1
|
Gonzalez-Bosquet J, McDonald ME, Bender DP, Smith BJ, Leslie KK, Goodheart MJ, Devor EJ. Microbial Communities in Gynecological Cancers and Their Association with Tumor Somatic Variation. Cancers (Basel) 2023; 15:3316. [PMID: 37444425 DOI: 10.3390/cancers15133316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
There are strong correlations between the microbiome and human disease, including cancer. However, very little is known about potential mechanisms associated with malignant transformation in microbiome-associated gynecological cancer, except for HPV-induced cervical cancer. Our hypothesis is that differences in bacterial communities in upper genital tract epithelium may lead to selection of specific genomic variation at the cellular level of these tissues that may predispose to their malignant transformation. We first assessed differences in the taxonomic composition of microbial communities and genomic variation between gynecologic cancers and normal samples. Then, we performed a correlation analysis to assess whether differences in microbial communities selected for specific single nucleotide variation (SNV) between normal and gynecological cancers. We validated these results in independent datasets. This is a retrospective nested case-control study that used clinical and genomic information to perform all analyses. Our present study confirms a changing landscape in microbial communities as we progress into the upper genital tract, with more diversity in lower levels of the tract. Some of the different genomic variations between cancer and controls strongly correlated with the changing microbial communities. Pathway analyses including these correlated genes may help understand the basis for how changing bacterial landscapes may lead to these cancers. However, one of the most important implications of our findings is the possibility of cancer prevention in women at risk by detecting altered bacterial communities in the upper genital tract epithelium.
Collapse
Affiliation(s)
- Jesus Gonzalez-Bosquet
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Megan E McDonald
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - David P Bender
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Brian J Smith
- Department of Biostatistics, University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Division of Molecular Medicine, Department of Internal Medicine and Obstetrics and Gynecology, The University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Michael J Goodheart
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Eric J Devor
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
2
|
Li C, Li Y, Zhang H, Zhuo Y, Zhang L, Yang L, Gao Q, Tu Z, Shao R, Wang Y, Zhang J, Cui L, Zhang S. Xuanfei Baidu Decoction suppresses complement overactivation and ameliorates IgG immune complex-induced acute lung injury by inhibiting JAK2/STAT3/SOCS3 and NF-κB signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154551. [PMID: 36610119 PMCID: PMC9678227 DOI: 10.1016/j.phymed.2022.154551] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/19/2022] [Accepted: 11/14/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND The significant clinical efficacy of Xuanfei Baidu Decoction (XFBD) is proven in the treatment of patients with coronavirus disease 2019 (COVID-19) in China. However, the mechanisms of XFBD against acute lung injury (ALI) are still poorly understood. METHODS In vivo, the mouse model of ALI was induced by IgG immune complexes (IgG-IC), and then XFBD (4g/kg, 8g/kg) were administered by gavage respectively. 24 h after inducing ALI, the lungs were collected for histological and molecular analysis. In vitro, alveolar macrophages inflammation models induced by IgG-IC were performed and treated with different dosage of XFBD-containing serum to investigate the protective role and molecular mechanisms of XFBD. RESULTS The results revealed that XFBD mitigated lung injury and significantly downregulated the production of pro-inflammatory mediators in lung tissues and macrophages upon IgG-IC stimulation. Notably, XFBD attenuated C3a and C5a generation, inhibited the expression of C3aR and C5aR and suppressed the activation of JAK2/STAT3/SOCS3 and NF-κB signaling pathway in lung tissues and macrophages induced by IgG-IC. Moreover, in vitro experiments, we verified that Colivelin TFA (CAF, STAT3 activator) and C5a treatment markedly elevated the IgG-IC-triggered inflammatory responses in macrophages and XFBD weakened the effects of CAF or C5a. CONCLUSION XFBD suppressed complement overactivation and ameliorated IgG immune complex-induced acute lung injury by inhibiting JAK2/STAT3/SOCS3 and NF-κB signaling pathway. These data contribute to understanding the mechanisms of XFBD in COVID-19 treatment.
Collapse
Affiliation(s)
- Caixia Li
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Yuhong Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Han Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yuzhen Zhuo
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Lanqiu Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Lei Yang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Qiaoying Gao
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Zhengwei Tu
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China
| | - Rui Shao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Junhua Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lihua Cui
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China.
| | - Shukun Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases of Integrated Traditional Chinese and Western Medicine, Tianjin Integrated Traditional Chinese and Western Medicine Hospital, Tianjin Nankai Hospital; Nankai Clinical College, Tianjin Medical University, Tianjin 300100, China.
| |
Collapse
|
3
|
Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, Gralinski LE, Rondina MT, van de Veerdonk FL, Hoffmeister KM, Griffin JH, Nugent D, Moon K, Morrissey JH. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol 2022; 22:639-649. [PMID: 35931818 PMCID: PMC9362465 DOI: 10.1038/s41577-022-00762-9] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2022] [Indexed: 02/06/2023]
Abstract
COVID-19-associated coagulopathy (CAC) is a life-threatening complication of SARS-CoV-2 infection. However, the underlying cellular and molecular mechanisms driving this condition are unclear. Evidence supports the concept that CAC involves complex interactions between the innate immune response, the coagulation and fibrinolytic pathways, and the vascular endothelium, resulting in a procoagulant condition. Understanding of the pathogenesis of this condition at the genomic, molecular and cellular levels is needed in order to mitigate thrombosis formation in at-risk patients. In this Perspective, we categorize our current understanding of CAC into three main pathological mechanisms: first, vascular endothelial cell dysfunction; second, a hyper-inflammatory immune response; and last, hypercoagulability. Furthermore, we pose key questions and identify research gaps that need to be addressed to better understand CAC, facilitate improved diagnostics and aid in therapeutic development. Finally, we consider the suitability of different animal models to study CAC.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nigel Mackman
- Department of Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Q Warren
- Molecular Cellular and Systems Blood Science Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, Bethesda, MD, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Laurent O Mosnier
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Robert A Campbell
- Department of Internal Medicine, Division of General Medicine, University of Utah, Salt Lake City, UT, USA
| | - Lisa E Gralinski
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew T Rondina
- Department of Internal Medicine, Division of General Medicine, University of Utah, Salt Lake City, UT, USA
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karin M Hoffmeister
- Versiti Translational Glycomics Center, Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI, USA
| | - John H Griffin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Diane Nugent
- Department of Paediatrics, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Kyung Moon
- Molecular Cellular and Systems Blood Science Branch, Division of Blood Diseases and Resources, National Heart, Lung, and Blood Institute, Bethesda, MD, USA.
- Bacteriology and Mycology Branch, Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA.
| | - James H Morrissey
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Sanyaolu A, Okorie C, Marinkovic A, Prakash S, Williams M, Haider N, Mangat J, Hosein Z, Balendra V, Abbasi AF, Desai P, Jain I, Utulor S, Abioye A. Current advancements and future prospects of COVID-19 vaccines and therapeutics: a narrative review. Ther Adv Vaccines Immunother 2022; 10:25151355221097559. [PMID: 35664358 PMCID: PMC9160920 DOI: 10.1177/25151355221097559] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/12/2022] [Indexed: 11/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has made a global impact on the daily lives of humanity, devastating health systems, and cataclysmically affecting the world's economy. Currently, the Standard Public Health Protective practices consist of but are not limited to wearing masks, social distancing, isolating sick and exposed people, and contact tracing. Scientists around the globe undertook swift scientific efforts to develop safe and effective therapeutics and vaccines to combat COVID-19. Presently, as of mid-March 2022, 57.05% of the world population have been fully vaccinated, and 65.3% of the United States of America's (USA) total population have been fully vaccinated while 76.7% have received at least one dose of the vaccine. This article explores the various vaccines created through modern science and technology, including their safety, efficacy, and mechanism of action. Although the vaccines produced are up to 95.0% efficacious, their efficacy wanes over time, underscoring the need for booster doses. Also, vaccination has not been able to prevent "breakthrough" infections. The limitations of the SARS-CoV-2 vaccines indicate that further measures are required to ensure a firm control of the COVID-19 pandemic. Therefore, the Food and Drug Administration (FDA) has issued an Emergency Use Authorization (EUA) for the use of certain therapeutic agents because they have shown remarkable clinical outcomes. Several therapeutic agents for the treatment of mild-to-moderate COVID-19 include Gilead's remdesivir, Regeneron's casirivimab and imdevimab combination, Eli Lilly's baricitinib and remdesivir combination, Pfizer's co-packaged nirmatrelvir tablets and ritonavir tablets, and Merck's molnupiravir capsules. Hence concerted efforts in early and accurate diagnosis, education on the COVID-19 virulence, transmission and preventive measures, global vaccination, and therapeutic agents could bring this COVID-19 pandemic under control across the globe.
Collapse
Affiliation(s)
- Adekunle Sanyaolu
- Federal Ministry of Health, Department of Public Health, New Federal Secretariat Complex, Phase III, Ahmadu Bello Way, Central Business District, FCT, Abuja, Nigeria
| | | | | | | | | | - Nafees Haider
- All Saints University School of Medicine, Roseau, Dominica
| | - Jasmine Mangat
- Caribbean Medical University School of Medicine, Willemstad, Curacao
| | - Zaheeda Hosein
- Caribbean Medical University School of Medicine, Willemstad, Curacao
| | | | | | - Priyank Desai
- American University of Saint Vincent School of Medicine, Kingstown, Saint Vincent, and the Grenadines
| | - Isha Jain
- Windsor University School of Medicine, Cayon, Saint Kitts, and Nevis
| | - Stephen Utulor
- School of Medicine, International University of the Health Sciences, Basseterre, Saint Kitts, and Nevis
| | - Amos Abioye
- Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, USA
| |
Collapse
|
5
|
Al-Hajeri H, Baroun F, Abutiban F, Al-Mutairi M, Ali Y, Alawadhi A, Albasri A, Aldei A, AlEnizi A, Alhadhood N, Al-Herz A, Alkadi A, Alkanderi W, Almathkoori A, Almutairi N, Alsayegh S, Alturki A, Bahbahani H, Dehrab A, Ghanem A, Haji Hasan E, Hayat S, Saleh K, Tarakmeh H. Therapeutic role of immunomodulators during the COVID-19 pandemic- a narrative review. Postgrad Med 2022; 134:160-179. [PMID: 35086413 PMCID: PMC8862162 DOI: 10.1080/00325481.2022.2033563] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 02/07/2023]
Abstract
The emergency state caused by COVID-19 saw the use of immunomodulators despite the absence of robust research. To date, the results of relatively few randomized controlled trials have been published, and methodological approaches are riddled with bias and heterogeneity. Anti-SARS-CoV-2 antibodies, convalescent plasma and the JAK inhibitor baricitinib have gained Emergency Use Authorizations and tentative recommendations for their use in clinical practice alone or in combination with other therapies. Anti-SARS-CoV-2 antibodies are predominating the management of non-hospitalized patients, while the inpatient setting is seeing the use of convalescent plasma, baricitinib, tofacitinib, tocilizumab, sarilumab, and corticosteroids, as applicable. Available clinical data also suggest the potential clinical benefit of the early administration of blood-derived products (e.g. convalescent plasma, non-SARS-CoV-2-specific immunoglobins) and the blockade of factors implicated in the hyperinflammatory state of severe COVID-19 (Interleukin 1 and 6; Janus Kinase). Immune therapies seem to have a protective effect and using immunomodulators alone or in combination with viral replication inhibitors and other treatment modalities might prevent progression into severe COVID-19 disease, cytokine storm and death. Future trials should address existing gaps and reshape the landscape of COVID-19 management.
Collapse
Affiliation(s)
- Hebah Al-Hajeri
- Department of Rheumatology and Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Fatemah Baroun
- Department of Rheumatology and Internal Medicine, AlJahra Hospital, Al-Jahra, Kuwait
| | - Fatemah Abutiban
- Department of Rheumatology and Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | | | - Yasser Ali
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Adel Alawadhi
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Anwar Albasri
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Hospital, South Surra, Kuwait
| | - Ali Aldei
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Ahmad AlEnizi
- Rheumatology Unit, Department of Internal Medicine, AlJahra Hospital, AlJahra, Kuwait
| | - Naser Alhadhood
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Adeeba Al-Herz
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Amjad Alkadi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Waleed Alkanderi
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ammar Almathkoori
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Nora Almutairi
- Rheumatology Unit, Department of Internal Medicine, Al-Sabah Hospital, Alsabah, Kuwait
| | - Saud Alsayegh
- Rheumatology Unit, Department of Internal Medicine, Jaber Al-Ahmad Armed Forces, Kuwait City, Kuwait
| | - Ali Alturki
- Rheumatology Unit, Department of Internal Medicine, Al-Adan Hospital, Hadiya, Kuwait
| | - Husain Bahbahani
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Ahmad Dehrab
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Aqeel Ghanem
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Eman Haji Hasan
- Rheumatology Unit, Department of Internal Medicine, Al-Amiri Hospital, Kuwait City, Kuwait
| | - Sawsan Hayat
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| | - Khuloud Saleh
- Rheumatology Unit, Department of Internal Medicine, Farwaneyah Hospital, AlFarwaniya, Kuwait
| | - Hoda Tarakmeh
- Rheumatology Unit, Department of Internal Medicine, Mubarak Al-Kabeer Hospital, Jabriya, Kuwait
| |
Collapse
|
6
|
Leatherdale A, Stukas S, Lei V, West HE, Campbell CJ, Hoiland RL, Cooper J, Wellington CL, Sekhon MS, Pryzdial ELG, Conway EM. Persistently elevated complement alternative pathway biomarkers in COVID-19 correlate with hypoxemia and predict in-hospital mortality. Med Microbiol Immunol 2022; 211:37-48. [PMID: 35034207 PMCID: PMC8761108 DOI: 10.1007/s00430-021-00725-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/29/2021] [Indexed: 01/05/2023]
Abstract
Mechanisms underlying the SARS-CoV-2-triggered hyperacute thrombo-inflammatory response that causes multi-organ damage in coronavirus disease 2019 (COVID-19) are poorly understood. Several lines of evidence implicate overactivation of complement. To delineate the involvement of complement in COVID-19, we prospectively studied 25 ICU-hospitalized patients for up to 21 days. Complement biomarkers in patient sera and healthy controls were quantified by enzyme-linked immunosorbent assays. Correlations with respiratory function and mortality were analyzed. Activation of complement via the classical/lectin pathways was variably increased. Strikingly, all patients had increased activation of the alternative pathway (AP) with elevated levels of activation fragments, Ba and Bb. This was associated with a reduction of the AP negative regulator, factor (F) H. Correspondingly, terminal pathway biomarkers of complement activation, C5a and sC5b-9, were significantly elevated in all COVID-19 patient sera. C5a and AP constituents Ba and Bb, were significantly associated with hypoxemia. Ba and FD at the time of ICU admission were strong independent predictors of mortality in the following 30 days. Levels of all complement activation markers were sustained throughout the patients' ICU stays, contrasting with the varying serum levels of IL-6, C-reactive protein, and ferritin. Severely ill COVID-19 patients have increased and persistent activation of complement, mediated strongly via the AP. Complement activation biomarkers may be valuable measures of severity of lung disease and the risk of mortality. Large-scale studies will reveal the relevance of these findings to thrombo-inflammation in acute and post-acute COVID-19.
Collapse
Affiliation(s)
- Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Victor Lei
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Henry E West
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Ryan L Hoiland
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia Okanagan, Vancouver, BC, Canada
| | - Jennifer Cooper
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Mypinder S Sekhon
- Division of Critical Care Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Centre for Innovation, University of British Columbia, Vancouver, BC, Canada
| | - Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Shi R, Feng Z, Zhang X. Integrative Multi-omics Landscape of Non-structural Protein 3 of Severe Acute Respiratory Syndrome Coronaviruses. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:707-726. [PMID: 34774773 PMCID: PMC8578027 DOI: 10.1016/j.gpb.2021.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 11/30/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is currently a global pandemic. Extensive investigations have been performed to study the clinical and cellular effects of SARS-CoV-2 infection. Mass spectrometry-based proteomics studies have revealed the cellular changes due to the infection and identified a plethora of interactors for all SARS-CoV-2 components, except for the longest non-structural protein 3 (NSP3). Here, we expressed the full-length NSP3 proteins of SARS-CoV and SARS-CoV-2 to investigate their unique and shared functions using multi-omics methods. We conducted interactome, phosphoproteome, ubiquitylome, transcriptome, and proteome analyses of NSP3-expressing cells. We found that NSP3 plays essential roles in cellular functions such as RNA metabolism and immune response (e.g., NF-κB signal transduction). Interestingly, we showed that SARS-CoV-2 NSP3 has both endoplasmic reticulum and mitochondrial localizations. In addition, SARS-CoV-2 NSP3 is more closely related to mitochondrial ribosomal proteins, whereas SARS-CoV NSP3 is related to the cytosolic ribosomal proteins. In summary, our integrative multi-omics study of NSP3 improves the understanding of the functions of NSP3 and offers potential targets for the development of anti-SARS strategies.
Collapse
Affiliation(s)
- Ruona Shi
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhuan Feng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaofei Zhang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Cell Lineage and Atlas, Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China.
| |
Collapse
|
8
|
Li Q, Chen Z. An update: the emerging evidence of complement involvement in COVID-19. Med Microbiol Immunol 2021; 210:101-109. [PMID: 33811541 PMCID: PMC8019074 DOI: 10.1007/s00430-021-00704-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022]
Abstract
The current outbreak of coronavirus disease 2019 (COVID-19) has affected people around the world. Typically, COVID-19 originates in the lung, but lately it can extend to other organs and lead to tissue injury and multiorgan failure in severe patients, such as acute respiratory distress syndrome (ARDS), kidney failure and sepsis or systemic inflammation. Given that COVID-19 has been detected in a range of other organs, the COVID-19-associated disease is an alert of aberrant activation of host immune response which drives un-controlled inflammation that affects multiple organs. Complement is a vital component of innate immunity where it forms the first line of defense against potentially harmful microbes, but its role in COVID-19 is still not clear. Notably, the abnormal activation and continuous deposits of complement components were identified in the pre-clinical samples from COVID-19 patients, which have been confirmed in animal models. Recent evidence has revealed that the administration of complement inhibitors leads to relieve inflammatory response in ARDS. Hence, we speculate that the targeting complement system could be a potential treatment option for organ damage in COVID-19 patients.
Collapse
Affiliation(s)
- Qin Li
- Guangzhou Municipal Research Institute of Clinical Medicine, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong, China
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
9
|
Coperchini F, Chiovato L, Rotondi M. Interleukin-6, CXCL10 and Infiltrating Macrophages in COVID-19-Related Cytokine Storm: Not One for All But All for One! Front Immunol 2021; 12:668507. [PMID: 33981314 PMCID: PMC8107352 DOI: 10.3389/fimmu.2021.668507] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
SARS-COV-2 virus is responsible for the ongoing devastating pandemic. Since the early phase of the pandemic, the "cytokine-storm" appeared a peculiar aspect of SARS-COV-2 infection which, at least in the severe cases, is responsible for respiratory treat damage and subsequent multi-organ failure. The efforts made in the last few months elucidated that the cytokine-storm results from a complex network involving cytokines/chemokines/infiltrating-immune-cells which orchestrate the aberrant immune response in COVID-19. Clinical and experimental studies aimed at depicting a potential "immune signature" of SARS-COV-2, identified three main "actors," namely the cytokine IL-6, the chemokine CXCL10 and the infiltrating immune cell type macrophages. Although other cytokines, chemokines and infiltrating immune cells are deeply involved and their role should not be neglected, based on currently available data, IL-6, CXCL10, and infiltrating macrophages could be considered prototype factors representing each component of the immune system. It rapidly became clear that a strong and continuous interplay among the three components of the immune response is mandatory in order to produce a severe clinical course of the disease. Indeed, while IL-6, CXCL10 and macrophages alone would not be able to fully drive the onset and maintenance of the cytokine-storm, the establishment of a IL-6/CXCL10/macrophages axis is crucial in driving the sequence of events characterizing this condition. The present review is specifically aimed at overviewing current evidences provided by both in vitro and in vivo studies addressing the issue of the interplay among IL-6, CXCL10 and macrophages in the onset and progression of cytokine storm. SARS-COV-2 infection and the "cytokine storm."
Collapse
Affiliation(s)
- Francesca Coperchini
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Luca Chiovato
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| | - Mario Rotondi
- Laboratory for Endocrine Disruptors, Unit of Internal Medicine and Endocrinology, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
C5aR inhibition of nonimmune cells suppresses inflammation and maintains epithelial integrity in SARS-CoV-2-infected primary human airway epithelia. J Allergy Clin Immunol 2021; 147:2083-2097.e6. [PMID: 33852936 PMCID: PMC8056780 DOI: 10.1016/j.jaci.2021.03.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/13/2022]
Abstract
Background Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and is associated with enhanced pathogenicity and mortality. Objective Complement hyperactivation promotes lung injury and was observed in patients suffering from Middle East respiratory syndrome-related coronavirus, SARS-CoV-1, and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells on exposure to SARS-CoV-2 in terms of complement component 3 (C3)-mediated effects. Methods For this, we used highly differentiated primary human 3-dimensional tissue models infected with SARS-CoV-2 patient isolates. On infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms, and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses, and transepithelial electrical resistance measurements. Results Here, we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2–infected 3-dimensional cultures secreted significantly higher levels of C3a and the proinflammatory cytokines IL-6, monocyte chemoattractant protein 1, IL-1α, and RANTES. Conclusions Crucially, we illustrate here for the first time that targeting the anaphylotoxin receptors C3a receptor and C5a receptor in nonimmune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.
Collapse
|
11
|
Bacterial, Archaea, and Viral Transcripts (BAVT) Expression in Gynecological Cancers and Correlation with Regulatory Regions of the Genome. Cancers (Basel) 2021; 13:cancers13051109. [PMID: 33807612 PMCID: PMC7961894 DOI: 10.3390/cancers13051109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/31/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Microorganisms are found in all human tissues. Some of them are responsible for cancer formation. In our study we found gene expression from bacteria, archaea, and viruses in the upper female genital tract and this expression was associated with ovarian and endometrial cancer. We also found that the expression from these organisms may be involved in regulatory mechanisms of infection and cancer formation. Some of the processes associated with these organisms may affect cancer heterogeneity and be potential targets for cancer therapy. Abstract Bacteria, archaea, and viruses are associated with numerous human cancers. To date, microbiome variations in transcription have not been evaluated relative to upper female genital tract cancer risk. Our aim was to assess differences in bacterial, archaea, and viral transcript (BAVT) expression between different gynecological cancers and normal fallopian tubes. In this case-control study we performed RNA sequencing on 12 normal tubes, 112 serous ovarian cancers (HGSC) and 62 endometrioid endometrial cancers (EEC). We used the centrifuge algorithm to classify resultant transcripts into four indexes: bacterial, archaea, viral, and human genomes. We then compared BAVT expression from normal samples, HGSC and EEC. T-test was used for univariate comparisons (correcting for multiple comparison) and lasso for multivariate modelling. For validation we performed DNA sequencing of normal tubes in comparison to HGSC and EEC BAVTs in the TCGA database. Pathway analyses were carried out to evaluate the function of significant BAVTs. Our results show that BAVT expression levels vary between different gynecological cancers. Finally, we mapped some of these BAVTs to the human genome. Numerous map locations were close to regulatory genes and long non-coding RNAs based on the pathway enrichment analysis. BAVTs may affect gynecological cancer risk and may be part of potential targets for cancer therapy.
Collapse
|
12
|
Kunz N, Kemper C. Complement Has Brains-Do Intracellular Complement and Immunometabolism Cooperate in Tissue Homeostasis and Behavior? Front Immunol 2021; 12:629986. [PMID: 33717157 PMCID: PMC7946832 DOI: 10.3389/fimmu.2021.629986] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
The classical liver-derived and serum-effective complement system is well appreciated as a key mediator of host protection via instruction of innate and adaptive immunity. However, recent studies have discovered an intracellularly active complement system, the complosome, which has emerged as a central regulator of the core metabolic pathways fueling human immune cell activity. Induction of expression of components of the complosome, particularly complement component C3, during transmigration from the circulation into peripheral tissues is a defining characteristic of monocytes and T cells in tissues. Intracellular complement activity is required to induce metabolic reprogramming of immune cells, including increased glycolytic flux and OXPHOS, which drive the production of the pro-inflammatory cytokine IFN-γ. Consequently, reduced complosome activity translates into defects in normal monocyte activation, faulty Th1 and cytotoxic T lymphocyte responses and loss of protective tissue immunity. Intriguingly, neurological research has identified an unexpected connection between the physiological presence of innate and adaptive immune cells and certain cytokines, including IFN-γ, in and around the brain and normal brain function. In this opinion piece, we will first review the current state of research regarding complement driven metabolic reprogramming in the context of immune cell tissue entry and residency. We will then discuss how published work on the role of IFN-γ and T cells in the brain support a hypothesis that an evolutionarily conserved cooperation between the complosome, cell metabolism and IFN-γ regulates organismal behavior, as well as immunity.
Collapse
Affiliation(s)
- Natalia Kunz
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Claudia Kemper
- Complement and Inflammation Research Section (CIRS), National Heart, Lung and Blood Institute, Bethesda, MD, United States.,Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| |
Collapse
|
13
|
Host-virus chimeric events in SARS-CoV2 infected cells are infrequent and artifactual. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33619483 PMCID: PMC7899447 DOI: 10.1101/2021.02.17.431704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathogenic mechanisms underlying severe SARS-CoV2 infection remain largely unelucidated. High throughput sequencing technologies that capture genome and transcriptome information are key approaches to gain detailed mechanistic insights from infected cells. These techniques readily detect both pathogen and host-derived sequences, providing a means of studying host-pathogen interactions. Recent studies have reported the presence of host-virus chimeric (HVC) RNA in RNA-seq data from SARS-CoV2 infected cells and interpreted these findings as evidence of viral integration in the human genome as a potential pathogenic mechanism. Since SARS-CoV2 is a positive sense RNA virus that replicates in the cytoplasm it does not have a nuclear phase in its life cycle, it is biologically unlikely to be in a location where splicing events could result in genome integration. Here, we investigated the biological authenticity of HVC events. In contrast to true biological events such as mRNA splicing and genome rearrangement events, which generate reproducible chimeric sequencing fragments across different biological isolates, we found that HVC events across >100 RNA-seq libraries from patients with COVID-19 and infected cell lines, were highly irreproducible. RNA-seq library preparation is inherently error-prone due to random template switching during reverse transcription of RNA to cDNA. By counting chimeric events observed when constructing an RNA-seq library from human RNA and spike-in RNA from an unrelated species, such as fruit-fly, we estimated that ~1% of RNA-seq reads are artifactually chimeric. In SARS-CoV2 RNA-seq we found that the frequency of HVC events was, in fact, not greater than this background “noise”. Finally, we developed a novel experimental approach to enrich SARS-CoV2 sequences from bulk RNA of infected cells. This method enriched viral sequences but did not enrich for HVC events, suggesting that the majority of HVC events are, in all likelihood, artifacts of library construction. In conclusion, our findings indicate that HVC events observed in RNA-sequencing libraries from SARS-CoV2 infected cells are extremely rare and are likely artifacts arising from either random template switching of reverse-transcriptase and/or sequence alignment errors. Therefore, the observed HVC events do not support SARS-CoV2 fusion to cellular genes and/or integration into human genomes.
Collapse
|
14
|
Pfister F, Vonbrunn E, Ries T, Jäck HM, Überla K, Lochnit G, Sheriff A, Herrmann M, Büttner-Herold M, Amann K, Daniel C. Complement Activation in Kidneys of Patients With COVID-19. Front Immunol 2021; 11:594849. [PMID: 33584662 PMCID: PMC7878379 DOI: 10.3389/fimmu.2020.594849] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
Most patients who became critically ill following infection with COVID-19 develop severe acute respiratory syndrome (SARS) attributed to a maladaptive or inadequate immune response. The complement system is an important component of the innate immune system that is involved in the opsonization of viruses but also in triggering further immune cell responses. Complement activation was seen in plasma adsorber material that clogged during the treatment of critically ill patients with COVID-19. Apart from the lung, the kidney is the second most common organ affected by COVID-19. Using immunohistochemistry for complement factors C1q, MASP-2, C3c, C3d, C4d, and C5b-9 we investigated the involvement of the complement system in six kidney biopsies with acute kidney failure in different clinical settings and three kidneys from autopsy material of patients with COVID-19. Renal tissue was analyzed for signs of renal injury by detection of thrombus formation using CD61, endothelial cell rarefaction using the marker E-26 transformation specific-related gene (ERG-) and proliferation using proliferating cell nuclear antigen (PCNA)-staining. SARS-CoV-2 was detected by in situ hybridization and immunohistochemistry. Biopsies from patients with hemolytic uremic syndrome (HUS, n = 5), severe acute tubular injury (ATI, n = 7), zero biopsies with disseminated intravascular coagulation (DIC, n = 7) and 1 year protocol biopsies from renal transplants (Ctrl, n = 7) served as controls. In the material clogging plasma adsorbers used for extracorporeal therapy of patients with COVID-19 C3 was the dominant protein but collectin 11 and MASP-2 were also identified. SARS-CoV-2 was sporadically present in varying numbers in some biopsies from patients with COVID-19. The highest frequency of CD61-positive platelets was found in peritubular capillaries and arteries of COVID-19 infected renal specimens as compared to all controls. Apart from COVID-19 specimens, MASP-2 was detected in glomeruli with DIC and ATI. In contrast, the classical pathway (i.e. C1q) was hardly seen in COVID-19 biopsies. Both C3 cleavage products C3c and C3d were strongly detected in renal arteries but also occurs in glomerular capillaries of COVID-19 biopsies, while tubular C3d was stronger than C3c in biopsies from COVID-19 patients. The membrane attack complex C5b-9, demonstrating terminal pathway activation, was predominantly deposited in COVID-19 biopsies in peritubular capillaries, renal arterioles, and tubular basement membrane with similar or even higher frequency compared to controls. In conclusion, various complement pathways were activated in COVID-19 kidneys, the lectin pathway mainly in peritubular capillaries and in part the classical pathway in renal arteries whereas the alternative pathway seem to be crucial for tubular complement activation. Therefore, activation of the complement system might be involved in the worsening of renal injury. Complement inhibition might thus be a promising treatment option to prevent deregulated activation and subsequent collateral tissue injury.
Collapse
Affiliation(s)
- Frederick Pfister
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Eva Vonbrunn
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tajana Ries
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Hans-Martin Jäck
- Nikolaus-Fiebinger-Center FAU, Department of Medicine 3, Division of Molecular Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus Überla
- Department of Virology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Günter Lochnit
- Department of Biochemistry, Division Protein Analystics, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Martin Herrmann
- Department of Medicine 3, Institute for Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
McGregor R, Chauss D, Freiwald T, Yan B, Wang L, Nova-Lamperti E, Zhang Z, Teague H, West EE, Bibby J, Kelly A, Malik A, Freeman AF, Schwartz D, Portilla D, John S, Lavender P, Lionakis MS, Mehta NN, Kemper C, Cooper N, Lombardi G, Laurence A, Kazemian M, Afzali B. An autocrine Vitamin D-driven Th1 shutdown program can be exploited for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743590 DOI: 10.1101/2020.07.18.210161] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pro-inflammatory immune responses are necessary for effective pathogen clearance, but cause severe tissue damage if not shut down in a timely manner 1,2 . Excessive complement and IFN-γ-associated responses are known drivers of immunopathogenesis 3 and are among the most highly induced immune programs in hyper-inflammatory SARS-CoV2 lung infection 4 . The molecular mechanisms that govern orderly shutdown and retraction of these responses remain poorly understood. Here, we show that complement triggers contraction of IFN-γ producing CD4 + T helper (Th) 1 cell responses by inducing expression of the vitamin D (VitD) receptor (VDR) and CYP27B1, the enzyme that activates VitD, permitting T cells to both activate and respond to VitD. VitD then initiates the transition from pro-inflammatory IFN-γ + Th1 cells to suppressive IL-10 + Th1 cells. This process is primed by dynamic changes in the epigenetic landscape of CD4 + T cells, generating superenhancers and recruiting c-JUN and BACH2, a key immunoregulatory transcription factor 5-7 . Accordingly, cells in psoriatic skin treated with VitD increased BACH2 expression, and BACH2 haplo-insufficient CD4 + T cells were defective in IL-10 production. As proof-of-concept, we show that CD4 + T cells in the bronchoalveolar lavage fluid (BALF) of patients with COVID-19 are Th1-skewed and that VDR is among the top regulators of genes induced by SARS-CoV2. Importantly, genes normally down-regulated by VitD were de-repressed in CD4 + BALF T cells of COVID-19, indicating that the VitD-driven shutdown program is impaired in this setting. The active metabolite of VitD, alfacalcidol, and cortico-steroids were among the top predicted pharmaceuticals that could normalize SARS-CoV2 induced genes. These data indicate that adjunct therapy with VitD in the context of other immunomodulatory drugs may be a beneficial strategy to dampen hyperinflammation in severe COVID-19.
Collapse
|