1
|
Cheng GM, Cheng H. Overcoming China's animal waste disposal challenge brought by elevated levels of veterinary antimicrobial residues and antimicrobial resistance. ENVIRONMENT INTERNATIONAL 2024; 191:109009. [PMID: 39278046 DOI: 10.1016/j.envint.2024.109009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Direct application of animal waste on farmlands was banned in China recently, rendering organic fertilizer production a sound solution for disposing of animal manures and recycling their materials and nutrients. Due to the overuse of antimicrobials in livestock and poultry farms, manure-based organic fertilizers often contain elevated residues of antimicrobials and abundant antimicrobial resistance genes. Land application of such products has caused significant concerns on the environmental pollution of antimicrobials, and the transmission and development of antimicrobial resistance (AMR), which is a major global health challenge. China's recent attempt to restrict the contents of antimicrobial residues in organic fertilizers encountered strong resistance from the industry as it would hinder the utilization of animal manures as a raw material. Reducing and even eliminating the use of antimicrobials in animal farms is the ultimate solution to the challenge of manure disposal posed by the elevated levels of antimicrobial residues and AMR. Phasing out the non-therapeutic use of antimicrobials, developing substitutes of antimicrobials, enhancing animal welfare in farms, promoting diversification of animal farms, and developing antimicrobial removal and disinfection technologies for animal waste are recommended to improve the veterinary antimicrobial stewardship and manure management in China's animal agriculture. These concerted measures would enhance the sustainability of crop and animal farming systems in China and mitigate the impact of antimicrobials and AMR to agro-environmental quality and human health.
Collapse
Affiliation(s)
- Grace M Cheng
- The Affiliated High School of Peking University, Beijing 100190, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Sun Y, Staley ZR, Woodbury B, Riethoven JJ, Li X. Composting reduces the risks of resistome in beef cattle manure at the transcriptional level. Appl Environ Microbiol 2024; 90:e0175223. [PMID: 38445903 PMCID: PMC11022583 DOI: 10.1128/aem.01752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Transcriptomic evidence is needed to determine whether composting is more effective than conventional stockpiling in mitigating the risk of resistome in livestock manure. The objective of this study is to compare composting and stockpiling for their effectiveness in reducing the risk of antibiotic resistance in beef cattle manure. Samples collected from the center and the surface of full-size manure stockpiling and composting piles were subject to metagenomic and metatranscriptomic analyses. While the distinctions in resistome between stockpiled and composted manure were not evident at the DNA level, the advantages of composting over stockpiling were evident at the transcriptomic level in terms of the abundance of antibiotic resistance genes (ARGs), the number of ARG subtypes, and the prevalence of high-risk ARGs (i.e., mobile ARGs associated with zoonotic pathogens). DNA and transcript contigs show that the pathogen hosts of high-risk ARGs included Escherichia coli O157:H7 and O25b:H4, Klebsiella pneumoniae, and Salmonella enterica. Although the average daily temperatures for the entire composting pile exceeded 55°C throughout the field study, more ARG and ARG transcripts were removed at the center of the composting pile than at the surface. This work demonstrates the advantage of composting over stockpiling in reducing ARG risk in active populations in beef cattle manure.IMPORTANCEProper treatment of manure before land application is essential to mitigate the spread of antibiotic resistance in the environment. Stockpiling and composting are two commonly used methods for manure treatment. However, the effectiveness of composting in reducing antibiotic resistance in manure has been debated. This work compared the ability of these two methods to reduce the risk of antibiotic resistance in beef cattle manure. Our results demonstrate that composting reduced more high-risk resistance genes at the transcriptomic level in cattle manure than conventional stockpiling. This finding not only underscores the effectiveness of composting in reducing antibiotic resistance in manure but also highlights the importance of employing RNA analyses alongside DNA analyses.
Collapse
Affiliation(s)
- Yuepeng Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zachery R. Staley
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bryan Woodbury
- USDA-ARS U.S. Meat Animal Research Center, Clay Center, Clay Center, Nebraska, USA
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
3
|
Li J, Lu H, Wang A, Wen X, Huang Y, Li Q. The fates of antibiotic resistance genes and their association with cell membrane permeability in response to peroxydisulfate during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118659. [PMID: 37478721 DOI: 10.1016/j.jenvman.2023.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/18/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
The aims of this study were to use metagenomics to reveal the fates of antibiotic resistance genes (ARGs) during composting under the regulation of peroxydisulfate and clarify the relationship between ARGs and cell membrane permeability. Results showed that peroxydisulfate increased cell membrane permeability by effectively regulating the expression of outer membrane protein and lipopolysaccharide related genes. Besides, it reduced polysaccharides and proteins in extracellular polymer substances by 36% and 58%, respectively, making it easier for intracellular ARGs (i-ARGs) to reach the extracellular environment, among which the absolute intracellular abundance of mphK, Erm(31), and tet(44) decreased to 1.2, 1.0, and 0.89 fold of the control, respectively. Finally, variation partitioning analysis showed that i-ARGs dominated the removal of ARGs. These results revealed that the removal of i-ARGs by activated peroxydisulfate was the key to the removal of ARGs and increased cell membrane permeability played a key role for peroxydisulfate to remove i-ARGs during composting.
Collapse
Affiliation(s)
- Jixuan Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Xiaoli Wen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Yite Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Li S, Ondon BS, Ho SH, Li F. Emerging soil contamination of antibiotics resistance bacteria (ARB) carrying genes (ARGs): New challenges for soil remediation and conservation. ENVIRONMENTAL RESEARCH 2023; 219:115132. [PMID: 36563979 DOI: 10.1016/j.envres.2022.115132] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Soil plays a vital role as a nutrient source for microflora and plants in ecosystems. The accumulation and proliferation of antibiotics resistance bacteria (ARB) and antibiotics resistance genes (ARGs) causes emerging soil contamination and pollution, posing new challenges for soil remediation, recovery, and conservation. Fertilizer application in agriculture is one of the most important sources of ARB and ARGs contamination in soils. The recent existing techniques for the remediation of soil polluted with ARB and ARGs are very limited in terms of ARB and ARGs removal in soil. Bioelectrochemical remediation using bioelectrochemical systems such as microbial fuel cells and microbial electrolysis cells are promising technologies for the removal of ARB and ARGs in soil. Herein, diverse sources of ARB and ARGs in soil have been reviewed, their effects on soil microbial diversity have been analyzed, and the causes of ARB and ARGs rapid proliferation in soil are explained. Bioelectrochemical systems used for the remediation of soil contaminated with ARB and ARGs is still in its infancy stage and presents serious disadvantage and limits, therefore it needs to be well understood and implemented. In general, merging soil contamination of ARB and ARGs is an increasing concern threatening the soil ecosystem while the remediation technologies are still challenging. Efforts need to be made to develop new, effective, and efficient technologies for soil remediation and conservation to tackle the spread of ARB and ARGs and overcome the new challenges posed by ARB and ARGs contamination in soil.
Collapse
Affiliation(s)
- Shengnan Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Brim Stevy Ondon
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at the Ministry of Education, Tianjin, China; Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
5
|
Tang M, Wu Z, Li W, Shoaib M, Aqib AI, Shang R, Yang Z, Pu W. Effects of different composting methods on antibiotic-resistant bacteria, antibiotic resistance genes, and microbial diversity in dairy cattle manures. J Dairy Sci 2022; 106:257-273. [DOI: 10.3168/jds.2022-22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022]
|
6
|
Lepper HC, Woolhouse MEJ, van Bunnik BAD. The Role of the Environment in Dynamics of Antibiotic Resistance in Humans and Animals: A Modelling Study. Antibiotics (Basel) 2022; 11:1361. [PMID: 36290019 PMCID: PMC9598675 DOI: 10.3390/antibiotics11101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
Antibiotic resistance is transmitted between animals and humans either directly or indirectly, through transmission via the environment. However, little is known about the contribution of the environment to resistance epidemiology. Here, we use a mathematical model to study the effect of the environment on human resistance levels and the impact of interventions to reduce antibiotic consumption in animals. We developed a model of resistance transmission with human, animal, and environmental compartments. We compared the model outcomes under different transmission scenarios, conducted a sensitivity analysis, and investigated the impacts of curtailing antibiotic usage in animals. Human resistance levels were most sensitive to parameters associated with the human compartment (rate of loss of resistance from humans) and with the environmental compartment (rate of loss of environmental resistance and rate of environment-to-human transmission). Increasing environmental transmission could lead to increased or reduced impact of curtailing antibiotic consumption in animals on resistance in humans. We highlight that environment-human sharing of resistance can influence the epidemiology of resistant bacterial infections in humans and reduce the impact of interventions that curtail antibiotic consumption in animals. More data on resistance in the environment and frequency of human-environment transmission is crucial to understanding antibiotic resistance dynamics.
Collapse
Affiliation(s)
- Hannah C. Lepper
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mark E. J. Woolhouse
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Bram A. D. van Bunnik
- Usher Institute, Ashworth Laboratories, University of Edinburgh, Edinburgh EH9 3FL, UK
- Roslin Institute, University of Edinburgh, Edinburgh EH25 9RG, UK
| |
Collapse
|
7
|
Keenum I, Wind L, Ray P, Guron G, Chen C, Knowlton K, Ponder M, Pruden A. Metagenomic tracking of antibiotic resistance genes through a pre-harvest vegetable production system: an integrated lab-, microcosm- and greenhouse-scale analysis. Environ Microbiol 2022; 24:3705-3721. [PMID: 35466491 PMCID: PMC9541739 DOI: 10.1111/1462-2920.16022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 11/30/2022]
Abstract
Prior research demonstrated the potential for agricultural production systems to contribute to the environmental spread of antibiotic resistance genes (ARGs). However, there is a need for integrated assessment of critical management points for minimizing this potential. Shotgun metagenomic sequencing data were analysed to comprehensively compare total ARG profiles characteristic of amendments (manure or compost) derived from either beef or dairy cattle (with and without dosing antibiotics according to conventional practice), soil (loamy sand or silty clay loam) and vegetable (lettuce or radish) samples collected across studies carried out at laboratory-, microcosm- and greenhouse-scale. Vegetables carried the greatest diversity of ARGs (n = 838) as well as the most ARG-mobile genetic element co-occurrences (n = 945). Radishes grown in manure- or compost-amended soils harboured a higher relative abundance of total (0.91 and 0.91 ARGs/16S rRNA gene) and clinically relevant ARGs than vegetables from other experimental conditions (average: 0.36 ARGs/16S rRNA gene). Lettuce carried the highest relative abundance of pathogen gene markers among the metagenomes examined. Total ARG relative abundances were highest on vegetables grown in loamy sand receiving antibiotic-treated beef amendments. The findings emphasize that additional barriers, such as post-harvest processes, merit further study to minimize potential exposure to consumers.
Collapse
Affiliation(s)
- Ishi Keenum
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| | - Lauren Wind
- Department of Biological Systems EngineeringVirginia TechBlacksburgVAUSA
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingRG6 6ARUK
| | - Giselle Guron
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Chaoqi Chen
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVAUSA
| | | | - Monica Ponder
- Department of Food Science and TechnologyVirginia TechBlacksburgVAUSA
| | - Amy Pruden
- Department of Civil and Environmental EngineeringVirginia TechBlacksburgVAUSA
| |
Collapse
|
8
|
Subirats J, Sharpe H, Topp E. Fate of Clostridia and other spore-forming Firmicute bacteria during feedstock anaerobic digestion and aerobic composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 309:114643. [PMID: 35151135 DOI: 10.1016/j.jenvman.2022.114643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/26/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Pathogenic spore-forming Firmicutes are commonly present in animal and human wastes that are used as fertilizers in crop production. Pre-treatments of organic waste prior to land application offer the potential to abate enteric microorganisms, and therefore reduce the risk of contamination of crops or adjacent water resources with pathogens carried in these materials. The inactivation and reduction of gram-positive spore formers such as Clostridium spp., Clostridioides spp. and Bacillus spp. from animal and human waste can be challenging given the recalcitrance of the spores these bacteria produce. Given the significance of these organisms to human and animal health, information concerning spore-forming bacteria inactivation during anaerobic digestion (AD) and aerobic composting (AC) is required as the basis for recommending safe organic waste management practices. In this review, an assessment of the inactivation of spore-forming Firmicutes during AD and AC was conducted to provide guidance for practical management of organic matrices of animal or human origin. Temperature and pH may be the main factors contributing to the inactivation of spore-forming Firmicutes during batch lab-scale AD (log reduction <0.5-5 log). In continuous digesters, wet AD systems do not effectively inactivate spore-forming Firmicutes even under thermopholic conditions (log reduction -1.09 - 0.98), but dry AD systems could be a feasible management practice to inactivate spore-forming Firmicutes from organic materials with high solid content (log reduction 1.77-3.1). In contrast, composting is an effective treatment to abate spore-forming Firmicutes (log reduction 1.7-6.5) when thermophilic conditions last at least six consecutive days. Temperature, moisture content and composting scale are the key operating conditions influencing the inactivation of spore-forming Firmicutes during composting. Where possible, undertaking AD with subsequent composting to ensure the biosafety of digestate before its downstream processing and recycling is recommended to abate recalcitrant bacteria in digestate.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | - Hannah Sharpe
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
9
|
Haenni M, Dagot C, Chesneau O, Bibbal D, Labanowski J, Vialette M, Bouchard D, Martin-Laurent F, Calsat L, Nazaret S, Petit F, Pourcher AM, Togola A, Bachelot M, Topp E, Hocquet D. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: Status and possible causes. ENVIRONMENT INTERNATIONAL 2022; 159:107047. [PMID: 34923370 DOI: 10.1016/j.envint.2021.107047] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Antimicrobial resistance (AMR) is a major global public health concern, shared by a large number of human and animal health actors. Within the framework of a One Health approach, actions should be implemented in the environmental realm, as well as the human and animal realms. The Government of France commissioned a report to provide policy and decision makers with an evidential basis for recommending or taking future actions to mitigate AMR in the environment. We first examined the mechanisms that underlie the emergence and persistence of antimicrobial resistance in the environment. This report drew up an inventory of the contamination of aquatic and terrestrial environments by AMR and antibiotics, anticipating that the findings will be representative of some other high-income countries. Effluents of wastewater treatment plants were identified as the major source of contamination on French territory, with spreading of organic waste products as a more diffuse and incidental contamination of aquatic environments. A limitation of this review is the heterogeneity of available data in space and time, as well as the lack of data for certain sources. Comparing the French Measured Environmental Concentrations (MECs) with predicted no effect concentrations (PNECs), fluoroquinolones and trimethoprim were identified as representing high and medium risk of favoring the selection of resistant bacteria in treated wastewater and in the most contaminated rivers. All other antibiotic molecules analyzed (erythromycin, clarithromycin, azithromycin, tetracycline) were at low risk of resistance selection in those environments. However, the heterogeneity of the data available impairs their full exploitation. Consequently, we listed indicators to survey AMR and antibiotics in the environment and recommended the harmonization of sampling strategies and endpoints for analyses. Finally, the objectives and methods used for the present work could comprise a useful example for how national authorities of countries sharing common socio-geographic characteristics with France could seek to better understand and define the environmental dimension of AMR in their particular settings.
Collapse
Affiliation(s)
- Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, ANSES (French Agency for Food, Environmental and Occupational Health & Safety) - Université de Lyon, Lyon, France
| | - Christophe Dagot
- Université of Limoges, RESINFIT, UMR INSERM 1092, CHU, F-87000 Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, France
| | - Delphine Bibbal
- INTHERES, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Jérôme Labanowski
- Université de Poitiers, UMR CNRS 7285 IC2MP, ENSI Poitiers, Poitiers, France
| | | | - Damien Bouchard
- National Agency for Veterinary Medicinal Products, ANSES, Fougères, France
| | | | - Louisiane Calsat
- Risk Assessment Department (DER), ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Sylvie Nazaret
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Fabienne Petit
- UNIROUEN, UNICAEN, CNRS, M2C, Normandie Université Rouen, France; Sorbonne Université, CNRS, EPHE, PSL, UMR METIS, Paris F-75005, France
| | | | | | - Morgane Bachelot
- ANSES (French Agency for Food, Environmental and Occupational Health & Safety), Maisons-Alfort, France
| | - Edward Topp
- Agriculture and Agri-Food Canada, and University of Western Ontario, London, ON, Canada
| | - Didier Hocquet
- UMR Chronoenvironnement CNRS 6249, Université de Bourgogne Franche-Comté, Besançon, France; Hygiène Hospitalière, Centre Hospitalier Universitaire, 25030 Besançon, France.
| |
Collapse
|
10
|
Subirats J, Murray R, Yin X, Zhang T, Topp E. Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149718. [PMID: 34425441 DOI: 10.1016/j.scitotenv.2021.149718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Treatment of manures prior to land application can potentially reduce the abundance of antibiotic resistance genes and thus the risk of contaminating crops or water resources. In this study, raw and composted chicken litter were applied to field plots that were cropped to carrots, lettuce and radishes. Vegetables were washed per normal culinary practice before downstream analysis. The impact of composting on manure microbial composition, persistence of antibiotic resistant bacteria in soil following application, and distribution of antibiotic resistance genes and bacteria on washed vegetables were determined. A subset of samples that were thought likely to reveal the most significant effects were chosen for shotgun sequencing. The absolute abundance of all target genes detected by qPCR decreased after composting except sul1, intI1, incW and erm(F) that remained stable. The shotgun sequencing revealed that some integron integrases were enriched by composting. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. Manure-amended soil showed significantly higher abundances of sul1, str(A), str(B), erm(B), aad(A), intI1 and incW compared to unmanured soil. At harvest, those genes that were detected in soil samples before the application of manure (intI1, sul1, strA and strB) were quantifiable by qPCR on vegetables, with a larger number of gene targets detected on the radishes than in the carrots or lettuce. Shotgun metagenomic sequencing suggested that the increase of antibiotic resistance genes on radishes produced in soil receiving raw manure may be due to changes to soil microbial communities following manure application, rather than transfer to the radishes of enteric bacteria. Overall, under field conditions there was limited evidence for transfer of antibiotic resistance genes from composted or raw manure to vegetables that then persisted through washing.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Xiaole Yin
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
11
|
Howe AC, Soupir ML. Antimicrobial resistance in integrated agroecosystems: State of the science and future opportunities. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1255-1265. [PMID: 34528726 DOI: 10.1002/jeq2.20289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
As the Journal of Environmental Quality (JEQ) celebrates 50 years of publication, the division of environmental microbiology is one of the newest additions to the journal. During this time, significant advances in understanding of the interconnected microbial community and impact of the microbiome on natural and designed environmental systems have occurred. In this review, we highlight the intractable challenge of antimicrobial resistance (AMR) on humans, animals, and the environment, with particular emphasis on the role of integrated agroecosystems and by highlighting contributions published in JEQ. From early studies of phenotypic resistance of indicator organisms in waters systems to current calls for integrating AMR assessment across "One Health," publications in JEQ have advanced our understanding of AMR. As we reflect on the state of the science, we emphasize future opportunities. First, integration of phenotypic and molecular tools for assessing environmental spread of AMR and human health risk continues to be an urgent research need for a one health approach to AMR. Second, monitoring AMR levels in manure is recommended to understand inputs and potential spread through agroecosystems. Third, baseline knowledge of AMR levels is important to realize the impact of manure inputs on water quality and public health risk; this can be achieved through background monitoring or identifying the source-related genes or organisms. And finally, conservation practices designed to meet nutrient reduction goals should be explored for AMR reduction potential.
Collapse
Affiliation(s)
- Adina C Howe
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| | - Michelle L Soupir
- Dep. of Agricultural and Biosystems Engineering, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|
12
|
Liu B, Yu K, Ahmed I, Gin K, Xi B, Wei Z, He Y, Zhang B. Key factors driving the fate of antibiotic resistance genes and controlling strategies during aerobic composting of animal manure: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148372. [PMID: 34139488 DOI: 10.1016/j.scitotenv.2021.148372] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Occurrence of antibiotic resistance genes (ARGs) in animal manure impedes the reutilization of manure resources. Aerobic composting is potentially effective method for resource disposal of animal manure, but the fate of ARGs during composting is complicated due to the various material sources and different operating conditions. This review concentrates on the biotic and abiotic factors influencing the variation of ARGs in composting and their potential mechanisms. The dynamic variations of biotic factors, including bacterial community, mobile genetic elements (MGEs) and existence forms of ARGs, are the direct driving factors of the fate of ARGs during composting. However, most key abiotic indicators, including pH, moisture content, antibiotics and heavy metals, interfere with the richness of ARGs indirectly by influencing the succession of bacterial community and abundance of MGEs. The effect of temperature on ARGs depends on whether the ARGs are intracellular or extracellular, which should be paid more attention. The emergence of various controlling strategies renders the composting products safer. Four potential removal mechanisms of ARGs in different controlling strategies have been concluded, encompassing the attenuation of selective/co-selective pressure on ARGs, killing the potential host bacteria of ARGs, reshaping the structure of bacterial community and reducing the cell-to-cell contact of bacteria. With the effective control of ARGs, aerobic composting is suggested to be a sustainable and promising approach to treat animal manure.
Collapse
Affiliation(s)
- Botao Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaifeng Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Imtiaz Ahmed
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Karina Gin
- Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yiliang He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Xu S, Schwinghamer T, Sura S, Cessna AJ, Zvomuya F, Zaheer R, Larney FJ, McAllister TA. Degradation of antimicrobial resistance genes within stockpiled beef cattle feedlot manure. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:1093-1106. [PMID: 34605371 DOI: 10.1080/10934529.2021.1965416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Degradation of antimicrobial resistance genes (ARG) in manure from beef cattle administered (kg-1 feed) 44 mg of chlortetracycline (CTC), 44 mg of chlortetracycline plus sulfamethazine (CTCSMZ), 11 mg of tylosin (TYL), or no antimicrobials (Control) was examined. Manure was stockpiled and quantitative PCR (qPCR) was used to assess tetracycline [tet(C), (L), (M), (W)], erythromycin [erm(A), (B), (F), (X)], and sulfamethazine [sul(1), (2)] ARG and 16S rDNA. After 102 d, copies of all ARG decreased by 0.3 to 1.5 log10 copies (g dry matter)-1. Temperature in the interior of piles averaged ≥ 55 °C for 10 d, except for CTCSMZ, but did not reach 55 °C at pile exteriors. Compared to Control, CTCSMZ increased (P < 0.05) tet(C), tet(M), tet(W), sul(1), and sul(2) in stockpiled manure. Copies of 16S rDNA remained higher (P < 0.05) in CTCSMZ than Control for the first 26 d. Levels of most ARG did not differ between the interior and exterior of stockpiles. Our results suggest that stockpiled manure would still introduce ARG to land upon manure application, but at levels lower than if manure was applied fresh.
Collapse
Affiliation(s)
- Shanwei Xu
- Alberta Agriculture and Forestry, Lethbridge, Alberta, Canada
| | - Tim Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Srinivas Sura
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, Manitoba, Canada
| | - Allan J Cessna
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Francis Zvomuya
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rahat Zaheer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Francis J Larney
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
14
|
Katada S, Fukuda A, Nakajima C, Suzuki Y, Azuma T, Takei A, Takada H, Okamoto E, Kato T, Tamura Y, Usui M. Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Front Microbiol 2021; 12:737420. [PMID: 34659165 PMCID: PMC8515179 DOI: 10.3389/fmicb.2021.737420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Efficient methods for decreasing the spread of antimicrobial resistance genes (ARGs) and transfer of antimicrobial-resistant bacteria (ARB) from livestock manure to humans are urgently needed. Aerobic composting (AC) or anaerobic digestion (AD) are widely used for manure treatment in Japanese dairy farms. To clarify the effects of AC and AD on antimicrobial resistance, the abundances of antimicrobial (tetracycline and cefazolin)-resistant lactose-degrading Enterobacteriaceae as indicator bacteria, copy numbers of ARGs (tetracycline resistance genes and β-lactamase coding genes), and concentrations of residual antimicrobials in dairy cow manure were determined before and after treatment. The concentration of tetracycline/cefazolin-resistant lactose-degrading Enterobacteriaceae was decreased over 1,000-fold by both AC and AD. ARGs such as tetA, tetB, and bla TEM were frequently detected and their copy numbers were significantly reduced by ∼1,000-fold by AD but not by AC. However, several ARG copies remained even after AD treatment. Although concentrations of the majority of residual antimicrobials were decreased by both AC and AD, oxytetracycline level was not decreased after treatment in most cases. In addition, 16S rRNA gene amplicon-based metagenomic analysis revealed that both treatments changed the bacterial community structure. These results suggest that both AC and AD could suppress the transmission of ARB, and AD could reduce ARG copy numbers in dairy cow manure.
Collapse
Affiliation(s)
- Satoshi Katada
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Chie Nakajima
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- Division of Bioresources, Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
- International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Ayaka Takei
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Eiryu Okamoto
- Laboratory of Environmental Microbiology, College of Agriculture, Food, and Environment Sciences, Rakuno Gakuen University, Ebetsu, Japan
| | - Toshihide Kato
- Department of Large Animal Clinical Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
15
|
Guo X, Akram S, Stedtfeld R, Johnson M, Chabrelie A, Yin D, Mitchell J. Distribution of antimicrobial resistance across the overall environment of dairy farms - A case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147489. [PMID: 34134353 DOI: 10.1016/j.scitotenv.2021.147489] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 05/12/2023]
Abstract
The environmental implications of antimicrobial resistance arising from food animal farm practice are still a knowledge gap. This study investigates the fate and transport of antimicrobial resistance genes related to the use of antibiotics on a dairy farm in Michigan. Manure, soil, animal feed, animal drinking water, surface and groundwater samples were taken and the abundance of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) were subsequently measured using high parallel quantitative PCR targeting 136 genes. The total abundance and detected numbers of ARGs were found to be highest in the stagnant lagoon. Up to 44 ARG subtypes with high abundance were found in drinking water in pen which was very close to those in manure compost. The ARGs pattern clustered by soil depth although they were treated by different manure. ARGs and MGEs were detected in surface and groundwater surrounded by dairy farmlands, with the occurrence of carbapenemase-encoding KPC gene in two waters, which may be due to transport of ARGs through runoff or other sources. Overall, the results of the study suggest high prevalence of ARGs both inside and outside the animal raising area and their potential contribution to environmental ARGs.
Collapse
Affiliation(s)
- Xueping Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Center for Microbial Ecology, Michigan State University, East Lansing, MI 48824, USA
| | - Sina Akram
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Robert Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Martina Johnson
- Division of Public Health, College of Medicine, Michigan State University, East University, MI 48824, USA
| | - Alexandre Chabrelie
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jade Mitchell
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
16
|
Stockpiling versus Composting: Effectiveness in Reducing Antibiotic-Resistant Bacteria and Resistance Genes in Beef Cattle Manure. Appl Environ Microbiol 2021; 87:e0075021. [PMID: 34085860 DOI: 10.1128/aem.00750-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Manure storage methods can affect the concentration and prevalence of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in cattle manure prior to land application. The objective of this study was to compare stockpiling and composting with respect to their effectiveness in reducing ARB and ARGs in beef cattle manure in a field-scale study. Field experiments were conducted in different seasons with different bulking agents for composting. For both the winter-spring cycle and the summer-fall cycle, ARB concentrations declined below the limit of quantification rapidly in both composting piles and stockpiles; however, ARB prevalence was significantly greater in the composting piles than in the stockpiles. This was likely due to the introduction of ARB from bulking agents. There was no significant change in ARG concentrations between initial and final concentrations for either manure storage treatment during the winter-spring cycle, but a significant reduction of the ARGs erm(B), tet(O), and tet(Q) over time was observed for both the composting pile and stockpile during the summer-fall cycle. Results from this study suggest that (i) bulking agent may be an important source of ARB and ARGs for composting; (ii) during cold months, the heterogeneity of the temperature profile in composting piles could result in poor ARG reduction; and (iii) during warm months, both stockpiling and composting can be effective in reducing ARG abundance. IMPORTANCE Proper treatment of manure is essential to reduce the spread of antibiotic resistance and protect human health. Stockpiling and composting are two manure storage methods which can reduce antibiotic-resistant bacteria and resistance genes, although few field-scale studies have examined the relative efficiency of each method. This study examined the ability of both methods in both winter-spring and summer-fall cycles, while also accounting for heterogeneity within field-scale manure piles. This study determined that bulking agents used in composting could contribute antibiotic-resistant bacteria and resistance genes. Additionally, seasonal variation could hinder the efficacy of composting in colder months due to heterogeneity in temperature within the pile; however, in warmer months, either method of manure storage could be effective in reducing the spread of antibiotic resistance.
Collapse
|
17
|
Staley ZR, Tuan CY, Eskridge KM, Li X. Using the heat generated from electrically conductive concrete slabs to reduce antibiotic resistance in beef cattle manure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144220. [PMID: 33736325 DOI: 10.1016/j.scitotenv.2020.144220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Proper treatment is necessary to reduce antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in livestock manure before land application. Conventional stockpiling suffers unreliable removal efficiency, while composting can be complicated and expensive. The objective of this study was to test the feasibility of a novel heat-based technology, i.e., stockpiling manure on conductive concrete slabs, to inactivate ARB and ARGs in beef cattle manure. In this study, two independent bench-scale trials were conducted. In both trials, samples were taken from manure piles on conductive concrete slabs and regular slabs (i.e., heated and unheated piles). In the heated pile of the first trial, 25.9% and 83.5% of the pile volume met the EPA Class A and Class B biosolids standards, respectively. For the heated pile of the second trial, the two values were 43.9% and 74.2%. In both trials, nearly all forms of the total and resistant Escherichia coli and enterococci were significantly lower in the heated piles than in the unheated piles. Besides, significant reduction of ARGs in heated piles was observed in the first trial. Through this proof-of-concept study, the new technology based on conductive concrete slabs offers an alternative manure storage method to conventional stockpiling and composting with respect to reduce ARB and ARGs in manure.
Collapse
Affiliation(s)
- Zachery R Staley
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Christopher Y Tuan
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA
| | - Kent M Eskridge
- Department of Statistics, University of Nebraska - Lincoln, Lincoln, NE 68583, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska - Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
18
|
Wind L, Krometis LA, Hession WC, Pruden A. Cross-comparison of methods for quantifying antibiotic resistance in agricultural soils amended with dairy manure and compost. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144321. [PMID: 33477102 DOI: 10.1016/j.scitotenv.2020.144321] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Agricultural soils are often amended with livestock manure, making them a key reservoir of antibiotic resistance genes (ARGs). Given that soils are among the most microbially-diverse environments on the planet; effective characterization and quantification of the effects of manure-derived amendments on soil resistomes is a major challenge. This study examined the effects of dairy manure-derived amendments on agricultural soils via two strategies: quantification of anthropogenic ARG markers via qPCR and shotgun metagenomic resistome profiling; and these strategies were compared to a previously published antibiotic resistant fecal coliform dataset. Soil samples were collected throughout a 120 day complete block field experiment to compare the effects of amendment type on antibiotic resistance. Results of all three measurements were consistent with the hypothesis that the application of composted manure reduced antibiotic resistance in soil relative to the application of raw manure, although some differences were noted in comparing the patterns of the three measurements with time. Raw dairy manure-amended soils yielded high sul1 and tet(W) relative abundances on Day 0 (following amendment application), but significantly decreased to background levels by Day 67 (harvest) and Day 120 (study completion). Shotgun metagenomics similarly detected a decrease in the relative abundances of sulfonamide and tetracycline-associated ARGs over time in the raw manure- and compost-amended soils; however, these levels were significantly lower than those estimated by qPCR. Interestingly, although patterns of sulfonamide and tetracycline resistance among culturable fecal coliforms echoed those observed via qPCR and metagenomics; erythromycin resistant coliforms were directly recovered by culture in amended soils, but corresponding ARGs were not detected by qPCR or metagenomics. This study supports both composting and time restrictions as means of reducing the potential for antibiotic resistance in manure to spread via soil application. Results suggest some differences in finer conclusions drawn depending on which antibiotic resistance monitoring target is selected.
Collapse
Affiliation(s)
- Lauren Wind
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA.
| | - Leigh-Anne Krometis
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, 155 Ag. Quad Lane, Seitz Hall RM 200, Blacksburg, VA, USA
| | - Amy Pruden
- Department of Civil & Environmental Engineering, Virginia Tech, 1145 Perry St, Durham Hall RM 403, Blacksburg, VA 24061, USA
| |
Collapse
|
19
|
Keenum I, Williams RK, Ray P, Garner ED, Knowlton KF, Pruden A. Combined effects of composting and antibiotic administration on cattle manure-borne antibiotic resistance genes. MICROBIOME 2021; 9:81. [PMID: 33795006 PMCID: PMC8017830 DOI: 10.1186/s40168-021-01006-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/02/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Research is needed to delineate the relative and combined effects of different antibiotic administration and manure management practices in either amplifying or attenuating the potential for antibiotic resistance to spread. Here, we carried out a comprehensive parallel examination of the effects of small-scale (> 55 °C × 3 days) static and turned composting of manures from dairy and beef cattle collected during standard antibiotic administration (cephapirin/pirlimycin or sulfamethazine/chlortetracycline/tylosin, respectively), versus from untreated cattle, on "resistomes" (total antibiotic resistance genes (ARGs) determined via shotgun metagenomic sequencing), bacterial microbiota, and indicator ARGs enumerated via quantitative polymerase chain reaction. To gain insight into the role of the thermophilic phase, compost was also externally heated to > 55 °C × 15 days. RESULTS Progression of composting with time and succession of the corresponding bacterial microbiota was the overarching driver of the resistome composition (ANOSIM; R = 0.424, p = 0.001, respectively) in all composts at the small-scale. Reduction in relative abundance (16S rRNA gene normalized) of total ARGs in finished compost (day 42) versus day 0 was noted across all conditions (ANOSIM; R = 0.728, p = 0.001), except when externally heated. Sul1, intI1, beta-lactam ARGs, and plasmid-associated genes increased in all finished composts as compared with the initial condition. External heating more effectively reduced certain clinically relevant ARGs (blaOXA, blaCARB), fecal coliforms, and resistome risk scores, which take into account putative pathogen annotations. When manure was collected during antibiotic administration, taxonomic composition of the compost was distinct according to nonmetric multidimensional analysis and tet(W) decayed faster in the dairy manure with antibiotic condition and slower in the beef manure with antibiotic condition. CONCLUSIONS This comprehensive, integrated study revealed that composting had a dominant effect on corresponding resistome composition, while little difference was noted as a function of collecting manure during antibiotic administration. Reduction in total ARGs, tet(W), and resistome risk suggested that composting reduced some potential for antibiotic resistance to spread, but the increase and persistence of other indicators of antibiotic resistance were concerning. Results indicate that composting guidelines intended for pathogen reduction do not necessarily provide a comprehensive barrier to ARGs or their mobility prior to land application and additional mitigation measures should be considered. Video Abstract.
Collapse
Affiliation(s)
- Ishi Keenum
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, 1145 Perry Street, Blacksburg, VA, 24061, USA
| | - Robert K Williams
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, 1145 Perry Street, Blacksburg, VA, 24061, USA
| | - Partha Ray
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, RG6 6EU, UK
| | - Emily D Garner
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, 1145 Perry Street, Blacksburg, VA, 24061, USA
- Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, 418 Durham Hall, 1145 Perry Street, Blacksburg, VA, 24061, USA.
| |
Collapse
|
20
|
Subirats J, Murray R, Scott A, Lau CHF, Topp E. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141113. [PMID: 32768779 DOI: 10.1016/j.scitotenv.2020.141113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
We examined the ability of composting to remove ARGs and enteric bacteria in litter obtained from broiler chickens fed with a diet supplemented with Bacitracin methylene disalicylate (BDM) (conventional chicken litter), or an antibiotic-free diet (raised without antibiotic (RWA) chicken litter). This was done by evaluating the litter before and after composting for the abundance of ten gene targets associated with antibiotic resistance or horizontal gene transfer, the composition of the bacterial communities, and the abundance of viable enteric bacteria. The abundance of gene targets was determined by qPCR and the microbial community composition of chicken litter determined by 16S rRNA gene amplicon sequencing. Enteric bacteria were enumerated by viable plate count. A majority of the gene targets were more abundant in conventional than in RWA litter. In both litter types, the absolute abundance of all of the target genes decreased after composting except sul1, intI1, incW and erm(F) that remained stable. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. The major difference in bacterial community composition between conventional and RWA litter was due to members affiliated to the genus Pseudomonas, which were 28% more abundant in conventional than in RWA litter. Composting favoured the presence of thermophilic bacteria, such as those affiliated with the genus Truepera, but decreased the abundance of those bacterial genera associated with cold-adapted species, such as Carnobacterium, Psychrobacter and Oceanisphaera. The present study shows that chicken litter from broilers fed with a diet supplemented with antibiotic has an increased abundance of some ARGs, even after composting. However, we can conclude that fertilization with composted litter represents a reduced risk of transmission of antibiotic resistance genes and enteric bacteria of poultry origin to soil and crops than will fertilization with raw litter.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Andrew Scott
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Calvin Ho-Fung Lau
- Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
21
|
Cao R, Wang J, Ben W, Qiang Z. The profile of antibiotic resistance genes in pig manure composting shaped by composting stage: Mesophilic-thermophilic and cooling-maturation stages. CHEMOSPHERE 2020; 250:126181. [PMID: 32109697 DOI: 10.1016/j.chemosphere.2020.126181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The variation of antibiotic resistance genes (ARGs) and influential factors in pig manure composting were investigated by conducting simulated composting tests using four different supplement materials (wheat straw, corn straw, poplar sawdust and spent mushroom). The results show that the relative abundance of total ARGs increased by 0.19-1.61 logs after composting, and tetX, sulI, sulII, dfrA1 and aadA were the major contributors. The variations of ARG profiles and bacterial communities throughout the composting were clearly divided into mesophilic-thermophilic and cooling-maturation stages in all tests, while different supplement materials did not exert a noticeable influence. Network analysis demonstrated the diversity of bacterial hosts for ARGs, the existence of multiple antibiotic resistant bacteria, and the weak correlations between ARGs and physicochemical factors in the composting piles. Of note, integron intI1 and Mycobacterium (a potential pathogen) were positively correlated with eight and four ARGs, respectively, that displayed increased abundance after composting.
Collapse
Affiliation(s)
- Rukun Cao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China
| | - Jian Wang
- Institute of Rural Energy and Environmental Protection, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100121, China; Key Laboratory of Technologies and Models for Cyclic Utilization from Agricultural Resources, Ministry of Agriculture and Rural Affairs, Beijing, 100121, China
| | - Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China.
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China.
| |
Collapse
|
22
|
Staley ZR, Schmidt AM, Woodbury B, Eskridge KM, Durso L, Li X. Corn stalk residue may add antibiotic-resistant bacteria to manure composting piles. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:745-753. [PMID: 33016408 DOI: 10.1002/jeq2.20017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/27/2019] [Indexed: 06/11/2023]
Abstract
Manure is commonly used as a fertilizer or soil conditioner; however, land application of untreated manure may introduce pathogens and antibiotic-resistant bacteria (ARB) into the soil, with harmful implications for public health. Composting is a manure management practice wherein a carbon-rich bulking agent, such as corn (Zea mays L.) stalk residue, is added to manure to achieve desirable carbon/nitrogen ratios to facilitate microbial activities and generate enough heat to inactivate pathogens, including antibiotic-resistant pathogens. However, when comparing compost piles and stockpiles for ARB reduction, we noticed that bulking agents added ARB to composting piles and compromised the performance of composting in reducing ARB. We hypothesized that ARB could be prevalent in corn stalk residues, a commonly used bulking agent for composting. To test this hypothesis, corn stalk residue samples throughout Nebraska were surveyed for the presence of ARB. Of the samples tested, 54% were positive for antibiotic-resistant Escherichia coli or enterococci using direct plating or after enrichment. Although not statistically significant, there was a trend wherein the use of pesticides tended to result in a greater prevalence of some ARB. Results from this study suggest that bulking agents can be a source of ARB in manure composting piles and highlight the importance of screening bulking agents for effective ARB reduction in livestock manure during composting.
Collapse
Affiliation(s)
- Zachery R Staley
- Dep. of Civil and Environmental Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Amy Millmier Schmidt
- Dep. of Biological Systems Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583, USA
- Dep. of Animal Science, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Bryan Woodbury
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE, 68933, USA
| | - Kent M Eskridge
- Dep. of Statistics, Univ. of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Lisa Durso
- USDA-ARS, Lincoln, Lincoln, NE, 68583, USA
| | - Xu Li
- Dep. of Civil and Environmental Engineering, Univ. of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| |
Collapse
|
23
|
Cazer CL, Eldermire ERB, Lhermie G, Murray SA, Scott HM, Gröhn YT. The effect of tylosin on antimicrobial resistance in beef cattle enteric bacteria: A systematic review and meta-analysis. Prev Vet Med 2020; 176:104934. [PMID: 32109782 PMCID: PMC7197392 DOI: 10.1016/j.prevetmed.2020.104934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 02/13/2020] [Accepted: 02/17/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Tylosin is a commonly used in-feed antimicrobial and is approved in several countries to reduce the incidence of liver abscesses in beef cattle. Macrolides are critically important antimicrobials in human health and used to treat some foodborne bacterial diseases, such as Campylobacter jejuni and Salmonella. Feeding tylosin could select for resistant enteric bacteria in cattle, which could contaminate beef products at slaughter and potentially cause foodborne illness. We conducted a systematic review and meta-analysis to evaluate the impact of feeding tylosin to cattle on phenotypic and genotypic resistance in several potential zoonotic enteric bacteria: Enterococcus species, Escherichia coli, Salmonella enterica subspecies enterica, and Campylobacter species. This review was registered with PROSPERO (#CRD42018085949). RESULTS Eleven databases were searched for primary research studies that fed tylosin at approved doses to feedlot cattle and tested bacteria of interest for phenotypic or genotypic resistance. We screened 1,626 citations and identified 13 studies that met the inclusion criteria. Enterococcus species were tested in seven studies, Escherichia coli was isolated in five studies, three studies reported on Salmonella, and two studies reported on Campylobacter species. Most studies relied on phenotypic antimicrobial susceptibility testing and seven also reported resistance gene testing. A random-effects meta-analyses of erythromycin-resistant enterococci from four studies had significant residual heterogeneity. Only two studies were available for a meta-analysis of tylosin-resistant enterococci. A semi-quantitative analysis demonstrated an increase in macrolide-resistant enterococci after long durations of tylosin administration (>100 days). Semi-quantitative analyses of other bacteria-antimicrobial combinations revealed mixed results, but many comparisons found no effect of tylosin administration. However, about half of these no-effect comparisons did not record the cumulative days of tylosin administration or the time since the last dose. CONCLUSIONS When fed at approved dosages for typical durations, tylosin increases the proportion of macrolide-resistant enterococci in the cattle gastrointestinal tract, which could pose a zoonotic risk to human beef consumers. Feeding tylosin for short durations may mitigate the impact on macrolide-resistant enterococci and further studies are encouraged to determine the effect of minimizing or eliminating tylosin use in beef cattle. There may also be an impact on other bacteria and other antimicrobial resistances but additional details or data are needed to strengthen these comparisons. We encourage authors of antimicrobial-resistance studies to follow reporting guidelines and publish details of all comparisons to strengthen future meta-analyses.
Collapse
Affiliation(s)
- Casey L Cazer
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Erin R B Eldermire
- Flower-Sprecher Veterinary Library, Cornell University College of Veterinary Medicine, USA.
| | - Guillaume Lhermie
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | - Sarah A Murray
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine, USA.
| | - H Morgan Scott
- Department of Veterinary Pathobiology, Texas A&M College of Veterinary Medicine, USA.
| | - Yrjö T Gröhn
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Oliver JP, Gooch CA, Lansing S, Schueler J, Hurst JJ, Sassoubre L, Crossette EM, Aga DS. Invited review: Fate of antibiotic residues, antibiotic-resistant bacteria, and antibiotic resistance genes in US dairy manure management systems. J Dairy Sci 2020; 103:1051-1071. [DOI: 10.3168/jds.2019-16778] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
|
25
|
Zhao S, Wei W, Fu G, Zhou J, Wang Y, Li X, Ma L, Fang W. Application of biofertilizers increases fluoroquinolone resistance in Vibrio parahaemolyticus isolated from aquaculture environments. MARINE POLLUTION BULLETIN 2020; 150:110592. [PMID: 31699498 DOI: 10.1016/j.marpolbul.2019.110592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Antimicrobial resistance genes in aquaculture environments have attracted wide interest, since these genes pose a severe threat to human health. This study aimed to explore the possible mechanisms of the ciprofloxacin resistance of Vibrio parahaemolyticus (V. parahaemolytiucs) in aquaculture environments, which may have been affected by the biofertilizer utilization in China. Plasmid-mediate quinolone resistance (PMQR) genes, representative (fluoro)quinolones (FNQs), and ciprofloxacin-resistance isolates in biofertilizer samples were analyzed. The significantly higher abundance of oqxB was alarming. The transferable experiments and Southern blot analysis indicated that oqxB could spread horizontally from biofertilizers to V. parahaemolyticus, and two (16.7%) trans-conjugants harboring oqxB were provided by 12 isolates that successfully produced OqxB. To the best of our knowledge, this study is the first to report PMQR genes dissipation from biofertilizers to V. parahaemolyticus in aquaculture environments. The surveillance, monitoring and control of PMQR genes in biofertilizers are warranted for seafood safety and human health.
Collapse
Affiliation(s)
- Shu Zhao
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Advanced Institute of Translational Medicine, Tongji University, Shanghai, 200092, China
| | - Wenjuan Wei
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Guihong Fu
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Junfang Zhou
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Yuan Wang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Xincang Li
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Licai Ma
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Wenhong Fang
- Key Laboratory of Oceanic and Polar Fisheries, Ministry of Agriculture and Rural Affairs, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China.
| |
Collapse
|
26
|
Jacobs K, Wind L, Krometis LA, Hession WC, Pruden A. Fecal Indicator Bacteria and Antibiotic Resistance Genes in Storm Runoff from Dairy Manure and Compost-Amended Vegetable Plots. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1038-1046. [PMID: 31589689 DOI: 10.2134/jeq2018.12.0441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given the presence of antibiotics and resistant bacteria in livestock manures, it is important to identify the key pathways by which land-applied manure-derived soil amendments potentially spread resistance. The goal of this field-scale study was to identify the effects of different types of soil amendments (raw manure from cows treated with cephapirin and pirlimycin, compost from antibiotic-treated or antibiotic-free cows, or chemical fertilizer only) and crop type (lettuce [ L.] or radish [ L.]) on the transport of two antibiotic resistance genes (ARGs; 1 and ) via storm runoff from six naturally occurring storms. Concurrent quantification of sediment and fecal indicator bacteria (FIB; and enterococci) in runoff permitted comparison to traditional agricultural water quality targets that may be driving factors of ARG presence. Storm characteristics (total rainfall volume, storm duration, etc.) significantly influenced FIB concentration (two-way ANOVA, < 0.05), although both effects from individual storm events (Kruskal-Wallis, < 0.05) and vegetative cover influenced sediment levels. Composted and raw manure-amended plots both yielded significantly higher 1 and B levels in runoff for early storms, at least 8 wk following initial planting, relative to fertilizer-only or unamended barren plots. There was no significant difference between 1 or B levels in runoff from plots treated with compost derived from antibiotic-treated versus antibiotic-free dairy cattle. Our findings indicate that agricultural fields receiving manure-derived amendments release higher quantities of these two "indicator" ARGs in runoff, particularly during the early stages of the growing season, and that composting did not reduce effects of ARG loading in runoff.
Collapse
|
27
|
Chen Z, Zhang W, Yang L, Stedtfeld RD, Peng A, Gu C, Boyd SA, Li H. Antibiotic resistance genes and bacterial communities in cornfield and pasture soils receiving swine and dairy manures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:947-957. [PMID: 30861417 DOI: 10.1016/j.envpol.2019.02.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 06/09/2023]
Abstract
Land application of animal manure could change the profiles of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and bacterial communities in receiving soils. Using high-throughput real-time quantitative PCR and 16S rRNA amplicon sequencing techniques, this study investigated the ARGs and bacterial communities in field soils under various crop (corn and pasture) and manure (swine and dairy) managements, which were compared with those of two non-manured reference soils from adjacent golf course and grassland. In total 89 unique ARG subtypes were found in the soil samples and they conferred resistance via efflux pump, cellular protection and antibiotic deactivation. Compared to the ARGs in the golf course and grassland soils (28 and 34 subtypes respectively), manured soils generally had greater ARG diversity (36-55 subtypes). Cornfield soil frequently receiving raw swine manure had the greatest ARG abundance. The short-term (one week) application of composted and liquid swine manures increased the diversity and total abundance of ARGs in cornfield soils. Intriguingly the composted swine manure only marginally increased the total abundance of ARGs, but substantially increased the number of ARG subtypes in the cornfield soils. The network analysis revealed three major network modules in the co-occurrence patterns of ARG subtypes, and the hubs of these major modules (intl1-1, vanC, and pncA) may be candidates for selecting indicator genes for surveillance of ARGs in manured soils. The network analyses between ARGs and bacteria taxa revealed the potential host bacteria for the detected ARGs (e.g., aminoglycoside resistance gene aacC4 may be mainly carried by Acidobacteriaceae). Overall, this study highlighted the potentially varying impact of various manure management on antibiotic resistome and microbiome in cornfield and pasture soils.
Collapse
Affiliation(s)
- Zeyou Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States.
| | - Luxi Yang
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, United States
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, 48824, United States
| | - Anping Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Stephen A Boyd
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| |
Collapse
|
28
|
Choi J, Rieke EL, Moorman TB, Soupir ML, Allen HK, Smith SD, Howe A. Practical implications of erythromycin resistance gene diversity on surveillance and monitoring of resistance. FEMS Microbiol Ecol 2019; 94:4810543. [PMID: 29346541 PMCID: PMC5939627 DOI: 10.1093/femsec/fiy006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Use of antibiotics in human and animal medicine has applied selective pressure for the global dissemination of antibiotic-resistant bacteria. Therefore, it is of interest to develop strategies to mitigate the continued amplification and transmission of resistance genes in environmental reservoirs such as farms, hospitals and watersheds. However, the efficacy of mitigation strategies is difficult to evaluate because it is unclear which resistance genes are important to monitor, and which primers to use to detect those genes. Here, we evaluated the diversity of one type of macrolide antibiotic resistance gene (erm) in one type of environment (manure) to determine which primers would be most informative to use in a mitigation study of that environment. We analyzed all known erm genes and assessed the ability of previously published erm primers to detect the diversity. The results showed that all known erm resistance genes group into 66 clusters, and 25 of these clusters (40%) can be targeted with primers found in the literature. These primers can target 74%–85% of the erm gene diversity in the manures analyzed.
Collapse
Affiliation(s)
- Jinlyung Choi
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| | - Elizabeth L Rieke
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| | - Thomas B Moorman
- National Laboratory for Agriculture and the Environment, USDA-ARS, 2110 University Blvd, Ames, IA 50011, USA
| | - Michelle L Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| | - Heather K Allen
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-ARS, 1920 Dayton Ave, Ames, IA, 50010, USA
| | - Schuyler D Smith
- Department of Bioinformatics and Computational Biology, Iowa State University, 2014 Molecular Biology Building, Ames, IA 50011, USA
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, 1201 Sukup Hall, Ames, IA 50011, USA
| |
Collapse
|
29
|
Dharmarha V, Pulido N, Boyer RR, Pruden A, Strawn LK, Ponder MA. Effect of post-harvest interventions on surficial carrot bacterial community dynamics, pathogen survival, and antibiotic resistance. Int J Food Microbiol 2018; 291:25-34. [PMID: 30445282 DOI: 10.1016/j.ijfoodmicro.2018.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 12/12/2022]
Abstract
Strategies to mitigate antibiotic-resistant bacteria (ARB), including human pathogens, on raw vegetables are needed to reduce incidence of resistant infections. The objective of this research was to determine the effectiveness of standard post-harvest interventions, sanitizer washing and cold storage, to reduce ARB, including antibiotic resistant strains of the human pathogen E. coli O15:H7 and a common spoilage bacterium Pseudomonas, on raw carrots. To provide a background inoculum representing potential pre-harvest carryover of ARB, carrots were dip-inoculated in dairy cow manure compost slurry and further inoculated with known ARB. Inoculated carrots were washed with one of three treatments: sodium hypochlorite (50 ppm free chlorine), peroxyacetic acid (40 ppm peroxyacetic acid; 11.2% hydrogen peroxide), tap water (no sanitizer), or no washing (control). Washed carrots were air dried, packaged and stored at 10 °C for 7d or 2 °C for up to 60 d. Enumeration was performed using total heterotrophic plate counts (HPC), HPCs on antibiotic-containing media ("ARBs"), E. coli O157:H7, and Pseudomonas sp. immediately after washing (0 d) and after 7 d of storage. In addition to the cultured bacteria, changes to the surficial carrot microbiota were profiled by sequencing bacterial 16S rRNA gene amplicons to determine the effect of sanitizer wash, storage temperature, and time of storage (0, 1, 7, 14 and 60 d). Storage temperature, addition of a sanitizer during wash, and duration of storage significantly affected the bacterial microbiota (Wilcoxon, p < 0.05). Inclusion of either sanitizer in the wash water significantly reduced the log CFU/g of E. coli O157:H7 and Pseudomonas sp., as well as HPCs enumerated on cefotaxime- (10 μg/ml), sulfamethoxazole- (100 μg/ml), or tetracycline (3 μg/ml) supplemented media compared to the unwashed control (ANOVA, p < 0.05). However, no significant reductions to bacteria resistant to vancomycin or clindamycin occurred after washing and storage. Members of the Proteobactetria, Firmicutes, Actinobacteria, Planctomycetes, and Acidobacteria comprised the bacterial carrot microbiota. The diversity of the carrot microbiota was significantly affected by the temperature of storage and by extended storage (60 d), when spoilage began to occur. There were no significant differences to the relative abundance of bacterial groups associated with the type of sanitizer used for washing. Results of this study indicate that inclusion of a sanitizer in wash water, followed by storage at 2 °C, might be an effective strategy to prevent re-growth of pathogenic E. coli O157:H7 and reduce levels of bacteria resistant to certain antibiotics on carrots.
Collapse
Affiliation(s)
- Vaishali Dharmarha
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Natalie Pulido
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Renee R Boyer
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Monica A Ponder
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
30
|
Wind L, Krometis LA, Hession WC, Chen C, Du P, Jacobs K, Xia K, Pruden A. Fate of Pirlimycin and Antibiotic-Resistant Fecal Coliforms in Field Plots Amended with Dairy Manure or Compost during Vegetable Cultivation. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:436-444. [PMID: 29864178 DOI: 10.2134/jeq2017.12.0491] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identification of agricultural practices that mitigate the environmental dissemination of antibiotics is a key need in reducing the prevalence of antibiotic-resistant bacteria of human health concern. Here, we aimed to compare the effects of crop (lettuce [ L.] or radish [ L.]), soil amendment type (inorganic fertilizer, raw dairy manure, composted dairy manure, or no amendment), and prior antibiotic use history (no antibiotics during previous lactation cycles vs. manure mixed from cows administered pirlimycin or cephapirin) of manure-derived amendments on the incidence of culturable antibiotic-resistant fecal coliforms in agricultural soils through a controlled field-plot experiment. Antibiotic-resistant culturable fecal coliforms were recoverable from soils across all treatments immediately after application, although persistence throughout the experiment varied by antibiotic class and time. The magnitude of observed coliform counts differed by soil amendment type. Compost-amended soils had the highest levels of cephalosporin-resistant fecal coliforms, regardless of whether the cows from which the manure was derived were administered antibiotics. Samples from control plots or those treated with inorganic fertilizer trended toward lower counts of resistant coliforms, although these differences were not statistically significant. No statistical differences were observed between soils that grew leafy (lettuce) versus rooted (radish) crops. Only pirlimycin was detectable past amendment application in raw manure-amended soils, dissipating 12 to 25% by Day 28. Consequently, no quantifiable correlations between coliform count and antibiotic magnitude could be identified. This study demonstrates that antibiotic-resistant fecal coliforms can become elevated in soils receiving manure-derived amendments, but that a variety of factors likely contribute to their long-term persistence under typical field conditions.
Collapse
|
31
|
Zhao Y, Su JQ, An XL, Huang FY, Rensing C, Brandt KK, Zhu YG. Feed additives shift gut microbiota and enrich antibiotic resistance in swine gut. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 621:1224-1232. [PMID: 29054657 DOI: 10.1016/j.scitotenv.2017.10.106] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance genes (ARGs) are emerging environmental contaminants posing a threat to public health. Antibiotics and metals are widely used as feed additives and could consequently affect ARGs in swine gut. In this study, high-throughput quantitative polymerase chain reaction (HT-qPCR) based ARG chip and next-generation 16S rRNA gene amplicon sequencing data were analyzed using multiple statistical approaches to profile the antibiotic resistome and investigate its linkages to antibiotics and metals used as feed additives and to the microbial community composition in freshly collected swine manure samples from three large-scale Chinese pig farms. A total of 146 ARGs and up to 1.3×1010 total ARG copies per gram of swine feces were detected. ARGs conferring resistance to aminoglycoside, macrolide-lincosamide-streptogramin B (MLSB) and tetracycline were dominant in pig gut. Total abundance of ARGs was positively correlated with in-feed antibiotics, microbial biomass and abundance of mobile genetic elements (MGEs) (P<0.05). A significant correlation between microbial communities and ARG profiles was observed by Procrustes analysis. Network analysis revealed that Bacteroidetes and Firmicutes were the most dominant phyla co-occurring with specific ARGs. Partial redundancy analysis indicated that the variance in ARG profiles could be primarily attributed to antibiotics and metals in feed (31.8%), gut microbial community composition (23.3%) and interaction between feed additives and community composition (16.5%). These results suggest that increased levels of in-feed additives could aggravate the enrichment of ARGs and MGEs in swine gut.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xin-Li An
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Fu-Yi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Christopher Rensing
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
32
|
Xiang Q, Chen QL, Zhu D, An XL, Yang XR, Su JQ, Qiao M, Zhu YG. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:525-533. [PMID: 29324382 DOI: 10.1016/j.envpol.2017.12.119] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/29/2017] [Accepted: 12/29/2017] [Indexed: 05/11/2023]
Abstract
With the rapid development of urbanization and industrialization, the peri-urban areas are often the sites for waste dumps, which may exacerbate the occurrence and spread of antibiotic resistance from waste to soil bacteria. However, the profiles of antibiotic resistomes and the associated factors influencing their dissemination in peri-urban areas have not been fully explored. Here, we characterized the antibiotic resistance genes (ARGs) in peri-urban arable and pristine soils in four seasons at the watershed scale, by using high-throughput qPCR. ARGs in peri-urban soils were diverse and abundant, with a total of 222 genes were detected in the peri-urban soil samples. The arable soil harbored more diverse ARGs compared to the pristine soils, and nearly all the ARGs detected in the pristine soils were also detected in the farmlands. A random forest prediction showed that the overall patterns of ARGs clustered closely with the landuse type. Mantel test and partial redundancy analysis indicated that bacterial community variation is a major contributor to antibiotic resistome alteration. Significant positive correlation was found between the abundance of ARGs and mobile genetic elements (MGEs), suggesting potential mobility of ARGs in peri-urban areas. Our results extend knowledge of the resistomes compositions in peri-urban areas, and suggest that anthropogenic activities driving its spatial and temporal distribution.
Collapse
Affiliation(s)
- Qian Xiang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qing-Lin Chen
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Dong Zhu
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xin-Li An
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Xiao-Ru Yang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| | - Min Qiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021, China
| |
Collapse
|
33
|
Xu S, Amarakoon ID, Zaheer R, Smith A, Sura S, Wang G, Reuter T, Zvomuya F, Cessna AJ, Larney FJ, McAllister TA. Dissipation of antimicrobial resistance genes in compost originating from cattle manure after direct oral administration or post-excretion fortification of antimicrobials. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:373-384. [PMID: 29215973 DOI: 10.1080/10934529.2017.1404337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
Dissipation of antimicrobial resistance genes (ARG) during composting of cattle manure generated through fortification versus administration of antimicrobials in feed was compared. Manure was collected from cattle fed diets containing (kg-1) dry matter (DM): (1) 44 mg chlortetracycline (CTC), (2) a mixture of 44 mg each of chlortetracycline and sulfamethazine (CTCSMZ), (3) 11 mg tylosin (TYL) or (4) Control, no antimicrobials. Manures were composted for 30 d with a single mixing after 16 d to generate the second heating cycle. Quantitative PCR (qPCR) was used to measure 16S rDNA and tetracycline (tet), erythromycin (erm) and sulfamethazine (sul) genes. Temperature peaks ranged from 48 to 68°C across treatments in the first composting cycle, but except for the control, did not exceed 55°C in the second cycle. Copy numbers of 16S rDNA decreased (P < 0.05) during composting, but were not altered by antimcrobials. Except tet(L), all ARG decreased by 0.1-1.6 log10 g DM-1 in the first cycle, but some genes (tet[B], tet[L], erm[F], erm[X]) increased (P < 0.05) by 1.0-3.1 log10 g DM-1 in the second. During composting, levels of tet(M) and tet(W) in CTC, erm(A), erm(B) and erm(X) in TYL, and sul(1) in CTCSMZ remained higher (P < 0.05) in fed than fortified treatments. The dissipation of ARG during composting of manure fortified with antimicrobials differs from manure generated by cattle that are administered antimicrobials in feed, and does not always align with the dissipation of antimicrobial residues.
Collapse
Affiliation(s)
- Shanwei Xu
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Inoka D Amarakoon
- b Department of Soil Science , University of Manitoba , Winnipeg , Canada
| | - Rahat Zaheer
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Alanna Smith
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Srinivas Sura
- c Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - George Wang
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Tim Reuter
- d Alberta Agriculture and Forestry , Lethbridge , Canada
| | - Francis Zvomuya
- b Department of Soil Science , University of Manitoba , Winnipeg , Canada
| | - Allan J Cessna
- e Saskatoon Research and Development Centre , Agriculture and Agri-Food Canada , Saskatoon , Canada
| | - Francis J Larney
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| | - Tim A McAllister
- a Lethbridge Research and Development Centre , Agriculture and Agri-Food Canada , Lethbridge , Canada
| |
Collapse
|
34
|
Hu Y, Cheng H, Tao S. Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. ENVIRONMENT INTERNATIONAL 2017; 107:111-130. [PMID: 28719840 DOI: 10.1016/j.envint.2017.07.003] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Driven by the growing demand for food products of animal origin, industrial livestock and poultry production has become increasingly popular and is on the track of becoming an important source of environmental pollution in China. Although concentrated animal feeding operations (CAFOs) have higher production efficiency and profitability with less resource consumption compared to the traditional family-based and "free range" farming, they bring significant environmental pollution concerns and pose public health risks. Gaseous pollutants and bioaerosols are emitted directly from CAFOs, which have health implications on animal producers and neighboring communities. A range of pollutants are excreted with the animal waste, including nutrients, pathogens, natural and synthetic hormones, veterinary antimicrobials, and heavy metals, which can enter local farmland soils, surface water, and groundwater, during the storage and disposal of animal waste, and pose direct and indirect human health risks. The extensive use of antimicrobials in CAFOs also contributes to the global public health concern of antimicrobial resistance (AMR). Efforts on treating the large volumes of manure generated in CAFOs should be enhanced (e.g., by biogas digesters and integrated farm systems) to minimize their impacts on the environment and human health. Furthermore, the use of veterinary drugs and feed additives in industrial livestock and poultry farming should be controlled, which will not only make the animal food products much safer to the consumers, but also render the manure more benign for treatment and disposal on farmlands. While improving the sustainability of animal farming, China also needs to promote healthy food consumption, which not only improves public health from avoiding high-meat diets, but also slows down the expansion of industrial animal farming, and thus reduces the associated environmental and public health risks.
Collapse
Affiliation(s)
- Yuanan Hu
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| | - Shu Tao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
35
|
Tien YC, Li B, Zhang T, Scott A, Murray R, Sabourin L, Marti R, Topp E. Impact of dairy manure pre-application treatment on manure composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:32-39. [PMID: 28076772 DOI: 10.1016/j.scitotenv.2016.12.138] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Manuring ground used for crop production is an important agricultural practice. Should antibiotic-resistant enteric bacteria carried in the manure be transferred to crops that are consumed raw, their consumption by humans or animals will represent a route of exposure to antibiotic resistance genes. Treatment of manures prior to land application is a potential management option to reduce the abundance of antibiotic resistance genes entrained with manure application. In this study, dairy manure that was untreated, anaerobically digested, mechanically dewatered or composted was applied to field plots that were then cropped to lettuce, carrots and radishes. The impact of treatment on manure composition, persistence of antibiotic resistance gene targets in soil following application, and distribution of antibiotic resistance genes and bacteria on vegetables at harvest was determined. Composted manure had the lowest abundance of antibiotic resistance gene targets compared to the other manures. There was no significant difference in the persistence characteristics of antibiotic resistance genes following land application of the various manures. Compared to unmanured soil, antibiotic resistance genes were detected more frequently in soil receiving raw or digested manure, whereas they were not in soil receiving composted manure. The present study suggests that vegetables grown in ground receiving raw or digested manure are at risk of contamination with manure-borne antibiotic resistant bacteria, whereas vegetables grown in ground receiving composted manure are less so.
Collapse
Affiliation(s)
- Yuan-Ching Tien
- Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Bing Li
- Graduate School at Shenzhen, Tsinghua University, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, University of Hong Kong, Hong Kong
| | - Andrew Scott
- Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Lyne Sabourin
- Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Romain Marti
- Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada; University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
36
|
Survival and prevalence of Clostridium difficile in manure compost derived from pigs. Anaerobe 2017; 43:15-20. [DOI: 10.1016/j.anaerobe.2016.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 01/05/2023]
|
37
|
Le Devendec L, Mourand G, Bougeard S, Léaustic J, Jouy E, Keita A, Couet W, Rousset N, Kempf I. Impact of colistin sulfate treatment of broilers on the presence of resistant bacteria and resistance genes in stored or composted manure. Vet Microbiol 2016; 194:98-106. [DOI: 10.1016/j.vetmic.2015.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/09/2015] [Accepted: 11/12/2015] [Indexed: 11/16/2022]
|
38
|
Holman DB, Hao X, Topp E, Yang HE, Alexander TW. Effect of Co-Composting Cattle Manure with Construction and Demolition Waste on the Archaeal, Bacterial, and Fungal Microbiota, and on Antimicrobial Resistance Determinants. PLoS One 2016; 11:e0157539. [PMID: 27300323 PMCID: PMC4907429 DOI: 10.1371/journal.pone.0157539] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/01/2016] [Indexed: 01/24/2023] Open
Abstract
Agricultural operations generate large quantities of manure which must be eliminated in a manner that is consistent with public health guidelines. Meanwhile, construction and demolition waste makes up about 25% of total solid municipal waste. Co-composting of manure with construction and demolition waste offers a potential means to make manure safe for soil amendment and also divert construction and demolition waste from municipal landfills. Therefore, the archaeal, bacterial, and fungal microbiota of two different types of composted cattle manure and one co-composted with construction and demolition waste, were assessed over a 99-day composting period. The microbiota of the three compost mixtures did not differ, but significant changes over time and by sampling depth were observed. Bacillus and Halocella, however, were more relatively abundant in composted manure from cattle fed dried distillers’ grains and solubles. Proteobacteria and Bacteroidetes were enriched at day 0 and Firmicutes at day 99. The fungal genus Kernia was the most relatively abundant overall and was enriched at day 0. The concentration of 12 antimicrobial resistance determinants in the compost mixtures was also determined, and 10 of these determinants decreased significantly from days 0 to 99. The addition of construction and demolition waste did not affect the persistence of antimicrobial resistance genes or community structure of the compost microbiota and therefore co-composting construction and demolition waste with cattle manure offers a safe, viable way to divert this waste from landfills.
Collapse
Affiliation(s)
- Devin B. Holman
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiying Hao
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, ON, Canada
| | - Hee Eun Yang
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Trevor W. Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- * E-mail:
| |
Collapse
|
39
|
Xu S, Sura S, Zaheer R, Wang G, Smith A, Cook S, Olson AF, Cessna AJ, Larney FJ, McAllister TA. Dissipation of Antimicrobial Resistance Determinants in Composted and Stockpiled Beef Cattle Manure. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:528-536. [PMID: 27065400 DOI: 10.2134/jeq2015.03.0146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Windrow composting or stockpiling reduces the viability of pathogens and antimicrobial residues in manure. However, the impact of these manure management practices on the persistence of genes coding for antimicrobial resistance is less well known. In this study, manure from cattle administered 44 mg of chlortetracycline kg feed (dry wt. basis) (CTC), 44 mg of CTC and 44 mg of sulfamethazine kg feed (CTCSMZ), 11 mg of tylosin kg feed (TYL), and no antimicrobials (control) were composted or stockpiled over 102 d. Temperature remained ≥55°C for 35 d in compost and 2 d in stockpiles. Quantitative PCR was used to measure levels of 16S rRNA genes and tetracycline [(B), (C), (L), (M), (W)], erythromycin [(A), (B), (F), (X)], and sulfamethazine [(1), (2)] resistance determinants. After 102 d, 16S rRNA genes and all resistance determinants declined by 0.5 to 3 log copies per gram dry matter. Copies of 16S rRNA genes were affected ( < 0.05) by antimicrobials with the ranking of control > CTC = TYL > CTCSMZ. Compared with the control, antimicrobials did not increase the abundance of resistance genes in either composted or stockpiled manure, except (M) and (2) in CTCSMZ ( < 0.05). The decline in 16S rRNA genes and resistance determinants was higher ( < 0.05) in composted than in stockpiled manure. We conclude that composting may be more effective than stockpiling in reducing the introduction of antimicrobial resistance genes into the environment before land application of manure.
Collapse
|
40
|
Youngquist CP, Mitchell SM, Cogger CG. Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:537-545. [PMID: 27065401 DOI: 10.2134/jeq2015.05.0256] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Antibiotics and antibiotic-resistant bacteria (ARB) enter the environment through municipal and agricultural waste streams and pose a potential risk to human and livestock health through either direct exposure to antibiotic-resistant pathogens or selective pressure on the soil microbial community. This review summarizes current literature on the fate of antibiotics, ARB, and antibiotic resistance genes (ARGs) during anaerobic digestion and composting of manure and wastewater residuals. Studies have shown that removal of antibiotics varies widely during mesophilic anaerobic digestion, even within the same class of antibiotics. Research on ARB shows a wide range of removal under mesophilic conditions, with nearly complete removal under thermophilic conditions. Research on 16 antibiotics in 11 different studies using both bench-scale and farm-scale composting systems demonstrates that composting significantly reduces levels of extractable antibiotics in livestock manure in nearly all cases. Calculated half-lives ranged from 0.9 to 16 d for most antibiotics. There is more limited evidence that levels of ARB are also reduced by composting. Studies of the fate of ARGs show mixed evidence for removal during both mesophilic and thermophilic anaerobic digestion and during thermophilic composting. Antibiotic resistance genes are DNA structures, so they may persist until the DNA structure is degraded, yet the bacterium may have been rendered nonviable long before the DNA is completely degraded. Additional research would be of value to determine optimum anaerobic digestion and composting conditions for removal of ARB and to increase understanding of the fate of ARGs during anaerobic digestion and composting.
Collapse
|
41
|
Housefly Larva Vermicomposting Efficiently Attenuates Antibiotic Resistance Genes in Swine Manure, with Concomitant Bacterial Population Changes. Appl Environ Microbiol 2015; 81:7668-79. [PMID: 26296728 DOI: 10.1128/aem.01367-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/09/2015] [Indexed: 01/23/2023] Open
Abstract
Manure from swine treated with antimicrobials as feed additives is a major source for the expansion of the antibiotic resistance gene (ARG) reservoir in the environment. Vermicomposting via housefly larvae (Musca domestica) can be efficiently used to treat manure and regenerate biofertilizer, but few studies have investigated its effect on ARG attenuation. Here, we tracked the abundances of 9 ARGs and the composition and structure of the bacterial communities in manure samples across 6 days of full-scale manure vermicomposting. On day 6, the abundances of genes encoding tetracycline resistance [tet(M), tet(O), tet(Q), and tet(W)] were reduced (P < 0.05), while those of genes encoding sulfonamide resistance (sul1 and sul2) were increased (P < 0.05) when normalized to 16S rRNA. The abundances of tetracycline resistance genes were correlated (P < 0.05) with the changing concentrations of tetracyclines in the manure. The overall diversity and richness of the bacteria significantly decreased during vermicomposting, accompanied by a 100 times increase in the relative abundance of Flavobacteriaceae spp. Variations in the abundances of ARGs were correlated with the changing microbial community structure and the relative abundances of the family Ruminococcaceae, class Bacilli, or phylum Proteobacteria. Vermicomposting, as a waste management practice, can reduce the overall abundance of ARGs. More research is warranted to assess the use of this waste management practice as a measure to attenuate the dissemination of antimicrobial residues and ARGs from livestock production before vermicompost can be safely used as biofertilizer in agroecosystems.
Collapse
|
42
|
Su JQ, Wei B, Ou-Yang WY, Huang FY, Zhao Y, Xu HJ, Zhu YG. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7356-63. [PMID: 26018772 DOI: 10.1021/acs.est.5b01012] [Citation(s) in RCA: 631] [Impact Index Per Article: 63.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Composting is widely used for recycling of urban sewage sludge to improve soil properties, which represents a potential pathway of spreading antibiotic resistant bacteria and genes to soils. However, the dynamics of antibiotic resistance genes (ARGs) and the underlying mechanisms during sewage sludge composting were not fully explored. Here, we used high-throughput quantitative PCR and 16S rRNA gene based illumina sequencing to investigate the dynamics of ARGs and bacterial communities during a lab-scale in-vessel composting of sewage sludge. A total of 156 unique ARGs and mobile genetic elements (MGEs) were detected encoding resistance to almost all major classes of antibiotics. ARGs were detected with significantly increased abundance and diversity, and distinct patterns, and were enriched during composting. Marked shifts in bacterial community structures and compositions were observed during composting, with Actinobacteria being the dominant phylum at the late phase of composting. The large proportion of Actinobacteria may partially explain the increase of ARGs during composting. ARGs patterns were significantly correlated with bacterial community structures, suggesting that the dynamic of ARGs was strongly affected by bacterial phylogenetic compositions during composting. These results imply that direct application of sewage sludge compost on field may lead to the spread of abundant ARGs in soils.
Collapse
Affiliation(s)
- Jian-Qiang Su
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Bei Wei
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Ying Ou-Yang
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Yi Huang
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Yi Zhao
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Hui-Juan Xu
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
- ‡University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Guan Zhu
- †Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| |
Collapse
|
43
|
van den Brom R, Roest HJ, de Bruin A, Dercksen D, Santman-Berends I, van der Hoek W, Dinkla A, Vellema J, Vellema P. A probably minor role for land-applied goat manure in the transmission of Coxiella burnetii to humans in the 2007-2010 Dutch Q fever outbreak. PLoS One 2015; 10:e0121355. [PMID: 25816149 PMCID: PMC4376525 DOI: 10.1371/journal.pone.0121355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/30/2015] [Indexed: 11/17/2022] Open
Abstract
In 2007, Q fever started to become a major public health problem in the Netherlands, with small ruminants as most probable source. In order to reduce environmental contamination, control measures for manure were implemented because of the assumption that manure was highly contaminated with Coxiella burnetii. The aims of this study were 1) to clarify the role of C. burnetii contaminated manure from dairy goat farms in the transmission of C. burnetii to humans, 2) to assess the impact of manure storage on temperature profiles in dunghills, and 3) to calculate the decimal reduction time of the Nine Mile RSA 493 reference strain of C. burnetii under experimental conditions in different matrices. For these purposes, records on distribution of manure from case and control herds were mapped and a potential relation to incidences of human Q fever was investigated. Additionally, temperatures in two dunghills were measured and related to heat resistance of C. burnetii. Results of negative binomial regression showed no significant association between the incidence of human Q fever cases and the source of manure. Temperature measurements in the core and shell of dunghills on two farms were above 40°C for at least ten consecutive days which would result in a strong reduction of C. burnetii over time. Our findings indicate that there is no relationship between incidence of human Q fever and land applied manure from dairy goat farms with an abortion wave caused by C. burnetii. Temperature measurements in dunghills on two farms with C. burnetii shedding dairy goat herds further support the very limited role of goat manure as a transmission route during the Dutch human Q fever outbreak. It is very likely that the composting process within a dunghill will result in a clear reduction in the number of viable C. burnetii.
Collapse
Affiliation(s)
- René van den Brom
- Department of Small Ruminant Health, GD Animal Health, Deventer, The Netherlands
| | - Hendrik-Jan Roest
- Department of Bacteriology and TSE's, Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
| | - Arnout de Bruin
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Daan Dercksen
- Department of Small Ruminant Health, GD Animal Health, Deventer, The Netherlands
| | | | - Wim van der Hoek
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Annemiek Dinkla
- Department of Bacteriology and TSE's, Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
| | | | - Piet Vellema
- Department of Small Ruminant Health, GD Animal Health, Deventer, The Netherlands
| |
Collapse
|
44
|
Schmidt G, Stiverson J, Angen Ø, Yu Z. Number of PCR Cycles and Magnesium Chloride Concentration Affect Detection of <i>tet</i> Genes Encoding Ribosomal Protection Proteins in Swine Manure. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aim.2014.412086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Pruden A, Larsson DJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu YG. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:878-85. [PMID: 23735422 PMCID: PMC3734499 DOI: 10.1289/ehp.1206446] [Citation(s) in RCA: 449] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 05/30/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. OBJECTIVE Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic-resistance determinants via environmental pathways, with the ultimate goal of extending the useful life span of antibiotics. We also examined incentives and disincentives for action. METHODS We focused on management options with respect to limiting agricultural sources; treatment of domestic, hospital, and industrial wastewater; and aquaculture. DISCUSSION We identified several options, such as nutrient management, runoff control, and infrastructure upgrades. Where appropriate, a cross-section of examples from various regions of the world is provided. The importance of monitoring and validating effectiveness of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. CONCLUSIONS Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little or no cost. Some management options are synergistic with existing policies and goals. The anticipated benefit is an extended useful life span for current and future antibiotics. Although risk reductions are often difficult to quantify, the severity of accelerating worldwide morbidity and mortality rates associated with antibiotic resistance strongly indicate the need for action.
Collapse
Affiliation(s)
- Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia, USA
| | - D.G. Joakim Larsson
- Institute for Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alejandro Amézquita
- Unilever-Safety & Environmental Assurance Centre, Sharnbrook, United Kingdom
| | - Peter Collignon
- Australian National University, Canberra, Australia
- Canberra Hospital, Canberra, Australia
| | - Kristian K. Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - David W. Graham
- School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - James M. Lazorchak
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Satoru Suzuki
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Ehime, Japan
| | - Peter Silley
- MB Consult Limited, Southampton, United Kingdom
- University of Bradford, Bradford, United Kingdom
| | - Jason R. Snape
- AstraZeneca, Brixham Environmental Laboratory, Brixham, United Kingdom
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Tong Zhang
- Department of Civil Engineering, University of Hong Kong, Hong Kong
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
46
|
Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:278-94. [PMID: 23343983 PMCID: PMC3564142 DOI: 10.3390/ijerph10010278] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 12/31/2012] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
The use of antimicrobial agents has been claimed to be the driving force for the emergence and spread of microbial resistance. However, several studies have reported the presence of multidrug-resistant bacteria in populations exposed to low levels of antimicrobial drugs or even never exposed. For many pathogens, especially those organisms for which asymptomatic colonization typically precedes infection (e.g., Enterococcus spp. and Escherichia coli), the selective effects of antimicrobial use can only be understood if we considerer all biological and environmental pathways which enable these bacteria, and the genes they carry, to spread between different biomes. This ecological framework provides an essential perspective for formulating antimicrobial use policies, precisely because it encompasses the root causes of these problems rather than merely their consequences.
Collapse
|
47
|
Wang L, Oda Y, Grewal S, Morrison M, Michel FC, Yu Z. Persistence of resistance to erythromycin and tetracycline in swine manure during simulated composting and lagoon treatments. MICROBIAL ECOLOGY 2012; 63:32-40. [PMID: 21811793 DOI: 10.1007/s00248-011-9921-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 07/18/2011] [Indexed: 05/31/2023]
Abstract
The use of antimicrobials in food animal production leads to the development of antimicrobial resistance (AMR), and animal manure constitutes the largest reservoir of such AMR. In previous studies, composted swine manure was found to contain substantially lower abundance of AMR genes that encode resistance to tetracyclines (tet genes) and macrolide-lincosamide-streptogramin B (MLS(B)) superfamily (erm genes), than manures that were treated by lagoons or biofilters. In this study, temporal changes in AMR carried by both cultivated and uncultivated bacteria present in swine manure during simulated composting and lagoon storage were analyzed. Treatments were designed to simulate the environmental conditions of composting (55°C with modest aeration) and lagoon storage (ambient temperature with modest aeration). As determined by selective plate counting, over a 48-day period, cultivated aerobic heterotrophic erythromycin-resistant bacteria and tetracycline-resistant bacteria decreased by more than 4 and 7 logs, respectively, in the simulated composting treatment while only 1 to 2 logs for both resistant bacterial groups in the simulated lagoon treatment. Among six classes each of erm and tet genes quantified by class-specific real-time PCR assays, the abundance of erm(A), erm(C), erm(F), erm(T), erm(X), tet(G), tet(M), tet(O), tet(T), and tet(W) declined marginally during the first 17 days, but dramatically thereafter within 31 days of the composting treatment. No appreciable reduction of any of the erm or tet genes analyzed was observed during the simulated lagoon treatment. Correlation analysis showed that most of the AMR gene classes had similar persistence pattern over the course of the treatments, though not all AMR genes were destructed at the same rate during the treatments.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Animal Sciences, Environmental Science Graduate Program, The Ohio State University, 2027 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
48
|
Qiao M, Chen W, Su J, Zhang B, Zhang C. Fate of tetracyclines in swine manure of three selected swine farms in China. J Environ Sci (China) 2012; 24:1047-1052. [PMID: 23505872 DOI: 10.1016/s1001-0742(11)60890-5] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Veterinary antibiotics can enter the environment due to the common practice of land application of manure from treated animals. The environmental fate of tetracyclines in swine manure after composting and field application remains largely unknown. This study analyzed the concentrations of tetracyclines in manure, manure-based compost and compost amended soil in selected swine farms from Beijing, Jiaxing and Putian, China to determine the dilution effects of antibiotics when released into the soil environment. The results demonstrate that residues of antibiotics were detected in all samples and chlortetracycline as well as its degradation products should be regarded critically concerning their potential ecotoxicity. Application of manure-based compost to soil could reduce the possible risk posed by antibiotic contamination, but the trigger value of 100 microg/kg was still exceeded in soil samples (776.1 microg/kg dw) from Putian City after application of compost. Field studies such as the present one can help to improve the routine administration of antibiotic-containing composted manure.
Collapse
Affiliation(s)
- Min Qiao
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | | | | | | | | |
Collapse
|
49
|
Shelver WL, Varel VH. Development of a UHPLC-MS/MS method for the measurement of chlortetracycline degradation in swine manure. Anal Bioanal Chem 2011; 402:1931-9. [DOI: 10.1007/s00216-011-5637-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/02/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
|
50
|
Sharma R, Ryan K, Hao X, Larney FJ, McAllister TA, Topp E. Real-time quantification of mcrA, pmoA for methanogen, methanotroph estimations during composting. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:199-205. [PMID: 21488508 DOI: 10.2134/jeq2010.0088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Composting is the controlled biological decomposition of organic matter by microorganisms during predominantly aerobic conditions. It is being increasingly adopted due to its benefits in nutrient recycling, soil reclamation, and urban land use. However, it poses an environmental concern related to its contribution to greenhouse gas production. During composting, activities of methanogenic and methanotrophic communities influence the net methane (CH4) release into the atmosphere. Using quantitative polymerase chain reaction (qPCR), this study was aimed at assessing the changes in the methyl-coenzyme M reductase (mcrA) and particulate methane monooxygenase (pmoA) copy numbers for estimation of methanogenic and methanotrophic communities, respectively. Open-windrow composting of beef cattle (Bos Taurus L.) manure with temperatures reaching > 55 degrees C was effective indegrading commensal Escherichia coli within the first week. Quantification of community DNA revealed significant differences in mcrA and pmoA copy numbers between top and middle sections. Consistent mcrA copy numbers (7.07 to 8.69 log copy number g(-1)) were detected throughout the 15-wk composting period. However, pmoA copy number varied significantly over time, with higher values during Week 0 and 1 (6.31 and 5.41 log copy number g(-1), respectively) and the lowest at Week 11 (1.6 log copy number g(-1)). Net surface CH4 emissions over the 15-wk period were correlated with higher mcrA copy number. Higher net ratio of mrA: pmoA copy numbers was observed when surface CH4 flux was high. Our results indicate that mcrA and pmoA copy numbers vary during composting and that methanogen and methanotroph populations need to be examined in conjunction with net CH4 emissions from open-windrow composting of cattle feedlot manure.
Collapse
Affiliation(s)
- Ranjana Sharma
- Agriculture and Agri-Food Research Centre, 5403 1st Ave. S., Lethbridge, AB, Canada T1J 481.
| | | | | | | | | | | |
Collapse
|