1
|
Ducamp S, Sendamarai AK, Campagna DR, Chin DWL, Fujiwara Y, Schmidt PJ, Fleming MD. Murine models of erythroid 5ALA synthesis disorders and their conditional synthetic lethal dependency on pyridoxine. Blood 2024; 144:1418-1432. [PMID: 38900972 DOI: 10.1182/blood.2023023078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
ABSTRACT X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP) are uncommon diseases caused by loss-of-function and gain-of-function mutations, respectively, in the erythroid form of 5-aminolevulinic acid synthetase (ALAS), ALAS2, which encodes the first enzyme in heme biosynthesis. A related congenital sideroblastic anemia (CSA) is due to mutations in SLC25A38 (solute carrier family 25 member A38), which supplies mitochondrial glycine for ALAS2 (SLC25A38-CSA). The lack of viable animal models has limited the studies on pathophysiology and development of therapies for these conditions. Here, using CRISPR-CAS9 gene editing technology, we have generated knockin mouse models that recapitulate the main features of XLSA and XLPP; and using conventional conditional gene targeting in embryonic stem cells, we also developed a faithful model of the SLC25A38-CSA. In addition to examining the phenotypes and natural history of each disease, we determine the effect of restriction or supplementation of dietary pyridoxine (vitamin B6), the essential cofactor of ALAS2, on the anemia and porphyria. In addition to the well-documented response of XLSA mutations to pyridoxine supplementation, we also demonstrate the relative insensitivity of the XLPP/EPP protoporphyrias, severe sensitivity of the XLSA models, and an extreme hypersensitivity of the SLC25A38-CSA model to pyridoxine deficiency, a phenotype that is not shared with another mouse hereditary anemia model, Hbbth3/+ β-thalassemia intermedia. Thus, in addition to generating animal models useful for examining the pathophysiology and treatment of these diseases, we have uncovered an unsuspected conditional synthetic lethality between the heme synthesis-related CSAs and pyridoxine deficiency. These findings have the potential to inform novel therapeutic paradigms for the treatment of these diseases.
Collapse
Affiliation(s)
- Sarah Ducamp
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Anoop K Sendamarai
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Yuko Fujiwara
- Division of Hematology/Oncology at Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Minder AE, Kluijver LG, Barman-Aksözen J, Minder EI, Langendonk JG. Erythropoietic protoporphyrias: Pathogenesis, diagnosis and management. Liver Int 2024. [PMID: 39011756 DOI: 10.1111/liv.16027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
The erythropoietic protoporphyrias consist of three ultra-rare genetic disorders of the erythroid heme biosynthesis, including erythropoietic protoporphyria (EPP1), X-linked protoporphyria (XLEPP) and CLPX-protoporphyria (EPP2), which all lead to the accumulation of protoporphyrin IX (PPIX) in erythrocytes. Affected patients usually present from early childhood with episodes of severe phototoxic pain in the skin exposed to visible light. The quantification of PPIX in erythrocytes with a metal-free PPIX ≥3 times the upper limit of normal confirms the diagnosis. Protoporphyria-related complications include liver failure, gallstones, mild anaemia and vitamin D deficiency with reduced bone mineral density. The management is focused on preventing phototoxic reactions and treating the complications. Vitamin D should be supplemented, and DEXA scans in adults should be considered. In EPP1, even in cases of biochemically determined iron deficiency, supplementation of iron may stimulate PPIX production, resulting in an increase in photosensitivity and the risk of cholestatic liver disease. However, for patients with XLEPP, iron supplementation can reduce PPIX levels, phototoxicity and liver damage. Because of its rarity, there is little data on the management of EPP-related liver disease. As a first measure, any hepatotoxins should be eliminated. Depending on the severity of the liver disease, phlebotomies, exchange transfusions and ultimately liver transplantation with subsequent haematopoietic stem cell transplantation (HSCT) are therapeutic options, whereby multidisciplinary management including porphyria experts is mandatory. Afamelanotide, an alpha-melanocyte-stimulating hormone analogue, is currently the only approved specific treatment that increases pain-free sunlight exposure and quality of life.
Collapse
Affiliation(s)
- Anna-Elisabeth Minder
- Division of Endocrinology, Diabetology, and Porphyria, Stadtspital Zürich Triemli, Zurich, Switzerland
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich Triemli, Zurich, Switzerland
| | - Louisa G Kluijver
- Department of Internal Medicine, Porphyria Center Rotterdam, Center for Lysosomal and Metabolic Disease, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jasmin Barman-Aksözen
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich Triemli, Zurich, Switzerland
- Institute of Laboratory Medicine, Stadtspital Zürich Triemli, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Elisabeth I Minder
- Division of Endocrinology, Diabetology, and Porphyria, Stadtspital Zürich Triemli, Zurich, Switzerland
- Swiss Reference Centre for Porphyrias, Stadtspital Zürich Triemli, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Janneke G Langendonk
- Department of Internal Medicine, Porphyria Center Rotterdam, Center for Lysosomal and Metabolic Disease, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Guo M, Lin Y, Obi CD, Zhao P, Dailey HA, Medlock AE, Shen Y. Impact of Phosphorylation at Various Sites on the Active Pocket of Human Ferrochelatase: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:6360. [PMID: 38928065 PMCID: PMC11203519 DOI: 10.3390/ijms25126360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders.
Collapse
Affiliation(s)
- Mingshan Guo
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuhong Lin
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Yong Shen
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Levy C, Dickey AK, Wang B, Thapar M, Naik H, Keel SB, Saberi B, Beaven SW, Rudnick SR, Elmariah SB, Erwin AL, Goddu RJ, Hedstrom K, Leaf RK, Kazamel M, Mazepa M, Philpotts LL, Quigley J, Raef H, Ungar J, Anderson KE, Balwani M. Evidence-based consensus guidelines for the diagnosis and management of protoporphyria-related liver dysfunction in erythropoietic protoporphyria and X-linked protoporphyria. Hepatology 2024; 79:731-743. [PMID: 37505211 PMCID: PMC10818013 DOI: 10.1097/hep.0000000000000546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, FL
| | - Amy K. Dickey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| | - Bruce Wang
- Department of Medicine, University of California San Francisco Medical Center, San Francisco, CA
| | - Manish Thapar
- Division of Gastroenterology, Thomas Jefferson University Hospital, Philadelphia, PA
| | - Hetanshi Naik
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA
| | - Siobán B. Keel
- Division of Hematology, University of Washington School of Medicine, Seattle, WA
| | - Behnam Saberi
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA
| | - Simon W. Beaven
- Vatche & Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, CA
| | - Sean R. Rudnick
- Department of Internal Medicine, Section on Gastroenterology and Hepatology, Atrium Health Wake Forest Baptist, Winston-Salem, NC
| | - Sarina B. Elmariah
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Angelika L. Erwin
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH
| | - Robert J. Goddu
- Division of Continuing Education, University of Colorado Boulder, Boulder, CO
| | - Karli Hedstrom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rebecca Karp Leaf
- Harvard Medical School, Boston, MA
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL
| | - Marshall Mazepa
- Division of Hematology,Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | - John Quigley
- Division of Hematology/Oncology, Department of Medicine, University of Illinois Chicago, IL
| | - Haya Raef
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Division of Hematology, University of Washington School of Medicine, Seattle, WA
- Department of Dermatology, University of California San Francisco, San Francisco, CA
| | - Jonathan Ungar
- Department of Dermatology, Mount Sinai Hospital, New York, NY
| | - Karl E. Anderson
- Department of Internal Medicine (Division of Gastroenterology & Hepatology), University of Texas Medical Branch/UTMB Health, Galveston, TX
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
5
|
Abstract
The porphyrias are a group of rare diseases, each resulting from a defect in a different enzymatic step of the heme biosynthetic pathway. They can be broadly divided into two categories, hepatic and erythropoietic porphyrias, depending on the primary site of accumulation of heme intermediates. These disorders are multisystemic with variable symptoms that can be encountered by physicians in any specialty. Here, we review the porphyrias and describe their clinical presentation, diagnosis, and management. We discuss novel therapies that are approved or in development. Early diagnosis is key for the appropriate management and prevention of long-term complications in these rare disorders.
Collapse
Affiliation(s)
- Amy K Dickey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA;
- Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Karp Leaf
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA;
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA;
| |
Collapse
|
6
|
Madigan KE, Rudnick SR, Agnew MA, Urooj N, Bonkovsky HL. Illuminating Dersimelagon: A Novel Agent in the Treatment of Erythropoietic Protoporphyria and X-Linked Protoporphyria. Pharmaceuticals (Basel) 2023; 17:31. [PMID: 38256864 PMCID: PMC10819203 DOI: 10.3390/ph17010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/05/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Erythropoietic protoporphyria (EPP) is a genetic disorder stemming from reduced ferrochelatase expression, the final enzyme in the pathway of heme biosynthesis. A closely related condition, X-linked protoporphyria (XLP), bears similar clinical features although it arises from the heightened activity of δ-aminolevulinic acid synthase 2 (ALAS2), the first and normally rate-controlling enzyme in heme biosynthesis in developing red blood cells. Both of these abnormalities result in the buildup of protoporphyrin IX, leading to excruciating light sensitivity and, in a minority of cases, potentially fatal liver complications. Traditionally, managing EPP and XLP involved sun avoidance. However, the emergence of innovative therapies, such as dersimelagon, is reshaping the therapeutic landscape for these conditions. In this review, we summarize salient features of the properties of dersimelagon, shedding light on its potential role in advancing our understanding of treatment options for EPP and XLP.
Collapse
Affiliation(s)
- Katelyn E. Madigan
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.R.R.); (H.L.B.)
| | - Sean R. Rudnick
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.R.R.); (H.L.B.)
| | - Matthew A. Agnew
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA;
| | - Numra Urooj
- Department of Medicine, Parkview Health, Fort Wayne, IN 46845, USA;
| | - Herbert L. Bonkovsky
- Section on Gastroenterology & Hepatology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (S.R.R.); (H.L.B.)
| |
Collapse
|
7
|
Dickey AK, Naik H, Keel SB, Levy C, Beaven SW, Elmariah SB, Erwin AL, Goddu RJ, Hedstrom K, Leaf RK, Kazamel M, Mazepa M, Philpotts LL, Quigley J, Raef H, Rudnick SR, Saberi B, Thapar M, Ungar J, Wang B, Balwani M. Evidence-based consensus guidelines for the diagnosis and management of erythropoietic protoporphyria and X-linked protoporphyria. J Am Acad Dermatol 2023; 89:1227-1237. [PMID: 36041558 PMCID: PMC9968824 DOI: 10.1016/j.jaad.2022.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/07/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Erythropoietic protoporphyria and X-linked protoporphyria are rare genetic photodermatoses. Limited expertise with these disorders among physicians leads to diagnostic delays. Here, we present evidence-based consensus guidelines for the diagnosis, monitoring, and management of erythropoietic protoporphyria and X-linked protoporphyria. A systematic literature review was conducted, and reviewed among subcommittees of experts, divided by topic. Consensus on guidelines was reached within each subcommittee and then among all members of the committee. The appropriate biochemical and genetic testing to establish the diagnosis is reviewed in addition to the interpretation of results. Prevention of symptoms, management of acute phototoxicity, and pharmacologic and nonpharmacologic treatment options are discussed. The importance of ongoing monitoring for liver disease, iron deficiency, and vitamin D deficiency is discussed with management guidance. Finally, management of pregnancy and surgery and the safety of other therapies are summarized. We emphasize that these are multisystemic disorders that require longitudinal monitoring. These guidelines provide a structure for evidence-based diagnosis and management for practicing physicians. Early diagnosis and management of these disorders are essential, particularly given the availability of new and emerging therapies.
Collapse
Affiliation(s)
- Amy K Dickey
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Siobán B Keel
- Division of Hematology, University of Washington School of Medicine, Seattle, Washington
| | - Cynthia Levy
- Division of Digestive Health and Liver Diseases, University of Miami Miller School of Medicine, Miami, Florida
| | - Simon W Beaven
- Vatche & Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California Los Angeles Medical Center, Los Angeles, California
| | - Sarina B Elmariah
- Harvard Medical School, Boston, Massachusetts; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Angelika L Erwin
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, Ohio
| | - Robert J Goddu
- Division of Continuing Education, University of Colorado Boulder, Boulder, Colorado
| | - Karli Hedstrom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rebecca K Leaf
- Harvard Medical School, Boston, Massachusetts; Division of Hematology and Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marshall Mazepa
- Division of Hematology and Oncology, University of Minnesota Medical Center, Minneapolis, Minnesota
| | | | - John Quigley
- Division of Hematology/Oncology, Department of Medicine, University of Illinois Chicago, Chicago, Illinois
| | - Haya Raef
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Sean R Rudnick
- Department of Internal Medicine, Section on Gastroenterology and Hepatology, Atrium Health Wake Forest Baptist, Winston-Salem, North Carolina
| | - Behnam Saberi
- Harvard Medical School, Boston, Massachusetts; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Manish Thapar
- Division of Gastroenterology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Jonathan Ungar
- Department of Dermatology, Mount Sinai Hospital, New York, New York
| | - Bruce Wang
- Department of Medicine, University of California San Francisco Medical Center, San Francisco, California
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
8
|
Toufiq M, Rinchai D, Bettacchioli E, Kabeer BSA, Khan T, Subba B, White O, Yurieva M, George J, Jourde-Chiche N, Chiche L, Palucka K, Chaussabel D. Harnessing large language models (LLMs) for candidate gene prioritization and selection. J Transl Med 2023; 21:728. [PMID: 37845713 PMCID: PMC10580627 DOI: 10.1186/s12967-023-04576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Feature selection is a critical step for translating advances afforded by systems-scale molecular profiling into actionable clinical insights. While data-driven methods are commonly utilized for selecting candidate genes, knowledge-driven methods must contend with the challenge of efficiently sifting through extensive volumes of biomedical information. This work aimed to assess the utility of large language models (LLMs) for knowledge-driven gene prioritization and selection. METHODS In this proof of concept, we focused on 11 blood transcriptional modules associated with an Erythroid cells signature. We evaluated four leading LLMs across multiple tasks. Next, we established a workflow leveraging LLMs. The steps consisted of: (1) Selecting one of the 11 modules; (2) Identifying functional convergences among constituent genes using the LLMs; (3) Scoring candidate genes across six criteria capturing the gene's biological and clinical relevance; (4) Prioritizing candidate genes and summarizing justifications; (5) Fact-checking justifications and identifying supporting references; (6) Selecting a top candidate gene based on validated scoring justifications; and (7) Factoring in transcriptome profiling data to finalize the selection of the top candidate gene. RESULTS Of the four LLMs evaluated, OpenAI's GPT-4 and Anthropic's Claude demonstrated the best performance and were chosen for the implementation of the candidate gene prioritization and selection workflow. This workflow was run in parallel for each of the 11 erythroid cell modules by participants in a data mining workshop. Module M9.2 served as an illustrative use case. The 30 candidate genes forming this module were assessed, and the top five scoring genes were identified as BCL2L1, ALAS2, SLC4A1, CA1, and FECH. Researchers carefully fact-checked the summarized scoring justifications, after which the LLMs were prompted to select a top candidate based on this information. GPT-4 initially chose BCL2L1, while Claude selected ALAS2. When transcriptional profiling data from three reference datasets were provided for additional context, GPT-4 revised its initial choice to ALAS2, whereas Claude reaffirmed its original selection for this module. CONCLUSIONS Taken together, our findings highlight the ability of LLMs to prioritize candidate genes with minimal human intervention. This suggests the potential of this technology to boost productivity, especially for tasks that require leveraging extensive biomedical knowledge.
Collapse
Affiliation(s)
- Mohammed Toufiq
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Eleonore Bettacchioli
- INSERM UMR1227, Lymphocytes B et Autoimmunité, Université de Bretagne Occidentale, Brest, France
- Service de Rhumatologie, CHU de Brest, Brest, France
| | | | - Taushif Khan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Bishesh Subba
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Olivia White
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | | - Laurent Chiche
- Service de Médecine Interne, Hôpital Européen, Marseille, France
| | - Karolina Palucka
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | | |
Collapse
|
9
|
Balwani M, Bonkovsky HL, Levy C, Anderson KE, Bissell DM, Parker C, Takahashi F, Desnick RJ, Belongie K. Dersimelagon in Erythropoietic Protoporphyrias. N Engl J Med 2023; 388:1376-1385. [PMID: 37043653 DOI: 10.1056/nejmoa2208754] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Erythropoietic protoporphyria and X-linked protoporphyria are inborn errors of heme biosynthesis that cause elevated circulating levels of metal-free protoporphyrin and phototoxicity. Both disorders are characterized by excruciating phototoxic attacks after exposure to visible light. Dersimelagon is a new, orally administered, selective melanocortin 1 receptor agonist that increases levels of skin eumelanin. METHODS We conducted a randomized, placebo-controlled, phase 2 trial to investigate the efficacy and safety of dersimelagon with respect to the time to onset and the severity of symptoms associated with sunlight exposure in patients with erythropoietic protoporphyria or X-linked protoporphyria. Patients 18 to 75 years of age were randomly assigned in a 1:1:1 ratio to receive placebo or dersimelagon at a dose of 100 or 300 mg once daily for 16 weeks. The primary end point was the change from baseline to week 16 in the time to the first prodromal symptom associated with sunlight exposure. Patients recorded daily sunlight exposure and symptom data in an electronic diary. Quality of life and safety were also assessed. RESULTS Of the 102 patients (93 with erythropoietic protoporphyria and 9 with X-linked protoporphyria) who underwent randomization, 90% completed the treatment period. The mean daily time to the first prodromal symptom associated with sunlight exposure increased significantly with dersimelagon: the least-squares mean difference from placebo in the change from baseline to week 16 was 53.8 minutes in the 100-mg dersimelagon group (P = 0.008) and 62.5 minutes in the 300-mg dersimelagon group (P = 0.003). The results also suggest that quality of life improved in patients receiving dersimelagon as compared with placebo. The most common adverse events that occurred or worsened during treatment were nausea, freckles, headache, and skin hyperpigmentation. CONCLUSIONS At both doses evaluated, dersimelagon significantly increased the duration of symptom-free sunlight exposure in patients with erythropoietic protoporphyria or X-linked protoporphyria. (Funded by Mitsubishi Tanabe Pharma; Endeavor ClinicalTrials.gov number, NCT03520036.).
Collapse
Affiliation(s)
- Manisha Balwani
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Herbert L Bonkovsky
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Cynthia Levy
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Karl E Anderson
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - D Montgomery Bissell
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Charles Parker
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Fumihiro Takahashi
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Robert J Desnick
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| | - Kirstine Belongie
- From the Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York (M.B., R.J.D.); the Section on Gastroenterology and Hepatology, Wake Forest University-North Carolina Baptist Medical Center, Winston-Salem (H.L.B.); Schiff Center for Liver Diseases, University of Miami Miller School of Medicine, Miami (C.L.); the Division of Gastroenterology and Hepatology and the Porphyria Center, University of Texas Medical Branch, Galveston (K.E.A.); Liver Center and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City (C.P.); Mitsubishi Tanabe Pharma Corporation, Tokyo (F.T.); and Mitsubishi Tanabe Pharma Development America, Jersey City, NJ (K.B.)
| |
Collapse
|
10
|
Tran JU, Brown BL. The yeast ALA synthase C-terminus positively controls enzyme structure and function. Protein Sci 2023; 32:e4600. [PMID: 36807942 PMCID: PMC10031213 DOI: 10.1002/pro.4600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
5-Aminolevulinic acid synthase (ALAS) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the first and rate-limiting step of heme biosynthesis in α-proteobacteria and several non-plant eukaryotes. All ALAS homologs contain a highly conserved catalytic core, but eukaryotes also have a unique C-terminal extension that plays a role in enzyme regulation. Several mutations in this region are implicated in multiple blood disorders in humans. In Saccharomyces cerevisiae ALAS (Hem1), the C-terminal extension wraps around the homodimer core to contact conserved ALAS motifs proximal to the opposite active site. To determine the importance of these Hem1 C-terminal interactions, we determined the crystal structure of S. cerevisiae Hem1 lacking the terminal 14 amino acids (Hem1 ΔCT). With truncation of the C-terminal extension, we show structurally and biochemically that multiple catalytic motifs become flexible, including an antiparallel β-sheet important to Fold-Type I PLP-dependent enzymes. The changes in protein conformation result in an altered cofactor microenvironment, decreased enzyme activity and catalytic efficiency, and ablation of subunit cooperativity. These findings suggest that the eukaryotic ALAS C-terminus has a homolog-specific role in mediating heme biosynthesis, indicating a mechanism for autoregulation that can be exploited to allosterically modulate heme biosynthesis in different organisms.
Collapse
Affiliation(s)
- Jenny U. Tran
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - Breann L. Brown
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Center for Structural BiologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
11
|
Balwani M, Naik H, Overbey JR, Bonkovsky HL, Bissell DM, Wang B, Phillips JD, Desnick RJ, Anderson KE. A pilot study of oral iron therapy in erythropoietic protoporphyria and X-linked protoporphyria. Mol Genet Metab Rep 2022; 33:100939. [PMID: 36406817 PMCID: PMC9672425 DOI: 10.1016/j.ymgmr.2022.100939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of iron supplementation for anemia in erythropoietic protoporphyria (EPP) is controversial with both benefit and deterioration reported in single case reports. There is no systematic study to evaluate the benefits or risks of iron supplementation in these patients. We assessed the potential efficacy of oral iron therapy in decreasing erythrocyte protoporphyrin (ePPIX) levels in patients with EPP or X-linked protoporphyria (XLP) and low ferritin in an open-label, single-arm, interventional study. Sixteen patients (≥18 years) with EPP or XLP confirmed by biochemical and/or genetic testing, and serum ferritin ≤30 ng/mL were enrolled. Baseline testing included iron studies, normal hepatic function, and elevated plasma porphyrins and ePPIX levels. Oral ferrous sulfate 325 mg twice daily was administered for 12 months. The primary efficacy outcome was the relative difference in total ePPIX level between baseline and 12 months after starting treatment with iron. Secondary measures included improvement in serum ferritin, plasma porphyrins, and clinical symptoms. Thirteen patients had EPP (8 females, 5 males) and 3 had XLP (all females) and the mean age of participants was 38.8 years (SD 14.5). Ten patients completed all study visits limiting interpretation of results. In EPP patients, a transient increase in ePPIX levels was observed at 3 months in 9 of 12 (75%) patients. Iron was discontinued in 2 of these patients after meeting the protocol stopping rule of a 35% increase in ePPIX. Seven patients withdrew before study end. Ferritin levels increased on iron replacement indicating an improvement in iron status. A decrease in ePPIX was seen in both XLP patients who completed the study (relative difference of 0.67 and 0.5 respectively). No substantial changes in ePPIX were seen in EPP patients at the end of the study (n = 8; median relative difference: -0.21 (IQR: −0.44, 0.05). The most common side effects of iron treatment were gastrointestinal symptoms. Hepatic function remained normal throughout the study. Our study showed that oral iron therapy repletes iron stores and transiently increases ePPIX in some EPP patients, perhaps due to a transient increase in erythropoiesis, and may decrease ePPIX in XLP patients. Further studies are needed to better define the role of iron repletion in EPP. Trial registration: NCT02979249.
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corresponding author at: Department of Genetics and Genomic Sciences, One Gustave L. Levy Place, Box 1497, New York, NY 10029, USA.
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica R. Overbey
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Bruce Wang
- Department of Medicine, University of California, San Francisco, CA, USA
| | - John D. Phillips
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karl E. Anderson
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
12
|
Abstract
Porphyrias are disorders of the haem biosynthesis which are encountered infrequently and which often present themselves atypically as a combination of gastrointestinal, neurologic and/or dermatologic symptoms. Although they are primarily caused by enzyme defects, inheritance patterns are mostly not evident. Considering all of these characteristics, it is not surprising that there is a long delay between the onset of symptoms and the diagnosis of the disease, with as possible consequences impaired quality of life, irreversible neurologic damage and even death. This review aims to increase the clinical suspicion of the three most common porphyrias in adults: acute intermittent porphyria (AIP), porphyria cutanea tarda (PCT) and protoporphyria. Their relevant pathophysiology, clinical manifestations, diagnosis and treatment are discussed aiming at increasing the awareness of these diseases among physicians.
Collapse
Affiliation(s)
- Benjamin Heymans
- Department of General Internal Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
13
|
Taylor JL, Brown BL. Structural basis for dysregulation of aminolevulinic acid synthase in human disease. J Biol Chem 2022; 298:101643. [PMID: 35093382 PMCID: PMC8892079 DOI: 10.1016/j.jbc.2022.101643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/19/2023] Open
Abstract
Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.
Collapse
Affiliation(s)
- Jessica L Taylor
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Breann L Brown
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
14
|
Di Pierro E, Granata F, De Canio M, Rossi M, Ricci A, Marcacci M, De Luca G, Sarno L, Barbieri L, Ventura P, Graziadei G. Recognized and Emerging Features of Erythropoietic and X-Linked Protoporphyria. Diagnostics (Basel) 2022; 12:diagnostics12010151. [PMID: 35054318 PMCID: PMC8775248 DOI: 10.3390/diagnostics12010151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inherited disorders resulting from defects in two different enzymes of the heme biosynthetic pathway, i.e., ferrochelatase (FECH) and delta-aminolevulinic acid synthase-2 (ALAS2), respectively. The ubiquitous FECH catalyzes the insertion of iron into the protoporphyrin ring to generate the final product, heme. After hemoglobinization, FECH can utilize other metals like zinc to bind the remainder of the protoporphyrin molecules, leading to the formation of zinc protoporphyrin. Therefore, FECH deficiency in EPP limits the formation of both heme and zinc protoporphyrin molecules. The erythroid-specific ALAS2 catalyses the synthesis of delta-aminolevulinic acid (ALA), from the union of glycine and succinyl-coenzyme A, in the first step of the pathway in the erythron. In XLP, ALAS2 activity increases, resulting in the amplified formation of ALA, and iron becomes the rate-limiting factor for heme synthesis in the erythroid tissue. Both EPP and XLP lead to the systemic accumulation of protoporphyrin IX (PPIX) in blood, erythrocytes, and tissues causing the major symptom of cutaneous photosensitivity and several other less recognized signs that need to be considered. Although significant advances have been made in our understanding of EPP and XLP in recent years, a complete understanding of the factors governing the variability in clinical expression and the severity (progression) of the disease remains elusive. The present review provides an overview of both well-established facts and the latest findings regarding these rare diseases.
Collapse
Affiliation(s)
- Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
- Correspondence: or ; Tel.: +39-0255036155
| | - Francesca Granata
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
| | - Michele De Canio
- Porphyria and Rare Diseases Centre, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (M.D.C.); (L.B.)
| | - Mariateresa Rossi
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy; (M.R.); (L.S.)
| | - Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.); (P.V.)
| | - Matteo Marcacci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.); (P.V.)
| | - Giacomo De Luca
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
| | - Luisa Sarno
- Department of Dermatology, ASST Spedali Civili di Brescia, University of Brescia, 25123 Brescia, Italy; (M.R.); (L.S.)
| | - Luca Barbieri
- Porphyria and Rare Diseases Centre, San Gallicano Dermatological Institute IRCCS, 00144 Rome, Italy; (M.D.C.); (L.B.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.); (P.V.)
| | - Giovanna Graziadei
- Dipartimento di Medicina Interna, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (F.G.); (G.D.L.); (G.G.)
| |
Collapse
|
15
|
Erwin AL, Balwani M. Porphyrias in the Age of Targeted Therapies. Diagnostics (Basel) 2021; 11:diagnostics11101795. [PMID: 34679493 PMCID: PMC8534485 DOI: 10.3390/diagnostics11101795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023] Open
Abstract
The porphyrias are a group of eight rare genetic disorders, each caused by the deficiency of one of the enzymes in the heme biosynthetic pathway, resulting in the excess accumulation of heme precursors and porphyrins. Depending on the tissue site as well as the chemical characteristics of the accumulating substances, the clinical features of different porphyrias vary substantially. Heme precursors are neurotoxic, and their accumulation results in acute hepatic porphyria, while porphyrins are photoactive, and excess amounts cause cutaneous porphyrias, which present with photosensitivity. These disorders are clinically heterogeneous but can result in severe clinical manifestations, long-term complications and a significantly diminished quality of life. Medical management consists mostly of the avoidance of triggering factors and symptomatic treatment. With an improved understanding of the underlying pathophysiology and disease mechanisms, new treatment approaches have become available, which address the underlying defects at a molecular or cellular level, and promise significant improvement, symptom prevention and more effective treatment of acute and chronic disease manifestations.
Collapse
Affiliation(s)
- Angelika L. Erwin
- Center for Personalized Genetic Healthcare, Cleveland Clinic & Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Correspondence: ; Tel.: +1-216-444-9249
| | - Manisha Balwani
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| |
Collapse
|
16
|
Noyman Y, Edel Y, Snast I, Sherman S, Kaftory R, Lapidoth M, Mimouni D, Hodak E, Levi A. Inherited genetic late-onset erythropoietic protoporphyria: A systematic review of the literature. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2021; 37:374-379. [PMID: 33556208 DOI: 10.1111/phpp.12667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Inherited genetic erythropoietic protoporphyria (EPP) is characterized by a photosensitive rash that emerges during infancy or early childhood. Acquired EPP can erupt at any age, even during adulthood, and is associated with hematological disorders. A third, less-studied type of EPP is also inherited but appears later in life (during adulthood). PURPOSE To evaluate the characteristics of inherited genetic late-onset (IGLO) EPP. METHODS A systematic comprehensive search of the literature was conducted using PubMed, Google Scholar, ScienceDirect, and clinicaltrials.gov databases. Studies describing patients with IGLO EPP were included. Additionally, we present an index case of a patient, treated at our clinic in whom inherited genetic EPP was diagnosed at age 21 years. RESULTS The search yielded 1514 citations. Five publications were eligible for review. Along with our case, 7 patients (4 males) were included in the analysis. Mean age at disease onset was 34.2 years (range 18-69, median 30). Most patients presented with mild pruritus and rash in a photosensitive distribution. Mean level of free erythrocyte protoporphyrin IX (FEP) was 8.6 μmol/L. A mutant ferrochelatase gene (FECH) in trans to a hypomorphic FECH allele was found in 3 of the 4 patients who underwent genetic testing. CONCLUSION We describe the distinct features of IGLO EPP. This work emphasizes that a diagnosis of inherited genetic EPP should not be ruled out in adults with new-onset photosensitive manifestations.
Collapse
Affiliation(s)
- Yehonatan Noyman
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Edel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Porphyria Center, Rabin Medical Center - Beilnson Hospital, Petah Tikva, Israel
- Rheumatology Unit, Rabin Medical Center - Beilnson Hospital, Petah Tikva, Israel
| | - Igor Snast
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shany Sherman
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ran Kaftory
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Lapidoth
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Mimouni
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Emmilia Hodak
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Assi Levi
- Photodermatosis Service, Division of Dermatology, Rabin Medical Center, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
17
|
Liu Y, Trnka MJ, Guan S, Kwon D, Kim DH, Chen JJ, Greer PA, Burlingame AL, Correia MA. A Novel Mechanism for NF-κB-activation via IκB-aggregation: Implications for Hepatic Mallory-Denk-Body Induced Inflammation. Mol Cell Proteomics 2020; 19:1968-1986. [PMID: 32912968 PMCID: PMC7710137 DOI: 10.1074/mcp.ra120.002316] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 11/06/2022] Open
Abstract
Mallory-Denk-bodies (MDBs) are hepatic protein aggregates associated with inflammation both clinically and in MDB-inducing models. Similar protein aggregation in neurodegenerative diseases also triggers inflammation and NF-κB activation. However, the precise mechanism that links protein aggregation to NF-κB-activation and inflammatory response remains unclear. Herein we find that treating primary hepatocytes with MDB-inducing agents (N-methylprotoporphyrin (NMPP), protoporphyrin IX (PPIX), or Zinc-protoporphyrin IX (ZnPP)) elicited an IκBα-loss with consequent NF-κB activation. Four known mechanisms of IκBα-loss i.e. the canonical ubiquitin-dependent proteasomal degradation (UPD), autophagic-lysosomal degradation, calpain degradation and translational inhibition, were all probed and excluded. Immunofluorescence analyses of ZnPP-treated cells coupled with 8 M urea/CHAPS-extraction revealed that this IκBα-loss was due to its sequestration along with IκBβ into insoluble aggregates, thereby releasing NF-κB. Through affinity pulldown, proximity biotinylation by antibody recognition, and other proteomic analyses, we verified that NF-κB subunit p65, which stably interacts with IκBα under normal conditions, no longer binds to it upon ZnPP-treatment. Additionally, we identified 10 proteins that interact with IκBα under baseline conditions, aggregate upon ZnPP-treatment, and maintain the interaction with IκBα after ZnPP-treatment, either by cosequestering into insoluble aggregates or through a different mechanism. Of these 10 proteins, the nucleoporins Nup153 and Nup358/RanBP2 were identified through RNA-interference, as mediators of IκBα-nuclear import. The concurrent aggregation of IκBα, NUP153, and RanBP2 upon ZnPP-treatment, synergistically precluded the nuclear entry of IκBα and its consequent binding and termination of NF-κB activation. This novel mechanism may account for the protein aggregate-induced inflammation observed in liver diseases, thus identifying novel targets for therapeutic intervention. Because of inherent commonalities this MDB cell model is a bona fide protoporphyric model, making these findings equally relevant to the liver inflammation associated with clinical protoporphyria.
Collapse
Affiliation(s)
- Yi Liu
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Shenheng Guan
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Doyoung Kwon
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Do-Hyung Kim
- Departments of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, USA
| | - J-J Chen
- Institute for Medical Engineering and Science, MIT, Cambridge, Massachusetts, USA
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - A L Burlingame
- Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
18
|
Bailey HJ, Bezerra GA, Marcero JR, Padhi S, Foster WR, Rembeza E, Roy A, Bishop DF, Desnick RJ, Bulusu G, Dailey HA, Yue WW. Human aminolevulinate synthase structure reveals a eukaryotic-specific autoinhibitory loop regulating substrate binding and product release. Nat Commun 2020; 11:2813. [PMID: 32499479 PMCID: PMC7272653 DOI: 10.1038/s41467-020-16586-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
5'-aminolevulinate synthase (ALAS) catalyzes the first step in heme biosynthesis, generating 5'-aminolevulinate from glycine and succinyl-CoA. Inherited frameshift indel mutations of human erythroid-specific isozyme ALAS2, within a C-terminal (Ct) extension of its catalytic core that is only present in higher eukaryotes, lead to gain-of-function X-linked protoporphyria (XLP). Here, we report the human ALAS2 crystal structure, revealing that its Ct-extension folds onto the catalytic core, sits atop the active site, and precludes binding of substrate succinyl-CoA. The Ct-extension is therefore an autoinhibitory element that must re-orient during catalysis, as supported by molecular dynamics simulations. Our data explain how Ct deletions in XLP alleviate autoinhibition and increase enzyme activity. Crystallography-based fragment screening reveals a binding hotspot around the Ct-extension, where fragments interfere with the Ct conformational dynamics and inhibit ALAS2 activity. These fragments represent a starting point to develop ALAS2 inhibitors as substrate reduction therapy for porphyria disorders that accumulate toxic heme intermediates.
Collapse
Affiliation(s)
- Henry J Bailey
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Gustavo A Bezerra
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Siladitya Padhi
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - William R Foster
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Elzbieta Rembeza
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Arijit Roy
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - David F Bishop
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Robert J Desnick
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gopalakrishnan Bulusu
- TCS Innovation Labs-Hyderabad (Life Sciences Division), Tata Consultancy Services Ltd, Hyderabad, 500081, India
| | - Harry A Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Wyatt W Yue
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
19
|
Wang T, Wang Y, Dong Q, Xu C, Zhou X, Ouyang Y, Liu Y, Lee JJ, Hu N, Wang K, Zdravkovic TP, Shen J, Nie G, Lian CG, Liu Y. X-linked dominant protoporphyria in a Chinese pedigree reveals a four-based deletion of ALAS2. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:344. [PMID: 32355788 PMCID: PMC7186625 DOI: 10.21037/atm.2020.02.80] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background X-linked dominant protoporphyria (XLDPP) is a rare, hereditary disorder that leads to hepatobiliary and hematologic abnormalities including increased erythrocyte protoporphyrin, cutaneous photosensitivity, and decreased iron stores that is caused by a pathogenic mutation of ALAS2 gene. Methods This study aimed to confirm the existence of XLDPP in a Chinese pedigree. We observed and described the dermatoscopic findings of this disorder under dermoscopy, and assessed photo damage in XLDPP patients using the Fotofinder system and very high frequency (VHF) skin ultrasonic system. We performed next generation sequencing and Sanger sequencing to detect and confirm genetic variants in DNA samples from the XLDPP family. Moreover, we monitored the hepatobiliary function as well as hematologic changes in related family members. Results As compared to unaffected control subjects, patients exhibited evidence of severe cutaneous photodamage, causing photoaging, an increase in the size of the gallbladder, increased levels of protoporphyrin in red blood cells, an increase in blood levels of uroporphyrin and hematoporphyrin, and iron deficiency. Conclusions XLDPP was validated by the identification of a four-base-pair deletion (c.1706_1709delAGTG, p.E569fs) in ALAS2 (NM_000032.4) in the proband which segregated with the disease in an X-linked dominant pattern, with hemizygous males being more severely affected than heterozygous females. We also found a missense variant in GATA Binding Protein 1 (GATA1).
Collapse
Affiliation(s)
- Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yongwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qi Dong
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chenchen Xu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiping Zhou
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yunshu Ouyang
- Department of Ultrasound Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaping Liu
- Department of Medical Genetics and National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jonathan J Lee
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Nina Hu
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kevin Wang
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,SUNY Upstate Medical University, Syracuse, NY, USA
| | - Tanja Prunk Zdravkovic
- Dermatovenerology Department, Celje General and Teaching Hospital, Oblakova 5, 3000 Celje, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jun Shen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Laboratory for Molecular Medicine, Partners Personalized Medicine, Cambridge, MA, USA
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yuehua Liu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
20
|
Patsali P, Mussolino C, Ladas P, Floga A, Kolnagou A, Christou S, Sitarou M, Antoniou MN, Cathomen T, Lederer CW, Kleanthous M. The Scope for Thalassemia Gene Therapy by Disruption of Aberrant Regulatory Elements. J Clin Med 2019; 8:jcm8111959. [PMID: 31766235 PMCID: PMC6912506 DOI: 10.3390/jcm8111959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022] Open
Abstract
The common IVSI-110 (G>A) β-thalassemia mutation is a paradigm for intronic disease-causing mutations and their functional repair by non-homologous end joining-mediated disruption. Such mutation-specific repair by disruption of aberrant regulatory elements (DARE) is highly efficient, but to date, no systematic analysis has been performed to evaluate disease-causing mutations as therapeutic targets. Here, DARE was performed in highly characterized erythroid IVSI-110(G>A) transgenic cells and the disruption events were compared with published observations in primary CD34+ cells. DARE achieved the functional correction of β-globin expression equally through the removal of causative mutations and through the removal of context sequences, with disruption events and the restriction of indel events close to the cut site closely resembling those seen in primary cells. Correlation of DNA-, RNA-, and protein-level findings then allowed the extrapolation of findings to other mutations by in silico analyses for potential repair based on the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9, Cas12a, and transcription activator-like effector nuclease (TALEN) platforms. The high efficiency of DARE and unexpected freedom of target design render the approach potentially suitable for 14 known thalassemia mutations besides IVSI-110(G>A) and put it forward for several prominent mutations causing other inherited diseases. The application of DARE, therefore, has a wide scope for sustainable personalized advanced therapy medicinal product development for thalassemia and beyond.
Collapse
Affiliation(s)
- Petros Patsali
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.M.); (T.C.)
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Petros Ladas
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Argyro Floga
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| | - Annita Kolnagou
- Thalassemia Clinic Paphos, Paphos General Hospital, 8100 Paphos, Cyprus;
| | - Soteroula Christou
- Thalassemia Clinic Nicosia, Archbishop Makarios III Hospital, 1474 Nicosia, Cyprus;
| | - Maria Sitarou
- Thalassemia Clinic Larnaca, Larnaca General Hospital, 6301 Larnaca, Cyprus;
| | - Michael N. Antoniou
- Department of Medical and Molecular Genetics, King’s College London, London SE1 9RT, UK;
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center–University of Freiburg, 79106 Freiburg, Germany; (C.M.); (T.C.)
- Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Carsten Werner Lederer
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
- Correspondence: ; Tel.: +357-22-392-764
| | - Marina Kleanthous
- Department of Molecular Genetics Thalassemia, The Cyprus Institute of Neurology and Genetics, 2371 Nicosia, Cyprus; (P.P.); (A.F.); (M.K.)
- Cyprus School of Molecular Medicine, 2371 Nicosia, Cyprus
| |
Collapse
|
21
|
Stojanovski BM, Hunter GA, Na I, Uversky VN, Jiang RHY, Ferreira GC. 5-Aminolevulinate synthase catalysis: The catcher in heme biosynthesis. Mol Genet Metab 2019; 128:178-189. [PMID: 31345668 PMCID: PMC6908770 DOI: 10.1016/j.ymgme.2019.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
Abstract
5-Aminolevulinate (ALA) synthase (ALAS), a homodimeric pyridoxal-5'-phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in metazoa, fungi and α-proteobacteria. In this review, we focus on the advances made in unraveling the mechanism of the ALAS-catalyzed reaction during the past decade. The interplay between the PLP cofactor and the protein moiety determines and modulates the multi-intermediate reaction cycle of ALAS, which involves the decarboxylative condensation of two substrates, glycine and succinyl-CoA. Substrate binding and catalysis are rapid, and product (ALA) release dominates the overall ALAS kinetic mechanism. Interconversion between a catalytically incompetent, open conformation and a catalytically competent, closed conformation is linked to ALAS catalysis. Reversion to the open conformation, coincident with ALA dissociation, defines the slowest step of the reaction cycle. These findings were further substantiated by introducing seven mutations in the16-amino acid loop that gates the active site, yielding an ALAS variant with a greatly increased rate of catalytic turnover and heightened specificity constants for both substrates. Recently, molecular dynamics (MD) simulation analysis of various dimeric ALAS forms revealed that the seven active site loop mutations caused the proteins to adopt different conformations. In particular, the emergence of a β-strand in the mutated loop, which interacted with two preexisting β-strands to form an anti-parallel three-stranded β-sheet, conferred the murine heptavariant with a more stable open conformation and prompted faster product release than wild-type mALAS2. Moreover, the dynamics of the mALAS2 active site loop anti-correlated with that of the 35 amino acid C-terminal sequence. This led us to propose that this C-terminal extension, which is absent in prokaryotic ALASs, finely tunes mammalian ALAS activity. Based on the above results, we extend our previous proposal to include that discovery of a ligand inducing the mammalian C-terminal extension to fold offers a good prospect for the development of a new drug for X-linked protoporphyria and/or other porphyrias associated with enhanced ALAS activity and/or porphyrin accumulation.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Gregory A Hunter
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Insung Na
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Gloria C Ferreira
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Department of Chemistry, College of Arts and Sciences, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
22
|
Yasuda M, Chen B, Desnick RJ. Recent advances on porphyria genetics: Inheritance, penetrance & molecular heterogeneity, including new modifying/causative genes. Mol Genet Metab 2019; 128:320-331. [PMID: 30594473 PMCID: PMC6542720 DOI: 10.1016/j.ymgme.2018.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/16/2022]
Abstract
The inborn errors of heme biosynthesis, the Porphyrias, include eight major disorders resulting from loss-of-function (LOF) or gain-of-function (GOF) mutations in eight of the nine heme biosynthetic genes. The major sites of heme biosynthesis are the liver and erythron, and the underlying pathophysiology of each of these disorders depends on the unique biochemistry, cell biology, and genetic mechanisms in these tissues. The porphyrias are classified into three major categories: 1) the acute hepatic porphyrias (AHPs), including Acute Intermittent Porphyria (AIP), Hereditary Coproporphyria (HCP), Variegate Porphyria (VP), and 5-Aminolevlulinic Acid Dehydratase Deficient Porphyria (ADP); 2) a hepatic cutaneous porphyria, Porphyria Cutanea Tarda (PCT); and 3) the cutaneous erythropoietic porphyrias, Congenital Erythropoietic Porphyria (CEP), Erythropoietic Protoporphyria (EPP), and X-Linked Protoporphyria (XLP). Their modes of inheritance include autosomal dominant with markedly decreased penetrance (AIP, VP, and HCP), autosomal recessive (ADP, CEP, and EPP), or X-linked (XLP), as well as an acquired sporadic form (PCT). There are severe homozygous dominant forms of the three AHPs. For each porphyria, its phenotype, inheritance pattern, unique genetic principles, and molecular genetic heterogeneity are presented. To date, >1000 mutations in the heme biosynthetic genes causing their respective porphyrias have been reported, including low expression alleles and genotype/phenotype correlations that predict severity for certain porphyrias. The tissue-specific regulation of heme biosynthesis and the unique genetic mechanisms for each porphyria are highlighted.
Collapse
Affiliation(s)
- Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
23
|
Weiss Y, Balwani M, Chen B, Yasuda M, Nazarenko I, Desnick RJ. Congenital erythropoietic porphyria and erythropoietic protoporphyria: Identification of 7 uroporphyrinogen III synthase and 20 ferrochelatase novel mutations. Mol Genet Metab 2019; 128:358-362. [PMID: 30454868 DOI: 10.1016/j.ymgme.2018.08.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/16/2022]
Abstract
The erythropoietic porphyrias are inborn errors of heme biosynthesis with prominent cutaneous manifestations. They include autosomal recessive Congenital Erythropoietic Porphyria (CEP) due to loss-of-function (LOF) mutations in the Uroporphyrinogen III Synthase (UROS) gene, Erythropoietic Protoporphyria (EPP) due to LOF mutations in the ferrochelatase (FECH) gene, and X-Linked Protoporphyria (XLP) due to gain-of-function mutations in the terminal exon of the Aminolevulinic Acid Synthase 2 (ALAS2) gene. During the 11-year period from 01/01/2007 through 12/31/2017, the Mount Sinai Porphyrias Diagnostic Laboratory provided molecular diagnostic testing for one or more of these disorders in 628 individuals, including 413 unrelated individuals. Of these 628, 120 patients were tested for CEP, 483 for EPP, and 331 for XLP, for a total of 934 tests. For CEP, 24 of 78 (31%) unrelated individuals tested had UROS mutations, including seven novel mutations. For EPP, 239 of 362 (66%) unrelated individuals tested had pathogenic FECH mutations, including twenty novel mutations. The IVS3-48 T > C low-expression allele was present in 231 (97%) of 239 mutation-positive EPP probands with a pathogenic FECH mutation. In the remaining 3%, three patients with two different FECH mutations in trans were identified. For XLP, 24 of 250 (10%) unrelated individuals tested had ALAS2 exon 11 mutations. No novel ALAS2 mutations were identified. Among family members referred for testing, 33 of 42 (79%) CEP, 62 of 121 (51%) EPP, and 31 of 81 (38%) XLP family members had the respective family mutation. Mutation-positive CEP, EPP, and XLP patients who had been biochemically tested had marked elevations of the disease-appropriate porphyrin intermediates. These results expand the molecular heterogeneity of the erythropoietic porphyrias by adding a total of 27 novel mutations. The results document the usefulness of molecular testing to confirm the positive biochemical findings in these patients and to identify heterozygous family members.
Collapse
Affiliation(s)
- Yedidyah Weiss
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Brenden Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Makiko Yasuda
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Irina Nazarenko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
24
|
Balwani M. Erythropoietic Protoporphyria and X-Linked Protoporphyria: pathophysiology, genetics, clinical manifestations, and management. Mol Genet Metab 2019; 128:298-303. [PMID: 30704898 PMCID: PMC6656624 DOI: 10.1016/j.ymgme.2019.01.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022]
Abstract
Erythropoietic Protoporphyria (EPP) and X-linked Protoporphyria (XLP) are rare, genetic photodermatoses resulting from defects in enzymes of the heme-biosynthetic pathway. EPP results from the partial deficiency of ferrochelatase, and XLP results from gain-of-function mutations in erythroid specific ALAS2. Both disorders result in the accumulation of erythrocyte protoporphyrin, which is released in the plasma and taken up by the liver and vascular endothelium. The accumulated protoporphyrin is activated by sunlight exposure, generating singlet oxygen radical reactions leading to tissue damage and excruciating pain. About 2-5% of patients develop clinically significant liver dysfunction due to protoporphyrin deposition in bile and/or hepatocytes which can advance to cholestatic liver failure requiring transplantation. Clinically these patients present with acute, severe, non-blistering phototoxicity within minutes of sun-exposure. Anemia is seen in about 47% of patients and about 27% of patients will develop abnormal serum aminotransferases. The diagnosis of EPP and XLP is made by detection of markedly increased erythrocyte protoporphyrin levels with a predominance of metal-free protoporphyrin. Genetic testing by sequencing the FECH or ALAS2 gene confirms the diagnosis. Treatment is limited to sun-protection and there are no currently available FDA-approved therapies for these disorders. Afamelanotide, a synthetic analogue of α-melanocyte stimulating hormone was found to increase pain-free sun exposure and improve quality of life in adults with EPP. It has been approved for use in the European Union since 2014 and is not available in the U.S. In addition to the development of effective therapeutics, future studies are needed to establish the role of iron and the risks related to the development of hepatopathy in these patients.
Collapse
MESH Headings
- 5-Aminolevulinate Synthetase/genetics
- Anemia/etiology
- Clinical Trials as Topic
- Dermatitis, Phototoxic
- Disease Management
- Genes, X-Linked
- Heme/metabolism
- Humans
- Liver Diseases/etiology
- Liver Diseases/physiopathology
- Porphyrias, Hepatic/complications
- Porphyrias, Hepatic/genetics
- Porphyrias, Hepatic/physiopathology
- Porphyrias, Hepatic/therapy
- Protoporphyria, Erythropoietic/complications
- Protoporphyria, Erythropoietic/genetics
- Protoporphyria, Erythropoietic/physiopathology
- Protoporphyria, Erythropoietic/therapy
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences and Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| |
Collapse
|
25
|
Peoc'h K, Nicolas G, Schmitt C, Mirmiran A, Daher R, Lefebvre T, Gouya L, Karim Z, Puy H. Regulation and tissue-specific expression of δ-aminolevulinic acid synthases in non-syndromic sideroblastic anemias and porphyrias. Mol Genet Metab 2019; 128:190-197. [PMID: 30737140 DOI: 10.1016/j.ymgme.2019.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
Recently, new genes and molecular mechanisms have been identified in patients with porphyrias and sideroblastic anemias (SA). They all modulate either directly or indirectly the δ-aminolevulinic acid synthase (ALAS) activity. ALAS, is encoded by two genes: the erythroid-specific (ALAS2), and the ubiquitously expressed (ALAS1). In the liver, ALAS1 controls the rate-limiting step in the production of heme and hemoproteins that are rapidly turned over in response to metabolic needs. Several heme regulatory targets have been identified as regulators of ALAS1 activity: 1) transcriptional repression via a heme-responsive element, 2) post-transcriptional destabilization of ALAS1 mRNA, 3) post-translational inhibition via a heme regulatory motif, 4) direct inhibition of the activity of the enzyme and 5) breakdown of ALAS1 protein via heme-mediated induction of the protease Lon peptidase 1. In erythroid cells, ALAS2 is a gatekeeper of production of very large amounts of heme necessary for hemoglobin synthesis. The rate of ALAS2 synthesis is transiently increased during the period of active heme synthesis. Its gene expression is determined by trans-activation of nuclear factor GATA1, CACC box and NF-E2-binding sites in the promoter areas. ALAS2 mRNA translation is also regulated by the iron-responsive element (IRE)/iron regulatory proteins (IRP) binding system. In patients, ALAS enzyme activity is affected in most of the mutations causing non-syndromic SA and in several porphyrias. Decreased ALAS2 activity results either directly from loss-of-function ALAS2 mutations as seen in X-linked sideroblastic anemia (XLSA) or from defect in the availability of one of its two mitochondrial substrates: glycine in SLC25A38 mutations and succinyl CoA in GLRX5 mutations. Moreover, ALAS2 gain of function mutations is responsible for X-linked protoporphyria and increased ALAS1 activity lead to acute attacks of hepatic porphyrias. A missense dominant mutation in the Walker A motif of the ATPase binding site in the gene coding for the mitochondrial protein unfoldase CLPX also contributes to increasing ALAS and subsequently protoporphyrinemia. Altogether, these recent data on human ALAS have informed our understanding of porphyrias and sideroblastic anemias pathogeneses and may contribute to new therapeutic strategies.
Collapse
Affiliation(s)
- Katell Peoc'h
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Gaël Nicolas
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Caroline Schmitt
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| | - Arienne Mirmiran
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Raed Daher
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Thibaud Lefebvre
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| | - Laurent Gouya
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| | - Zoubida Karim
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France.
| | - Hervé Puy
- INSERM U1149, CNRS ERL 8252, Centre de Recherche sur l'inflammation, Université Paris Diderot, site Bichat, Sorbonne Paris Cité, France, 16 rue Henri Huchard, 75018 Paris, France; Laboratory of Excellence, GR-Ex, Paris, France; AP-HP, HUPNVS, Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France.
| |
Collapse
|
26
|
Phillips J, Farrell C, Wang Y, Singal AK, Anderson K, Balwani M, Bissell M, Bonkovsky H, Seay T, Paw B, Desnick R, Bloomer J. Strong correlation of ferrochelatase enzymatic activity with Mitoferrin-1 mRNA in lymphoblasts of patients with protoporphyria. Mol Genet Metab 2019; 128:391-395. [PMID: 30391163 PMCID: PMC7328821 DOI: 10.1016/j.ymgme.2018.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/20/2018] [Accepted: 10/21/2018] [Indexed: 11/25/2022]
Abstract
Accumulation of protoporphyrin IX (PPIX) and Zn-PPIX, are the clinical hallmarks of protoporphyria. Phenotypic expression of protoporphyria is due to decreased activity of ferrochelatase (FECH) or to increased activity of aminolevulinic acid synthase (ALAS) in red blood cells. Other genetic defects have been shown to contribute to disease severity including loss of function mutations in the mitochondrial AAA-ATPase, CLPX and mutations in the Iron-responsive element binding protein 2 (IRP2), in mice. It is clear that multiple paths lead to a common phenotype of excess plasma PPIX that causes a phototoxic reaction on sun exposed areas. In this study we examined the association between mitochondrial iron acquisition and utilization with activity of FECH. Our data show that there is a metabolic link between the activity FECH and levels of MFRN1 mRNA. We examined the correlation between FECH activity and MFRN1 mRNA in cell lines established from patients with the classical protoporphyria, porphyria due to defects in ALAS2 mutations. Our data confirm MFRN1 message levels positively correlated with FECH enzymatic activity in all cell types.
Collapse
Affiliation(s)
- John Phillips
- Department of Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, United States.
| | - Collin Farrell
- Department of Medicine, Division of Hematology, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Yongming Wang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ashwani K Singal
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Karl Anderson
- Department of Medicine, Division of Gastroenterology, University of Texas Medical Branch, Galveston, TX, United States
| | - Manisha Balwani
- Department of Genetics, Icahn school of Medicine, New York, NY, United States
| | - Montgomery Bissell
- Department of Medicine, Division of Gastroenterology, University of California in San Francisco, San Francisco, CA, United States
| | - Herbert Bonkovsky
- Department of Medicine, Division of Gastroenterology, Wake Forest University, United States
| | - Toni Seay
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Barry Paw
- Department of Medicine, Hematology, Brigham and Women's Hospital, Boston, MA, United States
| | - Robert Desnick
- Department of Genetics, Icahn school of Medicine, New York, NY, United States
| | - Joseph Bloomer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
27
|
Erwin AL, Desnick RJ. Congenital erythropoietic porphyria: Recent advances. Mol Genet Metab 2019; 128:288-297. [PMID: 30685241 PMCID: PMC6597325 DOI: 10.1016/j.ymgme.2018.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare autosomal recessive disorder characterized by photosensitivity and by hematologic abnormalities in affected individuals. CEP is caused by mutations in the uroporphyrinogen synthase (UROS) gene. In three reported cases, CEP has been associated with a specific X-linked GATA1 mutation. Disease-causing mutations in either gene result in absent or markedly reduced UROS enzymatic activity. This in turn leads to the accumulation of the non-physiologic and photoreactive porphyrinogens, uroporphyrinogen I and coproporphyrinogen I, which damage erythrocytes and elicit a phototoxic reaction upon light exposure. The clinical spectrum of CEP depends on the level of residual UROS activity, which is determined by the underlying pathogenic loss-of-function UROS mutations. Disease severity ranges from non-immune hydrops fetalis in utero to late-onset disease with only mild cutaneous involvement. The clinical characteristics of CEP include exquisite photosensitivity to visible light resulting in bullous vesicular lesions which, when infected lead to progressive photomutilation of sun-exposed areas such as the face and hands. In addition, patients have erythrodontia (brownish discoloration of teeth) and can develop corneal scarring. Chronic transfusion-dependent hemolytic anemia is common and leads to bone marrow hyperplasia, which further increases porphyrin production. Management of CEP consists of strict avoidance of exposure to visible light with sun-protective clothing, sunglasses, and car and home window filters. Adequate care of ruptured vesicles and use of topical antibiotics is indicated to prevent superinfections and osteolysis. In patients with symptomatic hemolytic anemia, frequent erythrocyte cell transfusions may be necessary to suppress hematopoiesis and decrease marrow production of the phototoxic porphyrins. In severe transfection-dependent cases, bone marrow or hematopoietic stem cell transplantation has been performed, which is curative. Therapeutic approaches including gene therapy, proteasome inhibition, and pharmacologic chaperones are under investigation.
Collapse
Affiliation(s)
| | - Robert J. Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Address all Correspondence to: R. J. Desnick, PhD, MD, Dean for Genetic and Genomic Medicine Professor and Chairman Emeritus, Department of Genetic and Genomic Sciences Icahn School of Medicine at Mount Sinai New York, NY 10029, Phone: (212) 659-6700 Fax: (212) 360-1809
| |
Collapse
|
28
|
Ardalan ZS, Chandran S, Vasudevan A, Angus PW, Grigg A, He S, Macdonald GA, Strasser SI, Tate CJ, Kennedy GA, Testro AG, Gow PJ. Management of Patients With Erythropoietic Protoporphyria-Related Progressive Liver Disease. Liver Transpl 2019; 25:1620-1633. [PMID: 31469227 DOI: 10.1002/lt.25632] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/10/2019] [Indexed: 12/23/2022]
Abstract
Erythropoietic protoporphyria (EPP) is an inherited metabolic disorder of heme synthesis resulting from overproduction of protoporphyrin IX (PPIX), which can lead to progressive liver disease characterized by recurrent EPP crises and end-stage liver disease. We used the Australian Transplant Registry to identify 5 patients referred for liver transplantation between 2008 and 2017. A total of 4 patients had EPP secondary to ferrochelatase deficiency, and 1 patient had X-linked EPP. No patient had follow-up with a specialist prior to the diagnosis of progressive liver disease. There were 3 patients who underwent orthotopic liver transplantation, whereas 2 died while on the transplant waiting list. Parenteral PPIX-lowering therapy was used in 4 patients and was effective in 3 patients, although 2 of these had rebound porphyria and worsening liver function following a decrease in the intensity of therapy. Early disease recurrence in the allograft following transplantation occurred in 2 patients requiring red cell exchange (RCE) to successfully attain and maintain low PPIX levels, but RCE was associated with hemosiderosis in 1 patient. Allogeneic stem cell transplantation (AlloSCT) was performed in 2 patients. One failed engraftment twice, whereas the second rejected the first graft but achieved full donor chimerism with a second graft and increased immunosuppression. In conclusion, our observations suggest that progressive liver disease needs parenteral PPIX-lowering treatment with the intensity adjusted to achieve a target Erc-PPIX level. Because EPP liver disease is universally recurrent, AlloSCT should be considered in all patients with adequate immunosuppression to facilitate engraftment. RCE appears to be effective for recurrent EPP liver disease but is associated with an increased risk of iron overload.
Collapse
Affiliation(s)
- Zaid S Ardalan
- Department of Gastroenterology and Liver Transplant, Austin Hospital, Melbourne, Australia.,Department of Gastroenterology, Alfred Hospital, Melbourne, Australia
| | - Sujievvan Chandran
- Department of Gastroenterology and Liver Transplant, Austin Hospital, Melbourne, Australia
| | - Abhinav Vasudevan
- Department of Gastroenterology, Eastern Health, Melbourne, Australia
| | - Peter W Angus
- Department of Gastroenterology and Liver Transplant, Austin Hospital, Melbourne, Australia.,Melbourne University, Melbourne, Australia
| | - Andrew Grigg
- Department of Clinical Hematology, Austin Hospital, Melbourne, Australia
| | - Simon He
- Department of Clinical Hematology, Austin Hospital, Melbourne, Australia
| | - Graeme A Macdonald
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Australia
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, Australia.,University of Sydney, Sydney, Australia
| | - Courtney J Tate
- Department of Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Glen A Kennedy
- Department of Cancer Care Services, Royal Brisbane and Women's Hospital, Brisbane, Australia.,University of Queensland, Brisbane, Australia
| | - Adam G Testro
- Department of Gastroenterology and Liver Transplant, Austin Hospital, Melbourne, Australia
| | - Paul J Gow
- Department of Gastroenterology and Liver Transplant, Austin Hospital, Melbourne, Australia
| |
Collapse
|
29
|
Chiara M, Primon I, Tarantini L, Agnelli L, Brancaleoni V, Granata F, Bollati V, Di Pierro E. Targeted resequencing of FECH locus reveals that a novel deep intronic pathogenic variant and eQTLs may cause erythropoietic protoporphyria (EPP) through a methylation-dependent mechanism. Genet Med 2019; 22:35-43. [DOI: 10.1038/s41436-019-0584-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/05/2019] [Indexed: 12/29/2022] Open
|
30
|
|
31
|
Gou E, Weng C, Greene T, Anderson KE, Phillips JD. Longitudinal Analysis of Erythrocyte and Plasma Protoporphyrin Levels in Patients with Protoporphyria. J Appl Lab Med 2018; 3:213-221. [DOI: 10.1373/jalm.2017.025874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/26/2018] [Indexed: 11/06/2022]
Abstract
Abstract
Background
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inherited cutaneous porphyrias resulting from decreased activity of ferrochelatase and gain-of-function mutations of δ-aminolevulinic acid synthase-2, respectively. Both of these protoporphyrias cause increased protoporphyrin levels that cause photosensitivity and may lead to hepatopathy and further increases in erythrocyte and plasma porphyrin levels.
Methods
We evaluated erythrocyte protoporphyrin and plasma porphyrin levels in all subjects with EPP (83 subjects) or XLP (9 subjects) without evidence of liver disease tested repeatedly at a single laboratory over 25 years.
Results
Intersubject variation contributed more than intrasubject variation (78.86% vs 21.14%) to overall variability, and longitudinal variability, estimated by CV, averaged 26%. Erythrocyte total protoporphyrin levels were similar in males and females with EPP (ratio, 0.99; 95% CI, 0.82–1.21; P = 0.96) but were higher in males than females with XLP, although this difference was not statistically significant (ratio, 0.76; 95% CI, 0.43–1.36; P = 0.35). Analysis of 20 subjects from 9 separate families showed significant effects of family compared with effects of individual variation on total variance (50% vs 25%; P < 0.0001).
Conclusion
Variation of erythrocyte total protoporphyrin up to 25% is expected in patients with protoporphyria, whereas greater increases might raise concern for protoporphyric hepatopathy.
Collapse
Affiliation(s)
- Eric Gou
- University of Texas Medical Branch, Galveston, TX
| | | | | | | | | |
Collapse
|
32
|
Diffuse 18F-FDG Avidity in Liver Associated With X-Linked Protoporphyria on PET/CT. Clin Nucl Med 2018; 43:617-618. [DOI: 10.1097/rlu.0000000000002159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Anti-Correlation between the Dynamics of the Active Site Loop and C-Terminal Tail in Relation to the Homodimer Asymmetry of the Mouse Erythroid 5-Aminolevulinate Synthase. Int J Mol Sci 2018; 19:ijms19071899. [PMID: 29958424 PMCID: PMC6073955 DOI: 10.3390/ijms19071899] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 11/17/2022] Open
Abstract
Biosynthesis of heme represents a complex process that involves multiple stages controlled by different enzymes. The first of these proteins is a pyridoxal 5′-phosphate (PLP)-dependent homodimeric enzyme, 5-aminolevulinate synthase (ALAS), that catalyzes the rate-limiting step in heme biosynthesis, the condensation of glycine with succinyl-CoA. Genetic mutations in human erythroid-specific ALAS (ALAS2) are associated with two inherited blood disorders, X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP). XLSA is caused by diminished ALAS2 activity leading to decreased ALA and heme syntheses and ultimately ineffective erythropoiesis, whereas XLPP results from “gain-of-function” ALAS2 mutations and consequent overproduction of protoporphyrin IX and increase in Zn2+-protoporphyrin levels. All XLPP-linked mutations affect the intrinsically disordered C-terminal tail of ALAS2. Our earlier molecular dynamics (MD) simulation-based analysis showed that the activity of ALAS2 could be regulated by the conformational flexibility of the active site loop whose structural features and dynamics could be changed due to mutations. We also revealed that the dynamic behavior of the two protomers of the ALAS2 dimer differed. However, how the structural dynamics of ALAS2 active site loop and C-terminal tail dynamics are related to each other and contribute to the homodimer asymmetry remained unanswered questions. In this study, we used bioinformatics and computational biology tools to evaluate the role(s) of the C-terminal tail dynamics in the structure and conformational dynamics of the murine ALAS2 homodimer active site loop. To assess the structural correlation between these two regions, we analyzed their structural displacements and determined their degree of correlation. Here, we report that the dynamics of ALAS2 active site loop is anti-correlated with the dynamics of the C-terminal tail and that this anti-correlation can represent a molecular basis for the functional and dynamic asymmetry of the ALAS2 homodimer.
Collapse
|
34
|
Abstract
The porphyrias are a group of rare metabolic disorders, inherited or acquired, along the heme biosynthetic pathway, which could manifest with neurovisceral and/or cutaneous symptoms, depending on the defective enzyme. Neurovisceral porphyrias are characterized by acute attacks, in which excessive heme production is induced following exposure to a trigger. An acute attack usually presents with severe abdominal pain, vomiting, and tachycardia. Other symptoms which could appear include hypertension, hyponatremia, peripheral neuropathy, and mild mental symptoms. In severe attacks there could be severe symptoms including seizures and psychosis. If untreated, the attack might become very severe, affecting the peripheral, central, and autonomic nervous system, leading to paralysis, respiratory failure, hyponatremia, coma, and even death. From the biochemical point of view, acute attacks are involved with increased levels of precursors in the heme biosynthetic pathway, up to the deficient step. Of these precursors, aminolevulinic acid (ALA) is considered to be neurotoxic. Treatment is directed to reduce ALA production by reducing the activity of the enzyme aminolevulinate synthase (ALAS)-most effectively by heme therapy. Cutaneous symptoms are a consequence of elevated porphyrins in the blood stream. These porphyrins react to light; therefore sun-exposed areas are affected, producing fragile erosive skin lesions in porphyria cutanea tarda (PCT) or non-scarring stinging and burning symptoms in erythropoietic protoporphyria (EPP). Unlike the most common neurovisceral porphyria, acute intermittent porphyria (AIP), variegate porphyria (VP), and hereditary coproporphyria (HCP) can have cutaneous symptoms as well. Differentiating them from other cutaneous porphyrias is essential for accurate diagnosis, treatment, and patient recommendations.
Collapse
Affiliation(s)
- Yonatan Edel
- Porphyria Center, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Rheumatology Unit, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rivka Mamet
- Porphyria Center, Rabin Medical Center, Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
35
|
Brown BL, Kardon JR, Sauer RT, Baker TA. Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme. Structure 2018; 26:580-589.e4. [PMID: 29551290 DOI: 10.1016/j.str.2018.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/30/2017] [Accepted: 02/09/2018] [Indexed: 01/19/2023]
Abstract
5-Aminolevulinic acid synthase (ALAS) catalyzes the first step in heme biosynthesis. We present the crystal structure of a eukaryotic ALAS from Saccharomyces cerevisiae. In this homodimeric structure, one ALAS subunit contains covalently bound cofactor, pyridoxal 5'-phosphate (PLP), whereas the second is PLP free. Comparison between the subunits reveals PLP-coupled reordering of the active site and of additional regions to achieve the active conformation of the enzyme. The eukaryotic C-terminal extension, a region altered in multiple human disease alleles, wraps around the dimer and contacts active-site-proximal residues. Mutational analysis demonstrates that this C-terminal region that engages the active site is important for ALAS activity. Our discovery of structural elements that change conformation upon PLP binding and of direct contact between the C-terminal extension and the active site thus provides a structural basis for investigation of disruptions in the first step of heme biosynthesis and resulting human disorders.
Collapse
Affiliation(s)
- Breann L Brown
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia R Kardon
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert T Sauer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tania A Baker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
36
|
Teramura T, Mizuno M, Asano H, Naru E, Kawara S, Kamide R, Kawada A. Prevention of photosensitivity with action spectrum adjusted protection for erythropoietic protoporphyria. J Dermatol 2018; 45:145-149. [PMID: 29266358 PMCID: PMC5814858 DOI: 10.1111/1346-8138.14175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022]
Abstract
Erythropoietic protoporphyria is a genetic disease characterized by sensitivity to sunlight caused by the accumulation of protoporphyrin IX. Photoprotection against ultraviolet A and visible light is necessary for erythropoietic porphyria patients because the absorption spectrum of protoporphyrin IX lies in both ultraviolet A and visible light region. We developed a novel index, in vitro porphyrin protection factor, based on the protoporphyrin IX absorbance spectrum. We also selected appropriate photoprotective products designed according to protoporphyrin IX absorbance. The porphyrin protection factors of a combination of make-up base with a powder as well as with a liquid foundation were significantly higher than those of a conventional sunscreen product, even at a small application dose. An in-use test carried out for 6 months showed that the efficacy of these products was 78.3%, and no adverse reactions were observed. Male subjects preferred liquid foundation, whereas all female subjects used powder foundation. The preference of the subjects could lead to the long-term use of the tested products. In conclusion, this study provided a new approach to improve photoprotection in erythropoietic protoporphyria patients.
Collapse
Affiliation(s)
| | - Makoto Mizuno
- Fundamental Research LaboratoriesKOSÉ CorporationTokyoJapan
| | - Hajime Asano
- Fundamental Research LaboratoriesKOSÉ CorporationTokyoJapan
| | - Eiji Naru
- Fundamental Research LaboratoriesKOSÉ CorporationTokyoJapan
| | - Shigeru Kawara
- Department of DermatologyJapanese Red Cross Kanazawa HospitalIshikawaJapan
| | - Ryoichi Kamide
- Hihuno Clinic NingyochoTokyoJapan
- Department of DermatologyDaisan HospitalThe Jikei University School of MedicineTokyoJapan
| | - Akira Kawada
- Department of DermatologyKindai University Faculty of MedicineOsakaJapan
| |
Collapse
|
37
|
Wachnowsky C, Fidai I, Cowan JA. Iron-sulfur cluster biosynthesis and trafficking - impact on human disease conditions. Metallomics 2018; 10:9-29. [PMID: 29019354 PMCID: PMC5783746 DOI: 10.1039/c7mt00180k] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron-sulfur clusters (Fe-S) are one of the most ancient, ubiquitous and versatile classes of metal cofactors found in nature. Proteins that contain Fe-S clusters constitute one of the largest families of proteins, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, radical generation, and, more recently discovered, DNA repair. Research during the past two decades has shown that mitochondria are central to the biogenesis of Fe-S clusters in eukaryotic cells via a conserved cluster assembly machinery (ISC assembly machinery) that also controls the synthesis of Fe-S clusters of cytosolic and nuclear proteins. Several key steps for synthesis and trafficking have been determined for mitochondrial Fe-S clusters, as well as the cytosol (CIA - cytosolic iron-sulfur protein assembly), but detailed mechanisms of cluster biosynthesis, transport, and exchange are not well established. Genetic mutations and the instability of certain steps in the biosynthesis and maturation of mitochondrial, cytosolic and nuclear Fe-S cluster proteins affects overall cellular iron homeostasis and can lead to severe metabolic, systemic, neurological and hematological diseases, often resulting in fatality. In this review we briefly summarize the current molecular understanding of both mitochondrial ISC and CIA assembly machineries, and present a comprehensive overview of various associated inborn human disease states.
Collapse
Affiliation(s)
- C Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
38
|
|
39
|
|
40
|
Acute hepatic and erythropoietic porphyrias: from ALA synthases 1 and 2 to new molecular bases and treatments. Curr Opin Hematol 2017; 24:198-207. [PMID: 28118224 DOI: 10.1097/moh.0000000000000330] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Many studies over the past decade have together identified new genes including modifier genes and new regulation and pathophysiological mechanisms in inherited inborn diseases of the heme biosynthetic pathway. A new porphyria has been characterized: X-linked protoporphyria and the perspective to have innovative treatment at very short-term became a reality. We will summarize how recent data on both ALAS1 and ALAS2 have informed our understanding of disease pathogenesis with an emphasis on how this information may contribute to new therapeutic strategies. RECENT FINDINGS The development of clinical and biological porphyria networks improved the long-term follow up of cohorts. The ageing of patients have allowed for the identification of novel recurrently mutated genes, and highlighted long-term complications in acute hepatic porphyrias. The treatment of hepatic porphyrias by an RNAi-targeting hepatic ALAS1 is actually tested and may lead to improve the management of acute attacks.In erythropoietic porphyrias, the key role of ALAS2 as a gate keeper of the heme and subsequently hemoglobin synthesis has been demonstrated. Its implication as a modifier gene in over erythroid disorders has also been documented. SUMMARY The knowledge of both the genetic abnormalities and the regulation of heme biosynthesis has increased over the last 5 years and open new avenues in the management of erythropoietic and acute hepatic porphyrias.
Collapse
|
41
|
Affiliation(s)
- D Montgomery Bissell
- From the Department of Medicine, Division of Gastroenterology and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Departments of Preventive Medicine and Community Health and Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston (K.E.A.); and the Department of Gastroenterology, Wake Forest School of Medicine, Winston-Salem, NC (H.L.B.)
| | - Karl E Anderson
- From the Department of Medicine, Division of Gastroenterology and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Departments of Preventive Medicine and Community Health and Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston (K.E.A.); and the Department of Gastroenterology, Wake Forest School of Medicine, Winston-Salem, NC (H.L.B.)
| | - Herbert L Bonkovsky
- From the Department of Medicine, Division of Gastroenterology and Porphyria Center, University of California, San Francisco, San Francisco (D.M.B.); the Departments of Preventive Medicine and Community Health and Internal Medicine, Division of Gastroenterology and Hepatology, University of Texas Medical Branch, Galveston (K.E.A.); and the Department of Gastroenterology, Wake Forest School of Medicine, Winston-Salem, NC (H.L.B.)
| |
Collapse
|
42
|
Balwani M, Naik H, Anderson KE, Bissell DM, Bloomer J, Bonkovsky HL, Phillips JD, Overbey JR, Wang B, Singal AK, Liu LU, Desnick RJ. Clinical, Biochemical, and Genetic Characterization of North American Patients With Erythropoietic Protoporphyria and X-linked Protoporphyria. JAMA Dermatol 2017; 153:789-796. [PMID: 28614581 DOI: 10.1001/jamadermatol.2017.1557] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Importance Autosomal recessive erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are rare photodermatoses presenting with variable degrees of painful phototoxicity that markedly affects quality of life. The clinical variability, determinants of severity, and genotype/phenotype correlations of these diseases are not well characterized. Objective To describe the baseline clinical characteristics, genotypes, and determinants of disease severity in a large patient cohort with EPP or XLP. Design, Setting, and Participants A prospective observational study was conducted among patients with confirmed diagnoses of EPP or XLP from November 1, 2010, to December 6, 2015, at 6 academic medical centers of the Porphyrias Consortium of the National Institutes of Health Rare Diseases Clinical Research Network. Detailed medical histories, including history of phototoxicity and treatment, were collected on standardized case report forms. Patients underwent baseline laboratory testing, total erythrocyte protoporphyrin (ePPIX) testing, and molecular genetic testing. Data were entered into a centralized database. Main Outcomes and Measures Results of biochemical and genetic tests were explored for association with clinical phenotype in patients with EPP or XLP. Results Of the 226 patients in the study (113 female and 113 male patients; mean [SD] age, 36.7 [17.0] years), 186 (82.3%) had EPP with a FECH (OMIM 612386) mutation and the common low-expression FECH allele IVS3-48T>C, and only 1 patient had 2 FECH mutations. Twenty-two patients had XLP (9.7%; 10 male and 12 female patients), and 9 patients (4.0%) had elevated ePPIX levels and symptoms consistent with protoporphyria but no detectable mutation in the FECH or ALAS2 (OMIM 301300) gene. Samples of DNA could not be obtained from 8 patients. Patients' mean (SD) age at symptom onset was 4.4 (4.4) years. Anemia (107 [47.3%]), history of liver dysfunction (62 [27.4%]), and gallstones (53 [23.5%]) were commonly reported. Higher ePPIX levels were associated with earlier age of symptom onset (median ePPIX levels for those who developed symptoms before vs after 1 year of age, 1744 vs 1567 µg/dL; P = .02), less sun tolerance (median ePPIX levels for those reporting symptoms before vs after 10 minutes of sun exposure, 2233 vs 1524 µg/dL; P ≤ .001), and increased risk of liver dysfunction (median ePPIX levels for those with liver dysfunction vs normal liver function, 2016 vs 1510 µg/dL; P = .003). Patients with EPP and FECH missense mutations had significantly lower ePPIX levels than those with other mutations (1462 vs 1702 µg/dL; P = .01). Male patients with XLP had significantly higher ePPIX levels, on average, than did patients with EPP (3574 vs 1669 µg/dL; P < .001). Marked clinical variability was seen in female patients with XLP owing to random X-chromosomal inactivation. Conclusions and Relevance These data suggest that higher ePPIX levels are a major determinant of disease severity and risk of liver dysfunction in patients with EPP or XLP. These findings provide a framework for clinical monitoring and management of these disorders.
Collapse
Affiliation(s)
- Manisha Balwani
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Hetanshi Naik
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| | - Karl E Anderson
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston
| | | | - Joseph Bloomer
- Department of Medicine, University of Alabama, Birmingham
| | - Herbert L Bonkovsky
- Department of Medicine, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - John D Phillips
- Department of Internal Medicine, University of Utah, Salt Lake City
| | - Jessica R Overbey
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bruce Wang
- Department of Medicine, University of California, San Francisco
| | | | - Lawrence U Liu
- Department of Liver Diseases and Recanti/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Robert J Desnick
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York
| |
Collapse
|
43
|
Barman-Aksözen J, C Wiek P, Bansode VB, Koentgen F, Trüb J, Pelczar P, Cinelli P, Schneider-Yin X, Schümperli D, Minder EI. Modeling the ferrochelatase c.315-48C modifier mutation for erythropoietic protoporphyria (EPP) in mice. Dis Model Mech 2017; 10:225-233. [PMID: 28093505 PMCID: PMC5374324 DOI: 10.1242/dmm.027755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/29/2016] [Indexed: 01/11/2023] Open
Abstract
Erythropoietic protoporphyria (EPP) is caused by deficiency of ferrochelatase (FECH), which incorporates iron into protoporphyrin IX (PPIX) to form heme. Excitation of accumulated PPIX by light generates oxygen radicals that evoke excessive pain and, after longer light exposure, cause ulcerations in exposed skin areas of individuals with EPP. Moreover, ∼5% of the patients develop a liver dysfunction as a result of PPIX accumulation. Most patients (∼97%) have a severe FECH mutation (Mut) in trans to an intronic polymorphism (c.315-48C), which reduces ferrochelatase synthesis by stimulating the use of an aberrant 3′ splice site 63 nt upstream of the normal site for exon 4. In contrast, with the predominant c.315-48T allele, the correct splice site is mostly used, and individuals with a T/Mut genotype do not develop EPP symptoms. Thus, the C allele is a potential target for therapeutic approaches that modify this splicing decision. To provide a model for pre-clinical studies of such approaches, we engineered a mouse containing a partly humanized Fech gene with the c.315-48C polymorphism. F1 hybrids obtained by crossing these mice with another inbred line carrying a severe Fech mutation (named m1Pas) show a very strong EPP phenotype that includes elevated PPIX in the blood, enlargement of liver and spleen, anemia, as well as strong pain reactions and skin lesions after a short period of light exposure. In addition to the expected use of the aberrant splice site, the mice also show a strong skipping of the partly humanized exon 3. This will limit the use of this model for certain applications and illustrates that engineering of a hybrid gene may have unforeseeable consequences on its splicing. Summary: A new mouse model reproduces the predominant genetic disposition of patients affected by erythropoietic protoporphyria, a rare disease associated with extreme pain after light exposure.
Collapse
Affiliation(s)
- Jasmin Barman-Aksözen
- Institute of Laboratory Medicine, Municipal Hospital Triemli, Zürich 8063, Switzerland
| | - Paulina C Wiek
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Vijay B Bansode
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | | - Judith Trüb
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel 4002, Switzerland
| | - Paolo Cinelli
- Division of Trauma Surgery, University Hospital Zürich, Zürich 8091, Switzerland
| | - Xiaoye Schneider-Yin
- Institute of Laboratory Medicine, Municipal Hospital Triemli, Zürich 8063, Switzerland
| | - Daniel Schümperli
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Elisabeth I Minder
- Institute of Laboratory Medicine, Municipal Hospital Triemli, Zürich 8063, Switzerland .,Porphyria Outpatient Clinics, Municipal Hospital Triemli, Zürich 8063, Switzerland
| |
Collapse
|
44
|
Long ZB, Wang YW, Yang C, Liu G, Du YL, Nie GJ, Chang YZ, Han B. Identification of FECH gene multiple variations in two Chinese patients with erythropoietic protoporphyria and a review. J Zhejiang Univ Sci B 2016; 17:813-820. [PMID: 27704751 DOI: 10.1631/jzus.b1600085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Erythropoietic protoporphyria (EPP), an autosomal dominant disease, is caused by partial deficiency of ferrochelatase (FECH), which catalyzes the terminal step of heme biosynthesis because of loss-of-function mutations in the FECH gene. To date, only a few cases have been described in Asia. In this study, we describe the clinical features of two Chinese patients with EPP, with diagnosis confirmed by the increase of free protoporphyrin in erythrocytes, detection of plasma fluorescence peak at 630-634 nm, and analysis of FECH gene mutations. Using gene scanning, we identified a small deletion in the FECH gene (c.973 delA) in one proband (patient A) and a pathogenic FECH mutation (c.1232 G>T) in the other (patient B) and also observed some nucleotide variations (c.798 C>G, c.921 A>G, IVS1-23 C>T, IVS3+23 A>G, IVS9+35 C>T, and IVS3-48 T>C) in these patients. The family pedigree of patient A was then established by characterization of the genotype of the patient's relatives. We also analyzed the potential perniciousness of the missense mutation with bioinformatic software, Polyphen and Sift. In summary, Chinese EPP patients have similar manifestations to those of Caucasians, and identification of the Chinese FECH gene mutations expands the FECH genotypic spectrum and may contribute to genetic counseling.
Collapse
Affiliation(s)
- Zhang-Biao Long
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yong-Wei Wang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China.,Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chen Yang
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Gang Liu
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Ya-Li Du
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Guang-Jun Nie
- Chinese Academy of Sciences Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yan-Zhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050024, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
45
|
Hsu JS, Kwan JSH, Pan Z, Garcia-Barcelo MM, Sham PC, Li M. Inheritance-mode specific pathogenicity prioritization (ISPP) for human protein coding genes. Bioinformatics 2016; 32:3065-3071. [PMID: 27354691 DOI: 10.1093/bioinformatics/btw381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/14/2016] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Exome sequencing studies have facilitated the detection of causal genetic variants in yet-unsolved Mendelian diseases. However, the identification of disease causal genes among a list of candidates in an exome sequencing study is still not fully settled, and it is often difficult to prioritize candidate genes for follow-up studies. The inheritance mode provides crucial information for understanding Mendelian diseases, but none of the existing gene prioritization tools fully utilize this information. RESULTS We examined the characteristics of Mendelian disease genes under different inheritance modes. The results suggest that Mendelian disease genes with autosomal dominant (AD) inheritance mode are more haploinsufficiency and de novo mutation sensitive, whereas those autosomal recessive (AR) genes have significantly more non-synonymous variants and regulatory transcript isoforms. In addition, the X-linked (XL) Mendelian disease genes have fewer non-synonymous and synonymous variants. As a result, we derived a new scoring system for prioritizing candidate genes for Mendelian diseases according to the inheritance mode. Our scoring system assigned to each annotated protein-coding gene (N = 18 859) three pathogenic scores according to the inheritance mode (AD, AR and XL). This inheritance mode-specific framework achieved higher accuracy (area under curve = 0.84) in XL mode. CONCLUSION The inheritance-mode specific pathogenicity prioritization (ISPP) outperformed other well-known methods including Haploinsufficiency, Recessive, Network centrality, Genic Intolerance, Gene Damage Index and Gene Constraint scores. This systematic study suggests that genes manifesting disease inheritance modes tend to have unique characteristics. AVAILABILITY AND IMPLEMENTATION ISPP is included in KGGSeq v1.0 (http://grass.cgs.hku.hk/limx/kggseq/), and source code is available from (https://github.com/jacobhsu35/ISPP.git). CONTACT mxli@hku.hkSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | | | - Pak Chung Sham
- Department of Psychiatry Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Miaoxin Li
- Department of Psychiatry Centre for Genomics Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
46
|
Stojanovski BM, Breydo L, Uversky VN, Ferreira GC. Murine erythroid 5-aminolevulinate synthase: Truncation of a disordered N-terminal extension is not detrimental for catalysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:441-52. [DOI: 10.1016/j.bbapap.2016.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
|
47
|
Minder EI, Barman-Aksoezen J, Nydegger M, Schneider-Yin X. Existing therapies and therapeutic targets for erythropoietic protoporphyria. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1171137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elisabeth I. Minder
- Porphyria Outpatient Clinics, Stadtspital Triemli, Zürich, Switzerland
- Institute of Laboratory Medicine, Stadtspital Triemli, Zürich, Switzerland
- Institute of Anesthesiology and Intensive Care Medicine, Stadtspital Triemli, Zürich, Switzerland
| | | | - Michèle Nydegger
- Porphyria Outpatient Clinics, Stadtspital Triemli, Zürich, Switzerland
- Institute of Anesthesiology and Intensive Care Medicine, Stadtspital Triemli, Zürich, Switzerland
| | | |
Collapse
|
48
|
Di Pierro E, Brancaleoni V, Granata F. Advances in understanding the pathogenesis of congenital erythropoietic porphyria. Br J Haematol 2016; 173:365-79. [PMID: 26969896 DOI: 10.1111/bjh.13978] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Congenital erythropoietic porphyria (CEP) is a rare genetic disease resulting from the remarkable deficient activity of uroporphyrinogen III synthase, the fourth enzyme of the haem biosynthetic pathway. This enzyme defect results in overproduction of the non-physiological and pathogenic porphyrin isomers, uroporphyrin I and coproporphyrin I. The predominant clinical characteristics of CEP include bullous cutaneous photosensitivity to visible light from early infancy, progressive photomutilation and chronic haemolytic anaemia. The severity of clinical manifestations is markedly heterogeneous among patients; and interdependence between disease severity and porphyrin amount in the tissues has been pointed out. A more pronounced endogenous production of porphyrins concomitant to activation of ALAS2, the first and rate-limiting of the haem synthesis enzymes in erythroid cells, has also been reported. CEP is inherited as autosomal recessive or X-linked trait due to mutations in UROS or GATA1 genes; however an involvement of other causative or modifier genes cannot be ruled out.
Collapse
Affiliation(s)
- Elena Di Pierro
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Brancaleoni
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| | - Francesca Granata
- U.O. di Medicina Interna, Fondazione IRCCS Cà Granda - Ospedale Maggiore Policlinico, Milano, Italy
| |
Collapse
|
49
|
Stojanovski BM, Ferreira GC. Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction. J Biol Chem 2015; 290:30750-61. [PMID: 26511319 DOI: 10.1074/jbc.m115.655399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
5-Aminolevulinate synthase (ALAS) catalyzes the first step in mammalian heme biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent and reversible reaction between glycine and succinyl-CoA to generate CoA, CO2, and 5-aminolevulinate (ALA). Apart from coordinating the positioning of succinyl-CoA, Rhodobacter capsulatus ALAS Asn-85 has a proposed role in regulating the opening of an active site channel. Here, we constructed a library of murine erythroid ALAS variants with substitutions at the position occupied by the analogous bacterial asparagine, screened for ALAS function, and characterized the catalytic properties of the N150H and N150F variants. Quinonoid intermediate formation occurred with a significantly reduced rate for either the N150H- or N150F-catalyzed condensation of glycine with succinyl-CoA during a single turnover. The introduced mutations caused modifications in the ALAS active site such that the resulting variants tipped the balance between the forward- and reverse-catalyzed reactions. Although wild-type ALAS catalyzes the conversion of ALA into the quinonoid intermediate at a rate 6.3-fold slower than the formation of the same quinonoid intermediate from glycine and succinyl-CoA, the N150F variant catalyzes the forward reaction at a mere 1.2-fold faster rate than that of the reverse reaction, and the N150H variant reverses the rate values with a 1.7-fold faster rate for the reverse reaction than that for the forward reaction. We conclude that the evolutionary selection of Asn-150 was significant for optimizing the forward enzymatic reaction at the expense of the reverse, thus ensuring that ALA is predominantly available for heme biosynthesis.
Collapse
Affiliation(s)
| | - Gloria C Ferreira
- From the Department of Molecular Medicine, Morsani College of Medicine, and the Department of Chemistry, University of South Florida, Tampa, Florida 33612
| |
Collapse
|
50
|
Gou EW, Balwani M, Bissell DM, Bloomer JR, Bonkovsky HL, Desnick RJ, Naik H, Phillips JD, Singal AK, Wang B, Keel S, Anderson KE. Pitfalls in Erythrocyte Protoporphyrin Measurement for Diagnosis and Monitoring of Protoporphyrias. Clin Chem 2015; 61:1453-6. [PMID: 26482161 DOI: 10.1373/clinchem.2015.245456] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/31/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Laboratory diagnosis of erythropoietic protoporphyria (EPP) requires a marked increase in total erythrocyte protoporphyrin (300-5000 μg/dL erythrocytes, reference interval <80 μg/dL) and a predominance (85%-100%) of metal-free protoporphyrin [normal, mostly zinc protoporphyrin (reference intervals for the zinc protoporphyrin proportion have not been established)]; plasma porphyrins are not always increased. X-linked protoporphyria (XLP) causes a similar increase in total erythrocyte protoporphyrin with a lower fraction of metal-free protoporphyrin (50%-85% of the total). CONTENT In studying more than 180 patients with EPP and XLP, the Porphyrias Consortium found that erythrocyte protoporphyrin concentrations for some patients were much higher (4.3- to 46.7-fold) than indicated by previous reports provided by these patients. The discrepant earlier reports, which sometimes caused the diagnosis to be missed initially, were from laboratories that measure protoporphyrin only by hematofluorometry, which is intended primarily to screen for lead poisoning. However, the instrument can calculate results on the basis of assumed hematocrits and reports results as "free" and "zinc" protoporphyrin (with different reference intervals), implying separate measurements of metal-free and zinc protoporphyrin. Such misleading reports impair diagnosis and monitoring of patients with protoporphyria. SUMMARY We suggest that laboratories should prioritize testing for EPP and XLP, because accurate measurement of erythrocyte total and metal-free protoporphyrin is essential for diagnosis and monitoring of these conditions, but less important for other disorders. Terms and abbreviations used in reporting erythrocyte protoporphyrin results should be accurately defined.
Collapse
Affiliation(s)
- Eric W Gou
- University of Texas Medical Branch, Galveston, TX
| | | | | | | | | | | | | | | | | | - Bruce Wang
- University of California at San Francisco, San Francisco, CA
| | | | | |
Collapse
|