute for Cellular and Molecular Biology, Institute for Neuroscience, The University of Texas at Austin, Texas, USA
| | - Rebecca L Young
- Department of Integrative Biology, The University of Texas at Austin, Texas, USA.,Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Texas, USA
| |
Collapse
|
30
|
Nomura T, Ohtaka-Maruyama C, Kiyonari H, Gotoh H, Ono K. Changes in Wnt-Dependent Neuronal Morphology Underlie the Anatomical Diversification of Neocortical Homologs in Amniotes. Cell Rep 2021; 31:107592. [PMID: 32375034 DOI: 10.1016/j.celrep.2020.107592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022] Open
Abstract
The six-layered neocortex is a shared characteristic of all mammals, but not of non-mammalian species, and its formation requires an inside-out pattern of neuronal migration. The extant reptilian dorsal cortex is thought to represent an ancestral form of the neocortex, although how the reptilian three-layered cortex is formed is poorly understood. Here, we show unique patterns of lamination and neuronal migration in the developing reptilian cortex. While the multipolar-to-bipolar transition of migrating neurons is essential for mammalian cortical development, the reptilian cortex lacks bipolar-shaped migrating neurons, resulting in an outside-in pattern of cortical development. Furthermore, dynamic regulation of Wnt signal strengths contributes to neuronal morphological changes, which is conserved across species. Our data preclude the idea that the six-layered mammalian neocortex emerged by simple addition to the reptilian dorsal cortex but suggest that the acquisition of a novel neuronal morphology based on conserved developmental programs contributed to neocortical evolution.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan.
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-Hangi cho, Sakyoku, Kyoto 606-0823, Japan
| |
Collapse
|
31
|
Cordero GA. Disentangling the correlated evolution of body size, life history, and ontogeny in miniaturized chelydroid turtles. Evol Dev 2021; 23:439-458. [PMID: 34037309 DOI: 10.1111/ede.12386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022]
Abstract
Organismal miniaturization is defined by a reduction in body size relative to a large ancestor. In vertebrate animals, miniaturization is achieved by suppressing the energetics of growth. However, this might interfere with reproductive strategies in egg-laying species with limited energy budgets for embryo growth and differentiation. In general, the extent to which miniaturization coincides with alterations in animal development remains obscure. To address the interplay among body size, life history, and ontogeny, miniaturization in chelydroid turtles was examined. The analyses corroborated that miniaturization in the Chelydroidea clade is underlain by a dampening of the ancestral growth trajectory. There were no associated shifts in the early sequence of developmental transformations, though the relative duration of organogenesis was shortened in miniaturized embryos. The size of eggs, hatchlings, and adults was positively correlated within Chelydroidea. A phylogenetically broader exploration revealed an alternative miniaturization mode wherein exceptionally large hatchlings grow minimally and thus attain diminutive adult sizes. Lastly, it is shown that miniaturized Chelydroidea turtles undergo accelerated ossification coupled with a ~10% reduction in shell bones. As in other vertebrates, the effects of miniaturization were not systemic, possibly owing to opposing functional demands and tissue geometric constraints. This underscores the integrated and hierarchical nature of developmental systems.
Collapse
Affiliation(s)
- Gerardo A Cordero
- Department of Geosciences, University of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Sanger TJ. Integrative developmental biology in the age of anthropogenic change. Evol Dev 2021; 23:320-332. [PMID: 33848387 DOI: 10.1111/ede.12377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/02/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
Humans are changing and challenging nature in many ways. Conservation Biology seeks to limit human impacts on nature and preserve biological diversity. Traditionally, Developmental Biology and Conservation Biology have had nonoverlapping objectives, operating in distinct spheres of biological science. However, this chasm can and should be filled to help combat the emerging challenges of the 21st century. The means by which to accomplish this goal were already established within the conceptual framework of evo- and eco-devo and can be further expanded to address the ways that anthropogenic disturbance affect embryonic development. Herein, I describe ways that these approaches can be used to advance the study of reptilian embryos. More specifically, I explore the ways that a developmental perspective can advance ongoing studies of embryonic physiology in the context of global warming and chemical pollution, both of which are known stressors of reptilian embryos. I emphasize ways that these developmental perspectives can inform conservation biologists trying to develop management practices that will address the complexity of challenges facing reptilian embryos.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
33
|
|
34
|
Dovč A, Stvarnik M, Lindtner Knific R, Gregurić Gračner G, Klobučar I, Zorman Rojs O. Monitoring of Unhatched Eggs in Hermann's Tortoise ( Testudo hermanni) after Artificial Incubation and Possible Improvements in Hatching. Animals (Basel) 2021; 11:478. [PMID: 33670399 PMCID: PMC7917706 DOI: 10.3390/ani11020478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
The causes of embryonic mortality in Hermann's tortoises (Testudo hermanni) during artificial incubation were determined. Total egg failure at the end of the hatching period was investigated. The hatching artefacts represented 19.2% (N = 3557) of all eggs (N = 18,520). The viability rate of incubated eggs was 80.8%. The eggs, i.e., embryos, were sorted according to the cause of unsuccessful hatching and subsequently analyzed. Some of the eggs were divided into two or more groups. Unfertilized eggs were confirmed in 61.0%, infected eggs in 52.5%, and eggs in various stages of desiccation in 19.1%. This group also included mummified embryos. Pseudomonas aeruginosa, Bacillus sp., Purpureocillium lilacinum, and Escherichia coli were frequently confirmed in infected eggs. Embryos were divided into three groups: embryos up to 1.0 cm-group 1 (2.2%), embryos from 1.0 cm to 1.5 cm-group 2 (5.4%) and embryos longer than 1.5 cm-group 3 (7.3%) of all unhatched eggs. Inability of embryos to peck the shell was found in 1.3%. These tortoises died shortly before hatching. Embryos still alive from the group 2 and group 3 were confirmed in 0.7% of cases. Dead and alive deformed embryos and twins were detected in the group 3 in 0.5% and 0.1% of cases, respectively. For successful artificial hatching, it is important to establish fumigation with disinfectants prior to incubation and elimination of eggs with different shapes, eggs with broken shells, and eggs weighted under 10 g. Eggs should be candled before and periodically during artificial incubation, and all unfertilized and dead embryos must be removed. Heartbeat monitor is recommended. Proper temperature and humidity, incubation of "clean" eggs on sterile substrate and control for the presence of mites is essential. Monitoring of the parent tortoises is also necessary.
Collapse
Affiliation(s)
- Alenka Dovč
- Institute for Poultry, Birds, Small Animals and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (R.L.K.); (O.Z.R.)
| | - Mateja Stvarnik
- Clinic for Reproduction and Large Animals, Veterinary Faculty, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.S.); (I.K.)
| | - Renata Lindtner Knific
- Institute for Poultry, Birds, Small Animals and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (R.L.K.); (O.Z.R.)
| | - Gordana Gregurić Gračner
- Department for Hygiene, Faculty of Veterinary Medicine, University of Zagreb, Behaviour and Animal Welfare, Heinzelova 55, 10000 Zagreb, Croatia;
| | - Igor Klobučar
- Clinic for Reproduction and Large Animals, Veterinary Faculty, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.S.); (I.K.)
| | - Olga Zorman Rojs
- Institute for Poultry, Birds, Small Animals and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (R.L.K.); (O.Z.R.)
| |
Collapse
|
35
|
Yang J, Song W, Li C, Fang C, Zhang Y, Wang Q, Zhang M, Qian G. Comparative study of collagen distribution in the dermis of the embryonic carapace of soft- and hard-shelled cryptodiran turtles. J Morphol 2021; 282:543-552. [PMID: 33491791 DOI: 10.1002/jmor.21327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/06/2022]
Abstract
Turtles are characterized by their typical carapace, which is primarily composed of corneous beta proteins in the horny part and collagen in the dermal part. The formation of the extracellular matrix in the dermis of the carapace in a hard-shelled and a soft-shelled turtle has been compared. The study examines carapace development, with an emphasis on collagen accumulation, in the soft-shelled turtle Pelodiscus sinensis and hard-shelled turtle Trachemys scripta elegans, using comparative morphological and embryological analyses. The histological results showed that collagen deposition in the turtle carapace increased as the embryos developed. However, significant differences were observed between the two turtle species at the developmental stages examined. The microstructure of the dermis of the carapace of P. sinensis showed light and dark banding of collagen bundles, with a higher overall collagen content, whereas the carapacial matrix of T. scripta was characterized by loosely packed and thinner collagenous fiber bundles with a lower percentage of type I collagen. Overall, the formation and distribution of collagen fibrils at specific developmental stages are different between the soft-and hard-shelled turtles. These results indicate that the pliable epidermis of the soft-shelled turtle is supported by a strong dermis that is regularly distributed with collagen and that it allows improved maneuvering, whereas a strong but inflexible epidermis as observed in case of hard-shelled turtles limits movement.
Collapse
Affiliation(s)
- Jie Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Wei Song
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Caiyan Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Chanlin Fang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yuting Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qingqing Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | | | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| |
Collapse
|
36
|
Observation of Hermann’s Tortoise (Testudo hermanni) C Lutching without the Presence of Males and Eggshell Mortality on a Large Tortoise Farm in Slovenia Over a Three-Year Period. ACTA VET-BEOGRAD 2020. [DOI: 10.2478/acve-2020-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of this study was to determine the percentage of hatched and fertilized eggs in female Hermann’s tortoises before and after the removal of males after breeding.
A breeding group of Testudo hermanni boettgeri with 50 females and 12 males was included in the study. In the first year, all adults were together in the same habitat until reproductive activity was observed. After the end of May, the males and females were separated for the next two active seasons. The number of eggs and number of second clutches decreased gradually. In the first year, 76.0% of females laid eggs; in the second year, 24.0%; and in the third year, only 8.0%. Second clutches were observed in ten females (26.3%) in the first year, while in the next two years, one female had a second clutch. There was a small but significant correlation between the weight of a single tortoise and the number of eggs laid but no significant correlation between the weight of the tortoise and its average egg weight. The weight (15.1-16.8 g), length (33.9-36.1 mm) and width of each egg (27.5-28.0 mm) was measured.
During the laying season, the eggs were put into incubators. The incubation length varied from 52 to 70 days. After the end of incubation, eggshell mortality and its causes (19.3-52.5%) were examined. In the first year, the viability rate of the incubated eggs was 80.7%; in the second year, 80.5%; and in the third year, 47.8%. Among the unhatched eggs in the first year, 62.5% were unfertilized, 53.1% were infected, 28.1% were dehydrated and 21.9% were found in various stages of embryonic development.
Collapse
|
37
|
Cordeiro IR, Yu R, Tanaka M. Regulation of the limb shape during the development of the Chinese softshell turtles. Evol Dev 2020; 22:451-462. [PMID: 32906209 PMCID: PMC7757393 DOI: 10.1111/ede.12352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Interdigital cell death is an important mechanism employed by amniotes to shape their limbs; inhibiting this process leads to the formation of webbed fingers, as seen in bats and ducks. The Chinese softshell turtle Pelodiscus sinensis (Reptilia: Testudines: Trionychidae) has a distinctive limb morphology: the anterior side of the limbs has partially webbed fingers with claw‐like protrusions, while the posterior fingers are completely enclosed in webbings. Here, P. sinensis embryos were investigated to gain insights on the evolution of limb‐shaping mechanisms in amniotes. We found cell death and cell senescence in their interdigital webbings. Spatial or temporal modulation of these processes were correlated with the appearance of indentations in the webbings, but not a complete regression of this tissue. No differences in interdigital cell proliferation were found. In subsequent stages, differential growth of the finger cartilages led to a major difference in limb shape. While no asymmetry in bone morphogenetic protein signaling was evident during interdigital cell death stages, some components of this pathway were expressed exclusively in the clawed digit tips, which also had earlier ossification. In addition, a delay and/or truncation in the chondrogenesis of the posterior digits was found in comparison with the anterior digits of P. sinensis, and also when compared with the previously published pattern of digit skeletogenesis of turtles without posterior webbings. In conclusion, modulation of cell death, as well as a heterochrony in digit chondrogenesis, may contribute to the formation of the unique limbs of the Chinese softshell turtles. Cell death and senescence shape the interdigital webbings of Pelodiscus sinensis. Delayed chondrogenesis/ossification and truncated tips are found in posterior digits, as well as differential expression of bone morphogenetic proteins and Msh homeobox 1 transcription factors.
Collapse
Affiliation(s)
- Ingrid R Cordeiro
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Reiko Yu
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Mikiko Tanaka
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
38
|
Pewphong R, Kitana J, Kitana N. Thermosensitive period for sex determination of the tropical freshwater turtle Malayemys macrocephala. Integr Zool 2020; 16:160-169. [PMID: 32762015 DOI: 10.1111/1749-4877.12479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many egg-laying reptiles possess temperature-dependent sex determination (TSD) in which outcome of gonadogenesis is determined by incubation temperature during a temperature-sensitive period of development. Prior studies on Malayemys macrocephala showed that incubation temperatures influence gonadal development and suggested that M. macrocephala exhibits TSD. However, information on the temperature-sensitivity period in this species was unknown until the current study. Turtle eggs were collected from rice fields in central Thailand from December 2016 to February 2017. In the laboratory, eggs were incubated at male-biased temperature (26 °C) and shifted to female-biased temperature (32 °C), or vice versa. Single shift experiments were performed systematically during embryonic stages 13-21. After hatching, sex of individual turtles was determined by histological analysis. We found that the sex determination of M. macrocephala is affected by temperature up to stage 16 of embryonic development.
Collapse
Affiliation(s)
- Rangsima Pewphong
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Jirarach Kitana
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,BioSentinel Research Group (Special Task Force for Activating Research), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Noppadon Kitana
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,BioSentinel Research Group (Special Task Force for Activating Research), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
39
|
Smith Paredes D, Lord A, Meyer D, Bhullar BS. A developmental staging system and musculoskeletal development sequence of the common musk turtle (
Sternotherus odoratus
). Dev Dyn 2020; 250:111-127. [DOI: 10.1002/dvdy.210] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 01/02/2023] Open
Affiliation(s)
- Daniel Smith Paredes
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Arianna Lord
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Dalton Meyer
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| | - Bhart‐Anjan S. Bhullar
- Department of Earth and Planetary Science, Peabody Museum of Natural History Yale University New Haven Connecticut USA
| |
Collapse
|
40
|
Langer SV, Kapron CM, Davy CM. Abnormal persistence of the chorioallantoic membrane is associated with severe developmental abnormalities in freshwater turtles. CAN J ZOOL 2020. [DOI: 10.1139/cjz-2019-0169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development in oviparous reptiles requires the correct formation and function of extra-embryonic membranes in the egg. In 2017, we incubated 2583 eggs from five species of freshwater turtle during a long-term ecological study and opened eggs that failed to hatch. We described a previously unreported developmental anomaly: the retention of an extra-embryonic membrane around 7 turtles (1 Spiny Softshell Turtle (Apalone spinifera (Le Sueur, 1827)), 1 Snapping Turtle (Chelydra serpentina (Linnaeus, 1758)), and 5 Northern Map Turtles (Graptemys geographica (Le Sueur, 1817))) that were alive but unhatched >14 days after their clutch mates had emerged. We investigated the association between retention of this membrane and the exhibition of other developmental deformities of varying severity, and we tested whether this novel abnormality was associated with reduced fertility or hatching success in affected clutches. Consultation of ∼150 years of literature suggests that we observed persistence of the chorioallantoic membrane (CAM; also called the chorioallantois). Our data suggest that clutches where at least one turtle exhibits a persistent CAM may also exhibit slightly reduced fertility or hatch success in the rest of the clutch compared with conspecific clutches that do not contain this anomaly. Future research should investigate the factors predicting CAM retention and other developmental abnormalities.
Collapse
Affiliation(s)
- Sarah V. Langer
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
| | - Carolyn M. Kapron
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive Peterborough, ON K9L 0G2, Canada
- Biology Department, Trent University, 2089 East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| | - Christina M. Davy
- Wildlife Research and Monitoring Section, Ontario Ministry of Natural Resources and Forestry, Trent University, 2140 East Bank Drive, Peterborough, ON K9J 7B8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive Peterborough, ON K9L 0G2, Canada
| |
Collapse
|
41
|
Goldberg S, Venkatesh A, Martinez J, Dombroski C, Abesamis J, Campbell C, Mccalipp M, de Bellard ME. The development of the trunk neural crest in the turtle Trachemys scripta. Dev Dyn 2020; 249:125-140. [PMID: 31587387 PMCID: PMC7293771 DOI: 10.1002/dvdy.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The neural crest is a group of multipotent cells that give rise to a wide variety of cells, especially portion of the peripheral nervous system. Neural crest cells (NCCs) show evolutionary conserved fate restrictions based on their axial level of origin: cranial, vagal, trunk, and sacral. While much is known about these cells in mammals, birds, amphibians, and fish, relatively little is known in other types of amniotes such as snakes, lizards, and turtles. We attempt here to provide a more detailed description of the early phase of trunk neural crest cell (tNCC) development in turtle embryos. RESULTS In this study, we show, for the first time, migrating tNCC in the pharyngula embryo of Trachemys scripta by vital-labeling the NCC with DiI and through immunofluorescence. We found that (a) tNCC form a line along the sides of the trunk NT; (b) The presence of late migrating tNCC on the medial portion of the somite; (c) The presence of lateral mesodermal migrating tNCC in pharyngula embryos; (d) That turtle embryos have large/thick peripheral nerves. CONCLUSIONS The similarities and differences in tNCC migration and early PNS development that we observe across sauropsids (birds, snake, gecko, and turtle) suggests that these species evolved some distinct NCC pathways.
Collapse
Affiliation(s)
| | | | | | - Catherine Dombroski
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Jessica Abesamis
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Catherine Campbell
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Mialishia Mccalipp
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| | - Maria Elena de Bellard
- California State University Northridge, Biology Dept., MC 8303. 18111 Nordhoff Street. Northridge, CA 91330
| |
Collapse
|
42
|
Zhou Y, Sun W, Cai H, Bao H, Zhang Y, Qian G, Ge C. The Role of Anti-Müllerian Hormone in Testis Differentiation Reveals the Significance of the TGF-β Pathway in Reptilian Sex Determination. Genetics 2019; 213:1317-1327. [PMID: 31645361 PMCID: PMC6893390 DOI: 10.1534/genetics.119.302527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
Anti-Müllerian hormone (Amh, or Müllerian-inhibiting substance, Mis), a member of TGF-β superfamily, has been well documented in some vertebrates as initiator or key regulator in sexual development, and particularly in fish. However, its functional role has not yet been identified in reptiles. Here, we characterized the Amh gene in the Chinese soft-shelled turtle Pelodiscus sinensis, a typical reptilian species exhibiting ZZ/ZW sex chromosomes. The messenger RNA of Amh was initially expressed in male embryonic gonads by stage 15, preceding gonadal sex differentiation, and exhibited a male-specific expression pattern throughout embryogenesis. Moreover, Amh was rapidly upregulated during female-to-male sex reversal induced by aromatase inhibitor letrozole. Most importantly, Amh loss of function by RNA interference led to complete feminization of genetic male (ZZ) gonads, suppression of the testicular marker Sox9, and upregulation of the ovarian regulator Cyp19a1 Conversely, overexpression of Amh in ZW embryos resulted in female-to-male sex reversal, characterized by the formation of a testis structure, ectopic activation of Sox9, and a remarkable decline in Cyp19a1 Collectively, these findings provide the first solid evidence that Amh is both necessary and sufficient to drive testicular development in a reptilian species, P. sinensis, highlighting the significance of the TGF-β pathway in reptilian sex determination.
Collapse
Affiliation(s)
- Yingjie Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Han Cai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haisheng Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yu Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
43
|
Developmental differences between two marine turtle species and potential consequences for their survival at hatching. ZOOLOGY 2019; 136:125708. [PMID: 31541925 DOI: 10.1016/j.zool.2019.125708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/25/2019] [Indexed: 11/24/2022]
Abstract
Anatomical variation is a major source for natural selection. Marine turtles are endangered and survival predictions are of important biological, ecological, social, and political value. Here, we perform a preliminary study illustrating how comparative embryology permits understanding of ontogenetic variation as a contributor for evolutionary fitness. To that end, we studied samples of Chelonia mydas and Caretta caretta embryos relative to a standardized staging system from the literature. We examined external anatomy using discrete characters in order to document interspecific variation during development of these species. We employed the 'Standard Event System to Study Vertebrate Embryos' to examine fitness-relevant structures. These include the limb paddles and elbows of Ch. mydas, which differentiate relatively late in ontogeny. We detected interspecific variation in the timing of trait differentiation - such as the egg tooth, closure of skull vault, carapace formation, and scale covering - and propose that these differences might be functionally and ecologically relevant for marine turtles.
Collapse
|
44
|
Identification of sex using SBNO1 gene in the Chinese softshell turtle, Pelodiscus sinensis (Trionychidae). J Genet 2019. [DOI: 10.1007/s12041-018-1048-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Liang HW, Meng Y, Cao LH, Li X, Zou GW. Expression and characterization of the cyp19a gene and its responses to estradiol/letrozole exposure in Chinese soft-shelled turtle (Pelodiscus sinensis). Mol Reprod Dev 2019; 86:480-490. [PMID: 30779247 DOI: 10.1002/mrd.23126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 01/21/2023]
Abstract
Cytochrome P450 aromatase (CYP19) catalyzes the conversion of androgens to estrogens and is critical in sex differentiation. CYP19 exists as the ovarian type and brain type. Herein, we cloned the full-length ovarian cyp19a gene from the Chinese soft-shelled turtle, Pelodiscus sinensis (pscyp19a). We determined the distribution of pscyp19a in adult tissue and evaluated its expression during embryonic development, following treatment with 17β-estradiol (E2) or letrozole (LE). The pscyp19a complementary DNA is 2,285 bp in length and comprises a 1,512 bp open reading frame that encodes a protein of 503 AA. The nucleotide sequence and amino acid of pscyp19a shared significant identity with other vertebrate sequences. Expression of pscyp19a was high in the ovary (p < 0.01), and exhibited modest expression in the female brain and intestine. Expression of pscyp19a displayed significant differences between sexes during early embryo development stages; expression increased gradually during embryonic development in females, but the opposite trend was observed in males. Female embryos treated with different concentrations of E2 and LE displayed altered pscyp19a expression compared with untreated individuals, and E2 clearly induced pscyp19a expression. These results indicate that pscyp19a gene plays important roles in early developmental stages in Chinese soft-shelled turtle, and may assist future studies on sex differentiation and sex control in this and similar species.
Collapse
Affiliation(s)
- Hong W Liang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fisheries Science, Hubei, China.,Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| | - Yan Meng
- Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| | - Li H Cao
- Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| | - Xiang Li
- Anhui Xijia Agricultural Development Co. Ltd, Anhui, China
| | - Gui W Zou
- Devision of Fish Genetics and Breeding, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Hubei, China
| |
Collapse
|
46
|
Abstract
Reptiles (lizards, snakes, turtles, and crocodilians) are becoming increasingly popular as models for developmental investigations. In this review the leopard gecko, Eublepharis macularius, is presented as a reptilian model for embryonic and tissue regeneration studies. We provide details of husbandry and breeding and discuss aspects of embryonic nutrition, egg anatomy, and sex determination. We provide comprehensive protocols for transcardial perfusion, short-term anesthesia using the injectable anesthetic Alfaxan, and full-thickness cutaneous biopsy punches, used in geckos for the study of scar-free wound healing. We also provide modifications to three popular histological techniques (whole-mount histochemistry, immunohistochemistry, and double-label immunofluorescence) and provide details on bromodeoxyuridine (BrdU) labeling and immuno-detection.
Collapse
Affiliation(s)
| | - Emily A B Gilbert
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
- Department of Surgery, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
47
|
Nakamuta S, Kusuda S, Yokosuka M, Taniguchi K, Yamamoto Y, Nakamuta N. Immunohistochemical analysis of the development of olfactory organs in two species of turtles Pelodiscus sinensis and Mauremys reevesii. Acta Histochem 2018; 120:806-813. [PMID: 30236832 DOI: 10.1016/j.acthis.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 01/31/2023]
Abstract
The nasal cavity of turtles is composed of the upper and lower chambers, lined by the upper and lower chamber epithelia, respectively. In many turtles including the Reeve's turtle Mauremys reevesii, the upper chamber epithelium contains ciliated olfactory receptor neurons (ORNs) and the lower chamber epithelium contains microvillous ORNs. However, in the olfactory organ of the Chinese soft-shelled turtle Pelodiscus sinensis, both the upper and lower chamber epithelia contain ciliated ORNs. In the present study, we immunohistochemically examined the developmental process of olfactory organs in soft-shelled turtle and the Reeve's turtle to clarify the developmental origins of the lower chamber epithelium in these turtles. Obtained data indicate that olfactory organs of these turtles have identical origin and follow similar process of development, suggesting that, in the lower chamber epithelium of the nasal cavity, ciliated ORNs differentiate in soft-shelled turtle whereas microvillous ORNs differentiate in the Reeve's turtle.
Collapse
|
48
|
Egawa S, Saito D, Abe G, Tamura K. Morphogenetic mechanism of the acquisition of the dinosaur-type acetabulum. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180604. [PMID: 30473817 PMCID: PMC6227947 DOI: 10.1098/rsos.180604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
Understanding morphological evolution in dinosaurs from a mechanistic viewpoint requires the elucidation of the morphogenesis that gave rise to derived dinosaurian traits, such as the perforated acetabulum. In the current study, we used embryos of extant animals with ancestral- and dinosaur-type acetabula, namely, geckos and turtles (with unperforated acetabulum), and birds (with perforated acetabulum). We performed comparative and experimental analyses, focusing on inter-tissue interaction during embryogenesis, and found that the avian perforated acetabulum develops via a secondary loss of cartilaginous tissue in the acetabular region. This cartilage loss might be mediated by inter-tissue interaction with the hip interzone, a mesenchymal tissue that exists in the embryonic joint structure. Furthermore, the data indicate that avian pelvic anlagen is more susceptible to paracrine molecules, e.g. Wnt ligand, secreted by the hip interzone than 'reptilian' anlagen. We hypothesize that during the emergence of dinosaurs, the pelvic anlagen became susceptible to the Wnt ligand, which led to the loss of the cartilaginous tissue and to the perforation in the acetabular region. Thus, the current evolutionary-developmental biology study deepens our understanding of morphological evolution in dinosaurs and provides it with a novel perspective.
Collapse
Affiliation(s)
- Shiro Egawa
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Daisuke Saito
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
- Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Gembu Abe
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, 6-3, Aza-aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| |
Collapse
|
49
|
Nomura T, Yamashita W, Gotoh H, Ono K. Species-Specific Mechanisms of Neuron Subtype Specification Reveal Evolutionary Plasticity of Amniote Brain Development. Cell Rep 2018; 22:3142-3151. [DOI: 10.1016/j.celrep.2018.02.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 11/19/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022] Open
|
50
|
Lima FC, Py‐Daniel TR, Sartori MR, Abe AS, Santos OPD, Freitas LM, Pereira KF, Sebben A. Developmental staging table of the green iguana. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fabiano C. Lima
- Laboratório de Anatomia Humana e ComparativaUniversidade Federal de Goiás Jataí Goiás Brasil
| | - Tainã R. Py‐Daniel
- Instituto de Ciências BiológicasUniversidade de Brasília Brasília DF Brasil
| | | | - Augusto S. Abe
- Departamento de ZoologiaUniversidade Estadual Paulista Rio Claro São Paulo Brasil
| | | | - Letícia M. Freitas
- Laboratório de Anatomia Humana e ComparativaUniversidade Federal de Goiás Jataí Goiás Brasil
| | - Kleber F. Pereira
- Laboratório de Anatomia Humana e ComparativaUniversidade Federal de Goiás Jataí Goiás Brasil
| | - Antonio Sebben
- Laboratório de Anatomia comparativa dos vertebradosUniversidade de Brasília Brasília DF Brasil
| |
Collapse
|