1
|
Sun X, Xie H, Zhang H, Li Z, Qi H, Yang C, Liu X, Ren L, Jiang Y, Hu X. B7-H4 reduction induced by Toxoplasma gondii infection results in dysfunction of decidual dendritic cells by regulating the JAK2/STAT3 pathway. Parasit Vectors 2022; 15:157. [PMID: 35505420 PMCID: PMC9066748 DOI: 10.1186/s13071-022-05263-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
Background Primary infection of Toxoplasma gondii can cause serious abnormal pregnancy outcomes such as miscarriage and stillbirth. Inhibitory molecule B7-H4 is abundantly expressed in dendritic cells (DCs) and plays an important role in maintaining immune tolerance. However, the role of B7-H4 in decidual DCs (dDCs) in T. gondii-induced abnormal pregnancy outcomes is not clear. Methods We established T. gondii-infected abnormal pregnancy model in wild-type (WT) and B7-H4 knockout (B7-H4−/−) pregnant mice in vivo and cultured primary human dDCs in vitro. The abnormal pregnancy outcomes were observed and the expression of B7-H4, functional molecules (CD80, CD86, and MHC-II or HLA-DR), indoleamine 2,3-dioxygenase (IDO), cytokines (IL-10 and IL-12), and signaling molecules JAK2/STAT3 in dDCs was detected by flow cytometry and Western blot. Results Our results showed that T. gondii infection significantly decreased B7-H4 expression in dDCs. In addition, B7-H4−/− infected pregnant mice showed much more severe abnormal pregnancy outcomes than their counterparts. Importantly, B7-H4−/− infection further regulated the expression of molecules (CD80, CD86, and MHC-II or HLA-DR), enzyme IDO, and cytokines (IL-10 and IL-12) in dDCs. We further discovered that B7-H4−/− infection impairs the JAK2/STAT3 pathway, contributing to dDC dysfunction. Conclusions Taken together, the results show that reduction of B7-H4 by T. gondii infection significantly modulates the decrease in cytokine IL-10 and enzyme IDO and the increase in cytokine IL-12, contributing to dDC dysfunction. Moreover, the JAK2/STAT3 pathway is involved in the regulation of B7-H4 by T. gondii infection and in the subsequent IDO and cytokine production, which ultimately contributes to abnormal pregnancy outcomes. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05263-1.
Collapse
Affiliation(s)
- Xinyue Sun
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Hongbing Xie
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Houbao Qi
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Chunyan Yang
- Department of Oral Biology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Liqin Ren
- Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, People's Republic of China.
| |
Collapse
|
2
|
Hu X, Luo B, Wu Q, Chen Q, Lu P, Huang J, Liang X, Ling C, Li Y. Effects of Dezocine and Sufentanil on Th1/Th2 Balance in Breast Cancer Patients Undergoing Surgery. Drug Des Devel Ther 2021; 15:4925-4938. [PMID: 34880602 PMCID: PMC8648097 DOI: 10.2147/dddt.s326891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND It is very important for breast cancer patients undergoing surgery to choose an opioid that has little effect on the immune system. The aim of this study is to compare the effects of dezocine or sufentanil on postoperative pain and Th1/Th2 balance in patients undergoing breast cancer surgery. METHODS Data from 92 breast cancer patients from January 2019 to July 2020 at Foshan Second People's Hospital (Guangdong, China) were analyzed. Sufentanil (SF) was used in group SF (n = 44) and dezocine (DE) in group DE (n = 48). The Visual Analog Scale (VAS) scores were assessed, and the percentages of Th1 cells and Th2 cells in peripheral blood were detected before anesthesia and at 2, 12, 24, and 48 hours after surgery. RESULTS There was no significant difference in the VAS scores between the two groups at 2, 24, and 48 hours after surgery (P > 0.05). The VAS scores at 12 hours after surgery in group DE were significantly lower than those in group SF with a statistically significant difference (P < 0.05). The percentage of Th1 cells in group DE at 2, 12, 24, and 48 hours after surgery was significantly lower than that in group SF (P < 0.05). The percentage of Th2 cells in group DE at 2, 12, 24, and 48 hours after surgery was significantly lower than that in group SF (P < 0.05). The Th1/Th2 ratio at 2, 12, 24, and 48 hours after surgery was significantly higher in group DE than that in group SF (P < 0.05). CONCLUSION Dezocine for anesthesia induction and postoperative analgesia can maintain the balance of Th1/Th2 more stable than, with the same analgesia efficacy as, sufentanil during the early postoperative period in breast cancer patients undergoing surgery.
Collapse
Affiliation(s)
- Xudong Hu
- Department of Anesthesiology, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Bing Luo
- Department of Surgery, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Qing Wu
- Department of Surgery, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Qingbiao Chen
- Department of Surgery, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Penghui Lu
- Department of Surgery, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Jie Huang
- Clinical Laboratory, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Xiaoxia Liang
- Department of Anesthesiology, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Cheng Ling
- Department of Anesthesiology, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| | - Yiqun Li
- Department of Surgery, The Second People’s Hospital of Foshan, Foshan, Guangdong, 528000, People’s Republic of China
| |
Collapse
|
3
|
Interaction of Opioids with TLR4-Mechanisms and Ramifications. Cancers (Basel) 2021; 13:cancers13215274. [PMID: 34771442 PMCID: PMC8582379 DOI: 10.3390/cancers13215274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/09/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Recent evidence indicates that opioids can be active at a receptor that is abundantly expressed on innate immune cells as well as cancer cells: the receptor is termed toll-like receptor 4 (TLR4). TLR4 is increasingly recognised as playing key roles in tumour biology and anticancer defences. However, the issue of whether TLR4 mediates some of the effects of opioids on tumour growth and metastasis is entirely unknown. We review existing evidence, mechanisms, and functional consequences of the action of opioids at TLR4. This opens new avenues of research on the role of opioids in cancer. Abstract The innate immune receptor toll-like receptor 4 (TLR4) is known as a sensor for the gram-negative bacterial cell wall component lipopolysaccharide (LPS). TLR4 activation leads to a strong pro-inflammatory response in macrophages; however, it is also recognised to play a key role in cancer. Recent studies of the opioid receptor (OR)-independent actions of opioids have identified that TLR4 can respond to opioids. Opioids are reported to weakly activate TLR4, but to significantly inhibit LPS-induced TLR4 activation. The action of opioids at TLR4 is suggested to be non-stereoselective, this is because OR-inactive (+)-isomers of opioids have been shown to activate or to inhibit TLR4 signalling, although there is some controversy in the literature. While some opioids can bind to the lipopolysaccharide (LPS)-binding cleft of the Myeloid Differentiation factor 2 (MD-2) co-receptor, pharmacological characterisation of the inhibition of opioids on LPS activation of TLR4 indicates a noncompetitive mechanism. In addition to a direct interaction at the receptor, opioids affect NF-κB activation downstream of both TLR4 and opioid receptors and modulate TLR4 expression, leading to a range of in vivo outcomes. Here, we review the literature reporting the activity of opioids at TLR4, its proposed mechanism(s), and the complex functional consequences of this interaction.
Collapse
|
4
|
Hofford RS, Russo SJ, Kiraly DD. Neuroimmune mechanisms of psychostimulant and opioid use disorders. Eur J Neurosci 2019; 50:2562-2573. [PMID: 30179286 PMCID: PMC6531363 DOI: 10.1111/ejn.14143] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/20/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
Substance use disorders are global health problems with few effective treatment options. Unfortunately, most potential pharmacological treatments are hindered by abuse potential of their own, limited efficacy, or adverse side effects. As a consequence, there is a pressing need for the development of addiction treatments with limited abuse potential and fewer off target effects. Given the difficulties in developing new pharmacotherapies for substance use disorders, there has been growing interest in medications that act on non-traditional targets. Recent evidence suggests a role for dysregulated immune signaling in the pathophysiology of multiple psychiatric diseases. While there is evidence that immune responses in the periphery and the central nervous system are altered by exposure to drugs of abuse, the contributions of neuroimmune interactions to addictive behaviors are just beginning to be appreciated. In this review, we discuss the data on immunological changes seen in clinical populations with substance use disorders, as well as in translational animal models of addiction. Importantly, we highlight those mechanistic findings showing causal roles for central or peripheral immune mediators in substance use disorder and appropriate animal models. Based on the literature reviewed here, it is clear that brain-immune system interactions in substance use disorders are much more complex and important than previously understood. While much work remains to be done, there are tremendous potential therapeutic implications for immunomodulatory treatments in substance use disorders.
Collapse
Affiliation(s)
- Rebecca S Hofford
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Scott J Russo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Drew D Kiraly
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Zhang T, Zhang N, Zhang R, Zhao W, Chen Y, Wang Z, Xu B, Zhang M, Shi X, Zhang Q, Guo Y, Xiao J, Chen D, Fang Q. Preemptive intrathecal administration of endomorphins relieves inflammatory pain in male mice via inhibition of p38 MAPK signaling and regulation of inflammatory cytokines. J Neuroinflammation 2018; 15:320. [PMID: 30442166 PMCID: PMC6236886 DOI: 10.1186/s12974-018-1358-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Preemptive administration of analgesic drugs reduces perceived pain and prolongs duration of antinociceptive action. Whereas several lines of evidence suggest that endomorphins, the endogenous mu-opioid agonists, attenuate acute and chronic pain at the spinal level, their preemptive analgesic effects remain to be determined. In this study, we evaluated the anti-allodynic activities of endomorphins and explored their mechanisms of action after preemptive administration in a mouse model of inflammatory pain. METHODS The anti-allodynic activities of preemptive intrathecal administration of endomorphin-1 and endomorphin-2 were investigated in complete Freund's adjuvant (CFA)-induced inflammatory pain model and paw incision-induced postoperative pain model. The modulating effects of endomorphins on the expression of p38 mitogen-activated protein kinase (p38 MAPK) and inflammatory mediators in dorsal root ganglion (DRG) of CFA-treated mice were assayed by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, or immunofluorescence staining. RESULTS Preemptive intrathecal injection of endomorphins dose-dependently attenuated CFA-induced mechanical allodynia via the mu-opioid receptor and significantly reversed paw incision-induced allodynia. In addition, CFA-caused increase of phosphorylated p38 MAPK in DRG was dramatically reduced by preemptive administration of endomorphins. Repeated intrathecal application of the specific p38 MAPK inhibitor SB203580 reduced CFA-induced mechanical allodynia as well. Further RT-PCR assay showed that endomorphins regulated the mRNA expression of inflammatory cytokines in DRGs induced by peripheral inflammation. CONCLUSIONS Our findings reveal a novel mechanism by which preemptive treatment of endomorphins attenuates inflammatory pain through regulating the production of inflammatory cytokines in DRG neurons via inhibition of p38 MAPK phosphorylation.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Nan Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Run Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Weidong Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Yong Chen
- Department of Neurology, School of Medicine, Duke University, Durham, North Carolina, 27710, USA
| | - Zilong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Biao Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Mengna Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Xuerui Shi
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Qinqin Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Yuanyuan Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Jian Xiao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Dan Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, 199 Donggang West Road, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
6
|
Cornwell WD, Wagner W, Lewis MG, Fan X, Rappaport J, Rogers TJ. Effect of chronic morphine administration on circulating dendritic cells in SIV-infected rhesus macaques. J Neuroimmunol 2016; 295-296:30-40. [PMID: 27235346 DOI: 10.1016/j.jneuroim.2016.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 11/28/2022]
Abstract
We studied the effect of chronic morphine administration on the circulating dendritic cell population dynamics associated with SIV infection using rhesus macaques. Animals were either first infected with SIV and then given chronic morphine, or visa versa. SIV infection increased the numbers of myeloid DCs (mDCs), but morphine treatment attenuated this mDC expansion. In contrast, morphine increased the numbers of plasmacytoid DCs (pDCs) in SIV-infected animals. Finally, chronic morphine administration (no SIV) transiently increased the numbers of circulating pDCs. These results show that chronic morphine induces a significant alteration in the available circulating levels of critical antigen-presenting cells.
Collapse
Affiliation(s)
| | - Wendeline Wagner
- BioQual Incorporated, 9600 Medical Center Dr., Rockville, MD 20850, USA
| | - Mark G Lewis
- BioQual Incorporated, 9600 Medical Center Dr., Rockville, MD 20850, USA
| | | | - Jay Rappaport
- Department of Neuroscience, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, USA.
| |
Collapse
|
7
|
Chen G, Le Y, Zhou L, Gong L, Li X, Li Y, Liao Q, Duan K, Tong J, Ouyang W. Dexmedetomidine Inhibits Maturation and Function of Human Cord Blood-Derived Dendritic Cells by Interfering with Synthesis and Secretion of IL-12 and IL-23. PLoS One 2016; 11:e0153288. [PMID: 27054340 PMCID: PMC4824534 DOI: 10.1371/journal.pone.0153288] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
Aims To investigate the effects and underlying mechanism of dexmedetomidine on the cultured human dendritic cells (DCs). Methods Human DCs and cytotoxic T lymphocytes (CTLs) were obtained from human cord blood mononuclear cells by density gradient centrifugation. Cultured DCs were divided into three groups: dexmedetomidine group, dexmedetomidine plus yohimbine (dexmedetomidine inhibitor) group and control group. DCs in the three groups were treated with dexmedetomidine, dexmedetomidine plus yohimbine and culture medium, respectively. After washing, the DCs were co-incubated with cultured CTLs. The maturation degree of DCs was evaluated by detecting (1) the ratios of HLA-DR-, CD86-, and CD80-positive cells (flow cytometry), and (2) expression of IL-12 and IL-23 (PCR and Elisa). The function of DCs was evaluated by detecting the proliferation (MTS assay) and cytotoxicity activity (the Elisa of IFN-γ) of CTLs. In addition, in order to explore the mechanisms of dexmedetomidine modulating DCs, α2-adrenergic receptor and its downstream signals in DCs were also detected. Results The ratios of HLA-DR-, CD86-, and CD80-positive cells to total cells were similar among the three groups (P>0.05). Compared to the control group, the protein levels of IL-12 and IL-23 in the culture medium and the mRNA levels of IL-12 p35, IL-12 p40 and IL-23 p19 in the DCs all decreased in dexmedetomidine group (P<0.05). In addition, the proliferation of CTLs and the secretion of IFN-γ also decreased in the dexmedetomidine group, compared with the control group (P<0.05). Moreover, these changes induced by dexmedetomidine in the dexmedetomidine group were reversed by α2-adrenergic receptor inhibitor yohimbine in the dexmedetomidine plus yohimbine group. It was also found the decrease of mRNA levels of IL-12 p35, IL-12 p40 and IL-23 p19 in the dexmedetomidine group could be reversed by ERK1/2 or AKT inhibitors. Conclusion Dexmedetomidine could negatively modulate human immunity by inhibiting the maturation of DCs and then decreasing the proliferation and cytotoxicity activity of CTLs. The α2-adrenergic receptors and its downstream molecules ERK1/2 and AKT are closely involved in the modulation of dexmedetomidine on DCs.
Collapse
Affiliation(s)
- Gong Chen
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuan Le
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lei Zhou
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Gong
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoxiao Li
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yunli Li
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qin Liao
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Kaiming Duan
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jianbin Tong
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Center for Experimental Medicine, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- * E-mail: (WO); (JT)
| | - Wen Ouyang
- Department of Anesthesiology, the Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- * E-mail: (WO); (JT)
| |
Collapse
|
8
|
Sagar V, Pilakka-Kanthikeel S, Atluri VSR, Ding H, Arias AY, Jayant RD, Kaushik A, Nair M. Therapeutical Neurotargeting via Magnetic Nanocarrier: Implications to Opiate-Induced Neuropathogenesis and NeuroAIDS. J Biomed Nanotechnol 2015; 11:1722-33. [PMID: 26502636 DOI: 10.1166/jbn.2015.2108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Magnetite (Fe3O4) is the most commonly and extensively explored magnetic nanoparticles (MNPs) for drug-targeting and imaging in the field of biomedicine. Nevertheless, its potential application as safe and effective drug-carrier for CNS (Central Nervous System) anomalies is very limited. Previous studies have shown an entangled epidemic of opioid use and HIV infection and increased neuropathogenesis. Opiate such as morphine, heroine, etc. are used frequently as recreational drugs. Existing treatments to alleviate the action of opioid are less effective at CNS level due to impermeability of therapeutic molecules across brain barriers. Thus, development of an advanced nanomedicine based approach may pave the way for better treatment strategies. We herein report magnetic nanoformulation of a highly selective and potent morphine antagonist, CTOP (D-Pen-Cys-Tyr-DTrp-Orn-Thr-Pen-Thr-NH2), which is impenetrable to the brain. MNPs, synthesized in size range from 25 to 40 nm, were characterized by Transmission electron microscopy and assembly of MNPs-CTOP nanoformulations were confirmed by FTIR spectroscopy and fluorescent detection. Flow-cytometry analysis showed that biological efficacy of this nanoformulation in prevention of morphine induced apoptosis in peripheral blood mononuclear cells remains equivalent to that of free CTOP. Similarly, confocal microscopy reveals comparable efficacy of free and MNPs bound CTOP in protecting modulation of neuronal dendrite and spine morphology during morphine exposure and morphine-treated HIV infection. Further, typical transmigration assay showed increased translocation of MNPs across in vitro blood-brain barrier upon exposure of external magnetic force where barrier integrity remains unaltered. Thus, the developed nanoformulation could be effective in targeting brain by application of external magnetic force to treat morphine addiction in HIV patients.
Collapse
|
9
|
McAdams RM, McPherson RJ, Beyer RP, Bammler TK, Farin FM, Juul SE. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice. PLoS One 2015; 10:e0123047. [PMID: 25844808 PMCID: PMC4386824 DOI: 10.1371/journal.pone.0123047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 12/02/2022] Open
Abstract
Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine–mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning.
Collapse
Affiliation(s)
- Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ronald J. McPherson
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| | - Richard P. Beyer
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Frederico M. Farin
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sandra E. Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Shaashua L, Rosenne E, Neeman E, Sorski L, Sominsky L, Matzner P, Page GG, Ben-Eliyahu S. Plasma IL-12 levels are suppressed in vivo by stress and surgery through endogenous release of glucocorticoids and prostaglandins but not catecholamines or opioids. Psychoneuroendocrinology 2014; 42:11-23. [PMID: 24636497 PMCID: PMC3959722 DOI: 10.1016/j.psyneuen.2013.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 11/26/2022]
Abstract
IL-12 is a prominent Th1 differentiator and leukocyte activator. Ample studies showed suppression of IL-12 production by numerous stress factors, including prostaglandins, catecholamines, glucocorticoids, and opioids, but did so in vitro and in the context of artificial leukocyte activation, not simulating the in vivo setting. In a recent study we reported in vivo suppression of plasma IL-12 levels by behavioral stress and surgery. The current study aims to elucidate neuroendocrine mechanisms underlying this phenomenon in naïve F344 rats. To this end, both adrenalectomy and administration of specific antagonists were used, targeting the aforementioned stress factors. The results indicated that corticosterone and prostaglandins are prominent mediators of the IL-12-suppressing effects of stress and surgery, apparently through directly suppressing leukocyte IL-12 production. Following surgery, endogenous prostaglandins exerted their effects mainly through elevating corticosterone levels. Importantly, stress-induced release of epinephrine or opioids had no impact on plasma IL-12 levels, while pharmacological administration of epinephrine reduced plasma IL-12 levels by elevating corticosterone levels. Last, a whole blood in vitro study indicated that prostaglandins and corticosterone, but not epinephrine, suppressed IL-12 production in non-stimulated leukocytes, and only corticosterone did so in the context of CpG-C-induced IL-12 production. Overall, the findings reiterate the notion that results from in vitro or pharmacological in vivo studies cannot indicate the effects of endogenously released stress hormones under stress/surgery conditions. Herein, corticosterone and prostaglandins, but not catecholamines or opioids, were key mediators of the suppressive effect of stress and surgery on in vivo plasma IL-12 levels in otherwise naïve animals.
Collapse
Affiliation(s)
- Lee Shaashua
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Ella Rosenne
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Elad Neeman
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Liat Sorski
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Luba Sominsky
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Pini Matzner
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Gayle G. Page
- School of Nursing, Johns Hopkins University, Baltimore, MD, USA
| | - Shamgar Ben-Eliyahu
- Neuroimmunology Research Unit, Sagol School of Neuroscience, School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
11
|
Bao YH, Zhou QH, Chen R, Xu H, Zeng LL, Zhang X, Jiang W, Du DP. Gabapentin enhances the morphine anti-nociceptive effect in neuropathic pain via the interleukin-10-heme oxygenase-1 signalling pathway in rats. J Mol Neurosci 2014; 54:137-46. [PMID: 24573601 PMCID: PMC4125805 DOI: 10.1007/s12031-014-0262-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 02/11/2014] [Indexed: 12/15/2022]
Abstract
In the present study, we investigated the anti-inflammatory mechanisms by which gabapentin enhances morphine anti-nociceptive effect in neuropathic pain in rats and the interaction between the anti-nociceptive effects of gabapentin on morphine and the interleukin (IL)-10-heme-oxygenase (HO)-1 signal pathway in a rat model of neuropathic pain. The neuropathic pain model was induced via a left L5/6 spinal nerve ligation (SNL) in rats. The anti-nociceptive effect of gabapentin and IL-10 on morphine was examined over a 7-day period, and the effects of the anti-IL-10 and HO-1 inhibitor zinc protoporphyrin (ZnPP) on gabapentin/morphine co-injection were assessed. Drug administration was given over 7 days, and on day 8, both anti-inflammatory cytokine IL-10, a stress-induced protein HO-1 and pro-inflammatory cytokines IL-1β, IL-6 and TNF-α were measured. Gabapentin attenuated morphine tolerance over 7 days of co-administration, and reduced the expression of pro-inflammatory cytokines but increased IL-10 and HO-1 expression. The effect of gabapentin on morphine was partially blocked using the anti-IL-10 antibody or the HO-1 inhibitor zinc protoporphyrin. Our findings indicated that the anti-nociceptive effects of gabapentin on morphine might be caused by activation of the IL-10-HO-1 signalling pathway, which resulted in the inhibition of the expression of pro-inflammatory cytokines in neuropathic pain in the rat spinal cord.
Collapse
Affiliation(s)
- Yu-Hua Bao
- Pain Management Center, Shanghai Six People's Hospital, Shanghai Jiaotong University, No. 600 Yishan Road, Shanghai, 200233, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Hollenbach R, Sagar D, Khan ZK, Callen S, Yao H, Shirazi J, Buch S, Jain P. Effect of morphine and SIV on dendritic cell trafficking into the central nervous system of rhesus macaques. J Neurovirol 2013; 20:175-83. [PMID: 23943466 DOI: 10.1007/s13365-013-0182-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/06/2013] [Accepted: 06/21/2013] [Indexed: 11/24/2022]
Abstract
Recruitment of immune cells such as monocytes/macrophages and dendritic cells (DCs) across the blood-brain barrier (BBB) has been documented in diseases involving neuroinflammation. Neuroinvasion by HIV leads to neurocognitive diseases and alters the permeability of the BBB. Likewise, many HIV patients use drugs of abuse such as morphine, which can further compromise the BBB. While the role of monocytes and macrophages in neuroAIDS is well established, research demonstrating the presence and role of DCs in the CNS during HIV infection has not been developed yet. In this respect, this study explored the presence of DCs in the brain parenchyma of rhesus macaques infected with a neurovirulent form of SIV (SIV mac239 R71/17E) and administered with morphine. Cells positive for DC markers including CD11c (integrin), macDC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin), CD83 (a maturation factor), and HLA-DR (MHC class II) were consistently found in the brain parenchyma of SIV-infected macaques as well as infected macaques on morphine. Control animals did not exhibit any DC presence in their brains. These results provide first evidence of DCs' relevance in NeuroAIDS vis-à-vis drugs of abuse and open new avenues of understanding and investigative HIV-CNS inflictions.
Collapse
Affiliation(s)
- Rebecca Hollenbach
- Department of Microbiology and Immunology, and the Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Parkitny L, McAuley JH, Di Pietro F, Stanton TR, O'Connell NE, Marinus J, van Hilten JJ, Moseley GL. Inflammation in complex regional pain syndrome: a systematic review and meta-analysis. Neurology 2013; 80:106-17. [PMID: 23267031 DOI: 10.1212/wnl.0b013e31827b1aa1] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES We conducted a systematic review of the literature with meta-analysis to determine whether complex regional pain syndrome (CRPS) is associated with a specific inflammatory profile and whether this is dependent on the duration of the condition. METHODS Comprehensive searches of the literature using MEDLINE, Embase, Scopus, Web of Science, and reference lists from published reviews identified articles that measured inflammatory factors in CRPS. Two independent investigators screened titles and abstracts, and performed data extraction and risk of bias assessments. Studies were subgrouped by medium (blood, blister fluid, and CSF) and duration (acute and chronic CRPS). Where possible, meta-analyses of inflammatory factor concentrations were performed and pooled effect sizes were calculated using random-effects models. RESULTS Twenty-two studies were included in the systematic review and 15 in the meta-analysis. In acute CRPS, the concentrations of interleukin (IL)-8 and soluble tumor necrosis factor receptors I (sTNF-RI) and II (sTNF-RII) were significantly increased in blood. In chronic CRPS, significant increases were found in 1) TNFα, bradykinin, sIL-1RI, IL-1Ra, IL-2, sIL-2Ra, IL-4, IL-7, interferon-γ, monocyte chemoattractant protein-1 (MCP-1), and sRAGE (soluble receptor for advanced glycation end products) in blood; 2) IL-1Ra, MCP-1, MIP-1β, and IL-6 in blister fluid; and 3) IL-1β and IL-6 in CSF. Chronic CRPS was also associated with significantly decreased 1) substance P, sE-selectin, sL-selectin, sP-selectin, and sGP130 in blood; and 2) soluble intercellular adhesion molecule-1 (sICAM-1) in CSF. Most studies failed to meet 3 or more of our quality criteria. CONCLUSION CRPS is associated with the presence of a proinflammatory state in the blood, blister fluid, and CSF. Different inflammatory profiles were found for acute and chronic cases.
Collapse
Affiliation(s)
- Luke Parkitny
- Neuroscience Research Australia, University of New South Wales, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Interactive Effects of Morphine on HIV Infection: Role in HIV-Associated Neurocognitive Disorder. AIDS Res Treat 2012; 2012:953678. [PMID: 22666564 PMCID: PMC3362817 DOI: 10.1155/2012/953678] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/13/2012] [Accepted: 03/02/2012] [Indexed: 01/06/2023] Open
Abstract
HIV epidemic continues to be a severe public health problem and concern within USA and across the globe with about 33 million people infected with HIV. The frequency of drug abuse among HIV infected patients is rapidly increasing and is another major issue since injection drug users are at a greater risk of developing HIV associated neurocognitive dysfunctions compared to non-drug users infected with HIV. Brain is a major target for many of the recreational drugs and HIV. Evidences suggest that opiate drug abuse is a risk factor in HIV infection, neural dysfunction and progression to AIDS. The information available on the role of morphine as a cofactor in the neuropathogenesis of HIV is scanty. This review summarizes the results that help in understanding the role of morphine use in HIV infection and neural dysfunction. Studies show that morphine enhances HIV-1 infection by suppressing IL-8, downregulating chemokines with reciprocal upregulation of HIV coreceptors. Morphine also activates MAPK signaling and downregulates cAMP response element-binding protein (CREB). Better understanding on the role of morphine in HIV infection and mechanisms through which morphine mediates its effects may help in devising novel therapeutic strategies against HIV-1 infection in opiate using HIV-infected population.
Collapse
|
15
|
Brown JN, Ortiz GM, Angel TE, Jacobs JM, Gritsenko M, Chan EY, Purdy DE, Murnane RD, Larsen K, Palermo RE, Shukla AK, Clauss TR, Katze MG, McCune JM, Smith RD. Morphine produces immunosuppressive effects in nonhuman primates at the proteomic and cellular levels. Mol Cell Proteomics 2012; 11:605-18. [PMID: 22580588 DOI: 10.1074/mcp.m111.016121] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Morphine has long been known to have immunosuppressive properties in vivo, but the molecular and immunologic changes induced by it are incompletely understood. To explore how these changes interact with lentiviral infections in vivo, animals from two nonhuman primate species (African green monkeys and pigtailed macaques) were provided morphine and studied using a systems biology approach. Biological specimens were obtained from multiple sources (e.g. lymph node, colon, cerebrospinal fluid, and peripheral blood) before and after the administration of morphine (titrated up to a maximum dose of 5 mg/kg over a period of 20 days). Cellular immune, plasma cytokine, and proteome changes were measured and morphine-induced changes in these parameters were assessed on an interorgan, interindividual, and interspecies basis. In both species, morphine was associated with decreased levels of Ki-67(+) T-cell activation but with only minimal changes in overall T-cell counts, neutrophil counts, and NK cell counts. Although changes in T-cell maturation were observed, these varied across the various tissue/fluid compartments studied. Proteomic analysis revealed a morphine-induced suppressive effect in lymph nodes, with decreased abundance of protein mediators involved in the functional categories of energy metabolism, signaling, and maintenance of cell structure. These findings have direct relevance for understanding the impact of heroin addiction and the opioids used to treat addiction as well as on the potential interplay between opioid abuse and the immunological response to an infective agent.
Collapse
Affiliation(s)
- Joseph N Brown
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington 99352, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rivera-Amill V, Silverstein PS, Noel RJ, Kumar S, Kumar A. Morphine and rapid disease progression in nonhuman primate model of AIDS: inverse correlation between disease progression and virus evolution. J Neuroimmune Pharmacol 2009; 5:122-32. [PMID: 20013315 DOI: 10.1007/s11481-009-9184-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/17/2009] [Indexed: 01/04/2023]
Abstract
HIV and simian immunodeficiency virus (SIV) have a formidable capacity for mutation and adaptation, a characteristic that has contributed to the extensive genetic variability. Evolutionary pressures imposed within the host and the viral capacity to mutate lead to the generation of such variants. To date, very little information is available regarding the evolution of HIV with drug abuse as a cofounding factor. Using our macaque model of drug dependency and AIDS, we have investigated the dynamics of SIV mutations in the genes tat, vpr, envelope, and nef. The results presented in this review, from our laboratory and others, contribute to the overall understanding of how drugs of abuse might influence immune selective pressure contribution to variation in different SIV genes. Additionally, the studies presented could help enlighten the development of HIV vaccines that take into consideration viral diversity.
Collapse
|
17
|
Li ZH, Chu N, Shan LD, Gong S, Yin QZ, Jiang XH. Inducible expression of functional mu opioid receptors in murine dendritic cells. J Neuroimmune Pharmacol 2009; 4:359-67. [PMID: 19189219 DOI: 10.1007/s11481-009-9145-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2008] [Accepted: 01/06/2009] [Indexed: 11/30/2022]
Abstract
Opioids are known to exert direct effects on the immune system, and the expression of functional opioid receptors has been reported on several immune cell types. Dendritic cells (DCs) are important inducers and regulators of immune responses. In this study, we investigated whether murine dendritic cells express functional mu opioid receptors (MOR). RT-PCR analysis and double immunofluorescence staining revealed the expression of MOR in activated murine dendritic cells. We also studied the dynamic expression of MOR messenger RNA in murine dendritic cells in response to different Toll-like receptor ligands. Functionally, treatment of DCs with endomorphin 1 (EM1), a specific agonist of MOR, can inhibit the forskolin-induced formation of cyclic adenosine monophosphate level in activated DCs. Moreover, EM1 treatment resulted in less activation of p38 MAPK and more activation of ERK signaling in lipopolysaccharide-stimulated DCs. Consistently, treatment of DCs with EM1 altered cytokine production by increasing IL-10 and decreasing IL-12 and IL-23. Our results suggest that MOR is inducibly expressed on activated DCs and functionally mediates EM1-induced effects on DCs. Thus, dendritic cells might be involved in crosstalk between the neuroendocrine and the immune system.
Collapse
Affiliation(s)
- Zheng-Hong Li
- Department of Neurobiology, School of Medicine, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
18
|
Hutchinson MR, Lewis SS, Coats BD, Skyba DA, Crysdale NY, Berkelhammer DL, Brzeski A, Northcutt A, Vietz CM, Judd CM, Maier SF, Watkins LR, Johnson KW. Reduction of opioid withdrawal and potentiation of acute opioid analgesia by systemic AV411 (ibudilast). Brain Behav Immun 2009; 23:240-50. [PMID: 18938237 PMCID: PMC2662518 DOI: 10.1016/j.bbi.2008.09.012] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 09/18/2008] [Accepted: 09/28/2008] [Indexed: 12/26/2022] Open
Abstract
Morphine-induced glial proinflammatory responses have been documented to contribute to tolerance to opioid analgesia. Here, we examined whether drugs previously shown to suppress glial proinflammatory responses can alter other clinically relevant opioid effects; namely, withdrawal or acute analgesia. AV411 (ibudilast) and minocycline, drugs with distinct mechanisms of action that result in attenuation of glial proinflammatory responses, each reduced naloxone-precipitated withdrawal. Analysis of brain nuclei associated with opioid withdrawal revealed that morphine altered expression of glial activation markers, cytokines, chemokines, and a neurotrophic factor. AV411 attenuated many of these morphine-induced effects. AV411 also protected against spontaneous withdrawal-induced hyperactivity and weight loss recorded across a 12-day timecourse. Notably, in the spontaneous withdrawal study, AV411 treatment was delayed relative to the start of the morphine regimen so to also test whether AV411 could still be effective in the face of established morphine dependence, which it was. AV411 did not simply attenuate all opioid effects, as co-administering AV411 with morphine or oxycodone caused three-to-five-fold increases in acute analgesic potency, as revealed by leftward shifts in the analgesic dose response curves. Timecourse analyses revealed that plasma morphine levels were not altered by AV411, suggestive that potentiated analgesia was not simply due to prolongation of morphine exposure or increased plasma concentrations. These data support and extend similar potentiation of acute opioid analgesia by minocycline, again providing converging lines of evidence of glial involvement. Hence, suppression of glial proinflammatory responses can significantly reduce opioid withdrawal, while improving analgesia.
Collapse
Affiliation(s)
- Mark R. Hutchinson
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA,Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Susannah S. Lewis
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Benjamen D. Coats
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - David A. Skyba
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University Nevada, Henderson, NV, USA
| | - Nicole Y. Crysdale
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Debra L. Berkelhammer
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Anita Brzeski
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Alexis Northcutt
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | | | - Charles M. Judd
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Steven F. Maier
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Linda R. Watkins
- Department of Psychology and the Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: 303 492 2967, Ph: 303 492-7034
| | | |
Collapse
|
19
|
Hoarau C, Martin L, Faugaret D, Baron C, Dauba A, Aubert-Jacquin C, Velge-Roussel F, Lebranchu Y. Supernatant from bifidobacterium differentially modulates transduction signaling pathways for biological functions of human dendritic cells. PLoS One 2008; 3:e2753. [PMID: 18648505 PMCID: PMC2447180 DOI: 10.1371/journal.pone.0002753] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 06/20/2008] [Indexed: 01/01/2023] Open
Abstract
Background Probiotic bacteria have been shown to modulate immune responses and could have therapeutic effects in allergic and inflammatory disorders. However, the signaling pathways engaged by probiotics are poorly understood. We have previously reported that a fermentation product from Bifidobacterium breve C50 (BbC50sn) could induce maturation, high IL-10 production and prolonged survival of DCs via a TLR2 pathway. We therefore studied the roles of mitogen-activated protein kinases (MAPK), glycogen synthase kinase-3 (GSK3) and phosphatidylinositol 3-kinase (PI3K) pathways on biological functions of human monocyte-derived DCs treated with BbC50sn. Methodology/Principal Findings DCs were differentiated from human monocytes with IL-4 and GM-CSF for 5 days and cultured with BbC50sn, lipopolysaccharide (LPS) or Zymosan, with or without specific inhibitors of p38MAPK (SB203580), ERK (PD98059), PI3K (LY294002) and GSK3 (SB216763). We found that 1) the PI3K pathway was positively involved in the prolonged DC survival induced by BbC50sn, LPS and Zymosan in contrast to p38MAPK and GSK3 which negatively regulated DC survival; 2) p38MAPK and PI3K were positively involved in DC maturation, in contrast to ERK and GSK3 which negatively regulated DC maturation; 3) ERK and PI3K were positively involved in DC-IL-10 production, in contrast to GSK3 that was positively involved in DC-IL-12 production whereas p38MAPK was positively involved in both; 4) BbC50sn induced a PI3K/Akt phosphorylation similar to Zymosan and a p38MAPK phosphorylation similar to LPS. Conclusion/Significance We report for the first time that a fermentation product of a bifidobacteria can differentially activate MAPK, GSK3 and PI3K in order to modulate DC biological functions. These results give new insights on the fine-tuned balance between the maintenance of normal mucosal homeostasis to commensal and probiotic bacteria and the specific inflammatory immune responses to pathogen bacteria.
Collapse
Affiliation(s)
- Cyrille Hoarau
- UPRES EA 4245 Cellules Dendritiques & Greffes, Université François-Rabelais, Tours, France.
| | | | | | | | | | | | | | | |
Collapse
|