1
|
Bertini CD, Khawaja F, Sheshadri A. Coronavirus Disease-2019 in the Immunocompromised Host. Rheum Dis Clin North Am 2025; 51:123-138. [PMID: 39550101 DOI: 10.1016/j.rdc.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
Abstract
Immunocompromised hosts, which encompass a diverse population of persons with malignancies, human immunodeficiency virus disease, solid organ, and hematologic transplants, autoimmune diseases, and primary immunodeficiencies, bear a significant burden of the morbidity and mortality due to coronavirus disease-2019 (COVID-19). Immunocompromised patients who develop COVID-19 have a more severe illness, higher hospitalization rates, and higher mortality rates than immunocompetent patients. There are no well-defined treatment strategies that are specific to immunocompromised patients and vaccines, monoclonal antibodies, and convalescent plasma are variably effective. This review focuses on the specific impact of COVID-19 in immunocompromised patients and the gaps in knowledge that require further study.
Collapse
Affiliation(s)
- Christopher D Bertini
- Department of Internal Medicine, UTHealth Houston McGovern Medical School, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1469, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1462, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Bertini CD, Khawaja F, Sheshadri A. Coronavirus Disease-2019 in the Immunocompromised Host. Infect Dis Clin North Am 2024; 38:213-228. [PMID: 38280765 DOI: 10.1016/j.idc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
Immunocompromised hosts, which encompass a diverse population of persons with malignancies, human immunodeficiency virus disease, solid organ, and hematologic transplants, autoimmune diseases, and primary immunodeficiencies, bear a significant burden of the morbidity and mortality due to coronavirus disease-2019 (COVID-19). Immunocompromised patients who develop COVID-19 have a more severe illness, higher hospitalization rates, and higher mortality rates than immunocompetent patients. There are no well-defined treatment strategies that are specific to immunocompromised patients and vaccines, monoclonal antibodies, and convalescent plasma are variably effective. This review focuses on the specific impact of COVID-19 in immunocompromised patients and the gaps in knowledge that require further study.
Collapse
Affiliation(s)
- Christopher D Bertini
- Department of Internal Medicine, UTHealth Houston McGovern Medical School, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1469, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1462, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Fenninger F, Sherwood KR, Wu V, Wong P, DeMarco ML, Wang M, Benedicto V, Dwarka KA, Günther OP, Tate L, Yoshida E, Keown PA, Kadatz M, Lan JH. Comprehensive immune profiling of SARS-CoV-2 infected kidney transplant patients. FRONTIERS IN TRANSPLANTATION 2023; 2:1261023. [PMID: 38993862 PMCID: PMC11235348 DOI: 10.3389/frtra.2023.1261023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 07/13/2024]
Abstract
Introduction The immune responses of kidney transplant recipients against SARS-CoV-2 remains under studied. Methods In this prospective pilot study, we performed comprehensive immune profiling using cellular, proteomic, and serologic assays on a cohort of 9 kidney transplant recipients and 12 non-transplant individuals diagnosed with COVID-19. Results Our data show that in addition to having reduced SARS-CoV-2 specific antibody levels, kidney transplant recipients exhibited significant cellular differences including a decrease in naïve-but increase in effector T cells, a high number of CD28+ CD4 effector memory T cells, and increased CD8 T memory stem cells compared with non-transplant patients. Furthermore, transplant patients had lower concentrations of serum cytokine MIP-1β as well as a less diverse T cell receptor repertoire. Conclusion Overall, our results show that compared to non-transplant patients, kidney transplant recipients with SARS-CoV-2 infection exhibit an immunophenotype that is reminiscent of the immune signature observed in patients with severe COVID-19.
Collapse
Affiliation(s)
- Franz Fenninger
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karen R. Sherwood
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vivian Wu
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Paaksum Wong
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, Providence Health Care, Vancouver, BC, Canada
| | - Meng Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Vincent Benedicto
- BC Provincial Immunology Laboratory, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Krishna A. Dwarka
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Logan Tate
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Eric Yoshida
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Gastroenterology, University of British Columbia, Vancouver, BC, Canada
| | - Paul A. Keown
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Kadatz
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| | - James H. Lan
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Division of Nephrology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Szabó E, Modok S, Rónaszéki B, Faragó A, Gémes N, Nagy LI, Hackler L, Farkas K, Neuperger P, Balog JÁ, Balog A, Puskás LG, Szebeni GJ. Comparison of humoral and cellular immune responses in hematologic diseases following completed vaccination protocol with BBIBP-CorV, or AZD1222, or BNT162b2 vaccines against SARS-CoV-2. Front Med (Lausanne) 2023; 10:1176168. [PMID: 37529238 PMCID: PMC10389666 DOI: 10.3389/fmed.2023.1176168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/23/2023] [Indexed: 08/03/2023] Open
Abstract
Background Vaccination has proven the potential to control the COVID-19 pandemic worldwide. Although recent evidence suggests a poor humoral response against SARS-CoV-2 in vaccinated hematological disease (HD) patients, data on vaccination in these patients is limited with the comparison of mRNA-based, vector-based or inactivated virus-based vaccines. Methods Forty-nine HD patients and 46 healthy controls (HCs) were enrolled who received two-doses complete vaccination with BNT162b2, or AZD1222, or BBIBP-CorV, respectively. The antibodies reactive to the receptor binding domain of spike protein of SARS-CoV-2 were assayed by Siemens ADVIA Centaur assay. The reactive cellular immunity was assayed by flow cytometry. The PBMCs were reactivated with SARS-CoV-2 antigens and the production of activation-induced markers (TNF-α, IFN-γ, CD40L) was measured in CD4+ or CD8+ T-cells ex vivo. Results The anti-RBD IgG level was the highest upon BNT162b2 vaccination in HDs (1264 BAU/mL) vs. HCs (1325 BAU/mL) among the studied groups. The BBIBP-CorV vaccination in HDs (339.8 BAU/mL ***p < 0.001) and AZD1222 in HDs (669.9 BAU/mL *p < 0.05) resulted in weaker antibody response vs. BNT162b2 in HCs. The response rate of IgG production of HC vs. HD patients above the diagnostic cut-off value was 100% vs. 72% for the mRNA-based BNT162b2 vaccine; 93% vs. 56% for the vector-based AZD1222, or 69% vs. 33% for the inactivated vaccine BBIBP-CorV, respectively. Cases that underwent the anti-CD20 therapy resulted in significantly weaker (**p < 0.01) anti-RBD IgG level (302 BAU/mL) than without CD20 blocking in the HD group (928 BAU/mL). The response rates of CD4+ TNF-α+, CD4+ IFN-γ+, or CD4+ CD40L+ cases were lower in HDs vs. HCs in all vaccine groups. However, the BBIBP-CorV vaccine resulted the highest CD4+ TNF-α and CD4+ IFN-γ+ T-cell mediated immunity in the HD group. Conclusion We have demonstrated a significant weaker overall response to vaccines in the immunologically impaired HD population vs. HCs regardless of vaccine type. Although, the humoral immune activity against SARS-CoV-2 can be highly evoked by mRNA-based BNT162b2 vaccination compared to vector-based AZD1222 vaccine, or inactivated virus vaccine BBIBP-CorV, whereas the CD4+ T-cell mediated cellular activity was highest in HDs vaccinated with BBIBP-CorV.
Collapse
Affiliation(s)
- Enikő Szabó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Szabolcs Modok
- Department of Medicine, Szent-Györgyi Albert Medical School-University of Szeged, Szeged, Hungary
| | - Benedek Rónaszéki
- Department of Medicine, Szent-Györgyi Albert Medical School-University of Szeged, Szeged, Hungary
| | - Anna Faragó
- Avidin Ltd., Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nikolett Gémes
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | | | | | | | - Patrícia Neuperger
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - József Á. Balog
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Attila Balog
- Department of Rheumatology and Immunology, Faculty of Medicine, Albert Szent-Gyorgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Avidin Ltd., Szeged, Hungary
- Avicor Ltd., Szeged, Hungary
| | - Gabor J. Szebeni
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- CS-Smartlab Devices, Kozarmisleny, Hungary
| |
Collapse
|
5
|
Bunse T, Koerber N, Wintersteller H, Schneider J, Graf A, Radonic A, Thuermer A, von Kleist M, Blum H, Spinner CD, Bauer T, Knolle PA, Protzer U, Schulte EC. T-Cell-Dominated Immune Response Resolves Protracted SARS-CoV-2 Infection in the Absence of Neutralizing Antibodies in an Immunocompromised Individual. Microorganisms 2023; 11:1562. [PMID: 37375064 DOI: 10.3390/microorganisms11061562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Immunocompromised individuals are at higher risk of developing protracted and severe COVID-19, and understanding individual disease courses and SARS-CoV-2 immune responses in these individuals is of the utmost importance. For more than two years, we followed an immunocompromised individual with a protracted SARS-CoV-2 infection that was eventually cleared in the absence of a humoral neutralizing SARS-CoV-2 antibody response. By conducting an in-depth examination of this individual's immune response and comparing it to a large cohort of convalescents who spontaneously cleared a SARS-CoV-2 infection, we shed light on the interplay between B- and T-cell immunity and how they interact in clearing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Till Bunse
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Virology, Helmholtz Munich, Trogerstrasse 30, 81675 Munich, Germany
| | - Nina Koerber
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Virology, Helmholtz Munich, Trogerstrasse 30, 81675 Munich, Germany
| | - Hannah Wintersteller
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Jochen Schneider
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Aleksandar Radonic
- Method Development, Research Infrastructure & IT (MFI), Robert-Koch Institute (RKI), 13353 Berlin, Germany
| | - Andrea Thuermer
- Method Development, Research Infrastructure & IT (MFI), Robert-Koch Institute (RKI), 13353 Berlin, Germany
| | - Max von Kleist
- Department of Mathematics and Computer Science, Freie Universität (FU) Berlin, 14195 Berlin, Germany
- Project Groups, Robert-Koch Institute (RKI), 13353 Berlin, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Christoph D Spinner
- Department of Internal Medicine II, University Hospital Rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
| | - Tanja Bauer
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Virology, Helmholtz Munich, Trogerstrasse 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
| | - Percy A Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Virology, Helmholtz Munich, Trogerstrasse 30, 81675 Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, 81675 Munich, Germany
| | - Eva C Schulte
- Institute of Virology, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Virology, Helmholtz Munich, Trogerstrasse 30, 81675 Munich, Germany
- Department of Psychiatry, University Hospital, LMU Munich, 80336 Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, University Hospital, LMU Munich, 80336 Munich, Germany
| |
Collapse
|
6
|
Abstract
Immunocompromised hosts, which encompass a diverse population of persons with malignancies, human immunodeficiency virus disease, solid organ, and hematologic transplants, autoimmune diseases, and primary immunodeficiencies, bear a significant burden of the morbidity and mortality due to coronavirus disease-2019 (COVID-19). Immunocompromised patients who develop COVID-19 have a more severe illness, higher hospitalization rates, and higher mortality rates than immunocompetent patients. There are no well-defined treatment strategies that are specific to immunocompromised patients and vaccines, monoclonal antibodies, and convalescent plasma are variably effective. This review focuses on the specific impact of COVID-19 in immunocompromised patients and the gaps in knowledge that require further study.
Collapse
Affiliation(s)
- Christopher D Bertini
- Department of Internal Medicine, UTHealth Houston McGovern Medical School, 6431 Fannin, MSB 1.150, Houston, TX 77030, USA
| | - Fareed Khawaja
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1469, Houston, TX 77030, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street Unit 1462, Houston, TX 77030, USA.
| |
Collapse
|
7
|
Yue X, Hallett D, Liu Y, Basa E, McNeill A, Dean JP. Outcomes of coronavirus disease 2019 (COVID-19) and risk factors associated with severe COVID-19 in patients with mature B-cell non-Hodgkin lymphomas: A US electronic health record cohort study. Eur J Haematol 2023; 110:177-187. [PMID: 36319588 PMCID: PMC9877844 DOI: 10.1111/ejh.13891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The objectives of this study were to assess the risk of severe coronavirus disease 2019 (COVID-19) outcomes in patients with mature B-cell non-Hodgkin lymphoma (mature B-cell NHL) compared with other cancers and to identify risk factors associated with severe COVID-19. METHODS This study used Optum's electronic health record database. Risk factors were evaluated using multivariable logistic regression. RESULTS Patients with mature B-cell NHL were more likely to be hospitalized or die from COVID-19 (age- and sex-standardized risk: 15.6%, 2.1%, respectively) than those without cancer (9.5%, 1.2%), or with solid tumors (9.7%, 1.3%). In patients with mature B-cell NHL, factors associated with severe COVID-19 outcomes included: greater age (75-84 years, adjusted odds ratio, 1.6 [95% CI, 1.3-2.0]; ≥85, 2.6 [2.0-3.4]), male sex (1.4 [1.2-1.6]), chronic kidney disease (1.4 [1.1-1.7]), chronic obstructive pulmonary disease (1.3 [1.0-1.6]), type 2 diabetes (1.3 [1.1-1.5]), and receiving treatment for NHL (1.5 [1.1-2.1]). CONCLUSIONS These data suggest that patients with mature B-cell NHL are at a higher risk of severe COVID-19 than patients with solid tumors or without cancer and that risk factors are largely consistent with those in the general population.
Collapse
Affiliation(s)
| | | | | | | | | | - James P. Dean
- Pharmacyclics LLC, an AbbVie CompanySouth San FranciscoCaliforniaUSA
| |
Collapse
|
8
|
Zhang JJ, Dong X, Liu GH, Gao YD. Risk and Protective Factors for COVID-19 Morbidity, Severity, and Mortality. Clin Rev Allergy Immunol 2023; 64:90-107. [PMID: 35044620 PMCID: PMC8767775 DOI: 10.1007/s12016-022-08921-5] [Citation(s) in RCA: 271] [Impact Index Per Article: 135.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
The outbreak of the coronavirus disease 2019 (COVID-19), caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become an evolving global health crisis. Currently, a number of risk factors have been identified to have a potential impact on increasing the morbidity of COVID-19 in adults, including old age, male sex, pre-existing comorbidities, and racial/ethnic disparities. In addition to these factors, changes in laboratory indices and pro-inflammatory cytokines, as well as possible complications, could indicate the progression of COVID-19 into a severe and critical stage. Children predominantly suffer from mild illnesses due to COVID-19. Similar to adults, the main risk factors in pediatric patients include age and pre-existing comorbidities. In contrast, supplementation with a healthy diet and sufficient nutrition, COVID-19 vaccination, and atopic conditions may act as protective factors against the infection of SARS-CoV-2. COVID-19 vaccination not only protects vulnerable individuals from SARS-CoV-2 infection, more importantly, it may also reduce the development of severe disease and death due to COVID-19. Currently used therapies for COVID-19 are off-label and empiric, and their impacts on the severity and mortality of COVID-19 are still unclear. The interaction between asthma and COVID-19 may be bidirectional and needs to be clarified in more studies. In this review, we highlight the clinical evidence supporting the rationale for the risk and protective factors for the morbidity, severity, and mortality of COVID-19.
Collapse
Affiliation(s)
- Jin-Jin Zhang
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Xiang Dong
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Guang-Hui Liu
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, Hubei, China
| | - Ya-Dong Gao
- Department of Allergology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China.
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Karimi H, Sarmadian R, Gilani A, salajegheh P, Nejad Biglari H, Gholizadeh M. Cerebrovascular accident in a child with precursor B-cell acute lymphoblastic leukemia and coronavirus disease 2019: a case report. J Med Case Rep 2022; 16:452. [PMID: 36471442 PMCID: PMC9724282 DOI: 10.1186/s13256-022-03672-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 can lead to rare but severe and life-threatening diseases in susceptible high-risk populations, including patients with immunodeficiency. A rare event in this report is stroke following COVID-19 disease in a patient with an immunocompromised background due to leukemia and anti-cancer treatments. CASE PRESENTATION A 6-year-old iranian girl with precursor B-cell leukemia receiving vincristine therapy presented with fever and absolute neutrophil count < 500. Her severe acute respiratory syndrome coronavirus 2 polymerase chain reaction test was positive. During hospitalization, she had abrupt onset tachypnea, reduced O2 saturation, and generalized tonic-clonic seizures treated with phenytoin and levetiracetam. Right parietal lobe ischemia was found on a brain computed tomography scan, and the cerebrospinal fluid polymerase chain reaction test was positive for severe acute respiratory syndrome coronavirus 2. Several days later, she developed lower extremity paralysis and speech impairment, so speech therapy and physiotherapy were initiated. The patient also received dexamethasone, mannitol, heparin, and remdesivir. She was discharged with enoxaparin and levetiracetam. Chemotherapy resumed 2 weeks following discharge. Her speech and walking improved after 10 months of follow-up, and bone marrow aspiration showed total remission. CONCLUSION Owing to the link between coronavirus disease 2019 and hematologic cancers with hypercoagulopathy and the tendency of patients with leukemia to have coronavirus disease 2019 complications, children with leukemia as well as suspected coronavirus disease 2019 must be hospitalized to prevent blood clot formation.
Collapse
Affiliation(s)
- Hanie Karimi
- Alumna of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Sarmadian
- Department of Infectious Disease, Arak University of Medical Sciences, Arak, Iran
| | - Abolfazl Gilani
- Department of Pediatric Surgery, Tehran University of Medical Sciences, Tehran, Iran
| | - Poorya salajegheh
- Department of Pediatric Oncology, Kerman University of Medical Sciences, Kerman, Iran
| | - Habibe Nejad Biglari
- Department of Pediatric Neurology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahsa Gholizadeh
- Alumna of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Delrue L, Muylaert A, Beernaert A, De Pelsmaeker I, Boel E, Moya A, Verstreken S, Dierckx R, Heggermont W, Bartunek J, Vanderheyden M. T Cell and Antibody Response Following Double Dose of BNT162b2 mRNA Vaccine in SARS-CoV-2 Naïve Heart Transplant Recipients. Diagnostics (Basel) 2022; 12:diagnostics12092148. [PMID: 36140549 PMCID: PMC9497465 DOI: 10.3390/diagnostics12092148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Preliminary studies have suggested a low post-vaccination antibody response against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in heart transplant(HTx)recipients. Although many studies have focused on the role of antibodies in vaccine-induced protection against SARS-CoV-2, the role of T cell immunity is less well characterized. To date, data regarding seroconversion and T cell response after mRNA SARS-CoV-2 vaccination in patients undergoing HTx are scarce. Therefore, the present study aimed to assess the specific memory humoral and cellular responses after two doses of the BNT162b2 vaccine in HTx recipients. Methods: Blood was drawn from heart transplant (HTx) recipients at two pre-specified time points after the first and second vaccine doses to measure both the anti-SARS-CoV-2 antibody response against the spike protein and the SARS-CoV-2-reactive T cell response. Results: Our study included 34 SARS-CoV-2 naïve HTx recipients (mean age, 61 ± 11 years). The mean time from transplantation to the first vaccine dose is 10 ± 10 years. Subgroup analysis (n = 21) demonstrated that after the first vaccine dose, only 14% had antibodies and 19% had a SARS-CoV-2-reactive T-cell response, which increased to 41% and 53%, respectively, after the second dose. Interestingly, 20% of patients with no antibodies after the second dose still had a positive SARS-CoV-2-reactive T cell response. The percentage of patients with positive S-IgG antibody titers was significantly higher 5 years after transplantation (18% 0–5 years post-TX vs. 65% 5 years post-TX, p = 0.013). Similarly, 5 years after heart transplantation, the percentage of patients with a T cell response was significantly higher (35% 0–5 years post-TX vs. 71% 5 years post-TX, p = 0.030). Conclusions: In SARS-CoV-2 naïve HTx recipients, post-vaccination antibody titers but also SARS-CoV-2 specific T cell response are low. Therefore, the protection from SARS-CoV-2 that is generally attributed to vaccination should be regarded with caution in HTx recipients.
Collapse
|
11
|
Abu Shanap M, Sughayer M, Alsmadi O, Elzayat I, Al-Nuirat A, Tbakhi A, Sultan I. Factors that predict severity of infection and seroconversion in immunocompromised children and adolescents with COVID-19 infection. Front Immunol 2022; 13:919762. [PMID: 35990639 PMCID: PMC9381983 DOI: 10.3389/fimmu.2022.919762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesWe aimed to study the outcomes, severity, and seroconversion post SARS-CoV-2 infection in immunocompromised children and adolescents treated at our center.MethodFor this observational study, all pediatric patients who had COVID-19 infection from Sep-22-2020 to Nov-10-2021were identified by reviewing our laboratory records. Their charts were reviewed to determine clinical severity and outcome. Blood samples were drawn for anti-SARS-CoV-2 antibody assay. Serious COVID-19 infection (SVI) was defined if the patient had moderate, severe, or critical illness. A cutoff of 100 U/mL anti-SARS-CoV-2 antibodies was used to categorize low and high titer seroconversion.ResultsWe identified 263 pediatric patients with COVID-19; most (68%) were symptomatic: 5% had severe or critical infection, 25% were hospitalized, 12 required respiratory support, 12 were admitted to the ICU, and five patients (2%) died. Multivariable analysis revealed several factors that predict SVI: Age above 12 years (p=0.035), body mass index above 95th percentile (p=0.034), comorbid conditions (p=0.025), absolute neutrophil count ≤500(p=0.014) and absolute lymphocyte count ≤300 (p=0.022). Levels of anti-SARS-CoV-2 spike antibodies were obtained for 173 patients at a median of 94 days (range, 14–300) after PCR diagnosis; of them 142 (82%) patients seroconverted; the lowest seroconversion rate was observed in patients with hematological malignancies (79%). Our univariable model showed that the following factors were predictive of low titer: lower ANC, p=0.01; hematologic malignancy, p=0.023; receiving steroids in the last 14 days, p=0.032; time since last chemotherapy or immunosuppressive therapy less than 30 days, p=0.002; and being on active chemotherapy in the last 3 months prior to infection, p<0.001.ConclusionsSARS-CoV-2 antibodies developed in most immunocompromised patients with COVID-19 infection in our study. Mortality was relatively low in our patients. Our univariable and multivariable models showed multiple variables that predict severity of infections and antibody response post COVID-19 infection. These observations may guide choice of active therapy during infection and the best timing of vaccination in this high-risk population.
Collapse
Affiliation(s)
- Mayada Abu Shanap
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
- *Correspondence: Mayada Abu Shanap,
| | - Maher Sughayer
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Osama Alsmadi
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Ismail Elzayat
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| | - Abeer Al-Nuirat
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman, Jordan
| | - Abdelghani Tbakhi
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Iyad Sultan
- Department of Pediatrics, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
12
|
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating pandemic. Although most people infected with SARS-CoV-2 develop a mild to moderate disease with virus replication restricted mainly to the upper airways, some progress to having a life-threatening pneumonia. In this Review, we explore recent clinical and experimental advances regarding SARS-CoV-2 pathophysiology and discuss potential mechanisms behind SARS-CoV-2-associated acute respiratory distress syndrome (ARDS), specifically focusing on new insights obtained using novel technologies such as single-cell omics, organoid infection models and CRISPR screens. We describe how SARS-CoV-2 may infect the lower respiratory tract and cause alveolar damage as a result of dysfunctional immune responses. We discuss how this may lead to the induction of a 'leaky state' of both the epithelium and the endothelium, promoting inflammation and coagulation, while an influx of immune cells leads to overexuberant inflammatory responses and immunopathology. Finally, we highlight how these findings may aid the development of new therapeutic interventions against COVID-19.
Collapse
|
13
|
Kebria MM, Milan PB, Peyravian N, Kiani J, Khatibi S, Mozafari M. Stem cell therapy for COVID-19 pneumonia. MOLECULAR BIOMEDICINE 2022; 3:6. [PMID: 35174448 PMCID: PMC8850486 DOI: 10.1186/s43556-021-00067-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus is a highly contagious microorganism, and despite substantial investigation, no progress has been achieved in treating post-COVID complications. However, the virus has made various mutations and has spread around the world. Researchers have tried different treatments to reduce the side effects of the COVID-19 symptoms. One of the most common and effective treatments now used is steroid therapy to reduce the complications of this disease. Long-term steroid therapy for chronic inflammation following COVID-19 is harmful and increases the risk of secondary infection, and effective treatment remains challenging owing to fibrosis and severe inflammation and infection. Sometimes our immune system can severely damage ourselves in disease. In the past, many researchers have conducted various studies on the immunomodulatory properties of stem cells. This property of stem cells led them to modulate the immune system of autoimmune diseases like diabetes, multiple sclerosis, and Parkinson's. Because of their immunomodulatory properties, stem cell-based therapy employing mesenchymal or hematopoietic stem cells may be a viable alternative treatment option in some patients. By priming the immune system and providing cytokines, chemokines, and growth factors, stem cells can be employed to build a long-term regenerative and protective response. This review addresses the latest trends and rapid progress in stem cell treatment for Acute Respiratory Distress Syndrome (ARDS) following COVID-19.
Collapse
Affiliation(s)
- Maziar Malekzadeh Kebria
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noshad Peyravian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Present Address: Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Soheil Khatibi
- Babol University of Medical Sciences, Infection Diseases Centre, Mazandaran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Jaganathan S, Stieber F, Rao SN, Nikolayevskyy V, Manissero D, Allen N, Boyle J, Howard J. Preliminary Evaluation of QuantiFERON SARS-CoV-2 and QIAreach Anti-SARS-CoV-2 Total Test in Recently Vaccinated Individuals. Infect Dis Ther 2021; 10:2765-2776. [PMID: 34435336 PMCID: PMC8386336 DOI: 10.1007/s40121-021-00521-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION There is an increasing body of evidence surrounding the importance of a T cell-mediated response to SARS-CoV-2 infection and after COVID-19 vaccination. In this internal feasibility study, we evaluated both the total antibody (IgA, IgM, and IgG) and T cell responses in a cohort of COVID-19 convalescents and vaccinated individuals. METHODS Whole blood specimens were collected weekly from 12 subjects at different time points within/after the COVID-19 mRNA vaccination regimen, and from 4 PCR-confirmed convalescent donors to measure durability of humoral and cell-mediated immune response. T cell and antibody responses were evaluated via the QuantiFERON SARS-CoV-2 research use only (QFN SARS-CoV-2) assay which is an interferon gamma release assay (IGRA) and QIAreach Anti-SARS-CoV-2 total (Anti-CoV-2) test, respectively. RESULTS In a cohort of recently vaccinated individuals, subjects demonstrated robust total antibody and CD4+/CD8+ T cell response to SARS-CoV-2 mRNA vaccines when followed for 2 months post-2nd dose. In most individuals, T cell response declined between the 1st and 2nd doses suggesting a need for a booster or the completion of the 2-dose vaccine series. In a group of convalescent donors tested with QFN SARS-CoV-2 and Anti-CoV-2 tests, all patients had an antibody and T cell response up to 1 year after natural infection. CONCLUSION This small feasibility study demonstrates that the QFN-SARS-CoV-2 test is able to identify CD4+ and CD8+ T cell-mediated responses in SARS-CoV-2-vaccinated subjects and those recovered from COVID-19, alongside a qualitative antibody response detectable via the QIAreach Anti-CoV2 test.
Collapse
Affiliation(s)
- Soumya Jaganathan
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Francis Stieber
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Sonia N Rao
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA.
| | | | | | - Nadia Allen
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Jeff Boyle
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Jenny Howard
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| |
Collapse
|
15
|
Malipiero G, Moratto A, Infantino M, D'Agaro P, Piscianz E, Manfredi M, Grossi V, Benvenuti E, Bulgaresi M, Benucci M, Villalta D. Assessment of humoral and cellular immunity induced by the BNT162b2 SARS-CoV-2 vaccine in healthcare workers, elderly people, and immunosuppressed patients with autoimmune disease. Immunol Res 2021; 69:576-583. [PMID: 34417958 PMCID: PMC8379062 DOI: 10.1007/s12026-021-09226-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/11/2021] [Indexed: 01/01/2023]
Abstract
The development of vaccines to prevent SARS-CoV-2 infection has mainly relied on the induction of neutralizing antibodies (nAbs) to the Spike protein of SARS-CoV-2, but there is growing evidence that T cell immune response can contribute to protection as well. In this study, an anti-receptor binding domain (RBD) antibody assay and an INFγ-release assay (IGRA) were used to detect humoral and cellular responses to the Pfizer-BioNTech BNT162b2 vaccine in three separate cohorts of COVID-19-naïve patients: 108 healthcare workers (HCWs), 15 elderly people, and 5 autoimmune patients treated with immunosuppressive agents. After the second dose of vaccine, the mean values of anti-RBD antibodies (Abs) and INFγ were 123.33 U/mL (range 27.55-464) and 1513 mIU/mL (range 145-2500) in HCWs and 210.7 U/mL (range 3-500) and 1167 mIU/mL (range 83-2500) in elderly people. No correlations between age and immune status were observed. On the contrary, a weak but significant positive correlation was found between INFγ and anti-RBD Abs values (rho = 0.354, p = 0.003). As to the autoimmune cohort, anti-RBD Abs were not detected in the two patients with absent peripheral CD19+B cells, despite high INFγ levels being observed in all 5 patients after vaccination. Even though the clinical relevance of T cell response has not yet been established as a correlate of vaccine-induced protection, IGRA testing has showed optimal sensitivity and specificity to define vaccine responders, even in patients lacking a cognate antibody response to the vaccine.
Collapse
Affiliation(s)
- Giacomo Malipiero
- Immunology and Allergy Unit, Ospedale S-Maria degli Angeli, Pordenone, Italy
| | - Anna Moratto
- Immunology and Allergy Unit, Ospedale S-Maria degli Angeli, Pordenone, Italy
| | - Maria Infantino
- Immunology and Allergy Laboratory Unit, San Giovanni Di Dio Hospital, Florence, Italy
| | - Pierlanfranco D'Agaro
- Laboratory for Hygiene and Public Health, University Hospital of Trieste, Trieste, Italy
| | - Elisa Piscianz
- Laboratory for Hygiene and Public Health, University Hospital of Trieste, Trieste, Italy
| | - Mariangela Manfredi
- Immunology and Allergy Laboratory Unit, San Giovanni Di Dio Hospital, Florence, Italy
| | - Valentina Grossi
- Immunology and Allergy Laboratory Unit, San Giovanni Di Dio Hospital, Florence, Italy
| | - Enrico Benvenuti
- Geriatric Unit Firenze-Empoli, Santa Maria Annunziata Hospital, Florence, Italy
| | - Matteo Bulgaresi
- Geriatric Unit Firenze-Empoli, Santa Maria Annunziata Hospital, Florence, Italy
| | - Maurizio Benucci
- Rheumatology Unit, San Giovanni Di Dio Hospital, Florence, Italy
| | - Danilo Villalta
- Immunology and Allergy Unit, Ospedale S-Maria degli Angeli, Pordenone, Italy.
| |
Collapse
|
16
|
Elkoshi Z. The Binary Model of Chronic Diseases Applied to COVID-19. Front Immunol 2021; 12:716084. [PMID: 34539649 PMCID: PMC8446604 DOI: 10.3389/fimmu.2021.716084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/12/2021] [Indexed: 12/15/2022] Open
Abstract
A binary model for the classification of chronic diseases has formerly been proposed. The model classifies chronic diseases as “high Treg” or “low Treg” diseases according to the extent of regulatory T cells (Treg) activity (frequency or function) observed. The present paper applies this model to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The model correctly predicts the efficacy or inefficacy of several immune-modulating drugs in the treatment of severe coronavirus disease 2019 (COVID-19) disease. It also correctly predicts the class of pathogens mostly associated with SARS-CoV-2 infection. The clinical implications are the following: (a) any search for new immune-modulating drugs for the treatment of COVID-19 should exclude candidates that do not induce “high Treg” immune reaction or those that do not spare CD8+ T cells; (b) immune-modulating drugs, which are effective against SARS-CoV-2, may not be effective against any variant of the virus that does not induce “low Treg” reaction; (c) any immune-modulating drug, which is effective in treating COVID-19, will also alleviate most coinfections; and (d) severe COVID-19 patients should avoid contact with carriers of “low Treg” pathogens.
Collapse
Affiliation(s)
- Zeev Elkoshi
- Research and Development Department, Taro Pharmaceutical Industries Ltd, Haifa, Israel
| |
Collapse
|
17
|
Cattaneo C, Cancelli V, Imberti L, Dobbs K, Sottini A, Pagani C, Belotti A, Re A, Anastasia A, Quaresima V, Tucci A, Chiorini JA, Su HC, Cohen JI, Burbelo PD, Rossi G, Notarangelo LD. Production and persistence of specific antibodies in COVID-19 patients with hematologic malignancies: role of rituximab. Blood Cancer J 2021; 11:151. [PMID: 34521813 PMCID: PMC8438656 DOI: 10.1038/s41408-021-00546-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/14/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
The ability of patients with hematologic malignancies (HM) to develop an effective humoral immune response after COVID-19 is unknown. A prospective study was performed to monitor the immune response to SARS-CoV-2 of patients with follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), chronic lymphoproliferative disorders (CLD), multiple myeloma (MM), or myelodysplastic/myeloproliferative syndromes (MDS/MPN). Antibody (Ab) levels to the SARS-CoV-2 nucleocapsid (N) and spike (S) protein were measured at +1, +3, +6 months after nasal swabs became PCR-negative. Forty-five patients (9 FL, 8 DLBCL, 8 CLD, 10 MM, 10 MDS/MPS) and 18 controls were studied. Mean anti-N and anti-S-Ab levels were similar between HM patients and controls, and shared the same behavior, with anti-N Ab levels declining at +6 months and anti-S-Ab remaining stable. Seroconversion rates were lower in HM patients than in controls. In lymphoma patients mean Ab levels and seroconversion rates were lower than in other HM patients, primarily because all nine patients who had received rituximab within 6 months before COVID-19 failed to produce anti-N and anti-S-Ab. Only one patient requiring hematological treatment after COVID-19 lost seropositivity after 6 months. No reinfections were observed. These results may inform vaccination policies and clinical management of HM patients.
Collapse
Affiliation(s)
- C Cattaneo
- Hematology, ASST Spedali Civili, Brescia, Italy.
| | - V Cancelli
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - L Imberti
- CREA (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - K Dobbs
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A Sottini
- CREA (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - C Pagani
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - A Belotti
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - A Re
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - A Anastasia
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - V Quaresima
- CREA (AIL Center for Hemato-Oncologic Research), Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - A Tucci
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - J A Chiorini
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - H C Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J I Cohen
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - P D Burbelo
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - G Rossi
- Hematology, ASST Spedali Civili, Brescia, Italy
| | - L D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Melms JC, Biermann J, Huang H, Wang Y, Nair A, Tagore S, Katsyv I, Rendeiro AF, Amin AD, Schapiro D, Frangieh CJ, Luoma AM, Filliol A, Fang Y, Ravichandran H, Clausi MG, Alba GA, Rogava M, Chen SW, Ho P, Montoro DT, Kornberg AE, Han AS, Bakhoum MF, Anandasabapathy N, Suárez-Fariñas M, Bakhoum SF, Bram Y, Borczuk A, Guo XV, Lefkowitch JH, Marboe C, Lagana SM, Del Portillo A, Zorn E, Markowitz GS, Schwabe RF, Schwartz RE, Elemento O, Saqi A, Hibshoosh H, Que J, Izar B. A molecular single-cell lung atlas of lethal COVID-19. Nature 2021; 595:114-119. [PMID: 33915568 PMCID: PMC8814825 DOI: 10.1038/s41586-021-03569-1] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 01/21/2023]
Abstract
Respiratory failure is the leading cause of death in patients with severe SARS-CoV-2 infection1,2, but the host response at the lung tissue level is poorly understood. Here we performed single-nucleus RNA sequencing of about 116,000 nuclei from the lungs of nineteen individuals who died of COVID-19 and underwent rapid autopsy and seven control individuals. Integrated analyses identified substantial alterations in cellular composition, transcriptional cell states, and cell-to-cell interactions, thereby providing insight into the biology of lethal COVID-19. The lungs from individuals with COVID-19 were highly inflamed, with dense infiltration of aberrantly activated monocyte-derived macrophages and alveolar macrophages, but had impaired T cell responses. Monocyte/macrophage-derived interleukin-1β and epithelial cell-derived interleukin-6 were unique features of SARS-CoV-2 infection compared to other viral and bacterial causes of pneumonia. Alveolar type 2 cells adopted an inflammation-associated transient progenitor cell state and failed to undergo full transition into alveolar type 1 cells, resulting in impaired lung regeneration. Furthermore, we identified expansion of recently described CTHRC1+ pathological fibroblasts3 contributing to rapidly ensuing pulmonary fibrosis in COVID-19. Inference of protein activity and ligand-receptor interactions identified putative drug targets to disrupt deleterious circuits. This atlas enables the dissection of lethal COVID-19, may inform our understanding of long-term complications of COVID-19 survivors, and provides an important resource for therapeutic development.
Collapse
Affiliation(s)
- Johannes C. Melms
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Jana Biermann
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Huachao Huang
- Columbia Center for Human Development, New York, NY, USA,Division of Digestive and Liver Diseases, New York, NY, USA,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Yiping Wang
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Ajay Nair
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Somnath Tagore
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Igor Katsyv
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - André F. Rendeiro
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Amit Dipak Amin
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA,These authors contributed equally: Johannes C. Melms, Jana Biermann, Huachao Huang, Yiping Wang, Ajay Nair, Somnath Tagore, Igor Katsyv, André F. Rendeiro, Amit Dipak Amin
| | - Denis Schapiro
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Chris J. Frangieh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, Cambridge, MA, USA
| | - Adrienne M. Luoma
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Center, Boston, MA, USA
| | - Aveline Filliol
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Yinshan Fang
- Columbia Center for Human Development, New York, NY, USA,Division of Digestive and Liver Diseases, New York, NY, USA,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiranmayi Ravichandran
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA,WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Mariano G. Clausi
- Human Immune Monitoring Core, Columbia University Irving Medical Center, New York, NY, USA
| | - George A. Alba
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, Boston, MA, USA
| | - Meri Rogava
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA
| | - Sean W. Chen
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA
| | - Patricia Ho
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA
| | - Daniel T. Montoro
- Cell Circuits, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Systems Biology, Harvard Medical School, Boston, MA, USA
| | | | - Arnold S. Han
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Mathieu F. Bakhoum
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, USA
| | - Niroshana Anandasabapathy
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA,Department of Dermatology, Weill Cornell Medical College, New York, NY, USA,Meyer Cancer Center, Weill Cornell Medical College, New York, NY, USA
| | - Mayte Suárez-Fariñas
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA,Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alain Borczuk
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA,Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Xinzheng V. Guo
- Human Immune Monitoring Core, Columbia University Irving Medical Center, New York, NY, USA
| | - Jay H. Lefkowitch
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Charles Marboe
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Stephen M. Lagana
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Armando Del Portillo
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emmanuel Zorn
- Columbia Center for Translational Immunology, New York, NY, USA
| | - Glen S. Markowitz
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Robert F. Schwabe
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA,Institute of Human Nutrition, Columbia University, New York, NY, USA
| | - Robert E. Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA,These authors jointly supervised this work: Robert E. Schwartz, Olivier Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, Benjamin Izar
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA,Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA,WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA,These authors jointly supervised this work: Robert E. Schwartz, Olivier Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, Benjamin Izar
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA,These authors jointly supervised this work: Robert E. Schwartz, Olivier Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, Benjamin Izar
| | - Hanina Hibshoosh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA,These authors jointly supervised this work: Robert E. Schwartz, Olivier Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, Benjamin Izar
| | - Jianwen Que
- Columbia Center for Human Development, New York, NY, USA,Division of Digestive and Liver Diseases, New York, NY, USA,Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA,Herbert Irving Comprehensive Cancer Center, New York, NY, USA,These authors jointly supervised this work: Robert E. Schwartz, Olivier Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, Benjamin Izar.,,
| | - Benjamin Izar
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA,Columbia Center for Translational Immunology, New York, NY, USA,Herbert Irving Comprehensive Cancer Center, New York, NY, USA,Program for Mathematical Genomics, Columbia University, New York, NY, USA,These authors jointly supervised this work: Robert E. Schwartz, Olivier Elemento, Anjali Saqi, Hanina Hibshoosh, Jianwen Que, Benjamin Izar.,,
| |
Collapse
|
19
|
Somogyi E, Csiszovszki Z, Molnár L, Lőrincz O, Tóth J, Pattijn S, Schockaert J, Mazy A, Miklós I, Pántya K, Páles P, Tőke ER. A Peptide Vaccine Candidate Tailored to Individuals' Genetics Mimics the Multi-Targeted T Cell Immunity of COVID-19 Convalescent Subjects. Front Genet 2021; 12:684152. [PMID: 34249101 PMCID: PMC8261158 DOI: 10.3389/fgene.2021.684152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/24/2021] [Indexed: 01/21/2023] Open
Abstract
Long-term immunity to coronaviruses likely stems from T cell activity. We present here a novel approach for the selection of immunoprevalent SARS-CoV-2-derived T cell epitopes using an in silico cohort of HLA-genotyped individuals with different ethnicities. Nine 30-mer peptides derived from the four major structural proteins of SARS-CoV-2 were selected and included in a peptide vaccine candidate to recapitulate the broad virus-specific T cell responses observed in natural infection. PolyPEPI-SCoV-2-specific, polyfunctional CD8+ and CD4+ T cells were detected in each of the 17 asymptomatic/mild COVID-19 convalescents' blood against on average seven different vaccine peptides. Furthermore, convalescents' complete HLA-genotype predicted their T cell responses to SARS-CoV-2-derived peptides with 84% accuracy. Computational extrapolation of this relationship to a cohort of 16,000 HLA-genotyped individuals with 16 different ethnicities suggest that PolyPEPI-SCoV-2 vaccination will likely elicit multi-antigenic T cell responses in 98% of individuals, independent of ethnicity. PolyPEPI-SCoV-2 administered with Montanide ISA 51 VG generated robust, Th1-biased CD8+, and CD4+ T cell responses against all represented proteins, as well as binding antibodies upon subcutaneous injection into BALB/c and hCD34+ transgenic mice modeling human immune system. These results have implications for the development of global, highly immunogenic, T cell-focused vaccines against various pathogens and diseases.
Collapse
Affiliation(s)
- Eszter Somogyi
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Zsolt Csiszovszki
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Levente Molnár
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Orsolya Lőrincz
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - József Tóth
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Sofie Pattijn
- ImmunXperts Société Anonyme, A Nexelis Group Company, Gosselies, Belgium
| | - Jana Schockaert
- ImmunXperts Société Anonyme, A Nexelis Group Company, Gosselies, Belgium
| | - Aurélie Mazy
- ImmunXperts Société Anonyme, A Nexelis Group Company, Gosselies, Belgium
| | - István Miklós
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
- Alfréd Rényi Institute of Mathematics, Eötvös Loránd Research Network, Budapest, Hungary
| | - Katalin Pántya
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Péter Páles
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| | - Enikő R. Tőke
- Treos Bio Ltd., London, United Kingdom
- Treos Bio Zrt, Veszprém, Hungary
| |
Collapse
|