1
|
Zemski Berry KA, Garfield A, Jambal P, Zarini S, Perreault L, Bergman BC. Oxidised phosphatidylcholine induces sarcolemmal ceramide accumulation and insulin resistance in skeletal muscle. Diabetologia 2024; 67:2819-2832. [PMID: 39347985 DOI: 10.1007/s00125-024-06280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/29/2024] [Indexed: 10/01/2024]
Abstract
AIMS/HYPOTHESIS Intracellular ceramide accumulation in specific cellular compartments is a potential mechanism explaining muscle insulin resistance in the pathogenesis of type 2 diabetes. Muscle sarcolemmal ceramide accumulation negatively impacts insulin sensitivity in humans, but the mechanism explaining this localised accumulation is unknown. Previous reports revealed that circulating oxidised LDL is elevated in serum of individuals with obesity and type 2 diabetes. Oxidised phosphatidylcholine, which is present in oxidised LDL, has previously been linked to ceramide pathway activation, and could contribute to localised ceramide accumulation in skeletal muscle. We hypothesised that oxidised phosphatidylcholine inversely correlates with insulin sensitivity in serum, and induces sarcolemmal ceramide accumulation and decreases insulin sensitivity in muscle. METHODS We used LC-MS/MS to quantify specific oxidised phosphatidylcholine species in serum from a cross-sectional study of 58 well-characterised individuals spanning the physiological range of insulin sensitivity. We also performed in vitro experiments in rat L6 myotubes interrogating the role of specific oxidised phosphatidylcholine species in promoting sarcolemmal ceramide accumulation, inflammation and insulin resistance in skeletal muscle cells. RESULTS Human serum oxidised phosphatidylcholine levels are elevated in individuals with obesity and type 2 diabetes, inversely correlated with insulin sensitivity, and positively correlated with sarcolemmal C18:0 ceramide levels in skeletal muscle. Specific oxidised phosphatidylcholine species, particularly 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), increase total ceramide and dihydroceramide and decrease total sphingomyelin in the sarcolemma of L6 myotubes by de novo ceramide synthesis and sphingomyelinase activation. POVPC also increases inflammatory signalling and causes insulin resistance in L6 myotubes. CONCLUSIONS/INTERPRETATION These data suggest that circulating oxidised phosphatidylcholine species promote ceramide accumulation and decrease insulin sensitivity in muscle, help explain localised sphingolipid accumulation and muscle inflammatory response, and highlight oxidised phosphatidylcholine species as potential targets to combat insulin resistance.
Collapse
Affiliation(s)
- Karin A Zemski Berry
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Amanda Garfield
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Purevsuren Jambal
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simona Zarini
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leigh Perreault
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Bryan C Bergman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Zhang L, Lu T, Zhou B, Sun Y, Wang L, Qiao G, Yang T. Lipidomic analysis of serum exosomes identifies a novel diagnostic marker for type 2 diabetes mellitus. Lab Med 2024; 55:724-731. [PMID: 38809765 DOI: 10.1093/labmed/lmae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) intricately involves disrupted lipid metabolism. Exosomes emerge as carriers of biomarkers for early diagnosis and monitoring. This study aims to identify lipid metabolites in serum exosomes for T2DM diagnosis. METHODS Serum samples were collected from newly diagnosed T2DM patients and age and body mass index-matched healthy controls. Exosomes were isolated using exosome isolation reagent, and untargeted/targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and validate altered lipid metabolites. Receiver operating characteristic curve analysis was used to evaluate the diagnostic value of candidate lipid metabolites. RESULTS Serum exosomes were successfully isolated from both groups, with untargeted LC-MS/MS revealing distinct lipid metabolite alterations. Notably, phosphatidylethanolamine (PE) (22:2(13Z,16Z)/14:0) showed stable elevation in T2DM-serum exosomes. Targeted LC-MS/MS confirmed significant increase of PE (22:2(13Z,16Z)/14:0) in T2DM exosomes but not in serum. PE (22:2(13Z,16Z)/14:0) levels not only positively correlated with hemoglobin A1C levels and blood glucose levels, but also effectively distinguished T2DM patients from healthy individuals (area under the curve = 0.9141). CONCLUSION Our research sheds light on the importance of serum exosome lipid metabolites in diagnosing T2DM, providing valuable insights into the complex lipid metabolism of diabetes.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Ting Lu
- Department of Endocrinology, Yixing People's Hospital, Yixing, China
| | - Baocheng Zhou
- Department of Medical Laboratory, Lianyungang Maternal and Child Health Hospital, Lianyungang, China
| | - Yaoxiang Sun
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Liyun Wang
- Department of Endocrinology, Yixing People's Hospital, Yixing, China
| | - Guohong Qiao
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| | - Tingting Yang
- Department of Clinical Laboratory, Yixing People's Hospital, Yixing, China
| |
Collapse
|
3
|
Santos M, Melo T, Maurício T, Ferreira H, Domingues P, Domingues R. The non-enzymatic oxidation of phosphatidylethanolamine and phosphatidylserine and their intriguing roles in inflammation dynamics and diseases. FEBS Lett 2024; 598:2174-2189. [PMID: 39097985 DOI: 10.1002/1873-3468.14992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/14/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
Phosphatidylethanolamine (PE) and phosphatidylserine (PS), along with phosphatidylcholine (PC), are key phospholipids (PL) in cell membranes and lipoproteins, prone to oxidative modifications. Their oxidized forms, OxPE and OxPS, play significant roles in inflammation and immune response. This review explores their structural oxidative changes under non-enzymatic conditions and their roles in physiological and pathological contexts, influencing inflammation, and immunity. Specific oxidations of PE and PS significantly alter their physicochemical properties, leading to enhanced biological functions, reduced activity, or inactivation. OxPE may show pro-inflammatory actions, similar to well-documented OxPC, while the OxPS pro-inflammatory effects are less noted. However, OxPS and OxPE have also shown an antagonistic effect against lipopolysaccharides (LPS), suggesting a protective role against exacerbated immune responses, similar to OxPC. Further research is needed to deepen our understanding of these less-studied OxPL classes. The role of OxPE and OxPS in disease pathogenesis remains largely unexplored, with limited studies linking them to Alzheimer's disease, diabetes, rheumatoid arthritis, traumatic brain injury, and skin inflammation. These findings highlight the potential of OxPE and OxPS as biomarkers for disease diagnosis, monitoring, and therapeutic targeting.
Collapse
Affiliation(s)
- Matilde Santos
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tânia Melo
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Tatiana Maurício
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Helena Ferreira
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Pedro Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| | - Rosário Domingues
- Department of Chemistry, Mass Spectrometry Center, LAQV-REQUIMTE, University of Aveiro, Santiago University Campus, Aveiro, Portugal
- Department of Chemistry, CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Santiago University Campus, Aveiro, Portugal
| |
Collapse
|
4
|
Zhang P, Liu N, Xue M, Zhang M, Xiao Z, Xu C, Fan Y, Qiu J, Zhang Q, Zhou Y. β-Sitosterol Reduces the Content of Triglyceride and Cholesterol in a High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease Zebrafish ( Danio rerio) Model. Animals (Basel) 2024; 14:1289. [PMID: 38731293 PMCID: PMC11083524 DOI: 10.3390/ani14091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/01/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVE Non-alcoholic fatty liver disease (NAFLD) is strongly associated with hyperlipidemia, which is closely related to high levels of sugar and fat. β-sitosterol is a natural product with significant hypolipidemic and cholesterol-lowering effects. However, the underlying mechanism of its action on aquatic products is not completely understood. METHODS A high-fat diet (HFD)-induced NAFLD zebrafish model was successfully established, and the anti-hyperlipidemic effect and potential mechanism of β-sitosterol were studied using oil red O staining, filipin staining, and lipid metabolomics. RESULTS β-sitosterol significantly reduced the accumulation of triglyceride, glucose, and cholesterol in the zebrafish model. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that differential lipid molecules in β-sitosterol mainly regulated the lipid metabolism and signal transduction function of the zebrafish model. β-sitosterol mainly affected steroid biosynthesis and steroid hormone biosynthesis in the zebrafish model. Compared with the HFD group, the addition of 500 mg/100 g of β-sitosterol significantly inhibited the expression of Ppar-γ and Rxr-α in the zebrafish model by at least 50% and 25%, respectively. CONCLUSIONS β-sitosterol can reduce lipid accumulation in the zebrafish model of NAFLD by regulating lipid metabolism and signal transduction and inhibiting adipogenesis and lipid storage.
Collapse
Affiliation(s)
- Peng Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Naicheng Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Mingyang Xue
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Mengjie Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Zidong Xiao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Chen Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| | - Junqiang Qiu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China;
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai 201306, China
| | - Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China; (P.Z.); (N.L.); (M.X.); (M.Z.); (Z.X.); (C.X.); (Y.F.)
| |
Collapse
|
5
|
Godzien J, Lopez-Lopez A, Sieminska J, Jablonowski K, Pietrowska K, Kisluk J, Mojsak M, Dzieciol-Anikiej Z, Barbas C, Reszec J, Kozlowski M, Moniuszko M, Kretowski A, Niklinski J, Ciborowski M. Exploration of oxidized phosphocholine profile in non-small-cell lung cancer. Front Mol Biosci 2024; 10:1279645. [PMID: 38288337 PMCID: PMC10824250 DOI: 10.3389/fmolb.2023.1279645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.
Collapse
Affiliation(s)
- Joanna Godzien
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Angeles Lopez-Lopez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Julia Sieminska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Kacper Jablonowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Pietrowska
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Kisluk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Malgorzata Mojsak
- Independent Laboratory of Molecular Imaging, Medical University of Bialystok, Bialystok, Poland
| | | | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Spain
| | - Joanna Reszec
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Miroslaw Kozlowski
- Department of Thoracic Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Liu M, Shen J, Zhu X, Ju T, Willing BP, Wu X, Lu Q, Liu R. Peanut skin procyanidins reduce intestinal glucose transport protein expression, regulate serum metabolites and ameliorate hyperglycemia in diabetic mice. Food Res Int 2023; 173:113471. [PMID: 37803795 DOI: 10.1016/j.foodres.2023.113471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
One of diabetic characteristics is the postprandial hyperglycemia. Inhibiting glucose uptake may be beneficial for controlling postprandial blood glucose levels and regulating the glucose metabolism Peanut skin procyanidins (PSP) have shown a potential for lowering blood glucose; however, the underlying mechanism through which PSP regulate glucose metabolism remains unknown. In the current study, we investigated the effect of PSP on intestinal glucose transporters and serum metabolites using a mouse model of diabetic mice. Results showed that PSP improved glucose tolerance and systemic insulin sensitivity, which coincided with decreased expression of sodium-glucose cotransporter 1 and glucose transporter 2 in the intestinal epithelium induced by an activation of the phospholipase C β2/protein kinase C signaling pathway. Moreover, untargeted metabolomic analysis of serum samples revealed that PSP altered arachidonic acid, sphingolipid, glycerophospholipid, bile acids, and arginine metabolic pathways. The study provides new insight into the anti-diabetic mechanism of PSP and a basis for further research.
Collapse
Affiliation(s)
- Min Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Jinxin Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Xiaoling Zhu
- Hubei Provincial Institute for Food Supervision and Test, Wuhan 430070, China
| | - Tingting Ju
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Benjamin P Willing
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430000, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430000, China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan 430000, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
7
|
Pardo-Rodriguez D, Lasso P, Santamaría-Torres M, Cala MP, Puerta CJ, Méndez Arteaga JJ, Robles J, Cuervo C. Clethra fimbriata hexanic extract triggers alteration in the energy metabolism in epimastigotes of Trypanosoma cruzi. Front Mol Biosci 2023; 10:1206074. [PMID: 37818099 PMCID: PMC10561390 DOI: 10.3389/fmolb.2023.1206074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Chagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American countries and an estimated 8 million people worldwide are chronically infected. Currently, only two drugs are available for therapeutic use against T. cruzi and their use is controversial due to several disadvantages associated with side effects and low compliance with treatment. Therefore, there is a need to search for new tripanocidal agents. Natural products have been considered a potential innovative source of effective and selective agents for drug development to treat T. cruzi infection. Recently, our research group showed that hexanic extract from Clethra fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi parasite, being apoptosis the main cell death mechanism in both epimastigotes and trypomastigotes stages. With the aim of deepening the understanding of the mechanisms of death induced by CFHEX, the metabolic alterations elicited after treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS and GC-QTOF-MS) were performed. A total of 154 altered compounds were found significant in the treated parasites corresponding to amino acids (Arginine, threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine, leucine, glutamic acid, and serine), fatty acids (stearic acid), glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids (pyruvate and phosphoenolpyruvate). The most affected metabolic pathways were mainly related to energy metabolism, which was found to be decrease during the evaluated treatment time. Further, exogenous compounds of the triterpene type (betulinic, ursolic and pomolic acid) previously described in C. fimbriata were found inside the treated parasites. Our findings suggest that triterpene-type compounds may contribute to the activity of CFHEX by altering essential processes in the parasite.
Collapse
Affiliation(s)
- Daniel Pardo-Rodriguez
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Grupo de Productos Naturales, Universidad del Tolima, Tolima, Colombia
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Mary Santamaría-Torres
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Mónica P. Cala
- Metabolomics Core Facility—MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá, Colombia
| | - Concepción J. Puerta
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - Jorge Robles
- Grupo de Fitoquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
8
|
Dose-Dependent Cytotoxicity of Polypropylene Microplastics (PP-MPs) in Two Freshwater Fishes. Int J Mol Sci 2022; 23:ijms232213878. [PMID: 36430357 PMCID: PMC9692651 DOI: 10.3390/ijms232213878] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
The massive accumulation of plastics over the decades in the aquatic environment has led to the dispersion of plastic components in aquatic ecosystems, invading the food webs. Plastics fragmented into microplastics can be bioaccumulated by fishes via different exposure routes, causing several adverse effects. In the present study, the dose-dependent cytotoxicity of 8−10 μm polypropylene microplastics (PP-MPs), at concentrations of 1 mg/g (low dose) and 10 mg/g dry food (high dose), was evaluated in the liver and gill tissues of two fish species, the zebrafish (Danio rerio) and the freshwater perch (Perca fluviatilis). According to our results, the inclusion of PP-MPs in the feed of D. rerio and P. fluviatilis hampered the cellular function of the gills and hepatic cells by lipid peroxidation, DNA damage, protein ubiquitination, apoptosis, autophagy, and changes in metabolite concentration, providing evidence that the toxicity of PP-MPs is dose dependent. With regard to the individual assays tested in the present study, the biggest impact was observed in DNA damage, which exhibited a maximum increase of 18.34-fold in the liver of D. rerio. The sensitivity of the two fish species studied differed, while no clear tissue specificity in both fish species was observed. The metabolome of both tissues was altered in both treatments, while tryptophan and nicotinic acid exhibited the greatest decrease among all metabolites in all treatments in comparison to the control. The battery of biomarkers used in the present study as well as metabolomic changes could be suggested as early-warning signals for the assessment of the aquatic environment quality against MPs. In addition, our results contribute to the elucidation of the mechanism induced by nanomaterials on tissues of aquatic organisms, since comprehending the magnitude of their impact on aquatic ecosystems is of great importance.
Collapse
|
9
|
Zhang Y, Zhang Z, Li C, Tang D, Dai Y. Metabolomics Study Reveals the Alteration of Fatty Acid Oxidation in the Heart of Diabetic Mice by Empagliflozin. Mol Omics 2022; 18:643-651. [PMID: 35587588 DOI: 10.1039/d2mo00036a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Empagliflozin (Empa, SGLT2 inhibitor), is widely used in clinical situation for the management of diabetes. It has beneficial effects in reducing cardiac dysfunction and heart failure. However, rare studies had...
Collapse
Affiliation(s)
- Yingwei Zhang
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China.
| | - Zeyu Zhang
- The Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Chundi Li
- Department of Neurology, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China.
| | - Donge Tang
- The Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Yong Dai
- The Clinical Medical Research Center, Guangdong Provincial Engineering Research Center of Autoimmune Disease Precision Medicine, Shenzhen Engineering Research Center of Autoimmune Disease, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China.
| |
Collapse
|
10
|
Wu Y, Chen Z, Fuda H, Tsukui T, Wu X, Shen N, Saito N, Chiba H, Hui SP. Oxidative Stress Linked Organ Lipid Hydroperoxidation and Dysregulation in Mouse Model of Nonalcoholic Steatohepatitis: Revealed by Lipidomic Profiling of Liver and Kidney. Antioxidants (Basel) 2021; 10:1602. [PMID: 34679736 PMCID: PMC8533338 DOI: 10.3390/antiox10101602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a prevalent disease related to lipid metabolism disorder and oxidative stress. Lipid hydroperoxidation is known to be a critical driving force of various disorders and diseases. However, the combination of both intact and hydroperoxidized lipids in NASH has not yet been studied. In this work, the liver and kidney samples from NASH-model mice were comprehensively investigated by using the LC/MS-based lipidomic analysis. As a result, triglycerides showed the amount accumulation and the profile alteration for the intact lipids in the NASH group, while phosphatidylethanolamines, lysophosphatidylethanolamines, plasmalogens, and cardiolipins largely depleted, suggesting biomembrane damage and mitochondria dysfunction. Notably, the lipid hydroperoxide species of triglyceride and phosphatidylcholine exhibited a significant elevation in both the liver and the kidney of the NASH group and showed considerable diagnostic ability. Furthermore, the relationship was revealed between the lipid metabolism disturbance and the lipid hydroperoxide accumulation, which played a key role in the vicious circle of NASH. The present study suggested that the omics approach to the lipid hydroperoxide profile might be the potential diagnostic marker of NASH and other oxidative stress-related diseases, as well as the evaluative treatment index of antioxidants.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hirotoshi Fuda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Takayuki Tsukui
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Xunzhi Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Nianqiu Shen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Natsuki Saito
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-Ku, Sapporo 007-0894, Japan; (T.T.); (H.C.)
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-Ku, Sapporo 060-0812, Japan; (Y.W.); (Z.C.); (H.F.); (X.W.); (N.S.); (N.S.)
| |
Collapse
|
11
|
da Silva KM, Iturrospe E, Bars C, Knapen D, Van Cruchten S, Covaci A, van Nuijs ALN. Mass Spectrometry-Based Zebrafish Toxicometabolomics: A Review of Analytical and Data Quality Challenges. Metabolites 2021; 11:metabo11090635. [PMID: 34564451 PMCID: PMC8467701 DOI: 10.3390/metabo11090635] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolomics has achieved great progress over the last 20 years, and it is currently considered a mature research field. As a result, the number of applications in toxicology, biomarker, and drug discovery has also increased. Toxicometabolomics has emerged as a powerful strategy to provide complementary information to study molecular-level toxic effects, which can be combined with a wide range of toxicological assessments and models. The zebrafish model has gained importance in recent decades as a bridging tool between in vitro assays and mammalian in vivo studies in the field of toxicology. Furthermore, as this vertebrate model is a low-cost system and features highly conserved metabolic pathways found in humans and mammalian models, it is a promising tool for toxicometabolomics. This short review aims to introduce zebrafish researchers interested in understanding the effects of chemical exposure using metabolomics to the challenges and possibilities of the field, with a special focus on toxicometabolomics-based mass spectrometry. The overall goal is to provide insights into analytical strategies to generate and identify high-quality metabolomic experiments focusing on quality management systems (QMS) and the importance of data reporting and sharing.
Collapse
Affiliation(s)
- Katyeny Manuela da Silva
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| | - Elias Iturrospe
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Campus Jette, Free University of Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Chloe Bars
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium;
| | - Steven Van Cruchten
- Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (C.B.); (S.V.C.)
| | - Adrian Covaci
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
| | - Alexander L. N. van Nuijs
- Toxicological Center, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; (E.I.); (A.C.)
- Correspondence: (K.M.d.S.); (A.L.N.v.N.)
| |
Collapse
|
12
|
Chen Z, Liang Q, Wu Y, Gao Z, Kobayashi S, Patel J, Li C, Cai F, Zhang Y, Liang C, Chiba H, Hui SP. Comprehensive lipidomic profiling in serum and multiple tissues from a mouse model of diabetes. Metabolomics 2020; 16:115. [PMID: 33067714 DOI: 10.1007/s11306-020-01732-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Diabetes mellitus is a serious metabolic disorder causing multiple organ damage in human. However, the lipidomic profiles in different organs and their associations are rarely studied in either diabetic patients or animals. OBJECTIVES To evaluate and compare the characteristics of lipid species in serum and multiple tissues in a diabetic mouse model. METHODS Semi-quantitative profiling analyses of intact and oxidized lipids were performed in serum and multiple tissues from a diabetic mouse model fed a high fat diet and treated with streptozotocin by using LC/HRMS and MS/MS. The total content of each lipid class, and the tissue-specific lipid species in all tissue samples were determined and compared by multivariate analyses. RESULTS The diabetic mouse model displayed characteristic differences in serum and multiple organs: the brain and heart showed the largest reduction in cardiolipin, while the kidney had more alterations in triacylglycerol. Interestingly, the lipidomic differences also existed between different regions of the same organ: cardiolipin species with highly polyunsaturated fatty acyls decreased only in atrium but not in ventricle, while renal cortex showed longer fatty acyl chains for both increased and decreased triacylglycerol species than renal medulla. Importantly, diabetes caused an accumulation of lipid hydroperoxides, suggesting that oxidative stress was induced in all organs except for the brain during the development of diabetes. CONCLUSIONS These findings provided novel insight into the organ-specific relationship between diabetes and lipid metabolism, which might be useful for evaluating not only diabetic tissue injury but also the effectiveness of diabetic treatments.
Collapse
Affiliation(s)
- Zhen Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Qiangrong Liang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Yue Wu
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Zijun Gao
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Satoru Kobayashi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Joy Patel
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Cairong Li
- Clinical Medical College, Hubei University of Science and Technology, 437100, Xianning, China
| | - Fei Cai
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, 437100, Xianning, China
| | - Youhua Zhang
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, 11548, USA
| | - Chongsheng Liang
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
13
|
GOWDA SGB, GAO ZJ, CHEN Z, ABE T, HORI S, FUKIYA S, ISHIZUKA S, YOKOTA A, CHIBA H, HUI SP. Untargeted Lipidomic Analysis of Plasma from High-fat Diet-induced Obese Rats Using UHPLC–Linear Trap Quadrupole–Orbitrap MS. ANAL SCI 2020; 36:821-828. [DOI: 10.2116/analsci.19p442] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | - Zi-Jun GAO
- Faculty of Health Sciences, Hokkaido University
| | - Zhen CHEN
- Faculty of Health Sciences, Hokkaido University
| | - Takayuki ABE
- Graduate School of Agriculture, Hokkaido University
| | - Shota HORI
- Graduate School of Agriculture, Hokkaido University
| | | | | | | | - Hitoshi CHIBA
- Department of Nutrition, Sapporo University of Health Sciences
| | | |
Collapse
|
14
|
Oxidized lipids in the metabolic profiling of neuroendocrine tumors - Analytical challenges and biological implications. J Chromatogr A 2020; 1625:461233. [PMID: 32709312 DOI: 10.1016/j.chroma.2020.461233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/08/2023]
Abstract
Untargeted metabolomics can be a great tool for exploring new scientific areas; however, wrong metabolite annotation questions the credibility and puts the success of the entire research at risk. Therefore, an effort should be made to improve the quality and robustness of the annotation despite of the challenges, especially when final identification with standards is not possible. Through non-targeted analysis of human plasma samples, from a large cancer cohort study using RP-LC-ESI-QTOF-MS/MS, we have resolved MS/MS annotation through spectral matching, directed to hydroxyeicosatetraenoic acids (HETEs) and, MS/MS structural elucidation for newly annotated oxidized lyso-phosphatidylcholines (oxLPCs). The annotation of unknowns is supported with structural information from fragmentation spectra as well as the fragmentation mechanisms involved, necessarily including data from both polarity modes and different collision energies. In this work, we present evidences that various oxidation products show significant differences between cancer patients and control individuals and we establish a workflow to help identify such modifications. We report here the upregulation of HETEs and oxLPCs in patients with neuroendocrine tumors (NETs). To our knowledge, this is the first attempt to determine HETEs in NETs and one of very few studies where oxLPCs are annotated. The obtained results provide an important insight regarding lipid oxidation in NETs, although their physiological functions still have to be established and require further research.
Collapse
|
15
|
Deoxynivalenol-induced alterations in the redox status of HepG2 cells: identification of lipid hydroperoxides, the role of Nrf2-Keap1 signaling, and protective effects of zinc. Mycotoxin Res 2020; 36:287-299. [PMID: 32076947 DOI: 10.1007/s12550-020-00392-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/20/2023]
Abstract
Deoxynivalenol (DON) is a type B trichothecenes that is widely contaminating human and animal foods, leading to several toxicological implications if ingested. Induction of oxidative stress and production of lipid peroxides were suggested to be the reasons for DON-induced cytotoxicity. However, detailed and comprehensive profiling of DON-related lipid hydroperoxides was not identified. Furthermore, the mechanisms behind DON-induced cytotoxicity and oxidative stress have received less attention. Zinc (Zn) is an essential element that has antioxidant activities; however, the protective effects of Zn against DON-induced adverse effects were not examined. Therefore, this study was undertaken to investigate DON-induced cytotoxicity and oxidative damage to human HepG2 cell lines. Furthermore, a quantitative estimation for the formed lipid hydroperoxides was conducted using LC-MS/MS. In addition, DON-induced transcriptomic changes on the inflammatory markers and antioxidant enzymes were quantitatively examined using qPCR. The protective effects of Zn against DON-induced cytotoxicity and oxidative stress, the formation of lipid hydroperoxides (LPOOH), and antioxidant status in HepG2 cells were investigated. Finally, the effects of DON and Zn on the Nrf2-Keap1 pathway were further explored. The achieved results indicated that DON caused significant cytotoxicity in HepG2 cells accompanied by significant oxidative damage and induction of the inflammatory markers. Identification of DON-related LPOOH revealed the formation of 22 LPOOH species including 14 phosphatidylcholine hydroperoxides, 5 triacylglycerol hydroperoxides, and 3 cholesteryl ester hydroperoxides. DON caused significant downregulation of Nrf2-regulated antioxidant enzymes. Zn administration led to significant protection of HepG2 cells against DON-induced adverse effects, probably via activation of the Nrf2-Keap1 pathway.
Collapse
|
16
|
Darwish WS, Chen Z, Li Y, Wu Y, Chiba H, Hui SP. Identification of cadmium-produced lipid hydroperoxides, transcriptomic changes in antioxidant enzymes, xenobiotic transporters, and pro-inflammatory markers in human breast cancer cells (MCF7) and protection with fat-soluble vitamins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1978-1990. [PMID: 31768957 DOI: 10.1007/s11356-019-06834-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is a toxic metal that is regarded as a metallohormone with estrogen-like properties. The present study aimed at identification of lipid hydroperoxides produced in human breast cancer (MCF7) exposed to cadmium (Cd) at environmentally relevant levels. Cd induced cytotoxicity and oxidative stress and produced a series of 26 lipid hydroperoxide species including 14 phosphatidylcholine hydroperoxides (PC-OOH), 9 triacylglycerol hydroperoxides (TG-OOH), and 3 cholesteryl ester hydroperoxides (CE-OOH). Among these hydroperoxides, PC34:2-OOH, PC34:3-OOH, TG60:14-OOH, TG48:5-OOH, TG60:15-OOH, and CE20:4-OOH were produced in a dose-dependent manner, suggesting these as possible biomarkers for Cd exposure in MCF7 cells. In addition, Cd led to significant decreases in the gene expressions of antioxidants, detoxification enzymes, and xenobiotic transporters. In a protection trial, co-exposure of MCF7 cells to fat-soluble vitamins including vitamin A, D, and E reduced Cd-induced cytotoxicity, lipid peroxidation, oxidative stress, and inflammatory responses. Fat-soluble vitamins upregulated antioxidant and detoxification enzymes, and xenobiotic transporters. Therefore, dietary supplementation of such micronutrients is recommended for people at risk for exposure to Cd.
Collapse
Affiliation(s)
- Wageh Sobhy Darwish
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Zhen Chen
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Yonghan Li
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Yue Wu
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi 4-2-1-15, Higashi Ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan.
| |
Collapse
|
17
|
Li Y, Darwish WS, Chen Z, Tan H, Wu Y, Suzuki H, Chiba H, Hui SP. Identification of lead-produced lipid hydroperoxides in human HepG2 cells and protection using rosmarinic and ascorbic acids with a reference to their regulatory roles on Nrf2-Keap1 antioxidant pathway. Chem Biol Interact 2019; 314:108847. [PMID: 31610155 DOI: 10.1016/j.cbi.2019.108847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/22/2019] [Accepted: 10/09/2019] [Indexed: 12/12/2022]
Abstract
Lead (Pb) is one of the toxic heavy metals that have several toxicological implications including cytotoxicities and oxidative stress. The release of reactive oxygen species (ROS) usually initiates lipid peroxidation and resulting in inflammation and tissue injury. However, the detailed identification of the Pb-produced lipid hydroperoxides has received little attention. Furthermore, the mechanisms behind such effects are less informed. Therefore, this study firstly investigated Pb-produced lipid hydroperoxides in human HepG2 cells using LC/MS. The effects of Pb on the antioxidant enzymes were additionally examined using qPCR and their dependent activities. As a protection trial, the ameliorative effects of rosmarinic (RMA) and ascorbic (ASA) acids on Pb-induced cytotoxicity and oxidative stress and their regulatory effects on Nrf2/Keap1 pathway were investigated. The achieved results confirmed cytotoxicity and oxidative damage of Pb on HepG2 cells. In addition, 20 lipid hydroperoxides (LOOH) were identified including 11 phosphatidylcholine hydroperoxides (PCOOH), 5 triacylglycerol hydroperoxides (TGOOH) and 4 cholesteryl ester hydroperoxides (CEOOH). The most dominant LOOH species were PCOOH 34:2, PCOOH 34:3, PCOOH 38:7, TGOOH 60:14, TGOOH 60:15, CEOOH 18:3 and CEOOH 20:4. Pb significantly downregulated Nrf2-regulated antioxidant enzymes at both the pretranscriptional and functional levels. Co-exposure of HepG2 cells to RMA and ASA significantly reduced Pb-produced adverse outcomes. This protection occurred via activation Nrf2-Keap1 antioxidant pathway.
Collapse
Affiliation(s)
- Yonghan Li
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Wageh Sobhy Darwish
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan; Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Zhen Chen
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Hui Tan
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Yue Wu
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Hirotaka Suzuki
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi 4-2-1-15, Higashi Ku, Sapporo, 007-0894, Japan
| | - Shu-Ping Hui
- Laboratory of Advanced Lipid Analysis, Faculty of Health Sciences, Hokkaido University, Kita 12, Nishi 5, Sapporo, 060-0812, Japan.
| |
Collapse
|
18
|
Ni Z, Goracci L, Cruciani G, Fedorova M. Computational solutions in redox lipidomics - Current strategies and future perspectives. Free Radic Biol Med 2019; 144:110-123. [PMID: 31035005 DOI: 10.1016/j.freeradbiomed.2019.04.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022]
Abstract
The high chemical diversity of lipids allows them to perform multiple biological functions ranging from serving as structural building blocks of biological membranes to regulation of metabolism and signal transduction. In addition to the native lipidome, lipid species derived from enzymatic and non-enzymatic modifications (the epilipidome) make the overall picture even more complex, as their functions are still largely unknown. Oxidized lipids represent the fraction of epilipidome which has attracted high scientific attention due to their apparent involvement in the onset and development of numerous human disorders. Development of high-throughput analytical methods such as liquid chromatography coupled on-line to mass spectrometry provides the possibility to address epilipidome diversity in complex biological samples. However, the main bottleneck of redox lipidomics, the branch of lipidomics dealing with the characterization of oxidized lipids, remains the lack of optimal computational tools for robust, accurate and specific identification of already discovered and yet unknown modified lipids. Here we discuss the main principles of high-throughput identification of lipids and their modified forms and review the main software tools currently available in redox lipidomics. Different levels of confidence for software assisted identification of redox lipidome are defined and necessary steps toward optimal computational solutions are proposed.
Collapse
Affiliation(s)
- Zhixu Ni
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy; Consortium for Computational Molecular and Materials Sciences (CMS), via Elce di Sotto 8, 06123 Perugia, Italy
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, Germany; Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, Leipzig, Germany.
| |
Collapse
|
19
|
Abstract
The Python programing language is becoming a promising tool for data analysis in various fields. However, little attention has been paid to using Python in the field of analytical chemistry, though recent advances in instrumental analysis require robust and reliable data analysis. In order to overcome the difficulty in accurate analysis, multivariate analysis, or chemometrics, has been widely applied to various kinds of data obtained by instrumental analysis. In the present work, the potential usefulness of Python for chemometrics and related fields in chemistry is reviewed. Many practical tools for chemometrics, e.g., principal component analysis (PCA), partial least squares (PLS), support vector machine (SVM), etc., are included in the scikit-learn machine learning (ML) library for Python. Other useful libraries such as pyMCR for multivariate curve resolution (MCR), 2Dpy for two-dimensional correlation spectroscopy (2D-COS), etc. can be obtained from GitHub. For these reasons, a computational environment for chemometrics is easily constructed in Python.
Collapse
Affiliation(s)
- Shigeaki Morita
- Department of Engineering Science, Osaka Electro-Communication University
| |
Collapse
|
20
|
Wu Y, Chen Z, Darwish WS, Terada K, Chiba H, Hui SP. Choline and Ethanolamine Plasmalogens Prevent Lead-Induced Cytotoxicity and Lipid Oxidation in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7716-7725. [PMID: 31131603 DOI: 10.1021/acs.jafc.9b02485] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmalogens derived from dietary phospholipids are considered to be potential protectors against oxidation-related disorders, while lead (Pb) is an environmental contaminant worldwide and is known to induce oxidative stress. However, the protective and antilipid oxidative effects of individual plasmalogen species against Pb damage have received little attention. In this study, six plasmalogen species (with either choline or ethanolamine as the headgroup and p16:0/18:1, p16:0/18:2, or p16:0/20:5 as the side chains) were evaluated in human hepatoma cells. Plasmalogen species showed a remarkable recovery in cell viability as well as elimination of reactive oxygen species and suppressed the accumulation of phosphatidylcholine hydroperoxides (from 63.6 ± 1.8% to 80.3 ± 2.9%) and phosphatidylethanolamine hydroperoxides (from 25.7 ± 9.3% to 76.1 ± 3.7%). Moreover, plasmalogens significantly upregulated the gene expression levels of a series of antioxidant enzymes that are regulated via the Nrf-2-dependent pathway. This study suggested that choline and ethanolamine plasmalogens could prevent Pb-induced cytotoxicity and lipid oxidation in HepG2 cells.
Collapse
Affiliation(s)
- Yue Wu
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| | - Zhen Chen
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| | - Wageh S Darwish
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
- Food Control Department, Faculty of Veterinary Medicine , Zagazig University , Zagazig 44519 , Egypt
| | - Koh Terada
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| | - Hitoshi Chiba
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
- Department of Nutrition , Sapporo University of Health Sciences , Nakanuma Nishi-4-2-1-15, Higashi , Sapporo 007-0894 , Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences , Hokkaido University , Kita-12, Nishi-5, Kita-ku , Sapporo 060-0812 , Japan
| |
Collapse
|