1
|
Yang L, Sun Z. Role of APE1 in hepatocellular carcinoma and its prospects as a target in clinical settings (Review). Mol Clin Oncol 2024; 21:82. [PMID: 39301126 PMCID: PMC11411593 DOI: 10.3892/mco.2024.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/21/2024] [Indexed: 09/22/2024] Open
Abstract
In recent years, the incidence of liver cancer has increased annually. However, current medical treatments for liver cancer are limited, and most patients have a high risk of recurrence after surgery. Therefore, the discovery and development of novel treatment targets for liver cancer is urgently needed. Apurinic/apyrimidinic endonuclease 1 (APE1) is a protein that has a DNA repair function and serves an important role in various physiological processes, including reduction-oxidation, cell proliferation and differentiation. The expression levels of APE1 are abnormally elevated in liver cancer cells, as ectopic expression of the APE1 gene has been reported, in addition to other abnormal signs, such as cell proliferation and migration. Therefore, it could be suggested that APE1 is an important indicator of hepatocellular carcinogenesis. APE1 may be used as a therapeutic target for tumors and proposed targeted therapy against abnormal APE1 expression could potentially inhibit the progression of tumors. The present review aimed to introduce the important role of APE1 in the physiological processes of tumor cells and the feasibility of using APE1 as a potential therapeutic target, providing a novel direction for the clinical treatment of liver cancer.
Collapse
Affiliation(s)
- Lei Yang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Zhipeng Sun
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
2
|
Du Y, Zhou Y, Yan X, Pan F, He L, Guo Z, Hu Z. APE1 inhibition enhances ferroptotic cell death and contributes to hepatocellular carcinoma therapy. Cell Death Differ 2024; 31:431-446. [PMID: 38418695 PMCID: PMC11043431 DOI: 10.1038/s41418-024-01270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Ferroptosis, a regulated form of cell death triggered by iron-dependent lipid peroxidation, has emerged as a promising therapeutic strategy for cancer treatment, particularly in hepatocellular carcinoma (HCC). However, the mechanisms underlying the regulation of ferroptosis in HCC remain to be unclear. In this study, we have identified a novel regulatory pathway of ferroptosis involving the inhibition of Apurinic/apyrimidinic endonuclease 1 (APE1), a key enzyme with dual functions in DNA repair and redox regulation. Our findings demonstrate that inhibition of APE1 leads to the accumulation of lipid peroxidation and enhances ferroptosis in HCC. At the molecular level, the inhibition of APE1 enhances ferroptosis which relies on the redox activity of APE1 through the regulation of the NRF2/SLC7A11/GPX4 axis. We have identified that both genetic and chemical inhibition of APE1 increases AKT oxidation, resulting in an impairment of AKT phosphorylation and activation, which leads to the dephosphorylation and activation of GSK3β, facilitating the subsequent ubiquitin-proteasome-dependent degradation of NRF2. Consequently, the downregulation of NRF2 suppresses SLC7A11 and GPX4 expression, triggering ferroptosis in HCC cells and providing a potential therapeutic approach for ferroptosis-based therapy in HCC. Overall, our study uncovers a novel role and mechanism of APE1 in the regulation of ferroptosis and highlights the potential of targeting APE1 as a promising therapeutic strategy for HCC and other cancers.
Collapse
Affiliation(s)
- Yu Du
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Yu Zhou
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Xinyu Yan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, 1 WenYuan Road, Nanjing, 210023, China.
| |
Collapse
|
3
|
Malfatti MC, Bellina A, Antoniali G, Tell G. Revisiting Two Decades of Research Focused on Targeting APE1 for Cancer Therapy: The Pros and Cons. Cells 2023; 12:1895. [PMID: 37508559 PMCID: PMC10378182 DOI: 10.3390/cells12141895] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
APE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker. Strategies directly targeting APE1 functions led to the identification of inhibitors showing potential therapeutic value, some of which are currently in clinical trials. Interestingly, evidence indicates novel roles of APE1 in RNA metabolism that are still not fully understood, including its activity in processing damaged RNA in chemoresistant phenotypes, regulating onco-miRNA maturation, and oxidized RNA decay. Recent data point out a control role for APE1 in the expression and sorting of onco-miRNAs within secreted extracellular vesicles. This review is focused on giving a portrait of the pros and cons of the last two decades of research aiming at the identification of inhibitors of the redox or DNA-repair functions of APE1 for the definition of novel targeted therapies for cancer. We will discuss the new perspectives in cancer therapy emerging from the unexpected finding of the APE1 role in miRNA processing for personalized therapy.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Alessia Bellina
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
4
|
Zhang Q, Yang L, Gao H, Kuang X, Xiao H, Yang C, Cheng Y, Zhang L, Guo X, Zhong Y, Li M. APE1 promotes non-homologous end joining by initiating DNA double-strand break formation and decreasing ubiquitination of artemis following oxidative genotoxic stress. J Transl Med 2023; 21:183. [PMID: 36894994 PMCID: PMC9997026 DOI: 10.1186/s12967-023-04022-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Apurinic/apyrimidinic endonuclease 1 (APE1) imparts radio-resistance by repairing isolated lesions via the base excision repair (BER) pathway, but whether and how it is involved in the formation and/or repair of DSBs remains mostly unknown. METHODS Immunoblotting, fluorescent immunostaining, and the Comet assay were used to investigate the effect of APE1 on temporal DSB formation. Chromatin extraction, 53BP1 foci and co-immunoprecipitation, and rescue assays were used to evaluate non-homologous end joining (NHEJ) repair and APE1 effects. Colony formation, micronuclei measurements, flow cytometry, and xenograft models were used to examine the effect of APE1 expression on survival and synergistic lethality. Immunohistochemistry was used to detect APE1 and Artemis expression in cervical tumor tissues. RESULTS APE1 is upregulated in cervical tumor tissue compared to paired peri-tumor, and elevated APE1 expression is associated with radio-resistance. APE1 mediates resistance to oxidative genotoxic stress by activating NHEJ repair. APE1, via its endonuclease activity, initiates clustered lesion conversion to DSBs (within 1 h), promoting the activation of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key kinase in the DNA damage response (DDR) and NHEJ pathway. APE1 then participates in NHEJ repair directly by interacting with DNA- PKcs. Additionally, APE1 promotes NHEJ activity by decreasing the ubiquitination and degradation of Artemis, a nuclease with a critical role in the NHEJ pathway. Overall, APE1 deficiency leads to DSB accumulation at a late phase following oxidative stress (after 24 h), which also triggers activation of Ataxia-telangiectasia mutated (ATM), another key kinase of the DDR. Inhibition of ATM activity significantly promotes synergistic lethality with oxidative stress in APE1-deficient cells and tumors. CONCLUSION APE1 promotes NHEJ repair by temporally regulating DBS formation and repair following oxidative stress. This knowledge provides new insights into the design of combinatorial therapies and indicates the timing of administration and maintenance of DDR inhibitors for overcoming radio-resistance.
Collapse
Affiliation(s)
- Qin Zhang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Lujie Yang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Han Gao
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xunjie Kuang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - He Xiao
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Chen Yang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Lei Zhang
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Xin Guo
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Yong Zhong
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China
| | - Mengxia Li
- Cancer Center of Daping Hospital, Army Medical University, Chongqing, 400000, China.
| |
Collapse
|
5
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
6
|
Song JH, Lee MS, Cha EY, Lee KH, Kim JY, Kim JS. Apurinic/apyrimidinic endonuclease 1 is associated with poor prognosis after curative resection followed by adjuvant chemotherapy in patients with stage III colon cancer. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2022; 18:1-10. [PMID: 36945334 PMCID: PMC9942767 DOI: 10.14216/kjco.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022]
Abstract
Purpose Apurinic/apyrimidinic endonuclease 1 (APE1) is a key enzyme involved in the base excision repair pathway. It also has redox activity and maintains various transcription factors in an active reduced state. APE1 may be associated with chemoresistance. In the present study, we first investigated the expression level of APE1 protein and its correlation with oncologic outcomes of oxaliplatin-based chemotherapy in patients with stage III colon cancer. Further, we investigated the effects of human APE1 siRNA on the sensitivity of oxaliplatin in SNU-C2A colon cancer cells. Methods Tissue specimens from tumor and normal colon of 33 patients with stage III colon cancer were obtained from 2006 to 2009. The patients received at least eight cycles of oxaliplatin-based chemotherapy. APE1 expression was analyzed by immunohistochemistry and Western blotting using a cultured SNU-C2A cell line. Cell viability and apoptosis were determined by Cell Counting Kit-8 and caspase-3 cleavage using Western blotting. Results All the colon cancer tissues showed APE1 staining in the nucleus, whereas all the normal colon tissues were negative for APE1 staining in the cytoplasm. The group with a higher expression of APE1 demonstrated poorer prognosis than the group with low expression (P=0.026 for overall survival and P=0.021 for disease-free survival). Treatment with oxaliplatin resulted in a dose-dependent increase in APE1 expression in SNU-C2A cells. APE1 siRNA significantly enhanced oxaliplatin-induced growth inhibition, and also increased oxaliplatin-induced apoptosis in SNU-C2A cells. Conclusion APE1 could be considered a prognostic factor in colon cancer patients treated with oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Ji Hyeong Song
- Department of Surgery, Chungnam National University Sejong Hospital, Sejong, Korea
| | - Myung Sun Lee
- Surgical Oncology Research Laboratory, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Cha
- Surgical Oncology Research Laboratory, Chungnam National University Hospital, Daejeon, Korea
| | - Kyung Ha Lee
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Ji Yeon Kim
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Jin Soo Kim
- Department of Surgery, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Surgery, College of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
7
|
Fleming AM, Burrows CJ. Oxidative stress-mediated epigenetic regulation by G-quadruplexes. NAR Cancer 2021; 3:zcab038. [PMID: 34541539 PMCID: PMC8445369 DOI: 10.1093/narcan/zcab038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 09/06/2021] [Indexed: 02/06/2023] Open
Abstract
Many cancer-associated genes are regulated by guanine (G)-rich sequences that are capable of refolding from the canonical duplex structure to an intrastrand G-quadruplex. These same sequences are sensitive to oxidative damage that is repaired by the base excision repair glycosylases OGG1 and NEIL1–3. We describe studies indicating that oxidation of a guanosine base in a gene promoter G-quadruplex can lead to up- and downregulation of gene expression that is location dependent and involves the base excision repair pathway in which the first intermediate, an apurinic (AP) site, plays a key role mediated by AP endonuclease 1 (APE1/REF1). The nuclease activity of APE1 is paused at a G-quadruplex, while the REF1 capacity of this protein engages activating transcription factors such as HIF-1α, AP-1 and p53. The mechanism has been probed by in vitro biophysical studies, whole-genome approaches and reporter plasmids in cellulo. Replacement of promoter elements by a G-quadruplex sequence usually led to upregulation, but depending on the strand and precise location, examples of downregulation were also found. The impact of oxidative stress-mediated lesions in the G-rich sequence enhanced the effect, whether it was positive or negative.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| |
Collapse
|
8
|
Malfatti MC, Antoniali G, Codrich M, Burra S, Mangiapane G, Dalla E, Tell G. New perspectives in cancer biology from a study of canonical and non-canonical functions of base excision repair proteins with a focus on early steps. Mutagenesis 2021; 35:129-149. [PMID: 31858150 DOI: 10.1093/mutage/gez051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
Alterations of DNA repair enzymes and consequential triggering of aberrant DNA damage response (DDR) pathways are thought to play a pivotal role in genomic instabilities associated with cancer development, and are further thought to be important predictive biomarkers for therapy using the synthetic lethality paradigm. However, novel unpredicted perspectives are emerging from the identification of several non-canonical roles of DNA repair enzymes, particularly in gene expression regulation, by different molecular mechanisms, such as (i) non-coding RNA regulation of tumour suppressors, (ii) epigenetic and transcriptional regulation of genes involved in genotoxic responses and (iii) paracrine effects of secreted DNA repair enzymes triggering the cell senescence phenotype. The base excision repair (BER) pathway, canonically involved in the repair of non-distorting DNA lesions generated by oxidative stress, ionising radiation, alkylation damage and spontaneous or enzymatic deamination of nucleotide bases, represents a paradigm for the multifaceted roles of complex DDR in human cells. This review will focus on what is known about the canonical and non-canonical functions of BER enzymes related to cancer development, highlighting novel opportunities to understand the biology of cancer and representing future perspectives for designing new anticancer strategies. We will specifically focus on APE1 as an example of a pleiotropic and multifunctional BER protein.
Collapse
Affiliation(s)
- Matilde Clarissa Malfatti
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giulia Antoniali
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Marta Codrich
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Silvia Burra
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA repair, Department of Medicine (DAME), University of Udine, Udine, Italy
| |
Collapse
|
9
|
Lu X, Zhao H, Yuan H, Chu Y, Zhu X. High nuclear expression of APE1 correlates with unfavorable prognosis and promotes tumor growth in hepatocellular carcinoma. J Mol Histol 2021; 52:219-231. [PMID: 33392892 DOI: 10.1007/s10735-020-09939-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
APE1 is a multifunctional protein that plays important roles in cancer development. However, the association between APE1 expression and the clinicopathological parameters of HCC patients has not been fully characterized. In this study, bioinformatics analysis of APE1 was performed in several databases, including the TCGA, GeneCard, Human Protein Atlas and Ualcan databases. The relationship between APE1 mRNA expression and several attributes of liver cancer patients in TCGA was investigated. Then, the protein expression of APE1 was detected by IHC analysis in 95 HCC samples and the association between APE1 expression and the clinicopathological parameters of HCC patients was explored. GSEA-KEGG analysis was performed to predict the potential signaling pathways that associated with APE1 expression. Then the siRNA-mediated knockdown model of APE1 was constructed in HCC cell line to further detect the detailed function of APE1 in HCC development in vitro and in vivo. The results of the bioinformatics analysis showed that APE1 expression was primarily located in the cell nucleus. APE1 mRNA expression was substantially correlated with pathological grade and T status in TCGA database. Elevated APE1 expression was observed in HCC samples and was associated with unfavorable survival time in liver cancer patients. IHC data demonstrated that the nuclear expression of APE1 in HCC tissues was significantly higher than that in noncancerous tissues. The expression level of the APE1 protein in HCC was strongly associated with tumor diameter and overall survival. Survival analysis indicated that APE1 nuclear expression is an independent prognostic marker for the overall survival of HCC patients. GSEA-KEGG results confirmed that APE1 associated with the base excision repair signaling pathway. The data of phenotypic experiments indicated that APE1 remarkably promoted tumor growth both in HCC cells and xenografts. The findings firstly imply that nuclear expression of APE1 is a valuable prognostic marker for HCC. APE1 significantly facilitate HCC development and targeting APE1 may be a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Xiaohua Lu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hui Zhao
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Hongxin Yuan
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yushan Chu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xiaoqing Zhu
- Department of Interventional Radiology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Mijit M, Caston R, Gampala S, Fishel ML, Fehrenbacher J, Kelley MR. APE1/Ref-1 - One Target with Multiple Indications: Emerging Aspects and New Directions. JOURNAL OF CELLULAR SIGNALING 2021; 2:151-161. [PMID: 34557865 PMCID: PMC8457357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In the realm of DNA repair, base excision repair (BER) protein, APE1/Ref-1 (Apurinic/Apyrimidinic Endonuclease 1/Redox Effector - 1, also called APE1) has been studied for decades. However, over the past decade, APE1 has been established as a key player in reduction-oxidation (redox) signaling. In the review by Caston et al. (The multifunctional APE1 DNA repair-redox signaling protein as a drug target in human disease), multiple roles of APE1 in cancer and other diseases are summarized. In this Review, we aim to expand on the contributions of APE1 to various diseases and its effect on disease progression. In the scope of cancer, more recent roles for APE1 have been identified in cancer cell metabolism, as well as chemotherapy-induced peripheral neuropathy (CIPN) and inflammation. Outside of cancer, APE1 signaling may be a critical factor in inflammatory bowel disease (IBD) and is also an emergent area of investigation in retinal ocular diseases. The ability of APE1 to regulate multiple transcription factors (TFs) and therefore multiple pathways that have implications outside of cancer, makes it a particularly unique and enticing target. We discuss APE1 redox inhibitors as a means of studying and potentially combating these diseases. Lastly, we examine the role of APE1 in RNA metabolism. Overall, this article builds on our previous review to elaborate on the roles and conceivable regulation of important pathways by APE1 in multiple diseases.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Rachel Caston
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Silpa Gampala
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Melissa L. Fishel
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Jill Fehrenbacher
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 1044 W. Walnut, Indianapolis, IN 46202, USA,Correspondence should be addressed to Mark R. Kelley;
| |
Collapse
|
11
|
Bazzani V, Barchiesi A, Radecka D, Pravisani R, Guadagno A, Di Loreto C, Baccarani U, Vascotto C. Mitochondrial apurinic/apyrimidinic endonuclease 1 enhances mtDNA repair contributing to cell proliferation and mitochondrial integrity in early stages of hepatocellular carcinoma. BMC Cancer 2020; 20:969. [PMID: 33028238 PMCID: PMC7542375 DOI: 10.1186/s12885-020-07258-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the leading cause of primary liver cancers. Surveillance of individuals at specific risk of developing HCC, early diagnostic markers, and new therapeutic approaches are essential to obtain a reduction in disease-related mortality. Apurinic/apyrimidinic endonuclease 1 (APE1) expression levels and its cytoplasmic localization have been reported to correlate with a lower degree of differentiation and shorter survival rate. The aim of this study is to fully investigate, for the first time, the role of the mitochondrial form of APE1 in HCC. METHODS As a study model, we analyzed samples from a cohort of patients diagnosed with HCC who underwent surgical resection. Mitochondrial APE1 content, expression levels of the mitochondrial import protein Mia40, and mtDNA damage of tumor tissue and distal non-tumor liver of each patient were analyzed. In parallel, we generated a stable HeLa clone for inducible silencing of endogenous APE1 and re-expression of the recombinant shRNA resistant mitochondrially targeted APE1 form (MTS-APE1). We evaluated mtDNA damage, cell growth, and mitochondrial respiration. RESULTS APE1's cytoplasmic positivity in Grades 1 and 2 HCC patients showed a significantly higher expression of mitochondrial APE1, which accounted for lower levels of mtDNA damage observed in the tumor tissue with respect to the distal area. In the contrast, the cytoplasmic positivity in Grade 3 was not associated with APE1's mitochondrial accumulation even when accounting for the higher number of mtDNA lesions measured. Loss of APE1 expression negatively affected mitochondrial respiration, cell viability, and proliferation as well as levels of mtDNA damage. Remarkably, the phenotype was efficiently rescued in MTS-APE1 clone, where APE1 is present only within the mitochondrial matrix. CONCLUSIONS Our study confirms the prominent role of the mitochondrial form of APE1 in the early stages of HCC development and the relevance of the non-nuclear fraction of APE1 in the disease progression. We have also confirmed overexpression of Mia40 and the role of the MIA pathway in the APE1 import process. Based on our data, inhibition of the APE1 transport by blocking the MIA pathway could represent a new therapeutic approach for reducing mitochondrial metabolism by preventing the efficient repair of mtDNA.
Collapse
Affiliation(s)
- Veronica Bazzani
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Arianna Barchiesi
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Dorota Radecka
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy
| | - Riccardo Pravisani
- Department of Medicine, General Surgery and Transplantation, Academic Hospital (ASUIUD), University of Udine, Udine, Italy
| | - Antonio Guadagno
- Department of Medicine, Institute of Pathology, University of Udine, Udine, Italy.,Pathology Unit, IRCCS Ospedale Policlinico "San Martino", Genoa, Italy
| | - Carla Di Loreto
- Department of Medicine, Institute of Pathology, University of Udine, Udine, Italy
| | - Umberto Baccarani
- Department of Medicine, General Surgery and Transplantation, Academic Hospital (ASUIUD), University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medical Area, University of Udine, P.le Massimiliano Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
12
|
Cabral LKD, Tiribelli C, Sukowati CHC. Sorafenib Resistance in Hepatocellular Carcinoma: The Relevance of Genetic Heterogeneity. Cancers (Basel) 2020; 12:E1576. [PMID: 32549224 PMCID: PMC7352671 DOI: 10.3390/cancers12061576] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Despite advances in biomedicine, the incidence and the mortality of hepatocellular carcinoma (HCC) remain high. The majority of HCC cases are diagnosed in later stages leading to the less than optimal outcome of the treatments. Molecular targeted therapy with sorafenib, a dual-target inhibitor targeting the serine-threonine kinase Raf and the tyrosine kinases VEGFR/PDGFR, is at present the main treatment for advanced-stage HCC, either in a single or combinatory regimen. However, it was observed in a large number of patients that its effectiveness is hampered by drug resistance. HCC is highly heterogeneous, within the tumor and among individuals, and this influences disease progression, classification, prognosis, and naturally cellular susceptibility to drug resistance. This review aims to provide an insight on how HCC heterogeneity influences the different primary mechanisms of chemoresistance against sorafenib including reduced drug intake, enhanced drug efflux, intracellular drug metabolism, alteration of molecular targets, activation/inactivation of signaling pathways, changes in the DNA repair machinery, and negative balance between apoptosis and survival of the cancer cells. The diverse variants, mutations, and polymorphisms in molecules and their association with drug response can be a helpful tool in treatment decision making. Accordingly, the existence of heterogeneous biomarkers in the tumor must be considered to strengthen multi-target strategies in patient-tailored treatment.
Collapse
Affiliation(s)
| | | | - Caecilia H. C. Sukowati
- Fondazione Italiana Fegato (Italian Liver Foundation), AREA Science Park, Basovizza, 34149 Trieste, Italy; (L.K.D.C.); (C.T.)
| |
Collapse
|
13
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
14
|
Zhang H, Ba S, Yang Z, Wang T, Lee JY, Li T, Shao F. Graphene Quantum Dot-Based Nanocomposites for Diagnosing Cancer Biomarker APE1 in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13634-13643. [PMID: 32129072 DOI: 10.1021/acsami.9b21385] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots. Upon utilization of these nanocomposites as diagnostic probes, massive accumulation of fluorescence signal in living cells can be triggered by merely a small amount of cellular APE1 through repeated cycles of enzymatic catalysis. Most critically, our delicate structural designs assure that these graphene quantum dot-based nanocomposites are capable of sensing cancer biomarker APE1 in identical type of cells under different cell conditions and can be applied to multiple cancerous cells in a highly sensitive and specific manners. This work not only brings about new methods for cytology-based cancer screening but also lays down a general principle for fabricating diagnostic probes that target other endogenous biomarkers in living cells.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhaoqi Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Tianxiang Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, Zhejiang University, Haining, Zhejiang 314400, China
| |
Collapse
|
15
|
Liu Y, Zhang Z, Zhang L, Zhong Z. Cytoplasmic APE1 promotes resistance response in osteosarcoma patients with cisplatin treatment. Cell Biochem Funct 2020; 38:195-203. [PMID: 31930546 DOI: 10.1002/cbf.3461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/02/2019] [Accepted: 10/28/2019] [Indexed: 11/09/2022]
Abstract
Chemotherapy resistance has become a hold back and major clinical challenge in osteosarcoma cancer. The alteration and subcellular distribution of apurinic/apyrimidinic endonuclease 1 (APE1) has been reported to be involved in chemotherapy resistance in many cancers. Here, we report that the cytoplasmic distribution of APE1 plays a key role in the sensitivity of combination platinum chemotherapy in osteosarcoma. Interestingly, the prevalence of cisplatin-induced DNA damage and apoptosis in low cytoplasmic APE1 osteosarcoma cell lines was higher than in high expression of cytoplasmic APE1 cell lines. Overexpression of cytoplasmic APE1 protected the osteosarcoma cells from CDDP-induced apoptosis. In addition, clinical data also show that the level of cytoplasmic APE1 was negatively associated with sensitivity to combination chemotherapy of cisplatin in osteosarcoma patients. Our findings suggest that cytoplasmic APE1 plays a significant role in chemotherapy resistance. This role is a supplement to the extranuclear function of APE1, and cytoplasmic APE1 expression level could be a promising predictor of platinum treatment prognosis for osteosarcoma patients.
Collapse
Affiliation(s)
- Yufeng Liu
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhimin Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Liang Zhang
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| | - Zhaoyang Zhong
- Cancer Center, The Third Affiliated Hospital and Research Institute of Surgery of Army Medical University (Third Military Medical University), Chongqing, PR China
| |
Collapse
|
16
|
Mironova N, Vlassov V. Surveillance of Tumour Development: The Relationship Between Tumour-Associated RNAs and Ribonucleases. Front Pharmacol 2019; 10:1019. [PMID: 31572192 PMCID: PMC6753386 DOI: 10.3389/fphar.2019.01019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Tumour progression is accompanied by rapid cell proliferation, loss of differentiation, the reprogramming of energy metabolism, loss of adhesion, escape of immune surveillance, induction of angiogenesis, and metastasis. Both coding and regulatory RNAs expressed by tumour cells and circulating in the blood are involved in all stages of tumour progression. Among the important tumour-associated RNAs are intracellular coding RNAs that determine the routes of metabolic pathways, cell cycle control, angiogenesis, adhesion, apoptosis and pathways responsible for transformation, and intracellular and extracellular non-coding RNAs involved in regulation of the expression of their proto-oncogenic and oncosuppressing mRNAs. Considering the diversity/variability of biological functions of RNAs, it becomes evident that extracellular RNAs represent important regulators of cell-to-cell communication and intracellular cascades that maintain cell proliferation and differentiation. In connection with the elucidation of such an important role for RNA, a surge in interest in RNA-degrading enzymes has increased. Natural ribonucleases (RNases) participate in various cellular processes including miRNA biogenesis, RNA decay and degradation that has determined their principal role in the sustention of RNA homeostasis in cells. Findings were obtained on the contribution of some endogenous ribonucleases in the maintenance of normal cell RNA homeostasis, which thus prevents cell transformation. These findings directed attention to exogenous ribonucleases as tools to compensate for the malfunction of endogenous ones. Recently a number of proteins with ribonuclease activity were discovered whose intracellular function remains unknown. Thus, the comprehensive investigation of physiological roles of RNases is still required. In this review we focused on the control mechanisms of cell transformation by endogenous ribonucleases, and the possibility of replacing malfunctioning enzymes with exogenous ones.
Collapse
Affiliation(s)
- Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Valentin Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
APEX1 Expression as a Potential Diagnostic Biomarker of Clear Cell Renal Cell Carcinoma and Hepatobiliary Carcinomas. J Clin Med 2019; 8:jcm8081151. [PMID: 31375000 PMCID: PMC6723795 DOI: 10.3390/jcm8081151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APEX1) has been known to play key roles in DNA repair, the regulation of diverse transcriptional activity, and cellular responses to redox activity. This study aimed to examine serum APEX1 (s-APEX1) expression as a possible screening biomarker for clear cell renal cell carcinoma (ccRCC), hepatocellular carcinoma (HCC), and proximal and distal cholangiocarcinoma (CC). A total of 216 frozen serum samples were collected from 39 healthy control cases, 32 patients with ≥58 copies/mL of hepatitis B viral DNA (HBV DNA (+)), 40 ccRCC cases, 59 HCC cases, and 46 CC cases. The serum samples were examined for s-APEX1 concentration by enzyme-linked immunosorbent assay. The association of APEX1 expression with clinicopathological characteristics was also studied by immunohistochemical staining in 106 ccRCC, 131 HCC, and 32 intrahepatic CC cases. The median s-APEX1 concentrations of the HCC, CC, ccRCC, healthy control, and HBV DNA (+) groups were 0.294, 0.710, 0.474, 0.038, and 2.384 ng/mL, respectively (p < 0.001). Univariate and multivariate analyses revealed that increased cytoplasmic APEX1 expression led to a shorter disease-free survival period in HCC and CC cases. We suggest that the s-APEX1 level could be a potential diagnostic biomarker of ccRCC, HCC, and CC. Additionally, cytoplasmic APEX1 expression in cancer cells could be used to predict relapses in patients with HCC or CC.
Collapse
|
18
|
Zhang Y, Deng Y, Wang C, Li L, Xu L, Yu Y, Su X. Probing and regulating the activity of cellular enzymes by using DNA tetrahedron nanostructures. Chem Sci 2019; 10:5959-5966. [PMID: 31360402 PMCID: PMC6566069 DOI: 10.1039/c9sc01912j] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/03/2019] [Indexed: 01/14/2023] Open
Abstract
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedrons.
Given the essential role of apurinic/apyrimidinic endonuclease (APE1) in gene repair and cancer progression, we report a novel approach for probing and regulating cellular APE1 activity by using DNA tetrahedrons. The tetrahedron with an AP site-containing antenna exhibits high sensitivity and specificity to APE1. It is suitable for APE1 in vitro detection (detection limit 5 pM) and cellular fluorescence imaging without any auxiliary transfection reagents, which discriminates the APE1 expression level of cancer cells and normal cells. In contrast, the tetrahedron with an AP site on its scaffold exhibits high binding affinity to APE1 but limits enzymatic catalysis making this nanostructure an APE1 inhibitor with an IC50 of 14.8 nM. It suppresses the APE1 activity in living cells and sensitizes cancer cells to anticancer drugs. We also demonstrate that the APE1 probe and inhibitor can be switched allosterically via stand displacement, which holds potential for reversible inhibition of APE1. Our approach provides a new way for fabricating enzyme probes and regulators and new insights into enzyme–substrate interactions, and it can be expanded to regulate other nucleic acid related enzymes.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Yingnan Deng
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Congshan Wang
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Lidan Li
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Lida Xu
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| | - Yingjie Yu
- Department of Biomedical Engineering , Tufts University , Medford , MA 02155 , USA .
| | - Xin Su
- College of Life Science and Technology , Beijing University of Chemical Technology , Beijing 100029 , China .
| |
Collapse
|
19
|
Serum AP-endonuclease 1 (sAPE1) as novel biomarker for hepatocellular carcinoma. Oncotarget 2019; 10:383-394. [PMID: 30719231 PMCID: PMC6349448 DOI: 10.18632/oncotarget.26555] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 12/27/2018] [Indexed: 12/24/2022] Open
Abstract
Late diagnosis for Hepatocellular Carcinoma (HCC) remains one of the leading causes for the high mortality rate. The apurinic/apyrimidinic endonuclease 1 (APE1), an essential member of the base excision DNA repair (BER) pathway, contributes to cell response to oxidative stress and has other non-repair activities. In this study, we evaluate the role of serum APE1 (sAPE1) as a new diagnostic biomarker and we investigate the biological role for extracellular APE1 in HCC. sAPE1 level was quantified in 99 HCC patients, 50 non-HCC cirrhotic and 100 healthy controls. The expression level was significantly high in HCC (75.8 [67.3–87.9] pg/mL) compared to cirrhosis (29.8 [18.3–36.5] pg/mL] and controls (10.8 [7.5–13.2] pg/mL) (p < 0.001). The sAPE1 level corresponded with its protein expression in HCC tissue. sAPE1 had high diagnostic accuracy to differentiate HCC from cirrhotic (AUC = 0.87, sensitivity 88%, specificity 71%, cut-off of 36.3 pg/mL) and healthy subjects (AUC 0.98, sensibility 98% and specificity 83%, cut-off of 19.0 pg/mL). Recombinant APE1, exogenously added to JHH6 cells, significantly promotes IL-6 and IL-8 expression, suggesting a role of sAPE1 as a paracrine pro-inflammatory molecule, which may modulate the inflammatory status in cancer microenvironment. We described herein, for the first time to our knowledge, that sAPE1 might be considered as a promising diagnostic biomarker for HCC.
Collapse
|
20
|
Zavadil JA, Herzig MCS, Hildreth K, Foroushani A, Boswell W, Walter R, Reddick R, White H, Zare H, Walter CA. C3HeB/FeJ Mice mimic many aspects of gene expression and pathobiological features of human hepatocellular carcinoma. Mol Carcinog 2018; 58:309-320. [PMID: 30365185 DOI: 10.1002/mc.22929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a deadly cancer, underscoring the need for relevant preclinical models. Male C3HeB/FeJ mice model spontaneous HCC with some hepatocarcinogenesis susceptibility loci corresponding to syntenic regions of human chromosomes altered in HCC. We tested other properties of C3HeB/FeJ tumors for similarity to human HCC. C3HeB/FeJ tumors were grossly visible at 4 months of age, with prevalence and size increasing until about 11 months of age. Histologic features shared with human HCC include hepatosteatosis, tumor progression from dysplasia to poorly differentiated, vascular invasion, and trabecular, oncocytic, vacuolar, and clear cell variants. More tumor cells displayed cytoplasmic APE1 staining versus normal liver. Ultrasound effectively detected and monitored tumors, with 85.7% sensitivity. Over 5000 genes were differentially expressed based on the GSE62232 and GSE63898 human HCC datasets. Of these, 158 and 198 genes, respectively, were also differentially expressed in C3HeB/FeJ. Common cancer pathways, cell cycle, p53 signaling and other molecular aspects, were shared between human and mouse differentially expressed genes. We established eigengenes that distinguish HCC from normal liver in the C3HeB/FeJ model and a subset of human HCC. These features extend the relevance and improve the utility of the C3HeB/FeJ line for HCC studies.
Collapse
Affiliation(s)
- Jessica A Zavadil
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Maryanne C S Herzig
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Kim Hildreth
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Amir Foroushani
- Department of Computer Science, Texas State University, San Marcos, Texas
| | - William Boswell
- Chemistry & Biochemistry Department, Texas State University, San Marcos, Texas
| | - Ronald Walter
- Chemistry & Biochemistry Department, Texas State University, San Marcos, Texas
| | - Robert Reddick
- Pathology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Hugh White
- Radiology Department, University of Texas Health Science Center, San Antonio, Texas.,Radiology Department, Audie L. Murphy Memorial Veterans Affairs Hospital, San Antonio, Texas
| | - Habil Zare
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
21
|
Kumar M, Shukla VK, Misra PK, Raman MJ. Dysregulated Expression and Subcellular Localization of Base Excision Repair (BER) Pathway Enzymes in Gallbladder Cancer. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2018; 7:119-132. [PMID: 30276167 PMCID: PMC6148499 DOI: 10.22088/ijmcm.bums.7.2.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023]
Abstract
Base excision repair (BER) pathway is one of the repair systems that has an impact on radiotherapy and chemotherapy for cancer patients. The molecular pathogenesis of gallbladder cancer is not known extensively. In the present study we investigated whether the expression of AP endonuclease 1 (APE1) and DNA polymerase β (DNA pol β), key enzymes of BER pathway has any clinical significance with gallbladder carcinogenesis. 41 gallbladder cancer, 27 chronic cholecystitis, and 3 normal gallbladder specimens were analyzed for the expression of APE1 and DNA polymerase β by western blotting, and subcellular localization studied by immunohistochemistry. The enzymatic activity of APE1 was also studied. The correlations with expression of the above proteins with clinical-pathological characteristics of gallbladder cancer patients were analyzed. The integrated density value ratio (relative expression) of total APE1 (37 kDa + 35 kDa variant) analyzed in the three groups of tissues, was 0.76±0.03 in normal gallbladder, 0.91±0.08 in chronic cholecystitis, and 1.12±0.05 in gallbladder cancer. APE1 was found to be up-regulated in 80% of gallbladder carcinoma samples (P = 0.01). A positive trend of APE1 expression with tumor stage and lymph node positivity was observed. The enzymatic activity of APE1 was found higher in gallbladder cancer samples in comparison with chronic cholecystitis. The integrated density value ratio of DNA polymerase β for normal gallbladder, chronic cholecystitis and gallbladder cancer tissue samples were 0.46±0.03, 0.7±0.06 and 1.33±0.1, respectively. DNA polymerase β was found to be upregulated in almost all gallbladder carcinoma samples (P =0.0001), and its expression was negatively correlated with age (P=0.02). DNA polymerase β expression showed a positive trend with tumor stage and nuclear differentiation of gallbladder cancer. It may be concluded that alteration of these BER pathway proteins may be the causal factors for carcinogenesis of gallbladder, and has targeted therapeutic potential.
Collapse
Affiliation(s)
- Manoj Kumar
- Cytogenetics laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India.,School of Biological and Environmental Sciences, Faculty of Basic Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Pravas Kumar Misra
- Departments of Pathology and Surgery, Indian Railways Cancer Institute and Research Centre, Varanasi, Uttar Pradesh, India
| | - Mercy Jacob Raman
- Cytogenetics laboratory, Department of Zoology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
22
|
Li Q, Wei X, Zhou ZW, Wang SN, Jin H, Chen KJ, Luo J, Westover KD, Wang JM, Wang D, Xu CX, Shan JL. GADD45α sensitizes cervical cancer cells to radiotherapy via increasing cytoplasmic APE1 level. Cell Death Dis 2018; 9:524. [PMID: 29743554 PMCID: PMC5943293 DOI: 10.1038/s41419-018-0452-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
Radioresistance remains a major clinical challenge in cervical cancer therapy. However, the mechanism for the development of radioresistance in cervical cancer is unclear. Herein, we determined that growth arrest and DNA-damage-inducible protein 45α (GADD45α) is decreased in radioresistant cervical cancer compared to radiosensitive cancer both in vitro and in vivo. In addition, silencing GADD45α prevents cervical cancer cells from undergoing radiation-induced DNA damage, cell cycle arrest, and apoptosis. More importantly, our data show that the overexpression of GADD45α significantly enhances the radiosensitivity of radioresistant cervical cancer cells. These data show that GADD45α decreases the cytoplasmic distribution of APE1, thereby enhancing the radiosensitivity of cervical cancer cells. Furthermore, we show that GADD45α inhibits the production of nitric oxide (NO), a nuclear APE1 export stimulator, by suppressing both endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) in cervical cancer cells. In conclusion, our findings suggest that decreased GADD45α expression significantly contributes to the development of radioresistance and that ectopic expression of GADD45α sensitizes cervical cancer cells to radiotherapy. GADD45α inhibits the NO-regulated cytoplasmic localization of APE1 through inhibiting eNOS and iNOS, thereby enhancing the radiosensitivity of cervical cancer cells.
Collapse
Affiliation(s)
- Qing Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhi-Wei Zhou
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shu-Nan Wang
- Department of Radiology, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Hua Jin
- Department of Thoracic surgery, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Kui-Jun Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Jia Luo
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Kenneth D Westover
- Department of Radiation Oncology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian-Min Wang
- State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China
| | - Cheng-Xiong Xu
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China.
| | - Jin-Lu Shan
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, 400042, China.
| |
Collapse
|
23
|
Jiang ST, Han SY, Pang LN, Jiao YN, He XR, Li PP. Bu-Fei decoction and modified Bu-Fei decoction inhibit the growth of non-small cell lung cancer, possibly via inhibition of apurinic/apyrimidinic endonuclease 1. Int J Mol Med 2018; 41:2128-2138. [PMID: 29393411 PMCID: PMC5810238 DOI: 10.3892/ijmm.2018.3444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/15/2018] [Indexed: 12/28/2022] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) is a ubiquitous multifunctional protein, which possesses DNA repair and redox activities. High levels of APE1 are associated with chemo‑ and radioresistance, and poor prognosis in various types of cancer, including non‑small cell lung cancer (NSCLC). Bu‑Fei decoction (BFD) is a traditional Chinese herbal formula, which is believed to supplement Qi, clear away heat and nourish the lungs. BFD and modified Bu‑Fei decoction (MBFD) have been used in China to treat patients with lung cancer. The present study aimed to evaluate the potential antitumor effects of BFD and MBFD on NSCLC in vitro and in vivo. In addition, the possible contribution of APE1 was examined. MTT assay was used to investigated the anti-tumor activity of BFD and MBFD on H1975 and H292 NSCLC cell lines. The DNA damage of cells in the control and the experimental groups was detected using comet assay. The in vivo anti-tumor effects of BFD and MBFD were evaluated in a NSCLC tumor nude mouse xenograft model. Polymerase chain reaction (PCR), reverse transcription‑quantitative PCR (RT‑qPCR) analysis and western blot analysis were applied to analyze the mRNA and protein expression levels of APE1 in H1975 and H292 cells, so as to the xenograft tumor tissues. The concentration of APE1 in mice plasma was determined using enzyme linked immunosorbent assay (ELISA). In vitro, BFD and MBFD inhibited the growth of cultured H1975 and H292 NSCLC cells. The results of a comet assay revealed that BFD and MBFD increased DNA damage. Furthermore, the expression levels of APE1 were decreased in response to BFD and MBFD at the mRNA and protein levels. In mice carrying NSCLC xenografts, BFD and MBFD inhibited tumor growth and decreased APE1 expression. In addition, in normal human lung bronchial epithelial BEAS‑2B cells, the half maximal inhibitory concentrations of BFD and MBFD were much higher compared with in NSCLC cells, and they had no effect on DNA damage. These results suggested that BFD and MBFD may inhibit the growth of NSCLC, possibly by inhibiting APE1 expression.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Cycle/drug effects
- Cell Line
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Repair/drug effects
- DNA-(Apurinic or Apyrimidinic Site) Lyase/antagonists & inhibitors
- DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics
- Down-Regulation/drug effects
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Mice, Inbred BALB C
- Mice, Nude
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Shan-Tong Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Shu-Yan Han
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Li-Na Pang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Yan-Na Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Xi-Ran He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| | - Ping-Ping Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Integration of Chinese and Western Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, P.R. China
| |
Collapse
|
24
|
Hernández-Franco P, Silva M, Franco R, Valverde M, Rojas E. Lead facilitates foci formation in a Balb/c-3T3 two-step cell transformation model: role of Ape1 function. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12150-12158. [PMID: 29455351 DOI: 10.1007/s11356-018-1396-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/25/2018] [Indexed: 06/08/2023]
Abstract
Several possible mechanisms have been examined to gain an understanding on the carcinogenic properties of lead, which include among others, mitogenesis, alteration of gene expression, oxidative damage, and inhibition of DNA repair. The aim of the present study was to explore if low concentrations of lead, relevant for human exposure, interfere with Ape1 function, a base excision repair enzyme, and its role in cell transformation in Balb/c-3T3. Lead acetate 5 and 30 μM induced APE1 mRNA and upregulation of protein expression. This increase in mRNA expression is consistent throughout the chronic exposure. Additionally, we also found an impaired function of Ape1 through molecular beacon-based assay. To evaluate the impact of lead on foci formation, a Balb/c-3T3 two-step transformation model was used. Balb/c-3T3 cells were pretreated 1 week with low concentrations of lead before induction of transformation with n-methyl-n-nitrosoguanidine (MNNG) (0.5 μg/mL) and 12-O-tetradecanoylphorbol-13-acetate (TPA) (0.1 μg/mL) (a classical two-step protocol). Morphological cell transformation increased in response to lead pretreatment that was paralleled with an increase in Ape1 mRNA and protein overexpression and an impairment of Ape1 activity and correlating with foci number. In addition, we found that lead pretreatment and MNNG (transformation initiator) increased DNA damage, determined by comet assay. Our data suggest that low lead concentrations (5, 30 μM) could play a facilitating role in cellular transformation, probably through the impaired function of housekeeping genes such as Ape1, leading to DNA damage accumulation and chromosomal instability, one of the most important hallmarks of cancer induced by chronic exposures.
Collapse
Affiliation(s)
- Pablo Hernández-Franco
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Martín Silva
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Rodrigo Franco
- Redox Biology Center and School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Mahara Valverde
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico
| | - Emilio Rojas
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico, Mexico.
| |
Collapse
|
25
|
Ryu JW, Choe SS, Ryu SH, Park EY, Lee BW, Kim TK, Ha CH, Lee SW. Paradoxical induction of growth arrest and apoptosis by EGF via the up-regulation of PTEN by activating Redox factor-1/Egr-1 in human lung cancer cells. Oncotarget 2018; 8:4181-4195. [PMID: 27935858 PMCID: PMC5354822 DOI: 10.18632/oncotarget.13809] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Epidermal growth factor (EGF) signaling promotes cell proliferation and survival in several types of cancer. Here, however, we showed that EGF inhibits proliferation and promotes programmed cell death in non-small cell lung cancer (NSCLC) cells. In A549 cells, EGF increased redox factor-1 (Ref-1) expression and the association of Ref-1 with zinc finger-containing transcriptional regulator (EGR1) via activation of p22phox, RAC1, and an NADPH oxidase subunit. EGF increased p22phox and RAC1 expression through activation of purinergic receptors (P2Y). Elevated Ref-1/EGR1 levels increased phosphatase and tensin homolog (PTEN) levels, leading to inhibition of the Akt pathway. EGF-induced PTEN upregulation increased apoptosis and autophagy-induced damage in A549 cells, whereas Ref-1 knockdown blocked EGF-induced PTEN upregulation in an NADPH oxidase p22phox subunit-independent manner. In addition, p22phox knockdown restored EGF-induced effects, implying that changes in P2Y activity caused by EGF, which activates NADPH oxidase via RAC1, influenced Ref-1-mediated redox regulation. Finally, EGF similarly attenuated cell proliferation and promoted autophagy and apoptosis in vivo in a xenograft model using A549 cells. These findings reveal that EGF-induced redox signaling is linked to Ref-1-induced death in NSCLC cells.
Collapse
Affiliation(s)
- Je-Won Ryu
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sung Sik Choe
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, National Creative Research Institutive Center for Adipose Tissue Remodeling, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hee Ryu
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eun-Young Park
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Byoung Wook Lee
- Asan Institute for Life Science, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Tae Keun Kim
- Department of Life Science, College of Natural Science, Hallym University, Kyeongki Province, Republic of Korea
| | - Chang Hoon Ha
- Asan Institute for Life Science, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sang-Wook Lee
- Department of Radiation Oncology, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
26
|
McIlwain DW, Fishel ML, Boos A, Kelley MR, Jerde TJ. APE1/Ref-1 redox-specific inhibition decreases survivin protein levels and induces cell cycle arrest in prostate cancer cells. Oncotarget 2018; 9:10962-10977. [PMID: 29541389 PMCID: PMC5834255 DOI: 10.18632/oncotarget.23493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/15/2017] [Indexed: 01/23/2023] Open
Abstract
A key feature of prostate cancer progression is the induction and activation of survival proteins, including the Inhibitor of Apoptosis (IAP) family member survivin. Apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional protein that is essential in activating oncogenic transcription factors. Because APE1/Ref-1 is expressed and elevated in prostate cancer, we sought to characterize APE1/Ref-1 expression and activity in human prostate cancer cell lines and determine the effect of selective reduction-oxidation (redox) function inhibition on prostate cancer cells in vitro and in vivo. Due to the role of oncogenic transcriptional activators NFĸB and STAT3 in survivin protein expression, and APE1/Ref-1 redox activity regulating their transcriptional activity, we assessed selective inhibition of APE1/Ref-1's redox function as a novel method to halt prostate cancer cell growth and survival. Our study demonstrates that survivin and APE1/Ref-1 are significantly higher in human prostate cancer specimens compared to noncancerous controls and that APE1/Ref-1 redox-specific inhibition with small molecule inhibitor, APX3330 and a second-generation inhibitor, APX2009, decreases prostate cancer cell proliferation and induces cell cycle arrest. Inhibition of APE1/Ref-1 redox function significantly reduced NFĸB transcriptional activity, survivin mRNA and survivin protein levels. These data indicate that APE1/Ref-1 is a key regulator of survivin and a potentially viable target in prostate cancer.
Collapse
Affiliation(s)
- David W. McIlwain
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Melissa L. Fishel
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alexander Boos
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark R. Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
27
|
Chen T, Liu C, Lu H, Yin M, Shao C, Hu X, Wu J, Wang Y. The expression of APE1 in triple-negative breast cancer and its effect on drug sensitivity of olaparib. Tumour Biol 2017; 39:1010428317713390. [PMID: 29064327 DOI: 10.1177/1010428317713390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer is a kind of breast cancer with poor prognosis and special biological behavior, which lacked endocrine therapy and targeted therapy. We investigate the effect of human APE1 (apurinic/apyrimidyl endonuclease 1), a rate-limiting enzyme of base excision repair, on the prognosis in triple-negative breast cancer and drug sensitivity of olaparib. The expression of APE1 was detected by immunohistochemistry in the triple-negative breast cancer tissues and its effect on survival of triple-negative breast cancer patients was followed. To find whether APE1 effect the drug sensitivity in triple-negative breast cancer cells, the APE1-knockout HCC1937 cell line (triple-negative breast cancer cell line) was established by CRISPR/Cas9 system. Then, we use the wild-type and knockout one to test the drug sensitivity of olaparib. The expression of APE1 in triple-negative breast cancer tissues was significantly higher than that in the adjacent tissues (85.6% vs 14.4%) and its expression was related to tumor size (p < 0.05). We also found that it is an independent prognostic factor in patients with triple-negative breast cancer (overall survival, p = 0.01). In vitro assay, the half maximal inhibitory concentration of olaparib in HCC1937-APE1-KO was significantly increased (17.22 vs 91.85 μM) compared to the wild type. The growth curve showed that olaparib had a stronger lethality on HCC1937 compared to HCC1937- APE1-KO (p < 0.05 on day 3). HCC1937 resulted in more mitotic G2/M arrest and increased apoptosis rate after treatment with 40 μM of olaparib, while HCC1937-APE1-KO did not change significantly. When HCC1937 was treated with different concentrations of olaparib, it was found that APE1 expression decreased more significantly at 15 μM of olaparib was. In HCC1937-APE1-KO, the expression of endogenous poly (ADP-ribose) polymerase 1 was also less than that of HCC1937. These results suggested that the expression of APE1 was an important basis for the maintenance of poly (ADP-ribose) polymerase 1, and the deletion of APE1 may be related to the resistance of olaparib.
Collapse
Affiliation(s)
- Tianran Chen
- 1 Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Chuan Liu
- 2 Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Heng Lu
- 1 Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Mingzhen Yin
- 1 Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Changjuan Shao
- 3 State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai, China
| | - Xiaoding Hu
- 3 State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai, China
| | - Jiaxue Wu
- 3 State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai, China
| | - Yajie Wang
- 1 Department of Oncology, Changhai Hospital, The Second Military Medical University, Shanghai, China
| |
Collapse
|
28
|
Yuan CL, He F, Ye JZ, Wu HN, Zhang JY, Liu ZH, Li YQ, Luo XL, Lin Y, Liang R. APE1 overexpression is associated with poor survival in patients with solid tumors: a meta-analysis. Oncotarget 2017; 8:59720-59728. [PMID: 28938675 PMCID: PMC5601771 DOI: 10.18632/oncotarget.19814] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 07/18/2017] [Indexed: 01/13/2023] Open
Abstract
APE1 is known as a key mediator of DNA damage repair pathways, and its clinical significance in different types of cancer is well studied. Herein, we performed a meta-analysis to determine the association of APE1 expression and survival in different types of solid cancer. We searched all eligible publications in PubMed, Web of Science and Embase platforms from inception to January 2017 and found 15 relevant manuscripts. Overall survival (OS), 12- and 36-month survival rates, and hazard ratios (HRs) were extracted and analyzed. Heterogeneity and publication bias were also assessed. A subgroup analysis of the different subcellular locations of APE1 was also conducted. Patients with higher APE1 levels demonstrated lower 12- and 36-month survival rates than those with low APE1 levels (HR 2.00, 95% CI 1.33–3.00, P = 0.0009; HR 1.84, 95% CI 1.19–2.84, P = 0.006). Importantly, the pooled analysis showed that high levels of APE1 predict shorter OS (HR 1.44, 95% CI 1.13–1.83, P = 0.003). Subgroup analysis revealed that both nuclear and cytoplasmic expression levels of APE1 are important indicators of poor prognosis in solid tumors.
Collapse
Affiliation(s)
- Chun-Ling Yuan
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Fan He
- College of Arts and Sciences, University of South Florida, Tampa, FL, 33620, USA
| | - Jia-Zhou Ye
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ni Wu
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, P. R. China
| | - Jin-Yan Zhang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Zhi-Hui Liu
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yong-Qiang Li
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Xiao-Ling Luo
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yan Lin
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| | - Rong Liang
- First Department of Chemotherapy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
29
|
Krupa R, Czarny P, Wigner P, Wozny J, Jablkowski M, Kordek R, Szemraj J, Sliwinski T. The Relationship Between Single-Nucleotide Polymorphisms, the Expression of DNA Damage Response Genes, and Hepatocellular Carcinoma in a Polish Population. DNA Cell Biol 2017; 36:693-708. [PMID: 28598207 DOI: 10.1089/dna.2017.3664] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism of hepatocellular carcinoma (HCC) is related to DNA damage caused by oxidative stress products induced by hepatitis B virus (HBV) or C (HCV) infection and exposure to environmental pollutants. Single-nucleotide polymorphisms (SNPs) of DNA damage response (DDR) genes may influence individual susceptibility to environmental risk factors and affect DNA repair efficacy, which, in turn, can influence the risk of HCC. The study evaluates a panel of 15 SNPs in 11 DDR genes (XRCC1, XRCC3, XPD, MUTYH, LIG1, LIG3, hOGG1, PARP1, NFIL1, FEN1, and APEX1) in 65 HCC patients, 50 HBV- and 50 HCV-infected non-cancerous patients, and 50 healthy controls. It also estimates the mRNA expression of nine DDR genes in cancerous and adjacent healthy liver tissues. Two of the investigated polymorphisms (rs1052133 and rs13181) were associated with HCC risk. For all investigated genes, the level of mRNA was significantly lower in HCC cancer tissue than in non-cancerous liver tissue. Seven of the investigated polymorphisms were statistically related to gene expression in cancer tissues. The disruption of DDR genes may be responsible for hepatocellular transformation in HCV-infected patients.
Collapse
Affiliation(s)
- Renata Krupa
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| | - Piotr Czarny
- 2 Department of Medical Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Paulina Wigner
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| | - Joanna Wozny
- 3 Department of Infectious and Liver Diseases, Medical University of Lodz , Lodz, Poland
| | - Maciej Jablkowski
- 3 Department of Infectious and Liver Diseases, Medical University of Lodz , Lodz, Poland
| | - Radzislaw Kordek
- 4 Department of Pathology, Medical University of Lodz , Lodz, Poland
| | - Janusz Szemraj
- 2 Department of Medical Biochemistry, Medical University of Lodz , Lodz, Poland
| | - Tomasz Sliwinski
- 1 Department of Molecular Genetics, University of Lodz , Lodz, Poland
| |
Collapse
|
30
|
Abstract
Reduction-oxidation factor 1-apurinic/apyrimidinic endonuclease (Ref-1/APE1) is a critical node in tumor cells, both as a redox regulator of transcription factor activation and as part of the DNA damage response. As a redox signaling protein, Ref-1/APE1 enhances the transcriptional activity of STAT3, HIF-1α, nuclear factor kappa B, and other transcription factors to promote growth, migration, and survival in tumor cells as well as inflammation and angiogenesis in the tumor microenvironment. Ref-1/APE1 is activated in a variety of cancers, including prostate, colon, pancreatic, ovarian, lung and leukemias, leading to increased aggressiveness. Transcription factors downstream of Ref-1/APE1 are key contributors to many cancers, and Ref-1/APE1 redox signaling inhibition slows growth and progression in a number of tumor types. Ref-1/APE1 inhibition is also highly effective when paired with other drugs, including standard-of-care therapies and therapies targeting pathways affected by Ref-1/APE1 redox signaling. Additionally, Ref-1/APE1 plays a role in a variety of other indications, such as retinopathy, inflammation, and neuropathy. In this review, we discuss the functional consequences of activation of the Ref-1/APE1 node in cancer and other diseases, as well as potential therapies targeting Ref-1/APE1 and related pathways in relevant diseases. APX3330, a novel oral anticancer agent and the first drug to target Ref-1/APE1 for cancer is entering clinical trials and will be explored in various cancers and other diseases bringing bench discoveries to the clinic.
Collapse
|
31
|
Juhnke M, Heumann A, Chirico V, Höflmayer D, Menz A, Hinsch A, Hube-Magg C, Kluth M, Lang DS, Möller-Koop C, Sauter G, Simon R, Beyer B, Pompe R, Thederan I, Schlomm T, Luebke AM. Apurinic/apyrimidinic endonuclease 1 (APE1/Ref-1) overexpression is an independent prognostic marker in prostate cancer withoutTMPRSS2:ERGfusion. Mol Carcinog 2017; 56:2135-2145. [DOI: 10.1002/mc.22670] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 04/19/2017] [Accepted: 05/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Manuela Juhnke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Asmus Heumann
- Department of General, Visceral and Thoracic Surgery; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Viktoria Chirico
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Doris Höflmayer
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Anne Menz
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Andrea Hinsch
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Claudia Hube-Magg
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Martina Kluth
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dagmar S. Lang
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Christina Möller-Koop
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Sauter
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Ronald Simon
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Burkhard Beyer
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Raisa Pompe
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Imke Thederan
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center; University Medical Center Hamburg-Eppendorf; Germany
- Department of Urology, Section for Translational Prostate Cancer Research; University Medical Center Hamburg-Eppendorf; Germany
| | - Andreas M. Luebke
- Institute of Pathology; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
32
|
Guerreiro PS, Estácio SG, Antunes F, Fernandes AS, Pinheiro PF, Costa JG, Castro M, Miranda JP, Guedes RC, Oliveira NG. Structure-based virtual screening toward the discovery of novel inhibitors of the DNA repair activity of the human apurinic/apyrimidinic endonuclease 1. Chem Biol Drug Des 2016; 88:915-925. [DOI: 10.1111/cbdd.12826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 05/10/2016] [Accepted: 07/11/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Patrícia S. Guerreiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Sílvia G. Estácio
- BioISI - Biosystems and Integrative Sciences Institute; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica and Centro de Química e Bioquímica; Faculdade de Ciências; Universidade de Lisboa; Lisbon Portugal
| | - Ana S. Fernandes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Pedro F. Pinheiro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- Centro de Química Estrutural (CQE); Instituto Superior Técnico; Universidade de Lisboa; Lisbon Portugal
| | - João G. Costa
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
- CBIOS; Universidade Lusófona Research Center for Biosciences and Health Technologies; Lisbon Portugal
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Rita C. Guedes
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa); Faculty of Pharmacy; Universidade de Lisboa; Lisbon Portugal
| |
Collapse
|
33
|
de Melo JTA, de Souza Timoteo AR, Lajus TBP, Brandão JA, de Souza-Pinto NC, Menck CFM, Campalans A, Radicella JP, Vessoni AT, Muotri AR, Agnez-Lima LF. XPC deficiency is related to APE1 and OGG1 expression and function. Mutat Res 2016; 784-785:25-33. [PMID: 26811994 DOI: 10.1016/j.mrfmmm.2016.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 01/04/2016] [Accepted: 01/14/2016] [Indexed: 12/11/2022]
Abstract
Oxidative DNA damage is considered to be a major cause of neurodegeneration and internal tumors observed in syndromes that result from nucleotide excision repair (NER) deficiencies, such as Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS). Recent evidence has shown that NER aids in removing oxidized DNA damage and may interact with base excision repair (BER) enzymes. Here, we investigated APE1 and OGG1 expression, localization and activity after oxidative stress in XPC-deficient cells. The endogenous APE1 and OGG1 mRNA levels were lower in XPC-deficient fibroblasts. However, XPC-deficient cells did not show hypersensitivity to oxidative stress compared with NER-proficient cells. To confirm the impact of an XPC deficiency in regulating APE1 and OGG1 expression and activity, we established an XPC-complemented cell line. Although the XPC complementation was only partial and transient, the transfected cells exhibited greater OGG1 expression and activity compared with XPC-deficient cells. However, the APE1 expression and activity did not significantly change. Furthermore, we observed a physical interaction between the XPC and APE1 proteins. Together, the results indicate that the responses of XPC-deficient cells under oxidative stress may not only be associated with NER deficiency per se but may also include new XPC functions in regulating BER proteins.
Collapse
Affiliation(s)
- Julliane Tamara Araújo de Melo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Ana Rafaela de Souza Timoteo
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Tirzah Braz Petta Lajus
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Juliana Alves Brandão
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Nadja Cristhina de Souza-Pinto
- Laboratório de Genética Mitocondrial, Departamento de Química, Instituto de Química, Universidade de São Paulo-USP, São Paulo, Brazil
| | - Carlos Frederico Martins Menck
- Laboratório de Reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo, Brazil
| | - Anna Campalans
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | - J Pablo Radicella
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, 18 Route du Panorama, F-92265 Fontenay aux Roses, France
| | - Alexandre Teixeira Vessoni
- Laboratório de Reparo de DNA, Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo-USP, São Paulo, Brazil; Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Alysson Renato Muotri
- Department of Pediatrics/Rady Children's Hospital San Diego, Department of Cellular and Molecular Medicine, University of California San Diego, San Diego, CA, USA
| | - Lucymara Fassarella Agnez-Lima
- Laboratório de Biologia Molecular e Genômica, Departamento de Biologia Celular e Genética, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil.
| |
Collapse
|
34
|
Transcriptional Up-Regulation of APE1/Ref-1 in Hepatic Tumor: Role in Hepatocytes Resistance to Oxidative Stress and Apoptosis. PLoS One 2015; 10:e0143289. [PMID: 26624999 PMCID: PMC4666459 DOI: 10.1371/journal.pone.0143289] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 11/03/2015] [Indexed: 01/11/2023] Open
Abstract
Objective Human Hepatocellular Carcinoma (HCC) is the fifth most frequent neoplasm worldwide and the most serious complication of long-standing chronic liver diseases (CLD). Its development is associated with chronic inflammation and sustained oxidative stress. Deregulation of apurinic apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1), a master regulator of cellular response to oxidative stress, has been associated with poor prognosis in several cancers including HCC. Design In the present study we investigated the APE1/Ref-1 mRNA levels in cirrhotic and HCC tissues obtained during HCC resection. The possible protective role of APE1/Ref-1 against oxidative stress and apoptosis was evaluated in vitro in immortalized human hepatocytes (IHH) over-expressing APE1/Ref-1. Results APE1/Ref-1 was up-regulated in HCC, regulation occurring at the transcriptional level. APE1/Ref-1 mRNA content increased with the progression of liver disease with the transcriptional up-regulation present in cirrhosis significantly increased in HCC. The up-regulation was higher in the less differentiated cancers. In vitro, over-expression of APE1/Ref-1 in normal hepatocytes conferred cell protection against oxidative stress and it was associated with BAX inhibition and escape from apoptosis. Conclusion APE1/Ref-1 is up-regulated in HCC and this over-expression correlates with cancer aggressiveness. The up-regulation occurs at the transcriptional level and it is present in the earliest phases of hepatocarcinogenesis. The APE-1/Ref-1 over-expression is associated with hepatocyte survival and inhibits BAX activation and apoptosis. These data suggest a possible role of APE1/Ref-1 over-expression both in hepatocyte survival and HCC development calling attention to this molecule as a promising marker for HCC diagnosis and treatment.
Collapse
|
35
|
Association of DNA Repair Gene APE1 Asp148Glu Polymorphism with Breast Cancer Risk. DISEASE MARKERS 2015; 2015:869512. [PMID: 26257461 PMCID: PMC4519542 DOI: 10.1155/2015/869512] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/22/2015] [Accepted: 06/10/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the role of APE1 Asp148Glu polymorphism in breast cancer progression in Saudi population. METHODS We examined the genetic variations (rs1130409) in the DNA base excision repair gene APE1 at codon 148 (Asp148Glu) and its association with breast cancer risk using genotypic assays and in silico structural as well as functional predictions. In silico structural analysis was performed with Asp148Glu allele and compared with the predicted native protein structure. The wild and mutant 3D structures of APE1 were compared and analyzed using solvent accessibility models for protein stability confirmation. RESULTS Genotypic analysis of APE1 (rs1130409) showed statistically significant association of Asp148Glu with elevated susceptibility to breast cancer. The in silico analysis results indicated that the nsSNP Asp148Glu may cause changes in the protein structure and is associated with breast cancer risk. CONCLUSION Taken together, this is the first report that established that Asp148Glu variant has structural and functional effect on the APE1 and may play an important role in breast cancer progression in Saudi population.
Collapse
|
36
|
ZHENG ZHIHUA, DU WEI, LI YANJU, GAO MEIQIN, HUANG AIMIN, LIU JINGFENG. Lentiviral-mediated short hairpin RNA silencing of APE1 suppresses hepatocellular carcinoma proliferation and migration: A potential therapeutic target for hepatoma treatment. Oncol Rep 2015; 34:95-102. [DOI: 10.3892/or.2015.3976] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/20/2015] [Indexed: 11/06/2022] Open
|
37
|
Barchiesi A, Wasilewski M, Chacinska A, Tell G, Vascotto C. Mitochondrial translocation of APE1 relies on the MIA pathway. Nucleic Acids Res 2015; 43:5451-64. [PMID: 25956655 PMCID: PMC4477663 DOI: 10.1093/nar/gkv433] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/23/2015] [Indexed: 01/08/2023] Open
Abstract
APE1 is a multifunctional protein with a fundamental role in repairing nuclear and mitochondrial DNA lesions caused by oxidative and alkylating agents. Unfortunately, comprehensions of the mechanisms regulating APE1 intracellular trafficking are still fragmentary and contrasting. Recent data demonstrate that APE1 interacts with the mitochondrial import and assembly protein Mia40 suggesting the involvement of a redox-assisted mechanism, dependent on the disulfide transfer system, to be responsible of APE1 trafficking into the mitochondria. The MIA pathway is an import machinery that uses a redox system for cysteine enriched proteins to drive them in this compartment. It is composed by two main proteins: Mia40 is the oxidoreductase that catalyzes the formation of the disulfide bonds in the substrate, while ALR reoxidizes Mia40 after the import. In this study, we demonstrated that: (i) APE1 and Mia40 interact through disulfide bond formation; and (ii) Mia40 expression levels directly affect APE1's mitochondrial translocation and, consequently, play a role in the maintenance of mitochondrial DNA integrity. In summary, our data strongly support the hypothesis of a redox-assisted mechanism, dependent on Mia40, in controlling APE1 translocation into the mitochondrial inner membrane space and thus highlight the role of this protein transport pathway in the maintenance of mitochondrial DNA stability and cell survival.
Collapse
Affiliation(s)
- Arianna Barchiesi
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Michal Wasilewski
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Agnieszka Chacinska
- International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine 33100, Italy
| |
Collapse
|
38
|
Poletto M, Malfatti MC, Dorjsuren D, Scognamiglio PL, Marasco D, Vascotto C, Jadhav A, Maloney DJ, Wilson DM, Simeonov A, Tell G. Inhibitors of the apurinic/apyrimidinic endonuclease 1 (APE1)/nucleophosmin (NPM1) interaction that display anti-tumor properties. Mol Carcinog 2015; 55:688-704. [PMID: 25865359 DOI: 10.1002/mc.22313] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/10/2015] [Accepted: 02/21/2015] [Indexed: 12/23/2022]
Abstract
The apurinic/apyrimidinic endonuclease 1 (APE1) is a protein central to the base excision DNA repair pathway and operates in the modulation of gene expression through redox-dependent and independent mechanisms. Aberrant expression and localization of APE1 in tumors are recurrent hallmarks of aggressiveness and resistance to therapy. We identified and characterized the molecular association between APE1 and nucleophosmin (NPM1), a multifunctional protein involved in the preservation of genome stability and rRNA maturation. This protein-protein interaction modulates subcellular localization and endonuclease activity of APE1. Moreover, we reported a correlation between APE1 and NPM1 expression levels in ovarian cancer, with NPM1 overexpression being a marker of poor prognosis. These observations suggest that tumors that display an augmented APE1/NPM1 association may exhibit increased aggressiveness and resistance. Therefore, targeting the APE1/NPM1 interaction might represent an innovative strategy for the development of anticancer drugs, as tumor cells relying on higher levels of APE1 and NPM1 for proliferation and survival may be more sensitive than untransformed cells. We set up a chemiluminescence-based high-throughput screening assay in order to find small molecules able to interfere with the APE1/NPM1 interaction. This screening led to the identification of a set of bioactive compounds that impair the APE1/NPM1 association in living cells. Interestingly, some of these molecules display anti-proliferative activity and sensitize cells to therapeutically relevant genotoxins. Given the prognostic significance of APE1 and NPM1, these compounds might prove effective in the treatment of tumors that show abundant levels of both proteins, such as ovarian or hepatic carcinomas.
Collapse
Affiliation(s)
- Mattia Poletto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Matilde C Malfatti
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Dorjbal Dorjsuren
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Pasqualina L Scognamiglio
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy.,Center for Advanced Biomaterials for Healthcare@CRIB, Istituto Italiano di Tecnologia (IIT), Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB (Centro Interuniversitario di Ricerca sui Peptidi Bioattivi), University of Naples 'Federico II', Naples, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
39
|
Kaur G, Cholia RP, Mantha AK, Kumar R. DNA repair and redox activities and inhibitors of apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1): a comparative analysis and their scope and limitations toward anticancer drug development. J Med Chem 2014; 57:10241-56. [PMID: 25280182 DOI: 10.1021/jm500865u] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The apurinic/apyrimidinic endonuclease 1/redox effector factor 1 (APE1/Ref-1) is a multifunctional enzyme involved in DNA repair and activation of transcription factors through its redox function. The evolutionarily conserved C- and N-termini are involved in these functions independently. It is also reported that the activity of APE1/Ref-1 abruptly increases several-fold in various human cancers. The control over the outcomes of these two functions is emerging as a new strategy to combine enhanced DNA damage and chemotherapy in order to tackle the major hurdle of increased cancer cell growth and proliferation. Studies have targeted these two domains individually for the design and development of inhibitors for APE1/Ref-1. Here, we have made, for the first time, an attempt at a comparative analysis of APE1/Ref-1 inhibitors that target both DNA repair and redox activities simultaneously. We further discuss their scope and limitations with respect to the development of potential anticancer agents.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Laboratory for Drug Design and Synthesis, Centre for Chemical and Pharmaceutical Sciences, School of Basic and Applied Sciences, Central University of Punjab , Bathinda, 151001, Punjab, India
| | | | | | | |
Collapse
|
40
|
Thakur S, Sarkar B, Cholia RP, Gautam N, Dhiman M, Mantha AK. APE1/Ref-1 as an emerging therapeutic target for various human diseases: phytochemical modulation of its functions. Exp Mol Med 2014; 46:e106. [PMID: 25033834 PMCID: PMC4119211 DOI: 10.1038/emm.2014.42] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/27/2014] [Accepted: 03/05/2014] [Indexed: 12/12/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is a multifunctional enzyme involved in the base excision repair (BER) pathway, which repairs oxidative base damage caused by endogenous and exogenous agents. APE1 acts as a reductive activator of many transcription factors (TFs) and has also been named redox effector factor 1, Ref-1. For example, APE1 activates activator protein-1, nuclear factor kappa B, hypoxia-inducible factor 1α, paired box gene 8, signal transducer activator of transcription 3 and p53, which are involved in apoptosis, inflammation, angiogenesis and survival pathways. APE1/Ref-1 maintains cellular homeostasis (redox) via the activation of TFs that regulate various physiological processes and that crosstalk with redox balancing agents (for example, thioredoxin, catalase and superoxide dismutase) by controlling levels of reactive oxygen and nitrogen species. The efficiency of APE1/Ref-1's function(s) depends on pairwise interaction with participant protein(s), the functions regulated by APE1/Ref-1 include the BER pathway, TFs, energy metabolism, cytoskeletal elements and stress-dependent responses. Thus, APE1/Ref-1 acts as a ‘hub-protein' that controls pathways that are important for cell survival. In this review, we will discuss APE1/Ref-1's versatile nature in various human etiologies, including neurodegeneration, cancer, cardiovascular and other diseases that have been linked with alterations in the expression, subcellular localization and activities of APE/Ref-1. APE1/Ref-1 can be targeted for therapeutic intervention using natural plant products that modulate the expression and functions of APE1/Ref-1. In addition, studies focusing on translational applications based on APE1/Ref-1-mediated therapeutic interventions are discussed.
Collapse
Affiliation(s)
- Shweta Thakur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Bibekananda Sarkar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Ravi P Cholia
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India
| | - Nandini Gautam
- Center for Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Punjab, India
| | - Monisha Dhiman
- Center for Genetic Diseases and Molecular Medicine, School of Emerging Life Science Technologies, Central University of Punjab, Punjab, India
| | - Anil K Mantha
- 1] Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Punjab, India [2] Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
41
|
Induction of apurinic endonuclease 1 overexpression by endoplasmic reticulum stress in hepatoma cells. Int J Mol Sci 2014; 15:12442-57. [PMID: 25026174 PMCID: PMC4139852 DOI: 10.3390/ijms150712442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide with poor prognosis due to resistance to conventional chemotherapy and limited efficacy of radiotherapy. Previous studies have noted the induction of endoplasmic reticulum stress or apurinic endonuclease 1 (APE1) expression in many tumors. Therefore, the aim of this study was to investigate the relationship between endoplasmic reticulum (ER stress) and APE1 in hepatocellular carcinoma. Here we investigate the expression of APE1 during ER stress in HepG2 and Huh-7 cell lines. Tunicamycin or brefeldin A, two ER stress inducers, increased APE1 and GRP78, an ER stress marker, expression in HepG2 and Huh-7 cells. Induction of APE1 expression was observed through transcription level in response to ER stress. APE1 nuclear localization during ER stress was determined using immunofluorescence assays in HepG2 cells. Furthermore, expression of Hepatitis B virus pre-S2∆ large mutant surface protein (pre-S2∆), an ER stress-induced protein, also increased GRP78 and APE1 expression in the normal hepatocyte NeHepLxHT cell line. Similarly, tumor samples showed higher expression of APE1 in ER stress-correlated liver cancer tissue in vivo. Our results demonstrate that ER stress and HBV pre-S2∆ increased APE1 expression, which may play an important role in resistance to chemotherapeutic agents or tumor development. Therefore, these data provide an important chemotherapeutic strategy in ER stress and HBV pre-S2∆-associated tumors.
Collapse
|
42
|
Woo J, Park H, Sung SH, Moon BI, Suh H, Lim W. Prognostic value of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in breast cancer. PLoS One 2014; 9:e99528. [PMID: 24914806 PMCID: PMC4051707 DOI: 10.1371/journal.pone.0099528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023] Open
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein for DNA base excision repair (BER) and redox regulation. The ability of cancer cells to recognize DNA damage and initiate DNA repair is an important mechanism for therapeutic resistance. Several recent studies have suggested that APE1 expression levels and/or subcellular dysregulation may be used to indicate the sensitivity of tumors to radiotherapy or chemotherapy. In this study, we assessed the prognostic significance of APE1 and differences in APE1 expression levels according to breast cancer molecular subtypes. We analyzed formalin-fixed, paraffin-embedded tumor tissue sections from 243 cases diagnosed as invasive breast cancer at Ewha Womans University Medical Center between January 2003 and December 2008. Immunohistochemistry was performed and the nuclear level of APE1 was scored by taking into account the percentage of positive cells. Medical records were reviewed to investigate clinicopathologic characteristics. We found that nuclear APE1 high-level expression (proportion ≥50%) in breast cancer showed a tendency towards unfavorable prognosis regarding disease-free survival (p = 0.093). However, there was no significant difference in overall survival between low and high-level expression groups (p = 0.294). Interestingly, within the Ki-67 low-level expression group, APE1 low-level expression was significantly associated with poor overall survival (p = 0.007). A significant positive correlation was observed between APE1 nuclear expression and estrogen receptor status (75.7% vs. 59.7%, p = 0.022). Also, the luminal A subtype was the most commonly observed breast cancer subtype in the APE1 high-level expression group (61.6% vs. 45.2%, p = 0.000). This study suggests that APE1 expression may be associated with breast cancer prognosis. In particular, its role as a prognostic factor would be significant for breast cancers with a low Ki-67 proliferation index. It is proposed that nuclear APE1 may be a novel target in breast cancer with a low proliferation rate to obtain better outcome.
Collapse
Affiliation(s)
- Joohyun Woo
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Heejung Park
- Department of Pathology, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Sun Hee Sung
- Department of Pathology, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Byung-In Moon
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Hyunsuk Suh
- Department of Plastic surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Woosung Lim
- Department of Surgery, Ewha Womans University School of Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| |
Collapse
|
43
|
Londero AP, Orsaria M, Tell G, Marzinotto S, Capodicasa V, Poletto M, Vascotto C, Sacco C, Mariuzzi L. Expression and prognostic significance of APE1/Ref-1 and NPM1 proteins in high-grade ovarian serous cancer. Am J Clin Pathol 2014; 141:404-14. [PMID: 24515769 DOI: 10.1309/ajcpidkdlsge26cx] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To correlate the expression profile of human apurinic endonuclease/redox factor 1 (APE1/Ref-1) with that of nucleolar/nucleoplasmic protein nucleophosmin 1 (NPM1) in association with the aggressiveness and progression of high-grade ovarian serous cancer. METHODS Retrospective study analyzing a tissue microarray of 73 women affected by high-grade ovarian serous cancer. Protein expression was assessed by immunohistochemistry on primary tumor masses and synchronous peritoneal metastases if present. RESULTS APE1/Ref-1 and NPM1 showed a significant correlation in ovarian serous cancer. Patients with a poorer outcome showed a significant overexpression of nuclear NPM1 protein. A Cox proportional hazards multivariate regression model revealed NPM1 expression to be independently significant for overall survival in high-grade ovarian serous cancers after correcting for stage, age, cytoreduction completeness, and platinum resistance. CONCLUSIONS APE1/Ref-1 interacts with NPM1 to control the DNA damage repair system, and it is likely that this interaction plays a defining role in high-grade ovarian serous carcinoma. A high NPM1 immunohistochemical expression was independently correlated with a shorter survival period and thus appears to be an important prognostic factor.
Collapse
Affiliation(s)
- Ambrogio P. Londero
- Deparment of Experimental Clinical and Medical Science, Clinic of Obstetrics and Gynecology, University of Udine, Udine, Italy
| | - Maria Orsaria
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Gianluca Tell
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Stefania Marzinotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Valentina Capodicasa
- Deparment of Experimental Clinical and Medical Science, Clinic of Obstetrics and Gynecology, University of Udine, Udine, Italy
| | - Mattia Poletto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Carlo Vascotto
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Cosimo Sacco
- Clinic of Oncology, University Hospital of Udine, Udine, Italy
| | - Laura Mariuzzi
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| |
Collapse
|
44
|
Abstract
SIGNIFICANCE Human apurinic/apyrimidinic endonuclease 1 (APE1, also known as REF-1) was isolated based on its ability to cleave at AP sites in DNA or activate the DNA binding activity of certain transcription factors. We review herein topics related to this multi-functional DNA repair and stress-response protein. RECENT ADVANCES APE1 displays homology to Escherichia coli exonuclease III and is a member of the divalent metal-dependent α/β fold-containing phosphoesterase superfamily of enzymes. APE1 has acquired distinct active site and loop elements that dictate substrate selectivity, and a unique N-terminus which at minimum imparts nuclear targeting and interaction specificity. Additional activities ascribed to APE1 include 3'-5' exonuclease, 3'-repair diesterase, nucleotide incision repair, damaged or site-specific RNA cleavage, and multiple transcription regulatory roles. CRITICAL ISSUES APE1 is essential for mouse embryogenesis and contributes to cell viability in a genetic background-dependent manner. Haploinsufficient APE1(+/-) mice exhibit reduced survival, increased cancer formation, and cellular/tissue hyper-sensitivity to oxidative stress, supporting the notion that impaired APE1 function associates with disease susceptibility. Although abnormal APE1 expression/localization has been seen in cancer and neuropathologies, and impaired-function variants have been described, a causal link between an APE1 defect and human disease remains elusive. FUTURE DIRECTIONS Ongoing efforts aim at delineating the biological role(s) of the different APE1 activities, as well as the regulatory mechanisms for its intra-cellular distribution and participation in diverse molecular pathways. The determination of whether APE1 defects contribute to human disease, particularly pathologies that involve oxidative stress, and whether APE1 small-molecule regulators have clinical utility, is central to future investigations.
Collapse
Affiliation(s)
- Mengxia Li
- Intramural Research Program, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health , Baltimore, Maryland
| | | |
Collapse
|
45
|
Nagoya H, Futagami S, Shimpuku M, Tatsuguchi A, Wakabayashi T, Yamawaki H, Kodaka Y, Kawagoe T, Watarai Y, Makino H, Miyashita M, Tsuchiya S, Crowe SE, Sakamoto C. Apurinic/apyrimidinic endonuclease-1 is associated with angiogenesis and VEGF production via upregulation of COX-2 expression in esophageal cancer tissues. Am J Physiol Gastrointest Liver Physiol 2014; 306:G183-90. [PMID: 24284961 PMCID: PMC5142390 DOI: 10.1152/ajpgi.00057.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Apurinic/apyrimidinic endonuclease-1 (APE-1) is a key enzyme responsible for DNA base excision repair and is also a multifunctional protein such as redox effector for several transcriptional factors. Our study was designed to investigate APE-1 expression and to study its interaction with cyclooxygenase (COX)-2 expression and VEGF production in the esophageal cancer. The expression of APE-1, COX-2, monocyte chemoattractant protein (MCP)-1, CC-chemokine receptor (CCR)2, and VEGF were evaluated by immunohistochemistry in 65 human esophageal squamous cell carcinoma (ESCC) tissues. Real-time PCR and Western blotting were performed to detect mRNA and protein expression of APE-1 and p-signal transducer and activator of transcription 3 (STAT3) expression in MCP-1-stimulated ESCC cell lines (KYSE 220 and EC-GI-10). siRNA for APE-1 was treated to determine the role of APE-1 in the regulation of COX-2 expression, VEGF production, and antiapoptotic effect against cisplatin. In human ESCC tissues, nuclear localization of APE-1 was observed in 92.3% (60/65) of all tissues. There was a significant relationship (P = 0.029, R = 0.49) between nuclear APE-1 and cytoplasmic COX-2 expression levels in the esophageal cancer tissues. In KYSE 220 and EC-GI-10 cells, MCP-1 stimulation significantly increased mRNA and protein expression of APE-1. Treatment with siRNA for APE-1 significantly inhibited p-STAT3 expression levels in MCP-1-stimulated cells. Furthermore, treatment of siRNA for APE-1 significantly reduced COX-2 expression and VEGF production in MCP-1-stimulated esophageal cancer cell lines. Treatment with APE-1 siRNA significantly increased apoptotic levels in cisplatin-incubated KYSE 220 and EC-GI-10 cells. We concluded that APE-1 is overexpressed and associated with COX-2 expression and VEGF production in esophageal cancer tissues.
Collapse
Affiliation(s)
- Hiroyuki Nagoya
- 1Division of Gastroenterology, Department of Internal Medicine,
| | - Seiji Futagami
- 1Division of Gastroenterology, Department of Internal Medicine,
| | - Mayumi Shimpuku
- 1Division of Gastroenterology, Department of Internal Medicine,
| | | | | | | | - Yasuhiro Kodaka
- 1Division of Gastroenterology, Department of Internal Medicine,
| | - Tetsuro Kawagoe
- 1Division of Gastroenterology, Department of Internal Medicine,
| | | | - Hiroshi Makino
- 3Department of Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, Japan;
| | - Masao Miyashita
- 3Department of Surgery, Nippon Medical School, Bunkyo-ku, Tokyo, Japan;
| | | | - Sheila E. Crowe
- 4Division of Gastroenterology, Department of Medicine, University of California, San Diego, California
| | | |
Collapse
|
46
|
Sudhakar J, Khetan V, Madhusudan S, Krishnakumar S. Dysregulation of human apurinic/apyrimidinic endonuclease 1 (APE1) expression in advanced retinoblastoma. Br J Ophthalmol 2014; 98:402-7. [DOI: 10.1136/bjophthalmol-2013-304166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
47
|
Cun Y, Dai N, Li M, Xiong C, Zhang Q, Sui J, Qian C, Wang D. APE1/Ref-1 enhances DNA binding activity of mutant p53 in a redox-dependent manner. Oncol Rep 2013; 31:901-9. [PMID: 24297337 DOI: 10.3892/or.2013.2892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/18/2013] [Indexed: 11/05/2022] Open
Abstract
Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a dual function protein; in addition to its DNA repair activity, it can stimulate DNA binding activity of numerous transcription factors as a reduction-oxidation (redox) factor. APE1/Ref-1 has been found to be a potent activator of wild-type p53 (wtp53) DNA binding in vitro and in vivo. Although p53 is mutated in most types of human cancer including hepatocellular carcinoma (HCC), little is known about whether APE1/Ref-1 can regulate mutant p53 (mutp53). Herein, we reported the increased APE1/Ref-1 protein and accumulation of mutp53 in HCC by immunohistochemistry. Of note, it was observed that APE1/Ref-1 high-expression and mutp53 expression were associated with carcinogenesis and progression of HCC. To determine whether APE1/Ref-1 regulates DNA binding of mutp53, we performed electromobility shift assays (EMSAs) and quantitative chromatin immunoprecipitation (ChIP) assays in HCC cell lines. In contrast to sequence-specific and DNA structure-dependent binding of wtp53, reduced mutp53 efficiently bound to nonlinear DNA, but not to linear DNA. Notably, overexpression of APE1/Ref-1 resulted in increased DNA binding activity of mutp53, while downregulation of APE1/Ref-1 caused a marked decrease of mutp53 DNA binding. In addition, APE1/Ref-1 could not potentiate the accumulation of p21 mRNA and protein in mutp53 cells. These data indicate that APE1/Ref-1 can stimulate mutp53 DNA binding in a redox-dependent manner.
Collapse
Affiliation(s)
- Yanping Cun
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| | - Nan Dai
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| | - Mengxia Li
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| | - Chengjie Xiong
- Department of Orthopedics, Wuhan General Hospital, Guangzhou Military Area Command, Wuhan, P.R. China
| | - Qinhong Zhang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| | - Jiangdong Sui
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| | - Chengyuan Qian
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| | - Dong Wang
- Cancer Center, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, P.R. China
| |
Collapse
|
48
|
Differential effects of methoxyamine on doxorubicin cytotoxicity and genotoxicity in MDA-MB-231 human breast cancer cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 757:140-7. [PMID: 23958474 DOI: 10.1016/j.mrgentox.2013.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 08/06/2013] [Indexed: 12/13/2022]
Abstract
Pharmacological inhibition of DNA repair is a promising approach to increase the effectiveness of anticancer drugs. The chemotherapeutic drug doxorubicin (Dox) may act, in part, by causing oxidative DNA damage. The base excision repair (BER) pathway effects the repair of many DNA lesions induced by reactive oxygen species (ROS). Methoxyamine (MX) is an indirect inhibitor of apurinic/apyrimidinic endonuclease 1 (APE1), a multifunctional BER protein. We have evaluated the effects of MX on the cytotoxicity and genotoxicity of Dox in MDA-MB-231 metastatic breast cancer cells. MX has little effects on the viability and proliferation of Dox-treated cells. However, as assessed by the cytokinesis-block micronucleus assay (CBMN), MX caused a significant 1.4-fold increase (P<0.05) in the frequency of micronucleated binucleated cells induced by Dox, and also altered the distribution of the numbers of micronuclei. The fluorescence probe dihydroethidium (DHE) indicated little production of ROS by Dox. Overall, our results suggest differential outcomes for the inhibition of APE1 activity in breast cancer cells exposed to Dox, with a sensitizing effect observed for genotoxicity but not for cytotoxicity.
Collapse
|
49
|
Cesaratto L, Codarin E, Vascotto C, Leonardi A, Kelley MR, Tiribelli C, Tell G. Specific inhibition of the redox activity of ape1/ref-1 by e3330 blocks tnf-α-induced activation of IL-8 production in liver cancer cell lines. PLoS One 2013; 8:e70909. [PMID: 23967134 PMCID: PMC3744539 DOI: 10.1371/journal.pone.0070909] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 06/24/2013] [Indexed: 12/23/2022] Open
Abstract
APE1/Ref-1 is a main regulator of cellular response to oxidative stress via DNA-repair function and co-activating activity on the NF-κB transcription factor. APE1 is central in controlling the oxidative stress-based inflammatory processes through modulation of cytokines expression and its overexpression is responsible for the onset of chemoresistance in different tumors including hepatic cancer. We examined the functional role of APE1 overexpression during hepatic cell damage related to fatty acid accumulation and the role of the redox function of APE1 in the inflammatory process. HepG2 cells were stably transfected with functional and non-functional APE1 encoding plasmids and the protective effect of APE1 overexpression toward genotoxic compounds or FAs accumulation, was tested. JHH6 cells were stimulated with TNF-α in the presence or absence of E3330, an APE1 redox inhibitor. IL-8 promoter activity was assessed by a luciferase reporter assay, gene expression by Real-Time PCR and cytokines (IL-6, IL-8, IL-12) levels measured by ELISA. APE1 over-expression did not prevent cytotoxicity induced by lipid accumulation. E3330 treatment prevented the functional activation of NF-κB via the alteration of APE1 subcellular trafficking and reduced IL-6 and IL-8 expression induced by TNF-α and FAs accumulation through blockage of the redox-mediated activation of NF-κB. APE1 overexpression observed in hepatic cancer cells may reflect an adaptive response to cell damage and may be responsible for further cell resistance to chemotherapy and for the onset of inflammatory response. The efficacy of the inhibition of APE1 redox activity in blocking TNF-α and FAs induced inflammatory response opens new perspectives for treatment of inflammatory-based liver diseases.
Collapse
Affiliation(s)
- Laura Cesaratto
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
- Fondazione Italiana Fegato, AREA Science Park, Basovizza, Trieste, Italy
| | - Erika Codarin
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
| | - Carlo Vascotto
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
| | - Antonio Leonardi
- Dipartimento di Patologia Cellulare e Molecolare ‘L. Califano’ Università “Federico II” di Napoli, Napoli, Italy
| | - Mark R. Kelley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, United States of America
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, AREA Science Park, Basovizza, Trieste, Italy
- Dipartimento Scienze Cliniche, Università di Trieste, Trieste, Italy
| | - Gianluca Tell
- Dipartimento di Scienze Mediche e Biologiche, Università di Udine, Udine, Italy
- * E-mail:
| |
Collapse
|
50
|
Kim MH, Kim HB, Yoon SP, Lim SC, Cha MJ, Jeon YJ, Park SG, Chang IY, You HJ. Colon cancer progression is driven by APEX1-mediated upregulation of Jagged. J Clin Invest 2013; 123:65521. [PMID: 23863623 PMCID: PMC3726152 DOI: 10.1172/jci65521] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 04/25/2013] [Indexed: 02/05/2023] Open
Abstract
Aberrant expression of apurinic-apyrimidinic endonuclease-1 (APEX1) has been reported in numerous human solid tumors and is positively correlated with cancer progression; however, the role of APEX1 in tumor progression is poorly defined. Here, we show that APEX1 contributes to aggressive colon cancer behavior and functions as an upstream activator in the Jagged1/Notch signaling pathway. APEX1 overexpression or knockdown in human colon cancer cell lines induced profound changes in malignant properties such as cell proliferation, anchorage-independent growth, migration, invasion, and angiogenesis in vitro and in tumor formation and metastasis in mouse xenograft models. These oncogenic effects of APEX1 were mediated by the upregulation of Jagged1, a major Notch ligand. Furthermore, APEX1 expression was associated with Jagged1 in various colon cancer cell lines and in tissues from colon cancer patients. This finding identifies APEX1 as a positive regulator of Jagged1/Notch activity and suggests that it is a potential therapeutic target in colon cancers that exhibit high levels of Jagged1/Notch signaling.
Collapse
Affiliation(s)
- Mi-Hwa Kim
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Hong-Beum Kim
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sang Pil Yoon
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sung-Chul Lim
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Man Jin Cha
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Young Jin Jeon
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Sang Gon Park
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - In-Youb Chang
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Ho Jin You
- DNA Damage Response Network Center, Chosun University, Gwangju, Republic of Korea.
Department of Pharmacology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Anatomy, School of Medicine, Jeju National University, Jeju-Do, Republic of Korea.
Department of Pathology, Chosun University School of Medicine, Gwangju, Republic of Korea.
Department of Hemato-oncology, Chosun University Hospital Internal Medicine, Gwangju, Republic of Korea.
Department of Anatomy, Chosun University School of Medicine, Gwangju, Republic of Korea
| |
Collapse
|