1
|
Pernomian L, Blascke de Mello MM, Parente JM, Sanches-Lopes JM, Tanus-Santos JE, Parreiras E Silva LT, Antunes-Rodrigues J, da Conceição Dos Santos R, Elias LLK, Fabro AT, Silva CAA, Fazan R, de Castro MM. The hydrogen sulfide donor 4-carboxyphenyl-isothiocyanate decreases blood pressure and promotes cardioprotective effect through reduction of oxidative stress and nuclear factor kappa B/matrix metalloproteinase (MMP)-2 axis in hypertension. Life Sci 2024; 351:122819. [PMID: 38857651 DOI: 10.1016/j.lfs.2024.122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
AIMS Our aim was to evaluate whether the hydrogen sulfide (H2S) donor, 4-carboxyphenyl-isothiocyanate (4-CPI), exerts cardioprotective effect in the two kidney- one clip (2K-1C) rats through oxidative stress and MMP-2 activity attenuation and compare it with the classical H2S donor, Sodium Hydrosulfide (NaHS). MATERIALS AND METHODS Renovascular hypertension (two kidneys-one clip; 2K-1C) was surgically induced in male Wistar rats. After two weeks, normotensive (2K) and hypertensive rats were intraperitoneally treated with vehicle (0.6 % dimethyl sulfoxide), NaHS (0.24 mg/Kg/day) or with 4-CPI (0.24 mg/Kg/day), for more 4 weeks. Systolic blood pressure (SBP) was evaluated weekly by tail-cuff plethysmography. Heart function was assessed by using the Millar catheter. Cardiac hypertrophy and fibrosis were evaluated by hematoxylin and eosin, and Picrosirius Red staining, respectively. The H2S was analyzed using WSP-1 fluorimetry and the cardiac oxidative stress was measured by lucigenin chemiluminescence and Amplex Red. MMP-2 activity was measured by in-gel gelatin or in situ zymography assays. Nox1, gp91phox, MMP-2 and the phospho-p65 subunit (Serine 279) nuclear factor kappa B (NF-κB) levels were evaluated by Western blotting. KEY FINDINGS 4-CPI reduced blood pressure in hypertensive rats, decreased cardiac remodeling and promoted cardioprotection through the enhancement of cardiac H2S levels. An attenuation of oxidative stress, with inactivation of the p65-NF-κB/MMP-2 axis was similarly observed after NaHS or 4-CPI treatment in 2K-1C hypertension. SIGNIFICANCE H2S is a mediator that promotes cardioprotective effects and decreases blood pressure, and 4-CPI seems to be a good candidate to reverse the maladaptive remodeling and cardiac dysfunction in renovascular hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alexandre Todorovic Fabro
- Department of Pathology and Legal Medicine, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | |
Collapse
|
2
|
Flori L, Benedetti G, Calderone V, Testai L. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel) 2024; 13:543. [PMID: 38790648 PMCID: PMC11118251 DOI: 10.3390/antiox13050543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia-reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Giada Benedetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| | - Lara Testai
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56120 Pisa, Italy; (L.F.); (G.B.); (V.C.)
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, 56120 Pisa, Italy
- Interdepartmental Research Centre of Ageing Biology and Pathology, University of Pisa, 56120 Pisa, Italy
| |
Collapse
|
3
|
Tain YL, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Protective Role of Taurine on Rat Offspring Hypertension in the Setting of Maternal Chronic Kidney Disease. Antioxidants (Basel) 2023; 12:2059. [PMID: 38136178 PMCID: PMC10740461 DOI: 10.3390/antiox12122059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Taurine is a natural antioxidant with antihypertensive properties. Maternal chronic kidney disease (CKD) has an impact on renal programming and increases the risk of offspring hypertension in later life. The underlying mechanisms cover oxidative stress, a dysregulated hydrogen sulfide (H2S) system, dysbiotic gut microbiota, and inappropriate activation of the renin-angiotensin-aldosterone system (RAAS). We investigated whether perinatal taurine administration enables us to prevent high blood pressure (BP) in offspring complicated by maternal CKD. Before mating, CKD was induced through feeding chow containing 0.5% adenine for 3 weeks. Taurine was administered (3% in drinking water) during gestation and lactation. Four groups of male offspring were used (n = 8/group): controls, CKD, taurine-treated control rats, and taurine-treated rats with CKD. Taurine treatment significantly reduced BP in male offspring born to mothers with CKD. The beneficial effects of perinatal taurine treatment were attributed to an augmented H2S pathway, rebalance of aberrant RAAS activation, and gut microbiota alterations. In summary, our results not only deepen our knowledge of the mechanisms underlying maternal CKD-induced offspring hypertension but also afford us the impetus to consider taurine-based intervention as a promising preventive approach for future clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 330, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan;
| | - Guo-Ping Chang-Chien
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan; (G.-P.C.-C.); (S.L.)
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Lin M, Li W, Ni X, Sui Y, Li H, Chen X, Lu Y, Jiang M, Wang C. Growth factors in the treatment of Achilles tendon injury. Front Bioeng Biotechnol 2023; 11:1250533. [PMID: 37781529 PMCID: PMC10539943 DOI: 10.3389/fbioe.2023.1250533] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Achilles tendon (AT) injury is one of the most common tendon injuries, especially in athletes, the elderly, and working-age people. In AT injury, the biomechanical properties of the tendon are severely affected, leading to abnormal function. In recent years, many efforts have been underway to develop effective treatments for AT injuries to enable patients to return to sports faster. For instance, several new techniques for tissue-engineered biological augmentation for tendon healing, growth factors (GFs), gene therapy, and mesenchymal stem cells were introduced. Increasing evidence has suggested that GFs can reduce inflammation, promote extracellular matrix production, and accelerate AT repair. In this review, we highlighted some recent investigations regarding the role of GFs, such as transforming GF-β(TGF-β), bone morphogenetic proteins (BMP), fibroblast GF (FGF), vascular endothelial GF (VEGF), platelet-derived GF (PDGF), and insulin-like GF (IGF), in tendon healing. In addition, we summarized the clinical trials and animal experiments on the efficacy of GFs in AT repair. We also highlighted the advantages and disadvantages of the different isoforms of TGF-β and BMPs, including GFs combined with stem cells, scaffolds, or other GFs. The strategies discussed in this review are currently in the early stages of development. It is noteworthy that although these emerging technologies may potentially develop into substantial clinical treatment options for AT injury, definitive conclusions on the use of these techniques for routine management of tendon ailments could not be drawn due to the lack of data.
Collapse
Affiliation(s)
- Meina Lin
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Wei Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
- Medical School, Shandong Modern University, Jinan, China
| | - Xiang Ni
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yu Sui
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Huan Li
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Xinren Chen
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Yongping Lu
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Miao Jiang
- Liaoning Research Institute of Family Planning, China Medical University, Shenyang, China
| | - Chenchao Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Seksaria S, Mehan S, Dutta BJ, Gupta GD, Ganti SS, Singh A. Oxymatrine and insulin resistance: Focusing on mechanistic intricacies involve in diabetes associated cardiomyopathy via SIRT1/AMPK and TGF-β signaling pathway. J Biochem Mol Toxicol 2023; 37:e23330. [PMID: 36890713 DOI: 10.1002/jbt.23330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/03/2023] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Cardiomyopathy (CDM) and related morbidity and mortality are increasing at an alarming rate, in large part because of the increase in the number of diabetes mellitus cases. The clinical consequence associated with CDM is heart failure (HF) and is considerably worse for patients with diabetes mellitus, as compared to nondiabetics. Diabetic cardiomyopathy (DCM) is characterized by structural and functional malfunctioning of the heart, which includes diastolic dysfunction followed by systolic dysfunction, myocyte hypertrophy, cardiac dysfunctional remodeling, and myocardial fibrosis. Indeed, many reports in the literature indicate that various signaling pathways, such as the AMP-activated protein kinase (AMPK), silent information regulator 1 (SIRT1), PI3K/Akt, and TGF-β/smad pathways, are involved in diabetes-related cardiomyopathy, which increases the risk of functional and structural abnormalities of the heart. Therefore, targeting these pathways augments the prevention as well as treatment of patients with DCM. Alternative pharmacotherapy, such as that using natural compounds, has been shown to have promising therapeutic effects. Thus, this article reviews the potential role of the quinazoline alkaloid, oxymatrine obtained from the Sophora flavescensin CDM associated with diabetes mellitus. Numerous studies have given a therapeutic glimpse of the role of oxymatrine in the multiple secondary complications related to diabetes, such as retinopathy, nephropathy, stroke, and cardiovascular complications via reductions in oxidative stress, inflammation, and metabolic dysregulation, which might be due to targeting signaling pathways, such as AMPK, SIRT1, PI3K/Akt, and TGF-β pathways. Thus, these pathways are considered central regulators of diabetes and its secondary complications, and targeting these pathways with oxymatrine might provide a therapeutic tool for the diagnosis and treatment of diabetes-associated cardiomyopathy.
Collapse
Affiliation(s)
- Sanket Seksaria
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Bhaskar J Dutta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Ghanshyam D Gupta
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Subrahmanya S Ganti
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| | - Amrita Singh
- Department of Pharmacology, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab, India
| |
Collapse
|
6
|
Bełtowski J, Kowalczyk-Bołtuć J. Hydrogen sulfide in the experimental models of arterial hypertension. Biochem Pharmacol 2023; 208:115381. [PMID: 36528069 DOI: 10.1016/j.bcp.2022.115381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) is the third member of gasotransmitter family together with nitric oxide and carbon monoxide. H2S is involved in the regulation of blood pressure by controlling vascular tone, sympathetic nervous system activity and renal sodium excretion. Moderate age-dependent hypertension and endothelial dysfunction develop in mice with knockout of cystathionine γ-lyase (CSE), the enzyme involved in H2S production in the cardiovascular system. Decreased H2S concentration as well as the expression and activities of H2S-producing enzymes have been observed in most commonly used animal models of hypertension such as spontaneously hypertensive rats, Dahl salt-sensitive rats, chronic administration of NO synthase inhibitors, angiotensin II infusion and two-kidney-one-clip hypertension, the model of renovascular hypertension. Administration of H2S donors decreases blood pressure in these models but has no major effects on blood pressure in normotensive animals. H2S donors not only reduce blood pressure but also end-organ injury such as vascular and myocardial hypertrophy and remodeling, hypertension-associated kidney injury or erectile dysfunction. H2S level and signaling are modulated by some antihypertensive medications as well as natural products with antihypertensive activity such as garlic polysulfides or plant-derived isothiocyanates as well as non-pharmacological interventions. Modifying H2S signaling is the potential novel therapeutic approach for the management of hypertension, however, more experimental clinical studies about the role of H2S in hypertension are required.
Collapse
Affiliation(s)
- Jerzy Bełtowski
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland.
| | - Jolanta Kowalczyk-Bołtuć
- Endocrinology and Metabolism Clinic, Internal Medicine Clinic with Hypertension Department, Medical Institute of Rural Health, Lublin, Poland.
| |
Collapse
|
7
|
Zhao Y, Li L, Lu Z, Hu Y, Zhang H, Sun F, Li Q, He C, Shu W, Wang L, Cao T, Luo Z, Yan Z, Liu D, Gao P, Zhu Z. Sodium-Glucose Cotransporter 2 Inhibitor Canagliflozin Antagonizes Salt-Sensitive Hypertension Through Modifying Transient Receptor Potential Channels 3 Mediated Vascular Calcium Handling. J Am Heart Assoc 2022; 11:e025328. [PMID: 35904193 PMCID: PMC9375510 DOI: 10.1161/jaha.121.025328] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Salt-sensitive hypertension is highly prevalent and associated with cardiorenal damage. Large clinical trials have demonstrated that SGLT2 (sodium-glucose cotransporter 2) inhibitors exert hypotensive effect and cardiorenal protective benefits in patients with hypertension with and without diabetes. However, the underlying mechanism remains elusive. Methods and Results Dahl salt-sensitive rats and salt-insensitive controls were fed with 8% high-salt diet and some of them were treated with canagliflozin. The blood pressure, urinary sodium excretion, and vascular function were detected. Transient receptor potential channel 3 (TRPC3) knockout mice were used to explain the mechanism. Canagliflozin treatment significantly reduced high-salt-induced hypertension and this effect was not totally dependent on urinary sodium excretion in salt-sensitive hypertensive rats. Assay of vascular function and proteomics showed that canagliflozin significantly inhibited vascular cytoplasmic calcium increase and vasoconstriction in response to high-salt diet. High salt intake increased vascular expression of TRPC3 in salt-sensitive rats, which could be alleviated by canagliflozin treatment. Overexpression of TRPC3 mimicked salt-induced vascular cytosolic calcium increase in vitro and knockout of TRPC3 erased the antihypertensive effect of canagliflozin. Mechanistically, high-salt-induced activation of NCX1 (sodium-calcium exchanger 1) reverse mode increased cytoplasmic calcium level and vasoconstriction, which required TRPC3, and this process could be blocked by canagliflozin. Conclusions We define a previously unrecognized role of TRPC3/NCX1 mediated vascular calcium dysfunction in the development of high-salt-induced hypertension, which can be improved by canagliflozin treatment. This pathway is potentially a novel therapeutic target to antagonize salt-sensitive hypertension.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Li Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zongshi Lu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Hexuan Zhang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Fang Sun
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Qiang Li
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Chengkang He
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Wentao Shu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhidan Luo
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhencheng Yan
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Peng Gao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital Army Medical University, Chongqing Institute of Hypertension Chongqing China
| |
Collapse
|
8
|
Zhu J, Yang G. H 2S signaling and extracellular matrix remodeling in cardiovascular diseases: A tale of tense relationship. Nitric Oxide 2021; 116:14-26. [PMID: 34428564 DOI: 10.1016/j.niox.2021.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) is a non-cellular three-dimensional macromolecular network that not only provides mechanical support but also transduces essential molecular signals in organ functions. ECM is constantly remodeled to control tissue homeostasis, responsible for cell adhesion, cell migration, cell-to-cell communication, and cell differentiation, etc. The dysregulation of ECM components contributes to various diseases, including cardiovascular diseases, fibrosis, cancer, and neurodegenerative diseases, etc. Aberrant ECM remodeling is initiated by various stress, such as oxidative stress, inflammation, ischemia, and mechanical stress, etc. Hydrogen sulfide (H2S) is a gasotransmitter that exhibits a wide variety of cytoprotective and physiological functions through its anti-oxidative and anti-inflammatory actions. Amounting research shows that H2S can attenuate aberrant ECM remodeling. In this review, we discussed the implications and mechanisms of H2S in the regulation of ECM remodeling in cardiovascular diseases, and highlighted the potential of H2S in the prevention and treatment of cardiovascular diseases through attenuating adverse ECM remodeling.
Collapse
Affiliation(s)
- Jiechun Zhu
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada
| | - Guangdong Yang
- School of Biological, Chemical & Forensic Sciences, Laurentian University, Sudbury, Canada; Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada.
| |
Collapse
|
9
|
Yao L, Shao W, Chen Y, Wang S, Huang D. Suppression of ADAM8 attenuates angiotensin II-induced cardiac fibrosis and endothelial-mesenchymal transition via inhibiting TGF-β1/Smad2/Smad3 pathways. Exp Anim 2021; 71:90-99. [PMID: 34615811 PMCID: PMC8828410 DOI: 10.1538/expanim.21-0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) is involved in cardiac fibrosis induced by angiotensin II (Ang II). A disintegrin and metalloproteinase 8 (ADAM8), a member of ADAMs family, participates in cell adhesion, proteolysis and various signaling. However, its effects on the development of cardiac fibrosis remain completely unknown. This study aimed to reveal whether ADAM8 aggravates cardiac fibrosis induced by Ang II in vivo and in vitro. The C57BL/6J mice or cardiac endothelial cells were subjected to Ang II infusion to induce fibrosis. The results showed that systolic blood pressure and diastolic blood pressure were significantly increased under Ang II infusion, and ADAM8 was up-regulated. ADAM8 inhibition attenuated Ang II-induced cardiac dysfunction. ADAM8 knockdown suppressed Ang II-induced cardiac fibrosis as evidenced by the down-regulation of CTGF, collagen I, and collagen III. In addition, the endothelial marker (VE-cadherin) was decreased, whilst mesenchymal markers (α-SMA and FSP1) were increased following Ang II infusion. However, ADAM8 repression inhibited Ang II-induced EndMT. Moreover, ADAM8 silencing repressed the activation of TGF-β1/Smad2/Smad3 pathways. Consistent with the results in vivo, we also found the inhibitory effects of ADAM8 inhibition on EndMT in vitro. All data suggest that ADAM8 promotes Ang II-induced cardiac fibrosis and EndMT via activating TGF-β1/Smad2/Smad3 pathways.
Collapse
Affiliation(s)
- Lixia Yao
- Department of Geriatrics, Hebei General Hospital
| | - Weihua Shao
- Department of Geriatrics, Hebei General Hospital
| | - Yan Chen
- Department of Anesthesiology, Children's Hospital of Hebei Province
| | - Suxing Wang
- Department of Geriatrics, Hebei General Hospital
| | - Dai Huang
- Department of Ultrasound, Hebei General Hospital
| |
Collapse
|
10
|
Cui J, Xu G, Bian F. H 2S alleviates aortic aneurysm and dissection: Crosstalk between transforming growth factor 1 signaling and NLRP3 inflammasome. Int J Cardiol 2021; 338:215-225. [PMID: 34157359 DOI: 10.1016/j.ijcard.2021.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/18/2021] [Accepted: 05/05/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Vascular remodeling and inflammation are involved in aortic aneurysm (AA) and aortic dissection (AD). TGF-β1 signaling is involved in tissue fibrosis, extracellular matrix remodeling and inflammation, which are linked with AA and AD. The inhibition of NLRP3 inflammasome suppresses AA and AD. Hydrogen sulfide (H2S) exerts anti-vascular remodeling and anti-inflammatory properties, but little is known about its action on AA and AD progression. METHODS The effect of H2S on AA and AD formation was investigated in Sprague-Dawley (SD) rat fed a normal diet supplemented with 0.25% β-aminopropionitrile (BAPN). HE staining, Masson's trichrome staining, Picrosirius red staining and EVG staining were to evaluate vascular remodeling in the aortic wall. Western blotting and IHC were to detect the expression of TGF-β1 and matrix metalloproteinases (MMPs) and NLRP3 inflammasome-associated proteins. The interaction between TGF-β1 signaling and NLRP3 inflammasome was explored in Human aortic vascular smooth muscle cells (HA-VSMCs). RESULTS H2S alleviated AA and AD progression. Specifically, it improved irregular tissue arrangement and vascular fibrosis, increased the expression of elastin fibers, decreased collagen deposition and the expression of TGF-β1 and matrix metalloproteinases (MMP-2/9). In addition, H2S inhibited the expression of proteins involved in NLRP3 inflammasome. Furthermore, H2S down-regulated TGF-β1 signaling and then ameliorated vascular fibrosis by preventing NLRP3 inflammasome activation. Finally, H2S inhibited NLRP3 inflammasome activation and decreased the level of IL-1β by disrupting TGF-β1 signaling. CONCLUSIONS These data support a crosstalk between TGF-β1 signaling and NLRP3 inflammasome. H2S inhibits AA and AD progression via blocking the crosstalk.
Collapse
Affiliation(s)
- Jun Cui
- Department of Cardiothoracic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China
| | - Gao Xu
- Department of Pharmacy, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Fang Bian
- Department of Pharmacy, Special Preparation of Vitiligo Xiangyang Key Laboratory, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441000, Hubei, China.
| |
Collapse
|
11
|
Fornal M, Lekki J, Królczyk J, Wizner B, Grodzicki T. Association of sulfur content in erythrocytes with cardiovascular parameters and blood pressure. Clin Hemorheol Microcirc 2021; 79:279-292. [PMID: 34057138 DOI: 10.3233/ch-211117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The study aims at assessing the relationship between blood pressure, heart geometry parameters, and the erythrocyte content of sulfur, potassium, chlorine and phosphorus, in a group of patients with laboratory systolic and diastolic blood pressure (SBP, DBP) below 140 or 90 mm Hg, respectively, who were otherwise healthy and untreated. METHODS The study group consisted of 42 adults recruited in a primary care setting. The individuals were healthy, not undergoing any therapy and free from smoking. For each individual, data were obtained on: average 24-hour SBP and DBP, left ventricle geometry, complete blood count, lipids profile, fibrinogen, hs-CRP and the erythrocyte concentration of sulfur (S), potassium (K), chlorine (Cl) and phosphorus (P). RESULTS Multivariate regression analysis showed statistically significant relationships of diastolic posterior wall thickness (PWTd) and relative wall thickness (RWT) with the concentration ratio of sulfur and potassium (S/K) in erythrocytes: PWTd and RWT increase as the S/K ratio increases. Also, SBP was found to be positively correlated with the S/K ratio. CONCLUSIONS The increase in sulfur content in RBCs could be an indicator of the downregulation of nitric oxide (NO) erythrocyte bioavailability exerted by endogenously produced hydrogen sulfide (H2S), and, in consequence, a marker of the development of hypertension and/or adverse changes in heart geometry.
Collapse
Affiliation(s)
- Maria Fornal
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Janusz Lekki
- Institute of Nuclear Physics PAN, Krakow, Poland
| | - Jarosław Królczyk
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Barbara Wizner
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
12
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
13
|
Lv B, Chen S, Tang C, Jin H, Du J, Huang Y. Hydrogen sulfide and vascular regulation - An update. J Adv Res 2021; 27:85-97. [PMID: 33318869 PMCID: PMC7728588 DOI: 10.1016/j.jare.2020.05.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is considered to be the third gasotransmitter after carbon monoxide (CO) and nitric oxide (NO). It plays an important role in the regulation of vascular homeostasis. Vascular remodeling have has proved to be related to the impaired H2S generation. AIM OF REVIEW This study aimed to summarize and discuss current data about the function of H2S in vascular physiology and pathophysiology as well as the underlying mechanisms. KEY SCIENTIFIC CONCEPTS OF REVIEW Endogenous hydrogen sulfide (H2S) as a third gasotransmitter is primarily generated by the enzymatic pathways and regulated by several metabolic pathways. H2S as a physiologic vascular regulator, inhibits proliferation, regulates its apoptosis and autophagy of vascular cells and controls the vascular tone. Accumulating evidence shows that the downregulation of H2S pathway is involved in the pathogenesis of a variety of vascular diseases, such as hypertension, atherosclerosis and pulmonary hypertension. Alternatively, H2S supplementation may greatly help to prevent the progression of the vascular diseases by regulating vascular tone, inhibiting vascular inflammation, protecting against oxidative stress and proliferation, and modulating vascular cell apoptosis, which has been verified in animal and cell experiments and even in the clinical investigation. Besides, H2S system and angiotensin-converting enzyme (ACE) inhibitors play a vital role in alleviating ischemic heart disease and left ventricular dysfunction. Notably, sulfhydryl-containing ACEI inhibitor zofenopril is superior to other ACE inhibitors due to its capability of H2S releasing, in addition to ACE inhibition. The design and application of novel H2S donors have significant clinical implications in the treatment of vascular-related diseases. However, further research regarding the role of H2S in vascular physiology and pathophysiology is required.
Collapse
Affiliation(s)
- Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Corresponding authors at: Department of Pediatrics, Peking University First Hospital, Beijing, China (J. Du).
| |
Collapse
|
14
|
Tian RH, Guo KM, Han GH, Bai Y. Downregulation of MicroRNA-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L. Exp Mol Pathol 2020; 115:104452. [PMID: 32413360 DOI: 10.1016/j.yexmp.2020.104452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 04/15/2020] [Accepted: 05/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Hypospadias, as a congenital disorder of the urethra, is the second most common birth abnormality of the male reproductive system. This study primarily investigates the effects of microRNA-494 (miR-494) on the transforming growth factor-β1 (TGF-β1)/Smads signaling pathway and on the development of hypospadias by binding to neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4L). METHODS We induced a mouse model of hypospadias through di-(2-ethylhexyl) phthalate treatment. The underlying regulatory mechanisms of miR-494 in this model were analyzed upon treatment of miR-494 mimic, miR-494 inhibitor, or small interfering RNA against Nedd4L in urethral epithelial cells isolated from mice with hypospadias. We then verified the binding site between miR-494 and Nedd4L and applied a gain- and loss-of-function approach to determine the effects of miR-494 on cell proliferation, cycle distribution, and apoptosis. RESULTS Male mice with hypospadias exhibited significantly higher miR-494 expression and lower Nedd4L expression in urethral tissues than normal male mice. Nedd4L was verified as a target gene of miR-494. Treatment with miR-494 inhibitor suppressed the activation of the TGF-β1/Smads signaling pathway, whereas down-regulation of miR-494 exerted protective effects on urethral epithelial cells by impeding cell proliferation and inducing cell apoptosis. CONCLUSIONS The study indicates that downregulation of miR-494 inhibits the TGF-β1/Smads signaling pathway and prevents the development of hypospadias through upregulating Nedd4L.
Collapse
Affiliation(s)
- Run-Hui Tian
- Department of Psychology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Kai-Min Guo
- Department of Andrology, The First Hospital of Jilin University, Changchun 130021, PR China
| | - Guang-Hong Han
- Department of Oral Geriatrics, Stomatology Hospital of Jilin University, Changchun 130021, PR China
| | - Yang Bai
- Department of Ultrasound, The First Hospital of Jilin University, Changchun 130021, PR China.
| |
Collapse
|
15
|
Tran BH, Yu Y, Chang L, Tan B, Jia W, Xiong Y, Dai T, Zhong R, Zhang W, Le VM, Rose P, Wang Z, Mao Y, Zhu YZ. A Novel Liposomal S-Propargyl-Cysteine: A Sustained Release of Hydrogen Sulfide Reducing Myocardial Fibrosis via TGF-β1/Smad Pathway. Int J Nanomedicine 2019; 14:10061-10077. [PMID: 31920303 PMCID: PMC6935304 DOI: 10.2147/ijn.s216667] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/14/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose S-propargyl-cysteine (SPRC; alternatively known as ZYZ-802) is a novel modulator of endogenous tissue H2S concentrations with known cardioprotective and anti-inflammatory effects. However, its rapid metabolism and excretion have limited its clinical application. To overcome these issues, we have developed some novel liposomal carriers to deliver ZYZ-802 to cells and tissues and have characterized their physicochemical, morphological and pharmacological properties. Methods Two liposomal formulations of ZYZ-802 were prepared by thin-layer hydration and the morphological characteristics of each liposome system were assessed using a laser particle size analyzer and transmission electron microscopy. The entrapment efficiency and ZYZ-802 release profiles were determined following ultrafiltration centrifugation, dialysis tube and HPLC measurements. LC-MS/MS was used to evaluate the pharmacokinetic parameters and tissue distribution profiles of each formulation via the measurements of plasma and tissues ZYZ-802 and H2S concentrations. Using an in vivo model of heart failure (HF), the cardio-protective effects of liposomal carrier were determined by echocardiography, histopathology, Western blot and the assessment of antioxidant and myocardial fibrosis markers. Results Both liposomal formulations improved ZYZ-802 pharmacokinetics and optimized H2S concentrations in plasma and tissues. Liposomal ZYZ-802 showed enhanced cardioprotective effects in vivo. Importantly, liposomal ZYZ-802 could inhibit myocardial fibrosis via the inhibition of the TGF-β1/Smad signaling pathway. Conclusion The liposomal formulations of ZYZ-802 have enhanced pharmacokinetic and pharmacological properties in vivo. This work is the first report to describe the development of liposomal formulations to improve the sustained release of H2S within tissues.
Collapse
Affiliation(s)
- Ba Hieu Tran
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau.,Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ying Yu
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,Department of Cardiology, Xinhua Hospital, Shanghai, People's Republic of China
| | - Lingling Chang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Bo Tan
- Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Wanwan Jia
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Ying Xiong
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Tao Dai
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Rui Zhong
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Weiping Zhang
- Department of Hematology, Institute of Hematology of PLA, Changhai Hospital, Shanghai, People's Republic of China
| | - Van Minh Le
- NTT Institute of Hi-Technology (NIH), Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Peter Rose
- School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Zhijun Wang
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| | - Yicheng Mao
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China
| | - Yi Zhun Zhu
- School of Pharmacy, Fudan University, Shanghai, People's Republic of China.,School of Pharmacy, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
16
|
Hydrogen Sulfide Attenuates High Glucose-induced Myocardial Injury in Rat Cardiomyocytes by Suppressing Wnt/beta-catenin Pathway. Curr Med Sci 2019; 39:938-946. [PMID: 31845225 DOI: 10.1007/s11596-019-2120-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Diabetic cardiomyopathy (DCM) is one of the major heart complications of diabetic patients. Hydrogen sulfide (H2S) is now recognized as an important signaling molecule and has been shown to attenuate the development of diabetic cardiomyopathy. However, the underlying mechanisms linking H2S and the development of DCM have not been fully elucidated. In the present study, we therefore sought to explore the role and mechanism of H2S in the pathogenesis of DCM by establishing high glucose-induced injury model in neonatal rat cardiomyocytes (NRCMs) and H9c2 cells. Using cystathionine gamma-lyase (CSE) overexpression and CSE interference vectors transfection, the cell viability, cell apoptosis. and oxidative stress were determined and compared between the treatment of high glucose induction and exgenous NaHS administration. Meanwhile, the relationship between the CSE/H2S system and Wnt/beta-catenin pathway was analyzed and discussed in the high glucose-induced cardiomyocytes. Our results indicated that H2S played an important protective role in high glucose-induced apoptosis and oxidative stress in cardiomyocytes, as shown by the decreased reactive oxygen species and malondialdehyde levels, and the increased activities of superoxide dismutase, catalase and glutathione peroxidase. Moreover, H2S could attenuate the Wnt/β-catenin signalling pathway and up-regulate the expression of haem oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO1) in the diabetic myocardium cells. Together, these results demonstrated that H2S could attenuate high glucose-induced myocardial injury in rat cardiomyocytes by suppressing Wnt/β-catenin pathway.
Collapse
|
17
|
Murphy B, Bhattacharya R, Mukherjee P. Hydrogen sulfide signaling in mitochondria and disease. FASEB J 2019; 33:13098-13125. [PMID: 31648556 PMCID: PMC6894098 DOI: 10.1096/fj.201901304r] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hydrogen sulfide can signal through 3 distinct mechanisms: 1) reduction and/or direct binding of metalloprotein heme centers, 2) serving as a potent antioxidant through reactive oxygen species/reactive nitrogen species scavenging, or 3) post-translational modification of proteins by addition of a thiol (-SH) group onto reactive cysteine residues: a process known as persulfidation. Below toxic levels, hydrogen sulfide promotes mitochondrial biogenesis and function, thereby conferring protection against cellular stress. For these reasons, increases in hydrogen sulfide and hydrogen sulfide-producing enzymes have been implicated in several human disease states. This review will first summarize our current understanding of hydrogen sulfide production and metabolism, as well as its signaling mechanisms; second, this work will detail the known mechanisms of hydrogen sulfide in the mitochondria and the implications of its mitochondrial-specific impacts in several pathologic conditions.-Murphy, B., Bhattacharya, R., Mukherjee, P. Hydrogen sulfide signaling in mitochondria and disease.
Collapse
Affiliation(s)
- Brennah Murphy
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Yang R, Jia Q, Ma SF, Wang Y, Mehmood S, Chen Y. Exogenous H2S mitigates myocardial fibrosis in diabetic rats through suppression of the canonical Wnt pathway. Int J Mol Med 2019; 44:549-558. [PMID: 31198980 PMCID: PMC6605697 DOI: 10.3892/ijmm.2019.4237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has antifibrotic activity in the kidneys, heart, lungs, and other organs. The present study investigated the protective activity of exogenous H2S against myocardial fibrosis in a rat model of diabetes. Animals were assigned to normal control, diabetes mellitus (DM), DM + sodium hydrosulfide (NaHS; DM + NaHS) and NaHS groups. Fasting blood glucose (FBG), cardiac function and hydroxyproline were monitored. Heart histomorphology and ultrastructure were additionally evaluated. Wnt1-inducible signaling pathway protein (WISP)-1 protein expression in the myocardium was determined by immunohistochemical staining. Matrix metalloprotease (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2, collagens, and canonical Wnt and transforming growth factor (TGF)-β1/SMAD family member 3 (Smad3) pathway-related proteins were assessed by western blotting. Cardiac function was decreased, and myocardial injury, hypertrophy and fibrosis were increased in the diabetes model rats. MMP-2 expression was decreased, and the expressions of WISP-1, TIMP-2, collagens, and canonical Wnt and TGF-β1/Smad3 pathway-related proteins were increased in the myocardia of the diabetes model rats. The present results indicated that the canonical Wnt pathway promoted diabetic myocardial fibrosis by upregulating the TGF-β1/Smad3 pathway. Except for FBG, exogenous H2S ameliorated the changes in diabetes-associated indices in rats in the DM + NaHS group. The results are consistent with H2S protection of streptozotocin-induced myocardial fibrosis in the diabetes model rats by downregulation of the canonical Wnt and TGF-β1/Smad3 pathway and decreased myocardial collagen deposition.
Collapse
Affiliation(s)
- Rui Yang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Qiang Jia
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shan-Feng Ma
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Ya Wang
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Shomaila Mehmood
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| | - Yan Chen
- School of Life Sciences, Anhui University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
19
|
Kar S, Shahshahan HR, Kambis TN, Yadav SK, Li Z, Lefer DJ, Mishra PK. Hydrogen Sulfide Ameliorates Homocysteine-Induced Cardiac Remodeling and Dysfunction. Front Physiol 2019; 10:598. [PMID: 31178749 PMCID: PMC6544124 DOI: 10.3389/fphys.2019.00598] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/26/2019] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes, a methionine-rich meat diet, or certain genetic polymorphisms show elevated levels of homocysteine (Hcy), which is strongly associated with the development of cardiovascular disease including diabetic cardiomyopathy. However, reducing Hcy levels with folate shows no beneficial cardiac effects. We have previously shown that a hydrogen sulfide (H2S), a by-product of Hcy through transsulfuration by cystathionine beta synthase (CBS), donor mitigates Hcy-induced hypertrophy in cardiomyocytes. However, the in vivo cardiac effects of H2S in the context of hyperhomocysteinemia (HHcy) have not been studied. We tested the hypothesis that HHcy causes cardiac remodeling and dysfunction in vivo, which is ameliorated by H2S. Twelve-week-old male CBS+/− (a model of HHcy) and sibling CBS+/+ (WT) mice were treated with SG1002 (a slow release H2S donor) diet for 4 months. The left ventricle of CBS+/− mice showed increased expression of early remodeling signals c-Jun and c-Fos, increased interstitial collagen deposition, and increased cellular hypertrophy. Notably, SG1002 treatment slightly reduced c-Jun and c-Fos expression, decreased interstitial fibrosis, and reduced cellular hypertrophy. Pressure volume loop analyses in CBS+/− mice revealed increased end systolic pressure with no change in stroke volume (SV) suggesting increased afterload, which was abolished by SG1002 treatment. Additionally, SG1002 treatment increased end-diastolic volume and SV in CBS+/− mice, suggesting increased ventricular filling. These results demonstrate SG1002 treatment alleviates cardiac remodeling and afterload in HHcy mice. H2S may be cardioprotective in conditions where H2S is reduced and Hcy is elevated.
Collapse
Affiliation(s)
- Sumit Kar
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hamid R Shahshahan
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Zhen Li
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - David J Lefer
- Department of Pharmacology and Experimental Therapeutics, Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
20
|
Abdelmonem M, Shahin NN, Rashed LA, Amin HAA, Shamaa AA, Shaheen AA. Hydrogen sulfide enhances the effectiveness of mesenchymal stem cell therapy in rats with heart failure: In vitro preconditioning versus in vivo co-delivery. Biomed Pharmacother 2019; 112:108584. [DOI: 10.1016/j.biopha.2019.01.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/09/2019] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
|
21
|
Effects of Hydrogen Sulfide on Carbohydrate Metabolism in Obese Type 2 Diabetic Rats. Molecules 2019; 24:molecules24010190. [PMID: 30621352 PMCID: PMC6337247 DOI: 10.3390/molecules24010190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022] Open
Abstract
Hydrogen sulfide (H2S) is involved in the pathophysiology of type 2 diabetes. Inhibition and stimulation of H2S synthesis has been suggested to be a potential therapeutic approach for type 2 diabetes. The aim of this study was therefore to determine the effects of long-term sodium hydrosulfide (NaSH) administration as a H2S releasing agent on carbohydrate metabolism in type 2 diabetic rats. Type 2 diabetes was established using high fat-low dose streptozotocin. Rats were treated for 9 weeks with intraperitoneal injections of NaSH (0.28, 0.56, 1.6, 2.8, and 5.6 mg/kg). Serum glucose was measured weekly for one month and then at the end of the study. Serum insulin was measured before and after the treatment. At the end of the study, glucose tolerance, pyruvate tolerance and insulin secretion were determined and blood pressure was measured. In diabetic rats NaSH at 1.6–5.6 mg/kg increased serum glucose (11%, 28%, and 51%, respectively) and decreased serum insulin, glucose tolerance, pyruvate tolerance and in vivo insulin secretion. In controls, NaSH only at 5.6 mg/kg increased serum glucose and decreased glucose tolerance, pyruvate tolerance and insulin secretion. Chronic administration of NaSH in particular at high doses impaired carbohydrate metabolism in type 2 diabetic rats.
Collapse
|
22
|
Abdulle AE, van Goor H, Mulder DJ. Hydrogen Sulfide: A Therapeutic Option in Systemic Sclerosis. Int J Mol Sci 2018; 19:E4121. [PMID: 30572591 PMCID: PMC6320961 DOI: 10.3390/ijms19124121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
Systemic sclerosis (SSc) is a lethal disease that is characterized by auto-immunity, vascular injury, and progressive fibrosis of multiple organ systems. Despite the fact that the exact etiology of SSc remains unknown, oxidative stress has been associated with a large range of SSc-related complications. In addition to the well-known detrimental properties of reactive oxygen species (ROS), gasotransmitters (e.g., nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H₂S)) are also thought to play an important role in SSc. Accordingly, the diverse physiologic actions of NO and CO and their role in SSc have been previously studied. Recently, multiple studies have also shown the importance of the third gasotransmitter H₂S in both vascular physiology and pathophysiology. Interestingly, homocysteine (which is converted into H₂S through the transsulfuration pathway) is often found to be elevated in SSc patients; suggesting defects in the transsulfuration pathway. Hydrogen sulfide, which is known to have several effects, including a strong antioxidant and vasodilator effect, could potentially play a prominent role in the initiation and progression of vasculopathy. A better understanding of the actions of gasotransmitters, like H₂S, in the development of SSc-related vasculopathy, could help to create early interventions to attenuate the disease course. This paper will review the role of H₂S in vascular (patho-)physiology and potential disturbances in SSc. Moreover, current data from experimental animal studies will be reviewed. Lastly, we will evaluate potential interventional strategies.
Collapse
Affiliation(s)
- Amaal Eman Abdulle
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Harry van Goor
- Department of Pathology and Medical Biology, Section Pathology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | - Douwe J Mulder
- Department of Internal Medicine, Division Vascular Medicine, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
23
|
Shen H, Wang Y. Activation of TGF‐β1/Smad3 signaling pathway inhibits the development of ovarian follicle in polycystic ovary syndrome by promoting apoptosis of granulosa cells. J Cell Physiol 2018; 234:11976-11985. [PMID: 30536903 DOI: 10.1002/jcp.27854] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/13/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Haoran Shen
- Department of Gynecology Obstetrics & Gynecology Hospital of Fudan University Shanghai P.R. China
| | - Yao Wang
- Department of Assisted Reproduction Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai P.R. China
| |
Collapse
|
24
|
Chhabra A, Mishra S, Kumar G, Gupta A, Keshri GK, Bharti B, Meena RN, Prabhakar AK, Singh DK, Bhargava K, Sharma M. Glucose-6-phosphate dehydrogenase is critical for suppression of cardiac hypertrophy by H 2S. Cell Death Discov 2018; 4:6. [PMID: 29531803 PMCID: PMC5841415 DOI: 10.1038/s41420-017-0010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/11/2022] Open
Abstract
Hydrogen Sulfide (H2S), recently identified as the third endogenously produced gaseous messenger, is a promising therapeutic prospect for multiple cardio-pathological states, including myocardial hypertrophy. The molecular niche of H2S in normal or diseased cardiac cells is, however, sparsely understood. Here, we show that β-adrenergic receptor (β-AR) overstimulation, known to produce hypertrophic effects in cardiomyocytes, rapidly decreased endogenous H2S levels. The preservation of intracellular H2S levels under these conditions strongly suppressed hypertrophic responses to adrenergic overstimulation, thus suggesting its intrinsic role in this process. Interestingly, unbiased global transcriptome sequencing analysis revealed an integrated metabolic circuitry, centrally linked by NADPH homeostasis, as the direct target of intracellular H2S augmentation. Within these gene networks, glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme (producing NADPH) in pentose phosphate pathway, emerged as the critical node regulating cellular effects of H2S. Utilizing both cellular and animal model systems, we show that H2S-induced elevated G6PD activity is critical for the suppression of cardiac hypertrophy in response to adrenergic overstimulation. We also describe experimental evidences suggesting multiple processes/pathways involved in regulation of G6PD activity, sustained over extended duration of time, in response to endogenous H2S augmentation. Our data, thus, revealed H2S as a critical endogenous regulator of cardiac metabolic circuitry, and also mechanistic basis for its anti-hypertrophic effects.
Collapse
Affiliation(s)
- Aastha Chhabra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Shalini Mishra
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Gaurav Kumar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Asheesh Gupta
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Gaurav Kumar Keshri
- Biochemical Pharmacology Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India
| | - Brij Bharti
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Ram Niwas Meena
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Amit Kumar Prabhakar
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | | | - Kalpana Bhargava
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| | - Manish Sharma
- Peptide and Proteomics Division, Defence Institute of Physiology and Allied Sciences (DIPAS), Delhi, India
| |
Collapse
|
25
|
Gheibi S, Jeddi S, Kashfi K, Ghasemi A. Regulation of vascular tone homeostasis by NO and H 2S: Implications in hypertension. Biochem Pharmacol 2018; 149:42-59. [PMID: 29330066 PMCID: PMC5866223 DOI: 10.1016/j.bcp.2018.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/05/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two gasotransmitters that are produced in the vasculature and contribute to the regulation of vascular tone. NO and H2S are synthesized in both vascular smooth muscle and endothelial cells; NO functions primarily through the sGC/cGMP pathway, and H2S mainly through activation of the ATP-dependent potassium channels; both leading to relaxation of vascular smooth muscle cells. A deficit in the NO/H2S homeostasis is involved in the pathogenesis of various cardiovascular diseases, especially hypertension. It is now becoming increasingly clear that there are important interactions between NO and H2S and that have a profound impact on vascular tone and this may provide insights into the new therapeutic interventions. The aim of this review is to provide a better understanding of individual and interactive roles of NO and H2S in vascular biology. Overall, available data indicate that both NO and H2S contribute to vascular (patho)physiology and in regulating blood pressure. In addition, boosting NO and H2S using various dietary sources or donors could be a hopeful therapeutic strategy in the management of hypertension.
Collapse
Affiliation(s)
- Sevda Gheibi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center and Department of Physiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Liang B, Xiao T, Long J, Liu M, Li Z, Liu S, Yang J. Hydrogen sulfide alleviates myocardial fibrosis in mice with alcoholic cardiomyopathy by downregulating autophagy. Int J Mol Med 2017; 40:1781-1791. [PMID: 29039471 PMCID: PMC5716447 DOI: 10.3892/ijmm.2017.3191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 09/26/2017] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is one of the most important pathological features of alcoholic cardiomyopathy (ACM). Hydrogen sulfide (H2S) exerts protective effects in various types of cardiovascular disease, which has been demonstrated by many previous studies. However, there is a lack of adequate research on the effect of H2S on myocardial fibrosis in ACM. The present study aimed to investigate the etiopathogenic role of H2S in myocardial fibrosis induced by chronic alcohol intake. An ACM mouse model was induced by consumption of 4% ethanol solution in drinking water for 12 weeks. Sodium hydrosulfide (NaHS) was used as a donor to provide exogenous H2S. Twelve weeks later, mice were sacrificed to calculate the heart to body weight ratio. The degree of myocardial collagen deposition was evaluated by Masson's and Van Gieson's staining, the expression level of collagen Ⅰ was measured by immunohistochemistry and autophagosomes were observed by transmission electron microscopy. In addition, the expression levels of autophagy‑associated proteins and fibrosis-associated proteins were detected by western blotting, and the expression levels of miR-21 and miR-211 were detected by reverse transcription-quantitative polymerase chain reaction. The outcomes of the study revealed that chronic alcohol intake results in myocardial fibrosis, enhanced myocardial collagen deposition and increased expression levels of collagen I, autophagy, autophagy-associated proteins (Beclin 1, Atg3 and Atg7) and fibrosis-associated proteins (MMP8, MMP13, MMP14, MMP17 and TGF-β1), as well as miR-21 and miR-221. These results were markedly reversed following treatment with H2S. The present study confirmed that H2S relieves myocardial fibrosis in mice with ACM, and the underlying mechanism may involve the downregulation of autophagy and miR-21 and miR-211 expression levels.
Collapse
Affiliation(s)
- Biao Liang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Ting Xiao
- Department of Cardiology, Shenzhen Longhua New District Central Hospital, Shenzhen, Guangdong 518110, P.R. China
| | - Junrong Long
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Maojun Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zining Li
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shengquan Liu
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jun Yang
- Department of Cardiology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
27
|
Ma Y, Zou H, Zhu XX, Pang J, Xu Q, Jin QY, Ding YH, Zhou B, Huang DS. Transforming growth factor β: A potential biomarker and therapeutic target of ventricular remodeling. Oncotarget 2017; 8:53780-53790. [PMID: 28881850 PMCID: PMC5581149 DOI: 10.18632/oncotarget.17255] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/11/2017] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that is synthesized by many types of cells and regulates the cell cycle. Increasing evidence has led to TGF-β receiving increased and deserved attention in recent years because it may play a potentially novel and critical role in the development and progression of myocardial fibrosis and the subsequent progress of ventricular remodeling (VR). Numerous studies have highlighted a crucial role of TGF-β in VR and suggest potential therapeutic targets of the TGF-β signaling pathways for VR. Changes in TGF-β activity may elicit anti-VR activity and may serve as a novel therapeutic target for VR therapy. This review we discusses the smad-dependent signaling pathway, such as TGF-β/Smads, TGF-β/Sirtuins, TGF-β/BMP, TGF-β/miRNAs, TGF-β/MAPK, and Smad-independent signaling pathway of TGF-β, such as TGF-β/PI3K/Akt, TGF-β/Rho/ROCK,TGF-β/Wnt/β-catenin in the cardiac fibrosis and subsequent progression of VR. Furthermore, agonists and antagonists of TGF-β as potential therapeutic targets in VR are also described.
Collapse
Affiliation(s)
- Yuan Ma
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Hai Zou
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xing-Xing Zhu
- Department of Nephrology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jie Pang
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qiang Xu
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Qin-Yang Jin
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ya-Hui Ding
- Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Bing Zhou
- Department of Cardiac Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dong-Sheng Huang
- Department of Hepatobiliary Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China.,People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
28
|
H 2S as a possible therapeutic alternative for the treatment of hypertensive kidney injury. Nitric Oxide 2017; 64:52-60. [PMID: 28069557 DOI: 10.1016/j.niox.2017.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/22/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Hypertension is the most common cause of cardiovascular morbidities and mortalities, and a major risk factor for renal dysfunction. It is considered one of the causes of chronic kidney disease, which progresses into end-stage renal disease and eventually loss of renal function. Yet, the mechanism underlying the pathogenesis of hypertension and its associated kidney injury is still poorly understood. Moreover, despite existing antihypertensive therapies, achievement of blood pressure control and preservation of renal function still remain a worldwide public health challenge in a subset of hypertensive patients. Therefore, novel modes of intervention are in demand. Hydrogen sulfide (H2S), a gaseous signaling molecule, has been established to possess antihypertensive and renoprotective properties, which may represent an important therapeutic alternative for the treatment of hypertension and kidney injury. This review discusses recent findings about H2S in hypertension and kidney injury from both experimental and clinical studies. It also addresses future direction regarding therapeutic use of H2S.
Collapse
|
29
|
Li Y, Li L, Zeng O, Liu JM, Yang J. H 2S improves renal fibrosis in STZ-induced diabetic rats by ameliorating TGF-β1 expression. Ren Fail 2016; 39:265-272. [PMID: 27882817 PMCID: PMC6014487 DOI: 10.1080/0886022x.2016.1257433] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Nephropathy develops in many patients with type 1 diabetes mellitus (T1DM). However, the specific mechanisms and therapies remain unclear. For this purpose we investigated the effects of hydrogen sulfide (H2S) on renal fibrosis in streptozotocin (STZ) induced diabetic rats and its underlying mechanisms. Experimental rats were randomly divided into four groups: Control group (normal rats), DM group (diabetes rats), DM + NaHS group [diabetes rats treated with sodium hydrosulfide (NaHS)], and NaHS group (normal rats treated with NaHS). The diabetic models were established by intraperitoneal injection of STZ. The NaHS-treated rats were injected with NaHS as an exogenous donor of H2S. At the same time, control group and DM group were administrated with equal doses of normal saline (NS). After eight weeks, the rats’ urine samples were collected to measure the renal hydroxyproline content by basic hydrolysis method with a hydroxyproline detection kit. Collagen I and III content was detected by immunohistochemical method, and the pathology morphology of kidney was analyzed by Masson staining. Protein expressions of transforming growth factor beta 1 (TGF-β1), ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 were assessed by western blotting. The results showed that significant fibrosis occurred in the kidney of diabetes rats. NaHS treatment downregulated TGF-β1, ERK1/2, TIMP1, TIMP2, MMP-2, MMP-7, MMP-8, MMP-11, and MMP-14 expressions in the kidney of these diabetes rats (p<.01). This result suggests that NaHS treatment could attenuate renal fibrosis by TGF-β1 signaling, and its mechanisms may be correlated with ERK1/2 expression and modulation of MMPs/TIMPs expression. Therefore, H2S may provide a promising option for defensing against diabetic renal fibrosis through TGF-β1 signaling, equilibrating the balance between profibrotic and antifibrotic mediators.
Collapse
Affiliation(s)
- Yan Li
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Lin Li
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Ou Zeng
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Jun Mao Liu
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| | - Jun Yang
- a Cardiovascular Department , The First Affiliated Hospital of the University of South China , Hengyang , Hunan , PR China
| |
Collapse
|
30
|
Zeng O, Li F, Li Y, Li L, Xiao T, Chu C, Yang J. Effect of Novel Gasotransmitter hydrogen sulfide on renal fibrosis and connexins expression in diabetic rats. Bioengineered 2016; 7:314-320. [PMID: 27575818 DOI: 10.1080/21655979.2016.1197743] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To explore the effects of hydrogen sulfide (H2S) on renal fibrosis and the expressions of connexins and matrix metalloproteinase (MMP) in diabetic rats. METHOD SD rats were divided into 4 groups randomly: control group(n = 12), STZ group (n = 12), STZ+ H2S group (n = 12), and H2S group (n = 12). Diabetic model was induced by intraperitoneal injections of STZ. After 72 h after injection, the rats whose blood glucose were higher than 16.7 mmol/L. STZ+H2S group and H2S group were injected NaHS by intraperitoneal. Control group and STZ group were injected with the same dose of normal saline (NS) in equal doses every day. 8 weeks later, urine were collected. The expression of connexin and matrix metalloproteinase was analyzed by Western blot. We measured the Kidney hydroxyproline content by hydrolysis method. Type II collagen content was detected by immunohistochemical method and Masson staining. RESULTS Compared with the control group, collagen accumulation was markedly enhanced, and the content of type II collagen, kidney hydroxyproline and timp-2 were boosted in STZ group mice (P < 0.01), while the expressions of CX40,CX43, CX45, MMP-1 and MMP-2 were obviously deceased (P < 0.01). Compared with STZ group, the expressions of CX40, CX43, CX45, MMP-1 and MMP-2 were significantly increased (P < 0.01), while the content of type II collagen, kidney hydroxyproline and timp-2 expression were markedly deceased in STZ+H2S group. CONCLUSION H2S may attenuate renal fibrosis by up-regulating the expressions of CX40, CX43, CX45 and regulating the MMPs/TIMPs parameters.
Collapse
Affiliation(s)
- Ou Zeng
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Fang Li
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Yan Li
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Lin Li
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Ting Xiao
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Chun Chu
- b Department of Pharmacy , The Second Affiliated Hospital of University of South China , Hengyang , Hunan , China
| | - Jun Yang
- a Department of Geriatrics , The First Affiliated Hospital of University of South China , Hengyang , Hunan , China
| |
Collapse
|
31
|
Fu L, Xu Y, Tu L, Huang H, Zhang Y, Chen Y, Tao L, Shen X. Oxymatrine inhibits aldosterone-induced rat cardiac fibroblast proliferation and differentiation by attenuating smad-2,-3 and-4 expression: an in vitro study. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:241. [PMID: 27457615 PMCID: PMC4960670 DOI: 10.1186/s12906-016-1231-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/19/2016] [Indexed: 01/07/2023]
Abstract
BACKGROUND We previously demonstrated oxymatrine, an alkaloid from the Chinese medicine radix Sophorae flavescentis, ameliorates hemodynamic disturbances and cardiac fibrosis; however, the underlying mechanisms are unclear. Here, we investigated the effect and mechanism of action of oxymatrine on aldosterone-induced cardiac fibroblast to myofibroblast differentiation in vitro. METHODS Cardiac fibroblasts were isolated purified from neonatal Sprague Dawley rats. The optimal concentration of aldosterone to stimulate cardiac fibroblast proliferation was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cardiac fibroblasts were pretreated with 7.57 × 10(-4) mol/L or 3.78 × 10(-4) mol/L oxymatrine or without oxymatrine for 2 h, and then coincubated with 1 × 10(-8) mol/L aldosterone for 48 h. The MTT assay and Masson staining were used to detect the cardiac fibroblast proliferation and myofibroblast differentiation. The secretion of type I and III collagen was measured by commercial ELISA kits, and the hydroxyproline content was determined by the colorimetric assay. Western blotting assayed the Smad-2, Smad-3, and Smad-4 protein expression in cardiac fibroblasts. RESULTS The present results confirmed that aldosterone induced cardiac fibroblast to myofibroblast proliferation and differentiation. The MTT assay and Masson staining indicated oxymatrine significantly inhibited aldosterone-induced cardiac fibroblast proliferation and myofibroblast differentiation. Oxymatrine significantly inhibited aldosterone-induced secretion of type I and III collagen, as indicated by commercial ELISA kits, and aldosterone-induced increase in hydroxyproline content, as indicated by a colorimetric assay. Western blotting revealed oxymatrine attenuated aldosterone-induced Smad-2, Smad-3, and Smad-4 expression in cardiac fibroblasts. CONCLUSION Oxymatrine can inhibit cardiac fibroblast proliferation and differentiation into myofibroblasts via a mechanism linked to attenuation of the Smad signaling pathway.
Collapse
Affiliation(s)
- Lingyun Fu
- Department of Pharmacology of Materia Medica, Guizhou Medical University, Huaxi University town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Yini Xu
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Ling Tu
- Department of Pharmacology of Materia Medica, Guizhou Medical University, Huaxi University town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Haifeng Huang
- Department of Pharmacology of Materia Medica, Guizhou Medical University, Huaxi University town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Yanyan Zhang
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Yan Chen
- Department of Pharmacology of Materia Medica, Guizhou Medical University, Huaxi University town, Guian New District, Guizhou, 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Ling Tao
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China
| | - Xiangchun Shen
- Department of Pharmacology of Materia Medica, Guizhou Medical University, Huaxi University town, Guian New District, Guizhou, 550025, China.
- The Key Laboratory of Optimal Utilization of Natural Medicinal Resources, Guizhou Medical University, Huaxi University town, Guian new district, Guizhou, 550025, China.
| |
Collapse
|
32
|
van Goor H, van den Born JC, Hillebrands JL, Joles JA. Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens 2016; 25:107-13. [DOI: 10.1097/mnh.0000000000000206] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Endogenous sulfur dioxide alleviates collagen remodeling via inhibiting TGF-β/Smad pathway in vascular smooth muscle cells. Sci Rep 2016; 6:19503. [PMID: 26762477 PMCID: PMC4725894 DOI: 10.1038/srep19503] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023] Open
Abstract
The study was designed to investigate the role of endogenous sulfur dioxide (SO2) in collagen remodeling and its mechanisms in vascular smooth muscle cells (VSMCs). Overexpression of endogenous SO2 synthase aspartate aminotransferase (AAT) 1 or 2 increased SO2 levels and inhibited collagen I and III expressions induced by transforming growth factor (TGF)-β1 in VSMCs. In contrast, AAT1 or AAT2 knockdown induced a severe collagen deposition in TGF-β1-treated VSMCs. Furthermore, AAT1 or AAT2 overexpression suppressed procollagen I and III mRNA, upregulated matrix metalloproteinase (MMP)-13 expression, downregulated tissue inhibitors of MMP-1 level, and vice versa. Mechanistically, AAT1 or AAT2 overexpression inhibited phosphorylation of type I TGF-β receptor (TβRI) and Smad2/3 in TGF-β1-stimulated VSMCs. Whereas SB431542, an inhibitor of TGF-β1/Smad signaling pathway, attenuated excessive collagen deposition induced by AAT knockdown. Most importantly, ectopically expressing AAT or exogenous addition of 100 μM SO2 blocked AAT deficiency-aggravated collagen accumulation in TGF-β1-stimulatd VSMCs, while no inhibition was observed at 100 μM ethyl pyruvate. These findings indicated that endogenous SO2 alleviated collagen remodeling by controlling TGF-β1/TβRI/Smad2/3-mediated modulation of collagen synthesis and degradation.
Collapse
|
34
|
Guo L, Peng W, Tao J, Lan Z, Hei H, Tian L, Pan W, Wang L, Zhang X. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway. PLoS One 2016; 11:e0147018. [PMID: 26760502 PMCID: PMC4712126 DOI: 10.1371/journal.pone.0147018] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/27/2015] [Indexed: 01/11/2023] Open
Abstract
Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.
Collapse
Affiliation(s)
- Lin Guo
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Wen Peng
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, PR China
| | - Jie Tao
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, PR China
| | - Zhen Lan
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, PR China
| | - Hongya Hei
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Lulu Tian
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Wanma Pan
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
| | - Li Wang
- Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai, 200062, PR China
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, 826 Zhangheng Road, Pudong New District, Shanghai, 201203, China
- * E-mail:
| |
Collapse
|
35
|
Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:691070. [PMID: 26078813 PMCID: PMC4442292 DOI: 10.1155/2015/691070] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 12/12/2014] [Accepted: 12/12/2014] [Indexed: 01/06/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts.
Collapse
|