1
|
Wight J, Byrne AS, Tahlan K, Lang AS. Anthropogenic contamination sources drive differences in antimicrobial-resistant Escherichia coli in three urban lakes. Appl Environ Microbiol 2024; 90:e0180923. [PMID: 38349150 PMCID: PMC10952509 DOI: 10.1128/aem.01809-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/12/2024] [Indexed: 03/21/2024] Open
Abstract
Antimicrobial resistance (AMR) is an ever-present threat to the treatment of infectious diseases. However, the potential relevance of this phenomenon in environmental reservoirs still raises many questions. Detection of antimicrobial-resistant bacteria in the environment is a critical aspect for understanding the prevalence of resistance outside of clinical settings, as detection in the environment indicates that resistance is likely already widespread. We isolated antimicrobial-resistant Escherichia coli from three urban waterbodies over a 15-month time series, determined their antimicrobial susceptibilities, investigated their population structure, and identified genetic determinants of resistance. We found that E. coli populations at each site were composed of different dominant phylotypes and showed distinct patterns of antimicrobial and multidrug resistance, despite close geographic proximity. Many strains that were genome-sequenced belonged to sequence types of international concern, particularly the ST131 clonal complex. We found widespread resistance to clinically important antimicrobials such as amoxicillin, cefotaxime, and ciprofloxacin, but found that all strains were susceptible to amikacin and the last-line antimicrobials meropenem and fosfomycin. Resistance was most often due to acquirable antimicrobial resistance genes, while chromosomal mutations in gyrA, parC, and parE conferred resistance to quinolones. Whole-genome analysis of a subset of strains further revealed the diversity of the population of E. coli present, with a wide array of AMR and virulence genes identified, many of which were present on the chromosome, including blaCTX-M. Finally, we determined that environmental persistence, transmission between sites, most likely mediated by wild birds, and transfer of mobile genetic elements likely contributed significantly to the patterns observed.IMPORTANCEA One Health perspective is crucial to understand the extent of antimicrobial resistance (AMR) globally, and investigation of AMR in the environment has been increasing in recent years. However, most studies have focused on waterways that are directly polluted by sewage, industrial manufacturing, or agricultural activities. Therefore, there remains a lack of knowledge about more natural, less overtly impacted environments. Through phenotypic and genotypic investigation of AMR in Escherichia coli, this study adds to our understanding of the extent and patterns of resistance in these types of environments, including over a time series, and showed that complex biotic and abiotic factors contribute to the patterns observed. Our study further emphasizes the importance of incorporating the surveillance of microbes in freshwater environments in order to better comprehend potential risks for both human and animal health and how the environment may serve as a sentinel for potential future clinical infections.
Collapse
Affiliation(s)
- Jordan Wight
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Alexander S. Byrne
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada
| |
Collapse
|
2
|
Weller DL, Love TMT, Weller DE, Murphy CM, Strawn LK. Scale of analysis drives the observed ratio of spatial to non-spatial variance in microbial water quality: insights from two decades of citizen science data. J Appl Microbiol 2023; 134:lxad210. [PMID: 37709569 PMCID: PMC10561027 DOI: 10.1093/jambio/lxad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/08/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
AIMS While fecal indicator bacteria (FIB) testing is used to monitor surface water for potential health hazards, observed variation in FIB levels may depend on the scale of analysis (SOA). Two decades of citizen science data, coupled with random effects models, were used to quantify the variance in FIB levels attributable to spatial versus temporal factors. METHODS AND RESULTS Separately, Bayesian models were used to quantify the ratio of spatial to non-spatial variance in FIB levels and identify associations between environmental factors and FIB levels. Separate analyses were performed for three SOA: waterway, watershed, and statewide. As SOA increased (from waterway to watershed to statewide models), variance attributable to spatial sources generally increased and variance attributable to temporal sources generally decreased. While relationships between FIB levels and environmental factors, such as flow conditions (base versus stormflow), were constant across SOA, the effect of land cover was highly dependent on SOA and consistently smaller than the effect of stormwater infrastructure (e.g. outfalls). CONCLUSIONS This study demonstrates the importance of SOA when developing water quality monitoring programs or designing future studies to inform water management.
Collapse
Affiliation(s)
- Daniel L Weller
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA, 14642
- Department of Food Science, Virginia Tech, Blacksburg, VA 24061, USA, 24061
| | - Tanzy M T Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY 14642, USA, 14642
| | - Donald E Weller
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA, 21037
| | - Claire M Murphy
- Department of Food Science, Virginia Tech, Blacksburg, VA 24061, USA, 24061
| | - Laura K Strawn
- Department of Food Science, Virginia Tech, Blacksburg, VA 24061, USA, 24061
| |
Collapse
|
3
|
Saab ME, Vanier G, Sudlovenick E, Powell AL, Simonee J, Desmarais G, Muckle CA, Fairbrother JM, Daoust PY. Occurrence and antimicrobial resistance of Salmonella species and potentially pathogenic Escherichia coli in free-living seals of Canadian Atlantic and eastern Arctic waters. Zoonoses Public Health 2023; 70:542-554. [PMID: 37317052 DOI: 10.1111/zph.13064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/10/2023] [Accepted: 05/27/2023] [Indexed: 06/16/2023]
Abstract
Seal populations in Canadian waters provide sustenance to coastal communities. There is potential for pathogenic and/or antimicrobial-resistant bacteria to transfer to humans through inadvertent faecal contamination of seal products. The objective of this study was to investigate the occurrence and potential antimicrobial resistance of Salmonella spp., Escherichia coli and Listeria monocytogenes in faecal samples collected from grey seals (Halichoerus grypus) in the Gulf of St. Lawrence and from ringed seals (Pusa hispida) in Frobisher Bay and Eclipse Sound, Nunavut, Canada. Grey seals were harvested during commercial hunts or during scientific sampling; ringed seals were collected by Inuit hunters during subsistence harvests. Virulence genes defining pathogenic E. coli were identified by PCR, and antimicrobial susceptibility testing was performed on recovered isolates. In grey seals, E. coli was detected in 34/44 (77%) samples, and pathogenic E. coli (extraintestinal E. coli [ExPEC], enteropathogenic E. coli [EPEC] or ExPEC/EPEC) was detected in 13/44 (29%) samples. Non-susceptibility to beta-lactams and quinolones was observed in isolates from 18 grey seals. In ringed seals from Frobisher Bay, E. coli was detected in 4/45 (9%) samples; neither virulence genes nor antimicrobial resistance was detected in these isolates. In ringed seals from Eclipse Sound, E. coli was detected in 8/50 (16%) samples and pathogenic E. coli (ExPEC and ExPEC/EPEC) in 5/50 (10%) samples. One seal from Eclipse Sound had an E. coli isolate resistant to beta-lactams. A monophasic Salmonella Typhimurium was recovered from 8/50 (16%) seals from Eclipse Sound. All Salmonella isolates were resistant to ampicillin, streptomycin, sulfisoxazole and tetracycline. L. monocytogenes was not detected in any sample. These findings suggest that seals may act as important sentinel species and as reservoirs or vectors for antimicrobial-resistant and virulent E. coli and Salmonella species. Further characterization of these isolates would provide additional insights into the source and spread of antimicrobial resistance and virulence genes in these populations of free-living seals.
Collapse
Affiliation(s)
- Matthew E Saab
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ghyslaine Vanier
- WOAH Reference Laboratory for Escherichia coli, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Enooyaq Sudlovenick
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ashley Lora Powell
- Diagnostic Services, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | | | - Gabriel Desmarais
- WOAH Reference Laboratory for Escherichia coli, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Catherine Anne Muckle
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - John Morris Fairbrother
- WOAH Reference Laboratory for Escherichia coli, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Pierre-Yves Daoust
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Canadian Wildlife Health Cooperative, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
4
|
Vogt NA, Hetman BM, Vogt AA, Pearl DL, Reid-Smith RJ, Parmley EJ, Kadykalo S, Janecko N, Bharat A, Mulvey MR, Ziebell K, Robertson J, Nash J, Allen V, Majury A, Ricker N, Bondo KJ, Allen SE, Jardine CM. Rural Raccoons (Procyon lotor) Not Likely to Be a Major Driver of Antimicrobial Resistant Human Salmonella Cases in Southern Ontario, Canada: A One Health Epidemiological Assessment Using Whole-Genome Sequence Data. Front Vet Sci 2022; 9:840416. [PMID: 35280127 PMCID: PMC8914089 DOI: 10.3389/fvets.2022.840416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal Salmonella infections represent a substantial burden of illness in humans, and the increasing prevalence of antimicrobial resistance among these infections is a growing concern. Using a combination of Salmonella isolate short-read whole-genome sequence data from select human cases, raccoons, livestock and environmental sources, and an epidemiological framework, our objective was to determine if there was evidence for potential transmission of Salmonella and associated antimicrobial resistance determinants between these different sources in the Grand River watershed in Ontario, Canada. Logistic regression models were used to assess the potential associations between source type and the presence of select resistance genes and plasmid incompatibility types. A total of 608 isolates were obtained from the following sources: humans (n = 58), raccoons (n = 92), livestock (n = 329), and environmental samples (n = 129). Resistance genes of public health importance, including blaCMY−2, were identified in humans, livestock, and environmental sources, but not in raccoons. Most resistance genes analyzed were significantly more likely to be identified in livestock and/or human isolates than in raccoon isolates. Based on a 3,002-loci core genome multi-locus sequence typing (cgMLST) scheme, human Salmonella isolates were often more similar to isolates from livestock and environmental sources, than with those from raccoons. Rare instances of serovars S. Heidelberg and S. Enteritidis in raccoons likely represent incidental infections and highlight possible acquisition and dissemination of predominantly poultry-associated Salmonella by raccoons within these ecosystems. Raccoon-predominant serovars were either not identified among human isolates (S. Agona, S. Thompson) or differed by more than 350 cgMLST loci (S. Newport). Collectively, our findings suggest that the rural population of raccoons on swine farms in the Grand River watershed are unlikely to be major contributors to antimicrobial resistant human Salmonella cases in this region.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- *Correspondence: Nadine A. Vogt
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | | | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Stefanie Kadykalo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | | | - Anna Majury
- Public Health Ontario, Kingston, ON, Canada
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Laramie, WY, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, ON, Canada
| |
Collapse
|
5
|
Butler AJ, Pintar K, Thomas JL, Fleury M, Kadykalo S, Ziebell K, Nash J, Lapen D. Microbial water quality at contrasting recreational areas in a mixed-use watershed in eastern Canada. JOURNAL OF WATER AND HEALTH 2021; 19:975-989. [PMID: 34874904 DOI: 10.2166/wh.2021.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Recreational water use is an important source of human enteric illness. Enhanced (episodic) surveillance of natural recreational waters as a supplement to beach monitoring can enrich our understanding of human health risks. From 2011 to 2013, water sampling was undertaken at recreational sites on a watershed in eastern Canada. This study compared the prevalence and associations of human enteric pathogens and fecal indicator organisms. Beach water samples had lower pathogen presence than those along the main river, due to different pollution sources and the hydrological disposition. Pathogen profiles identified from the beach sites suggested a more narrow range of sources, including birds, indicating that wild bird management could help reduce public health risks at these sites. The presence and concentration of indicator organisms did not differ significantly between beaches and the river. However, higher concentrations of generic Escherichia coli were observed when Salmonella and Cryptosporidium were present at beach sites, when Salmonella was present at the river recreational site, and when verotoxigenic E. coli were present among all sites sampled. In this watershed, generic E. coli concentrations were good indicators of potential contamination, pathogen load, and elevated human health risk, supporting their use for routine monitoring where enhanced pathogen testing is not possible.
Collapse
Affiliation(s)
| | | | - Janis L Thomas
- Environmental Monitoring and Reporting Branch, Ontario Ministry of Environment, Conservation and Parks, Toronto, Canada
| | - Manon Fleury
- Centre for Food-borne, Environmental and Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, Canada E-mail:
| | - Stefanie Kadykalo
- Centre for Food-borne, Environmental and Zoonotic and Infectious Diseases, Public Health Agency of Canada, Guelph, Canada E-mail:
| | - Kim Ziebell
- National Microbiology Laboratory at Guelph, Public Health Agency of Canada, Guelph, Canada
| | - John Nash
- National Microbiology Laboratory at Toronto, Public Health Agency of Canada, Toronto, Canada
| | - David Lapen
- Science and Technology Branch, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| |
Collapse
|
6
|
Weller DL, Love TMT, Wiedmann M. Interpretability Versus Accuracy: A Comparison of Machine Learning Models Built Using Different Algorithms, Performance Measures, and Features to Predict E. coli Levels in Agricultural Water. Front Artif Intell 2021; 4:628441. [PMID: 34056577 PMCID: PMC8160515 DOI: 10.3389/frai.2021.628441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/12/2021] [Indexed: 02/02/2023] Open
Abstract
Since E. coli is considered a fecal indicator in surface water, government water quality standards and industry guidance often rely on E. coli monitoring to identify when there is an increased risk of pathogen contamination of water used for produce production (e.g., for irrigation). However, studies have indicated that E. coli testing can present an economic burden to growers and that time lags between sampling and obtaining results may reduce the utility of these data. Models that predict E. coli levels in agricultural water may provide a mechanism for overcoming these obstacles. Thus, this proof-of-concept study uses previously published datasets to train, test, and compare E. coli predictive models using multiple algorithms and performance measures. Since the collection of different feature data carries specific costs for growers, predictive performance was compared for models built using different feature types [geospatial, water quality, stream traits, and/or weather features]. Model performance was assessed against baseline regression models. Model performance varied considerably with root-mean-squared errors and Kendall's Tau ranging between 0.37 and 1.03, and 0.07 and 0.55, respectively. Overall, models that included turbidity, rain, and temperature outperformed all other models regardless of the algorithm used. Turbidity and weather factors were also found to drive model accuracy even when other feature types were included in the model. These findings confirm previous conclusions that machine learning models may be useful for predicting when, where, and at what level E. coli (and associated hazards) are likely to be present in preharvest agricultural water sources. This study also identifies specific algorithm-predictor combinations that should be the foci of future efforts to develop deployable models (i.e., models that can be used to guide on-farm decision-making and risk mitigation). When deploying E. coli predictive models in the field, it is important to note that past research indicates an inconsistent relationship between E. coli levels and foodborne pathogen presence. Thus, models that predict E. coli levels in agricultural water may be useful for assessing fecal contamination status and ensuring compliance with regulations but should not be used to assess the risk that specific pathogens of concern (e.g., Salmonella, Listeria) are present.
Collapse
Affiliation(s)
- Daniel L. Weller
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Current Affiliation, Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Tanzy M. T. Love
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
7
|
Draft Genome Assemblies of Two Campylobacter novaezeelandiae and Four Unclassified Thermophilic Campylobacter Isolates from Canadian Agricultural Surface Water. Microbiol Resour Announc 2021; 10:10/17/e00249-21. [PMID: 33927040 PMCID: PMC8086215 DOI: 10.1128/mra.00249-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This report presents the draft genome sequences of two Campylobacter novaezeelandiae and four unclassified Campylobacter isolates from Canadian agricultural surface water. Phylogenomic analysis revealed that the six isolates formed unique clades, closely related to the disease-causing species C. jejuni, C. coli, and C. hepaticus. This report presents the draft genome sequences of two Campylobacter novaezeelandiae and four unclassified Campylobacter isolates from Canadian agricultural surface water. Phylogenomic analysis revealed that the six isolates formed unique clades, closely related to the disease-causing species C. jejuni, C. coli, and C. hepaticus.
Collapse
|
8
|
Krishnan A, Kogan C, Peters RT, Thomas EL, Critzer F. Microbial and physicochemical assessment of irrigation water treatment methods. J Appl Microbiol 2021; 131:1555-1562. [PMID: 33594789 DOI: 10.1111/jam.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/01/2022]
Abstract
AIMS The presence of foodborne pathogens in preharvest agricultural water has been identified as a potential contamination source in outbreak investigations, driving markets and auditing bodies to begin requiring water treatment for high-risk produce. Therefore, it is essential that we identify water treatment methods which are effective as well as practical in their application on farm. METHODS AND RESULTS In this work, we evaluated two sanitizers which are most prominent in preharvest agricultural water treatment (calcium hypochlorite (free chlorine: 3-5 ppm) and peracetic acid (PAA: 5 ppm)), an EPA registered antimicrobial device (ultraviolet light (UV)), in addition to a combination approach (chlorine + UV, PAA + UV). Treatments were evaluated for their ability to inactivate total coliforms and generic Escherichia coli and consistency in treatment efficacy over 1 h of operation. Physicochemical variables were measured along with microbial populations at 0, 5, 15, 30, 45 and 60 min of operation. Escherichia coli and coliform counts showed a significant (P < 0·05) reduction after treatment, with combination and singular treatments equally effective at inactivating E. coli and coliforms. A significant increase (P < 0·05) in oxidation-reduction potential was seen during water treatment (Chlorine; UV + Chlorine), and a significant reduction (P < 0·05) in pH was seen after PAA and PAA + UV treatments (60 min). CONCLUSION Overall, the results indicate that all treatments evaluated are equally efficacious for inactivating E. coli and coliforms present in surface agricultural water. SIGNIFICANCE AND IMPACT OF THE STUDY This information when paired with challenge studies targeting foodborne pathogens of interest can be used to support grower decisions when selecting and validating a preharvest agricultural water treatment programme.
Collapse
Affiliation(s)
- A Krishnan
- School of Food Science and Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - C Kogan
- Department of Mathematics, Washington State University, Pullman, WA, USA
| | - R T Peters
- Department of Biosystems Engineering and Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - E L Thomas
- Department of Biosystems Engineering and Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - F Critzer
- School of Food Science and Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| |
Collapse
|
9
|
Benoit T, Cloutier M, Schop R, Lowerison MW, Khan IUH. Comparative assessment of growth media and incubation conditions for enhanced recovery and isolation of Acinetobacter baumannii from aquatic matrices. J Microbiol Methods 2020; 176:106023. [PMID: 32795636 DOI: 10.1016/j.mimet.2020.106023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/16/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
Acinetobacter baumannii causes serious multidrug resistant nosocomial infections around the world. This comprehensive comparative study was designed to assess the effect of temperature (30, 37 and 42 °C), incubation (aerobic and microaerobic) condition and selective [CHROMagar Acinetobacter (CHR) and Leeds Acinetobacter Medium (LAM)] and non-selective [Modified Karmali Agar (MKA)] growth media on the enhanced recovery of A. baumannii from a variety of water (agricultural, recreational, raw drinking intake source, pre-chlorinated and post-chlorinated wastewater effluent) samples spiked with a known number of A. baumannii cells. After spiking each water type with a known number of cells in 10 mL volume, the sample was passed through a membrane filter (pore size 0.45 μm) and filters were placed on different selective media plates and subjected to incubate at various incubation conditions. The results reported in this study show that for all water types tested (except post-chlorinated wastewater effluent), LAM was the most effective selective growth medium in combination with variable temperature and incubation conditions for yielding high recovery rates of A. baumannii cells. Overall, A. baumannii showed that it has a high adaptive capacity to grow on selective and non-selective growth media at different temperature and incubation conditions. The data described in this study suggest that no single incubation condition and growth media would efficiently recover A. baumannii from all environmental water types tested. This data also indicate that selective growth media and incubation condition can significantly affect the recovery of A. baumannii. Differences in recovery of A. baumannii observed in this study which appeared to be dependent on the temperature and environmental characteristics of incubation as well as the sample type, suggest the need for caution when comparing recovery using different protocols.
Collapse
Affiliation(s)
- Thomas Benoit
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rhonda Schop
- Ontario Ministry of the Environment, Conservation and Parks, Etobioke, ON, Canada
| | | | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, Ottawa, ON, Canada.
| |
Collapse
|
10
|
Brubacher J, Allen DM, Déry SJ, Parkes MW, Chhetri B, Mak S, Sobie S, Takaro TK. Associations of five food- and water-borne diseases with ecological zone, land use and aquifer type in a changing climate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138808. [PMID: 32570317 DOI: 10.1016/j.scitotenv.2020.138808] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Food- and water-borne pathogens exhibit spatial heterogeneity, but attribution to specific environmental processes is lacking while anthropogenic climate change alters these processes. The goal of this study was to investigate ecology, land-use and health associations of these pathogens and to make future disease projections. METHODS The rates of five acute gastrointestinal illnesses (AGIs) (campylobacteriosis, Verotoxin- producing Escherichia coli, salmonellosis, giardiasis and cryptosporidiosis) from 2000 to 2013 in British Columbia, Canada, were calculated across three environmental variables: ecological zone, land use, and aquifer type. A correlation analysis investigated relationships between 19 climatic factors and AGI. Mean annual temperature at the ecological zone scale was used in a univariate regression model to calculate annual relative AGI risk per 1 °C increase. Future cases attributable to climate change were estimated into the 2080s. FINDINGS Each of the bacterial AGI rates was correlated with several annual temperature-related factors while the protozoan AGIs were not. In the regression model, combined relative risk for the three bacterial AGIs was 1.1 [95% CI: 1.02-1.21] for every 1 °C in mean annual temperature. Campylobacteriosis, salmonellosis and giardiasis rates were significantly higher (p < 0.05) in the urban land use class than in the rural one. In rural areas, bacteria and protozoan AGIs had significantly higher rates in the unconsolidated aquifers. Verotoxin-producing Escherichia coli rates were significantly higher in watersheds with more agricultural land, while rates of campylobacteriosis, salmonellosis and giardiasis were significantly lower in agricultural watersheds. Ecological zones with higher bacterial AGI rates were generally projected to expand in range by the 2080s. INTERPRETATION These findings suggest that risk of AGI can vary across ecosystem, land use and aquifer type, and that warming temperatures may be associated with an increased risk of food-borne AGI. In addition, spatial patterns of these diseases are projected to shift under climate change.
Collapse
Affiliation(s)
- Jordan Brubacher
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive Blusson Hall 11518, Burnaby, BC V5A 1S6, Canada
| | - Diana M Allen
- Simon Fraser University, 7239 TASC 1 Building, 8888 University Drive Burnaby, BC V5A 1S6, Canada
| | - Stephen J Déry
- University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Margot W Parkes
- University of Northern British Columbia, 3333 University Way, Prince George, BC V2N 4Z9, Canada
| | - Bimal Chhetri
- Alpine Pet Hospital, 1725 Baron Rd. Unit 2 Kelowna, BC V1X 7H1, Canada
| | - Sunny Mak
- BC Centre for Disease Control, 655 West 12th Avenue, Vancouver, BC V5Z 4R4, Canada
| | - Stephen Sobie
- Pacific Climate Impacts Consortium, University House 1, PO Box 1700 Stn CSC, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Tim K Takaro
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive Blusson Hall 11518, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
11
|
Coulombe G, Catford A, Martinez-Perez A, Buenaventura E. Outbreaks of Escherichia coli O157:H7 Infections Linked to Romaine Lettuce in Canada from 2008 to 2018: An Analysis of Food Safety Context. J Food Prot 2020; 83:1444-1462. [PMID: 32297933 DOI: 10.4315/jfp-20-029] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022]
Abstract
ABSTRACT Foodborne diseases are a major cause of illness in Canada. One of the main pathogens causing cases and outbreaks of foodborne illness in Canada is Escherichia coli O157:H7. From 2008 to 2018, 11 outbreaks of E. coli O157:H7 infection in Canada were linked to leafy greens, including 7 (63.6%) linked to romaine lettuce, 2 (18.2%) linked to iceberg lettuce, and 2 (18.2%) linked to other or unspecified types of leafy greens. The consumption of lettuce in Canada, the behavior of E. coli O157:H7 on lettuce leaves, and the production practices used for romaine and iceberg lettuce do not seem to explain why a higher number of outbreaks of E. coli O157:H7 infection were linked to romaine than to iceberg lettuce. However, the difference in the shape of iceberg and romaine lettuce heads could be an important factor. Among the seven outbreaks linked to romaine lettuce in Canada between 2008 and 2018, an eastern distribution of cases was observed. Cases from western provinces were reported only twice. The consumption of romaine and iceberg lettuce by the Canadian population does not seem to explain the eastern distribution of cases observed, but the commercial distribution, travel distances, and the storage practices used for lettuce may be important factors. In the past 10 years, the majority of the outbreaks of E. coli O157:H7 infection linked to romaine lettuce occurred during the spring (March to June) and fall (September to December). The timing of these outbreaks may be explained by the availability of lettuce in Canada, the growing region transition periods in the United States, and the seasonality in the prevalence of E. coli O157:H7. The consumption of romaine lettuce by the Canadian population does not explain the timing of the outbreaks observed. HIGHLIGHTS
Collapse
Affiliation(s)
- GeneviÈve Coulombe
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Angela Catford
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Amalia Martinez-Perez
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Enrico Buenaventura
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
12
|
Miltenburg MG, Cloutier M, Craiovan E, Lapen DR, Wilkes G, Topp E, Khan IUH. Real-time quantitative PCR assay development and application for assessment of agricultural surface water and various fecal matter for prevalence of Aliarcobacter faecis and Aliarcobacter lanthieri. BMC Microbiol 2020; 20:164. [PMID: 32546238 PMCID: PMC7298852 DOI: 10.1186/s12866-020-01826-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/18/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Aliarcobacter faecis and Aliarcobacter lanthieri are recently identified as emerging human and animal pathogens. In this paper, we demonstrate the development and optimization of two direct DNA-based quantitative real-time PCR assays using species-specific oligonucleotide primer pairs derived from rpoB and gyrA genes for A. faecis and A. lanthieri, respectively. Initially, the specificity of primers and amplicon size of each target reference strain was verified and confirmed by melt curve analysis. Standard curves were developed with a minimum quantification limit of 100 cells mL- 1 or g- 1 obtained using known quantities of spiked A. faecis and A. lanthieri reference strains in autoclaved agricultural surface water and dairy cow manure samples. RESULTS Each species-specific qPCR assay was validated and applied to determine the rate of prevalence and quantify the total number of cells of each target species in natural surface waters of an agriculturally-dominant and non-agricultural reference watershed. In addition, the prevalence and densities were determined for human and various animal (e.g., dogs, cats, dairy cow, and poultry) fecal samples. Overall, the prevalence of A. faecis for surface water and feces was 21 and 28%, respectively. The maximum A. faecis concentration for water and feces was 2.3 × 107 cells 100 mL- 1 and 1.2 × 107 cells g- 1, respectively. A. lanthieri was detected at a lower frequency (2%) with a maximum concentration in surface water of 4.2 × 105 cells 100 mL- 1; fecal samples had a prevalence and maximum density of 10% and 2.0 × 106 cells g- 1, respectively. CONCLUSIONS The results indicate that the occurrence of these species in agricultural surface water is potentially due to fecal contamination of water from livestock, human, or wildlife as both species were detected in fecal samples. The new real-time qPCR assays can facilitate rapid and accurate detection in < 3 h to quantify total numbers of A. faecis and A. lanthieri cells present in various complex environmental samples.
Collapse
Affiliation(s)
- Mary G Miltenburg
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.,Canadian Food Inspection Agency (CFIA), Ottawa, ON, Canada
| | - Michel Cloutier
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - Emilia Craiovan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - David R Lapen
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada
| | - Graham Wilkes
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.,Natural Resources Canada, Ottawa, ON, Canada
| | - Edward Topp
- London Research and Development Centre (LRDC), Agriculture and Agri-Food Canada, London, ON, Canada
| | - Izhar U H Khan
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario, K1A 0C6, Canada.
| |
Collapse
|
13
|
Kabir MN, Aras S, Wadood S, Chowdhury S, Fouladkhah AC. Fate and Biofilm Formation of Wild-Type and Pressure-Stressed Pathogens of Public Health Concern in Surface Water and on Abiotic Surfaces. Microorganisms 2020; 8:microorganisms8030408. [PMID: 32183203 PMCID: PMC7143952 DOI: 10.3390/microorganisms8030408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 01/26/2023] Open
Abstract
Since the historic outbreak near Broad Street in London, which serves as cornerstone of modern epidemiology, infectious diseases spread in surface and sub-surface water has been a persisting public health challenge. The current study investigated persistence of wild-type and pressure-stressed Listeria monocytogenes, Escherichia coli O157:H7, and non-typhoidal Salmonella enterica serovars in surface water stored aerobically for up to 28 days at 5, 25, and 37 °C. Additionally, biofilm formation of wild-type and pressure-stressed non-typhoidal Salmonella serovars were monitored on surface of stainless steel and rubber coupons for 28 days at 25 and 37 °C. While L. monocytogenes exhibited a lower (p < 0.05) survival rate at 5 °C, relative to the two Gram-negative pathogens, at higher temperatures of 25 and 37 °C, all three pathogens exhibited similar (p ≥ 0.05) trends for survival in surface water. Both wild-type and pressure-stressed Salmonella serovars in the vast majority of tested times, temperatures, and surfaces exhibited comparable (p ≥ 0.05) persistence and biofilm formation capability. Our study thus indicates the occurrence of contamination could lead to prolonged survival of these microorganisms in low-nutrient environments and highlights the need for preventive measures such as those articulated under Produce Safety Rule of the U.S. Food Safety Modernization Act.
Collapse
Affiliation(s)
- Md Niamul Kabir
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (M.N.K.); (S.A.); (S.W.); (S.C.)
| | - Sadiye Aras
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (M.N.K.); (S.A.); (S.W.); (S.C.)
| | - Sabrina Wadood
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (M.N.K.); (S.A.); (S.W.); (S.C.)
| | - Shahid Chowdhury
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (M.N.K.); (S.A.); (S.W.); (S.C.)
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (M.N.K.); (S.A.); (S.W.); (S.C.)
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA
- Correspondence: ; Tel.: +1-970-690-7392
| |
Collapse
|
14
|
Reynolds C, Checkley S, Chui L, Otto S, Neumann NF. Evaluating the risks associated with Shiga-toxin-producing Escherichia coli (STEC) in private well waters in Canada. Can J Microbiol 2020; 66:337-350. [PMID: 32069070 DOI: 10.1139/cjm-2019-0329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Shiga-toxin-producing Escherichia coli (STEC) represent a major concern for waterborne disease outbreaks associated with consumption of contaminated groundwater. Over 4 million people rely on private groundwater systems as their primary drinking water source in Canada; many of these systems do not meet current standards for water quality. This manuscript provides a scoping overview of studies examining STEC prevalence and occurrence in groundwater, and it includes a synopsis of the environmental variables affecting survival, transport, persistence, and overall occurrence of these important pathogenic microbes in private groundwater wells used for drinking purposes.
Collapse
Affiliation(s)
- Colin Reynolds
- Environmental Health Sciences, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Sylvia Checkley
- Department of Ecosystem Public Health, Faculty of Veterinary Medicine, University of Calgary
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta
| | - Simon Otto
- Environmental Health Sciences, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Norman F Neumann
- Environmental Health Sciences, School of Public Health, University of Alberta, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
15
|
Rothrock MJ, Gibson KE, Micciche AC, Ricke SC. Pastured Poultry Production in the United States: Strategies to Balance System Sustainability and Environmental Impact. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
16
|
Wilkes G, Sunohara MD, Topp E, Gottschall N, Craiovan E, Frey SK, Lapen DR. Do reductions in agricultural field drainage during the growing season impact bacterial densities and loads in small tile-fed watersheds? WATER RESEARCH 2019; 151:423-438. [PMID: 30639728 DOI: 10.1016/j.watres.2018.11.074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/20/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Predicting bacterial levels in watersheds in response to agricultural beneficial management practices (BMPs) requires understanding the germane processes at both the watershed and field scale. Controlling subsurface tile drainage (CTD) is a highly effective BMP at reducing nutrient losses from fields, and watersheds when employed en masse, but little work has been conducted on CTD effects on bacterial loads and densities in a watershed context. This study compared fecal indicator bacteria (FIB) [E. coli, Enterococcus, Fecal coliform, Total coliform, Clostridium perfringens] densities and unit area loads (UAL) from a pair of flat tile-drained watersheds (∼250-467 ha catchment areas) during the growing season over a 10-year monitoring period, using a before-after-control-impact (BACI) design (i.e., test CTD watershed vs. reference uncontrolled tile drainage (UCTD) watershed during a pre CTD intervention period and a CTD-intervention period where the test CTD watershed had CTD deployed on over 80% of the fields). With no tile drainage management, upstream tile drainage to ditches comprised ∼90% of total ditch discharge. We also examined FIB loads from a subset of tile drained fields to determine field load contributions to the watershed drainage ditches. Statistical evidence of a CTD effect on FIB UAL in the surface water systems was not strong; however, there was statistical evidence of increased FIB densities [pronounced when E. coli >200 most probable number (MPN) 100 mL-1] in the test CTD watershed during the CTD-intervention period. This was likely a result of reduced dilution/flushing in the test CTD watershed ditch due to CTD significantly decreasing the amount of tile drainage water entering the surface water system. Tile E. coli load contributions to the ditches were low; for example, during the 6-yr CTD-intervention period they amounted to on average only ∼3 and ∼9% of the ditch loads for the test CTD and reference UCTD watersheds, respectively. This suggests in-stream, or off-field FIB reservoirs and bacteria mobilization drivers, dominated ditch E. coli loads in the watersheds during the growing season. Overall, this study suggested that decision making regarding deployment of CTD en masse in tile-fed watersheds should consider drainage practice effects on bacterial densities and loads, as well as CTD's documented capacity to boost crop yields and reduce seasonal nutrient pollution.
Collapse
Affiliation(s)
- G Wilkes
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - M D Sunohara
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - E Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ONT, N5V 4T3, Canada
| | - N Gottschall
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - E Craiovan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - S K Frey
- Aquanty Inc, Waterloo, ONT, N2L 5C6, Canada; Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada
| | - D R Lapen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ONT, K1A 0C6, Canada.
| |
Collapse
|
17
|
Rafi K, Wagner KL, Gentry T, Karthikeyan R, Dube A. Escherichia coli Concentration as a Function of Stream Order and Watershed Size. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:949-957. [PMID: 30272791 DOI: 10.2134/jeq2017.12.0488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This research examines the relationship of concentrations to stream order and watershed size and considers the implications on water quality standards. To assess geospatial effects, data were obtained from 743 monitoring stations in the Central Great Plains, Cross Timbers, and South Central Plains ecoregions of Texas and Oklahoma. Median and geometric mean concentrations were analyzed for correlation with stream order and watershed size at each site. Comparison of the three ecoregions revealed concentrations were highest in the westernmost Central Great Plains and lowest in the easternmost South Central Plains. Similarly, the strength of 's correlation with stream order and watershed area decreased with ecoregion moving west to east. Thus, incorporating ecoregion approaches when defining stream water quality standards is supported. Analysis showed no significant relationship of stream order or watershed size to concentrations in least-impacted watersheds (i.e., watersheds with minimal wastewater discharge and urbanization). Conversely, analysis of data from all sites showed a weak negative relationship between concentration and stream order and watershed size, with concentration generally decreasing with increasing stream order and watershed size. However, variability in smaller watersheds and lower-order streams supports continued use of site-specific studies to determine appropriate standards. Three-parameter exponential models provided an approach to estimate concentrations using Shreve stream order and watershed area and identify outlier streams potentially affected by anthropogenic activities where further investigation or remediation may be warranted.
Collapse
|
18
|
Partyka ML, Bond RF, Chase JA, Atwill ER. Spatial and temporal variability of bacterial indicators and pathogens in six California reservoirs during extreme drought. WATER RESEARCH 2018; 129:436-446. [PMID: 29179123 DOI: 10.1016/j.watres.2017.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/10/2017] [Accepted: 11/15/2017] [Indexed: 06/07/2023]
Abstract
California has one of the largest systems of surface water reservoirs in the world, providing irrigation water to California's agriculturally productive Central Valley. Irrigation water is recognized as a vehicle for the microbial contamination of raw produce and must be monitored according to new federal regulation. The purpose of this study was to further understanding of the variability of fecal indicator bacteria (Escherichia coli and fecal coliforms) and pathogens (E. coli O157:H7 (O157), non-O157 Shiga toxin-producing E. coli (STEC) and Salmonella) along both horizontal and vertical profiles within California reservoirs. Monthly sampling was conducted in six reservoirs located in the foothills of the Western Sierra Nevada during the summer irrigation season and extreme drought conditions of 2014 (n = 257). Concentrations of fecal indicator bacteria were highly variable between reservoirs (p < 0.05) and along the horizontal profile (p < 0.001) from upstream to downstream, with higher concentrations typically found outside of the reservoirs than within. Though many of the reservoirs were thermally stratified, bacterial concentrations were not associated with water temperature (p > 0.05) or any one particular depth strata (p < 0.05). However, prevalence of Salmonella and STEC (16/70 and 9/70 respectively) was higher in the deep strata than in mid or surface layers. We found no statistical association between samples collected downstream of reservoirs and those from the reservoirs themselves. Continued monitoring and modeling of both bacterial indicators and enteric pathogens are critical to our ability to estimate the risk of surface irrigation water supplies and make appropriate management decisions.
Collapse
Affiliation(s)
- Melissa L Partyka
- Western Center for Food Safety, School of Veterinary Medicine, University of California, Davis, USA.
| | - Ronald F Bond
- Western Center for Food Safety, School of Veterinary Medicine, University of California, Davis, USA
| | - Jennifer A Chase
- Western Center for Food Safety, School of Veterinary Medicine, University of California, Davis, USA
| | - Edward R Atwill
- Western Center for Food Safety, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
19
|
Falardeau J, Johnson RP, Pagotto F, Wang S. Occurrence, characterization, and potential predictors of verotoxigenic Escherichia coli, Listeria monocytogenes, and Salmonella in surface water used for produce irrigation in the Lower Mainland of British Columbia, Canada. PLoS One 2017; 12:e0185437. [PMID: 28953937 PMCID: PMC5617201 DOI: 10.1371/journal.pone.0185437] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/12/2017] [Indexed: 11/19/2022] Open
Abstract
Produce has become a major source of foodborne illness, and may become contaminated through surface water irrigation. The objectives of this study were to (i) determine the frequency of verotoxigenic E. coli (VTEC), Listeria monocytogenes, and Salmonella in surface waters used for irrigation in the Lower Mainland of British Columbia, (ii) assess the suitability of fecal coliforms and generic E. coli as hygiene indicators, and (iii) investigate the correlations of environmental factors with pathogen occurrence. Water samples were collected semi-monthly for 18 months from seven irrigation ditches across the Serpentine and Sumas watersheds. VTEC colonies on water filters were detected using a verotoxin colony immunoblot, and the presence of virulence genes vt1 and vt2 was ascertained via multiplex PCR. Detection of L. monocytogenes and Salmonella was completed using standard, Health Canada Compendium of Analytical Methods. Fecal coliforms and generic E. coli were enumerated by 3M™ Petrifilm™ and filtration methods, and meteorological and geographic data were collected from government records. VTEC, L. monocytogenes, and Salmonella were detected in 4.93%, 10.3%, and 2.69% of 223 samples, respectively. L. monocytogenes occurrence was greatest in the Serpentine watershed (χ2; p < 0.05), and was most common during the winter and fall (Fisher exact test; p < 0.05). Site dependence of VTEC and Salmonella occurrence was observed within watersheds (Fisher's exact test; p < 0.10). Pathogen occurrence correlated with fecal coliform counts (r = 0.448), while VTEC occurrence also correlated with precipitation over the five days before sampling (r = 0.239). The density of upstream livestock correlated with VTEC (rs = 0.812), and L. monocytogenes (rs = 0.841) detection. These data show that foodborne pathogens are present in the waters used for irrigation in the Lower Mainland of British Columbia, but their frequency may depend on spatial and temporal factors.
Collapse
Affiliation(s)
- Justin Falardeau
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Franco Pagotto
- Listeriosis Reference Service, Bureau of Microbial Hazards, Health Canada, Ottawa, Ontario, Canada
| | - Siyun Wang
- Department of Food, Nutrition, and Health, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
20
|
Rapid Waterborne Pathogen Detection with Mobile Electronics. SENSORS 2017; 17:s17061348. [PMID: 28598391 PMCID: PMC5492157 DOI: 10.3390/s17061348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 05/28/2017] [Accepted: 06/07/2017] [Indexed: 12/31/2022]
Abstract
Pathogen detection in water samples, without complex and time consuming procedures such as fluorescent-labeling or culture-based incubation, is essential to public safety. We propose an immunoagglutination-based protocol together with the microfluidic device to quantify pathogen levels directly from water samples. Utilizing ubiquitous complementary metal–oxide–semiconductor (CMOS) imagers from mobile electronics, a low-cost and one-step reaction detection protocol is developed to enable field detection for waterborne pathogens. 10 mL of pathogen-containing water samples was processed using the developed protocol including filtration enrichment, immune-reaction detection and imaging processing. The limit of detection of 10 E. coli O157:H7 cells/10 mL has been demonstrated within 10 min of turnaround time. The protocol can readily be integrated into a mobile electronics such as smartphones for rapid and reproducible field detection of waterborne pathogens.
Collapse
|
21
|
Hong EM, Shelton D, Pachepsky YA, Nam WH, Coppock C, Muirhead R. Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvania stream. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 187:253-264. [PMID: 27912136 DOI: 10.1016/j.jenvman.2016.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/04/2016] [Accepted: 11/24/2016] [Indexed: 06/06/2023]
Abstract
Knowledge of the microbial quality of irrigation waters is extremely limited. For this reason, the US FDA has promulgated the Produce Rule, mandating the testing of irrigation water sources for many farms. The rule requires the collection and analysis of at least 20 water samples over two to four years to adequately evaluate the quality of water intended for produce irrigation. The objective of this work was to evaluate the effect of interannual weather variability on surface water microbial quality. We used the Soil and Water Assessment Tool model to simulate E. coli concentrations in the Little Cove Creek; this is a perennial creek located in an agricultural watershed in south-eastern Pennsylvania. The model performance was evaluated using the US FDA regulatory microbial water quality metrics of geometric mean (GM) and the statistical threshold value (STV). Using the 90-year time series of weather observations, we simulated and randomly sampled the time series of E. coli concentrations. We found that weather conditions of a specific year may strongly affect the evaluation of microbial quality and that the long-term assessment of microbial water quality may be quite different from the evaluation based on short-term observations. The variations in microbial concentrations and water quality metrics were affected by location, wetness of the hydrological years, and seasonality, with 15.7-70.1% of samples exceeding the regulatory threshold. The results of this work demonstrate the value of using modeling to design and evaluate monitoring protocols to assess the microbial quality of water used for produce irrigation.
Collapse
Affiliation(s)
- Eun-Mi Hong
- USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA; Oak Ridge Institute of Science and Engineering, ARS Research Participation Program, MS 36 P.O. Box 117, Oak Ridge, TN 37831, USA.
| | - Daniel Shelton
- USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA
| | - Yakov A Pachepsky
- USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA
| | - Won-Ho Nam
- Department of Bioresources and Rural Systems Engineering, Hankyong National University, Anseong, Gyeonggi 17579, Republic of Korea
| | - Cary Coppock
- USDA-ARS, Environmental Microbial and Food Safety Lab, 10300 Baltimore Avenue, BARC-East Bldg. 173, Beltsville, MD 20705, USA
| | - Richard Muirhead
- Farm Systems & Environment, AgResearch Ltd, Invermay Research Centre, Private Bag 50034, Mosgiel 9053, New Zealand
| |
Collapse
|
22
|
Flockhart L, Pintar K, Cook A, McEwen S, Friendship R, Kelton D, Pollari F. Distribution of Salmonella in Humans, Production Animal Operations and a Watershed in a FoodNet Canada Sentinel Site. Zoonoses Public Health 2016; 64:41-52. [PMID: 27345363 DOI: 10.1111/zph.12281] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Indexed: 11/28/2022]
Abstract
Salmonella is an important human pathogen, and production animals as well as water are known potential sources. This study helped provide insight into the epidemiology of Salmonella by comparing Salmonella strains found in humans to those detected in production animals and water in the same geographic area and time frame. Salmonella was found in 55% of broiler, 30% of swine, 13% of dairy, and 10% of beef manure samples and 23% of water samples. At the farm level, Salmonella was found on 93% of broiler, 81% of swine, 32% of beef and 30% of dairy farms. Salmonella strains of importance to public health were found in all sources tested; however, they appeared to be more common in the broilers. A number of the farms in this study were mixed farms, in that they had more than one production animal species on the farm. At both the sample and farm levels, beef-only farms had a significantly lower Salmonella prevalence (5% and 7%, respectively) than beef farms with additional production animal species (e.g. poultry) (12% and 42%, respectively) (P ≤ 0.05). Additionally, a number of mixed farms had more than one commodity sampled for this study and similar Salmonella strains by phage type and PFGE were found in the poultry and the other sampled commodity on the farm. This information can help inform the evidence base needed to help target interventions and modify best practices in production agriculture.
Collapse
Affiliation(s)
- L Flockhart
- Public Health Agency of Canada, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - K Pintar
- Public Health Agency of Canada, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Ottawa, ON, Canada
| | - A Cook
- Public Health Agency of Canada, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| | - S McEwen
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - R Friendship
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - D Kelton
- Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - F Pollari
- Public Health Agency of Canada, Centre for Food-borne, Environmental and Zoonotic Infectious Diseases, Guelph, ON, Canada
| |
Collapse
|
23
|
Hruby CE, Soupir ML, Moorman TB, Shelley M, Kanwar RS. Effects of tillage and poultry manure application rates on Salmonella and fecal indicator bacteria concentrations in tiles draining Des Moines Lobe soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 171:60-69. [PMID: 26874615 DOI: 10.1016/j.jenvman.2016.01.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 06/05/2023]
Abstract
Application of poultry manure (PM) to cropland as fertilizer is a common practice in artificially drained regions of the Upper Midwest United States. Tile-waters have the potential to contribute pathogenic bacteria to downstream waters. This 3-year study (2010-2012) was designed to evaluate the impacts of manure management and tillage practices on bacteria losses to drainage tiles under a wide range of field conditions. PM was applied annually in spring, prior to planting corn, at application rates ranging from 5 to 40 kg/ha to achieve target rates of 112 and 224 kg/ha nitrogen (PM1 and PM2). Control plots received no manure (PM0). Each treatment was replicated on three chisel-plowed (CP) plots and one no-till (NT) plot. Tile-water grab samples were collected weekly when tiles were flowing beginning 30 days before manure application to 100 days post application, and additional grab samples were obtained to target the full spectrum of flow conditions. Manure and tile-water samples were analyzed for the pathogen, Salmonella spp. (SALM), and fecal indicator bacteria (FIB), Escherichia coli (EC), and enterococci (ENT). All three bacterial genera were detected more frequently, and at significantly higher concentrations, in tile-waters draining NT plots compared to CP plots. Transport of bacteria to NT tiles was most likely facilitated by macropores, which were significantly more numerous above tiles in NT plots in 2012 as determined by smoke-testing. While post-manure samples contained higher concentrations of bacteria than pre-manure samples, significant differences were not seen between low (PM1) and high (PM2) rates of PM application. The highest concentrations were observed under the NT PM2 plot in 2010 (6.6 × 10(3) cfu/100 mL EC, 6.6 × 10(5) cfu/100 mL ENT, and 2.8 × 10(3) cfu/100 mL SALM). Individual and 30-day geometric mean ENT concentrations correlated more strongly to SALM than EC; however, SALM were present in samples with little or no FIB.
Collapse
Affiliation(s)
- C E Hruby
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50011, USA
| | - M L Soupir
- Department of Agricultural and Biosystems Engineering, 3358 Elings Hall, Iowa State University, Ames, IA 50011, USA.
| | - T B Moorman
- National Laboratory for Agriculture and the Environment, USDA ARS, 2110 University Boulevard, Ames, IA 50011, USA
| | - M Shelley
- Departments of Statistics and Political Science, 509 Ross Hall, Iowa State University, Ames, IA 50011, USA
| | - R S Kanwar
- Department of Agricultural and Biosystems Engineering, 4358 Elings Hall, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
24
|
Partyka ML, Bond RF, Chase JA, Kiger L, Atwill ER. Multistate Evaluation of Microbial Water and Sediment Quality from Agricultural Recovery Basins. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:657-665. [PMID: 27065413 DOI: 10.2134/jeq2015.06.0323] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Agricultural recovery basins are an important conservation practice designed to provide temporary storage of sediment and water on farms before low-volume discharge. However, food safety concerns have been raised regarding redistribution of captured sediment and water to fields used for human food production. The purpose of this study was to examine the potential microbiological risk that recovery basins may contribute to nearby produce fields and to evaluate characteristics that may influence or mitigate those risks. Water and sediment samples were collected from participating farms in three states and evaluated for bacterial indicators and pathogens over several months. Overall, 45% ( = 48) of water samples and less than 15% ( = 13) of sediment samples were positive for spp. In water samples, the occurrence of was positively associated with the use of surface water as a source of irrigation compared with groundwater as well as log-scale increases in concentration. In sediment samples, was associated with basin location (region) and basin fill levels. Sediment exposed to drying during dewatering had lower concentrations of indicator and a lower proportion of positives than submerged sediment from the same pond. Surrounding landscape characteristics, including vegetative coverage, proximity to livestock operations, and evidence of wildlife, were not correlated with pathogen occurrence in either sediment or water samples, suggesting that although habitat surrounding ponds may be an attractant to wildlife, those features may not contribute to increased pathogen occurrence in agricultural recovery basins.
Collapse
|
25
|
Ceuppens S, Johannessen GS, Allende A, Tondo EC, El-Tahan F, Sampers I, Jacxsens L, Uyttendaele M. Risk Factors for Salmonella, Shiga Toxin-Producing Escherichia coli and Campylobacter Occurrence in Primary Production of Leafy Greens and Strawberries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:9809-31. [PMID: 26295251 PMCID: PMC4555313 DOI: 10.3390/ijerph120809809] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023]
Abstract
The microbiological sanitary quality and safety of leafy greens and strawberries were assessed in the primary production in Belgium, Brazil, Egypt, Norway and Spain by enumeration of Escherichia coli and detection of Salmonella, Shiga toxin-producing E. coli (STEC) and Campylobacter. Water samples were more prone to containing pathogens (54 positives out of 950 analyses) than soil (16/1186) and produce on the field (18/977 for leafy greens and 5/402 for strawberries). The prevalence of pathogens also varied markedly according to the sampling region. Flooding of fields increased the risk considerably, with odds ratio (OR) 10.9 for Salmonella and 7.0 for STEC. A significant association between elevated numbers of generic E. coli and detection of pathogens (OR of 2.3 for STEC and 2.7 for Salmonella) was established. Generic E. coli was found to be a suitable index organism for Salmonella and STEC, but to a lesser extent for Campylobacter. Guidelines on frequency of sampling and threshold values for E. coli in irrigation water may differ from region to region.
Collapse
Affiliation(s)
- Siele Ceuppens
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | - Gro S Johannessen
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
| | - Ana Allende
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, 30100 Murcia, Spain.
| | - Eduardo César Tondo
- Laboratório de Microbiologia e Controle de Alimentos, Instituto de Ciência e Tecnologia de Alimentos, Universidade Federal do Rio Grande do Sul (ICTA/UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, Campus do Vale, Agronomia, Cep. 91501-970 Porto Alegre/RS, Brazil.
| | - Fouad El-Tahan
- Royal International Inspection Laboratories (RIIL), Suez 43111, Egypt.
| | - Imca Sampers
- Laboratory of Food Microbiology & Biotechnology, Department of Industrial Biological Sciences, Faculty of Bioscience Engineering, Ghent University, Kortrijk 8500, Belgium.
| | - Liesbeth Jacxsens
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| | - Mieke Uyttendaele
- Laboratory of Food Microbiology and Food Preservation (LFMFP), Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
26
|
Liao C, Liang X, Soupir M, Jarboe L. Cellular, particle and environmental parameters influencing attachment in surface waters: a review. J Appl Microbiol 2015; 119:315-30. [DOI: 10.1111/jam.12860] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/04/2015] [Accepted: 05/14/2015] [Indexed: 11/30/2022]
Affiliation(s)
- C. Liao
- Chemical and Biological Engineering; Iowa State University; Ames IA USA
- Interdepartmental Microbiology Program; Iowa State University; Ames IA USA
| | - X. Liang
- Agricultural and Biosystems Engineering; Iowa State University; Ames IA USA
| | - M.L. Soupir
- Agricultural and Biosystems Engineering; Iowa State University; Ames IA USA
| | - L.R. Jarboe
- Chemical and Biological Engineering; Iowa State University; Ames IA USA
| |
Collapse
|
27
|
Jokinen CC, Koot J, Cole L, Desruisseau A, Edge TA, Khan IUH, Koning W, Lapen DR, Pintar KDM, Reid-Smith R, Thomas JL, Topp E, Wang LY, Wilkes G, Ziebell K, van Bochove E, Gannon VPJ. The distribution of Salmonella enterica serovars and subtypes in surface water from five agricultural regions across Canada. WATER RESEARCH 2015; 76:120-131. [PMID: 25799976 DOI: 10.1016/j.watres.2015.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 06/04/2023]
Abstract
Serovar prevalence of the zoonotic pathogen, Salmonella enterica, was compared among 1624 surface water samples collected previously from five different Canadian agricultural watersheds over multiple years. Phagetyping, pulsed field gel electrophoresis (PFGE), and antimicrobial resistance subtyping assays were performed on serovars Enteritidis, Typhimurium, and Heidelberg. Serovars and subtypes from surface water were compared with those from animal feces, human sewage, and serovars reported to cause salmonellosis in Canadians. Sixty-five different serovars were identified in surface water; only 32% of these were isolated from multiple watersheds. Eleven of the 13 serovars most commonly reported to cause salmonellosis in Canadians were identified in surface water; isolates of these serovars constituted >40% of the total isolates. Common phagetypes and PFGE subtypes of serovars associated with illness in humans such as S. Enteritidis and S. Typhimurium were also isolated from surface water and animal feces. Antimicrobial resistance was generally low, but was highest among S. Typhimurium. Monitoring of these rivers helps to identify vulnerable areas of a watershed and, despite a relatively low prevalence of S. enterica overall, serovars observed in surface water are an indication of the levels of specific S. enterica serovars present in humans and animals.
Collapse
Affiliation(s)
- C C Jokinen
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada; Alberta Agriculture and Rural Development, Irrigation and Farm Water Division, Lethbridge, Alberta, Canada.
| | - J Koot
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada; University of Victoria, Victoria, BC, Canada.
| | - L Cole
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - A Desruisseau
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - T A Edge
- Environment Canada, Burlington, Ontario, Canada.
| | - I U H Khan
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - W Koning
- Alberta Environment and Sustainable Resource Development, Calgary, Alberta, Canada.
| | - D R Lapen
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - K D M Pintar
- FoodNet Canada, Centre for Foodborne Environmental and Zoonotic Infectious Diseases, Ottawa, Ontario, Canada.
| | - R Reid-Smith
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - J L Thomas
- Ontario Ministry of the Environment and Climate Change, Toronto, Ontario, Canada.
| | - E Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada.
| | - L Y Wang
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada.
| | - G Wilkes
- Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada.
| | - K Ziebell
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Guelph, Ontario, Canada.
| | - E van Bochove
- Agriculture and Agri-Food Canada, Quebec, QC, Canada.
| | - V P J Gannon
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada.
| |
Collapse
|
28
|
Rees EE, Davidson J, Fairbrother JM, St. Hilaire S, Saab M, McClure JT. Occurrence and Antimicrobial Resistance of Escherichia coli in Oysters and Mussels from Atlantic Canada. Foodborne Pathog Dis 2015; 12:164-9. [DOI: 10.1089/fpd.2014.1840] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erin E. Rees
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Jeff Davidson
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - John Morris Fairbrother
- OIE Reference Laboratory for Escherichia coli (EcL), Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Sophie St. Hilaire
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Matthew Saab
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - J T. McClure
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
29
|
The growing season, but not the farming system, is a food safety risk determinant for leafy greens in the mid-Atlantic region of the United States. Appl Environ Microbiol 2015; 81:2395-407. [PMID: 25616798 DOI: 10.1128/aem.00051-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Small- and medium-size farms in the mid-Atlantic region of the United States use varied agricultural practices to produce leafy greens during spring and fall, but the impact of preharvest practices on food safety risk remains unclear. To assess farm-level risk factors, bacterial indicators, Salmonella enterica, and Shiga toxin-producing Escherichia coli (STEC) from 32 organic and conventional farms were analyzed. A total of 577 leafy greens, irrigation water, compost, field soil, and pond sediment samples were collected. Salmonella was recovered from 2.2% of leafy greens (n = 369) and 7.7% of sediment (n = 13) samples. There was an association between Salmonella recovery and growing season (fall versus spring) (P = 0.006) but not farming system (organic or conventional) (P = 0.920) or region (P = 0.991). No STEC was isolated. In all, 10% of samples were positive for E. coli: 6% of leafy greens, 18% of irrigation water, 10% of soil, 38% of sediment, and 27% of compost samples. Farming system was not a significant factor for levels of E. coli or aerobic mesophiles on leafy greens but was a significant factor for total coliforms (TC) (P < 0.001), with higher counts from organic farm samples. Growing season was a factor for aerobic mesophiles on leafy greens (P = 0.004), with higher levels in fall than in spring. Water source was a factor for all indicator bacteria (P < 0.001), and end-of-line groundwater had marginally higher TC counts than source samples (P = 0.059). Overall, the data suggest that seasonal events, weather conditions, and proximity of compost piles might be important factors contributing to microbial contamination on farms growing leafy greens.
Collapse
|
30
|
Khan IUH, Gannon V, Jokinen CC, Kent R, Koning W, Lapen DR, Medeiros D, Miller J, Neumann NF, Phillips R, Schreier H, Topp E, van Bochove E, Wilkes G, Edge TA. A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. WATER RESEARCH 2014; 61:243-252. [PMID: 24930011 DOI: 10.1016/j.watres.2014.05.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
The occurrence and diversity of thermophilic Campylobacter species (C. jejuni, coli, and lari) were studied in water samples from four river basins located across Canada. These basins located in Quebec (Bras d'Henri), Alberta (Oldman), Ontario (South Nation), and British Columbia (Sumas) represented some of the most intensive farming areas in Canada for hog, beef cattle, dairy cattle, and poultry, respectively. This study analyzed 769 water samples collected from 23 monitoring sites with agricultural influence, and four reference sites with limited or no agricultural influence. Water samples were collected bi-weekly over two years and analyzed for Campylobacter using a semi-quantitative minimum probable number (MPN) enrichment protocol. Putative isolates were confirmed by genus- and species-specific multiplex polymerase chain reaction (PCR) assays. A total of 377 (49%) water samples were positive for campylobacters with 355 samples having a cell density ranging from 4 to 4000 MPN L(-1). Campylobacters were more common at agricultural than reference sites in each river basin, although this difference was not significant in the Oldman and South Nation (p > 0.05). Campylobacter was significantly more common in the Bras d'Henri and Sumas (63%) compared to the South Nation (45%) and Oldman (33%) River basins (p < 0.05). C. jejuni, C. coli and C. lari were detected in each river basin, and these species occurred in 45% (n = 168), 34% (n = 128) and 19% (n = 73), of all Campylobacter positive samples, respectively. The remaining Campylobacter positive water samples without these three species (n = 67; 18%) were identified as other Campylobacter species. C. jejuni was the predominant species occurring in the Sumas, Oldman and South Nation River basins. However, in the Bras d'Henri River basin with intensive hog production, C. coli was the predominant species. This study found campylobacters to be common in some agricultural systems with intensive livestock farming activities, and different river basins could have strikingly different profiles of either C. jejuni or C. coli as the predominant waterborne thermophilic Campylobacter species.
Collapse
Affiliation(s)
- Izhar U H Khan
- Watershed Hydrology and Ecology Research Division (WHERD), Canada Centre for Inland Waters (CCIW), Environment Canada, 867 Lakeshore Road, Burlington L7R 4A6, Ontario, Canada; Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, K1A 0C6 Ontario, Canada.
| | - Vic Gannon
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada
| | - Cassandra C Jokinen
- Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, Lethbridge, Alberta, Canada; Alberta Agriculture and Rural Development, Farm Irrigation Water Division, Lethbridge, Alberta, Canada
| | - Rob Kent
- National Water Quality Monitoring, Water Science and Technology, Environment Canada, Gatineau, Ontario, Canada
| | | | - David R Lapen
- Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, K1A 0C6 Ontario, Canada
| | - Diane Medeiros
- Water, and Air Quality Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jim Miller
- Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | | | - Rob Phillips
- National Water Quality Monitoring, Water Science and Technology, Environment Canada, Gatineau, Ontario, Canada
| | - Hans Schreier
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Eric van Bochove
- Soils and Crop Research and Development Centre, Agriculture and Agri-Food Canada Québec, Québec, Canada
| | - Graham Wilkes
- Eastern Cereal and Oilseed Research Centre (ECORC), Agriculture and Agri-Food Canada, 960 Carling Ave. Ottawa, K1A 0C6 Ontario, Canada
| | - Thomas A Edge
- Watershed Hydrology and Ecology Research Division (WHERD), Canada Centre for Inland Waters (CCIW), Environment Canada, 867 Lakeshore Road, Burlington L7R 4A6, Ontario, Canada
| |
Collapse
|
31
|
Pachepsky Y, Shelton D, Dorner S, Whelan G. Can E. coli or thermotolerant coliform concentrations predict pathogen presence or prevalence in irrigation waters? Crit Rev Microbiol 2014; 42:384-93. [PMID: 25198779 DOI: 10.3109/1040841x.2014.954524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An increase in food-borne illnesses in the United States has been associated with fresh produce consumption. Irrigation water presents recognized risks for microbial contamination of produce. Water quality criteria rely on indicator bacteria. The objective of this review was to collate and summarize experimental data on the relationships between pathogens and thermotolerant coliform (THT) and/or generic E. coli, specifically focusing on surface fresh waters used in or potentially suitable for irrigation agriculture. We analyzed peer-reviewed publications in which concentrations of E. coli or THT coliforms in surface fresh waters were measured along with concentrations of one or more of waterborne and food-borne pathogenic organisms. The proposed relationships were significant in 35% of all instances and not significant in 65% of instances. Coliform indicators alone cannot provide conclusive, non-site-specific and non-pathogen-specific information about the presence and/or concentrations of most important pathogens in surface waters suitable for irrigation. Standards of microbial water quality for irrigation can rely not only on concentrations of indicators and/or pathogens, but must include references to crop management. Critical information on microbial composition of actual irrigation waters to support criteria of microbiological quality of irrigation waters appears to be lacking and needs to be collected.
Collapse
Affiliation(s)
- Yakov Pachepsky
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Daniel Shelton
- a USDA-ARS, Environmental Mirobial and Food Safety Laboratory , Beltsville , MD , USA
| | - Sarah Dorner
- b Department of Civil , Geological and Mining Engineering, École Polytechnique de Montréal , Montreal , Quebec , Canada , and
| | - Gene Whelan
- c US Environmental Protection Agency, National Exposure Research Laboratory , Athens , GA , USA
| |
Collapse
|
32
|
Johnson RP, Holtslander B, Mazzocco A, Roche S, Thomas JL, Pollari F, Pintar KDM. Detection and prevalence of verotoxin-producing Escherichia coli O157 and non-O157 serotypes in a Canadian watershed. Appl Environ Microbiol 2014; 80:2166-75. [PMID: 24487525 PMCID: PMC3993149 DOI: 10.1128/aem.03391-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022] Open
Abstract
Verotoxin-producing Escherichia coli (VTEC) strains are the cause of food-borne and waterborne illnesses around the world. Traditionally, surveillance of the human population as well as the environment has focused on the detection of E. coli O157:H7. Recently, increasing recognition of non-O157 VTEC strains as human pathogens and the German O104:H4 food-borne outbreak have illustrated the importance of considering the broader group of VTEC organisms from a public health perspective. This study presents the results of a comparison of three methods for the detection of VTEC in surface water, highlighting the efficacy of a direct VT immunoblotting method without broth enrichment for detection and isolation of O157 and non-O157 VTEC strains. The direct immunoblot method eliminates the need for an enrichment step or the use of immunomagnetic separation. This method was developed after 4 years of detecting low frequencies (1%) of E. coli O157:H7 in surface water in a Canadian watershed, situated within one of the FoodNet Canada integrated surveillance sites. By the direct immunoblot method, VTEC prevalence estimates ranged from 11 to 35% for this watershed, and E. coli O157:H7 prevalence increased to 4% (due to improved method sensitivity). This direct testing method provides an efficient means to enhance our understanding of the prevalence and types of VTEC in the environment. This study employed a rapid evidence assessment (REA) approach to frame the watershed findings with watershed E. coli O157:H7 prevalences reported in the literature since 1990 and the knowledge gap with respect to VTEC detection in surface waters.
Collapse
Affiliation(s)
- R. P. Johnson
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - B. Holtslander
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - A. Mazzocco
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - S. Roche
- Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J. L. Thomas
- Ontario Ministry of the Environment, Etobicoke, Ontario, Canada
| | - F. Pollari
- FoodNet Canada, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - K. D. M. Pintar
- FoodNet Canada, Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Ryu H, Elk M, Khan IUH, Harwood VJ, Molina M, Edge TA, Domingo JS. Comparison of two poultry litter qPCR assays targeting the 16S rRNA gene of Brevibacterium sp. WATER RESEARCH 2014; 48:613-621. [PMID: 24169514 DOI: 10.1016/j.watres.2013.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 06/02/2023]
Abstract
Chicken feces commonly contain human pathogens and are also important sources of fecal pollution in environmental waters. Consequently, methods that can detect chicken fecal pollution are needed in public health and environmental monitoring studies. In this study, we compared a previously developed SYBR green qPCR assay (LA35) to a novel TaqMan qPCR assay (CL) for the environmental detection of poultry-associated fecal pollution. We tested both assays against chicken litter (n = 40), chicken fecal samples (n = 186), non-chicken fecal sources (n = 484), and environmental water samples (n = 323). Most chicken litter samples (i.e., ≥ 98%) were positive for both assays with relatively high signal intensities, whereas only 23% and 12% of poultry fecal samples (n = 186) were positive with the LA35 and the CL assays, respectively. Data using fecal samples from non-target animal species showed that the assays are highly host-associated (≥ 95%). Bayesian statistical models showed that the two assays are associated with relatively low probability of false-positive and false-negative signals in water samples. The CL marker had a lower prevalence than the LA35 assay when tested against environmental water samples (i.e., 21% vs. 31% positive signals). However, by combining the results from the two assays the detection levels increased to 41%, suggesting that using multiple assays can improve the detection of chicken-fecal pollution in environmental waters.
Collapse
Affiliation(s)
- Hodon Ryu
- National Risk Management Research Laboratory, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Pitkänen T. Review of Campylobacter spp. in drinking and environmental waters. J Microbiol Methods 2013; 95:39-47. [DOI: 10.1016/j.mimet.2013.06.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/15/2013] [Accepted: 06/10/2013] [Indexed: 01/07/2023]
|
35
|
Benjamin L, Atwill ER, Jay-Russell M, Cooley M, Carychao D, Gorski L, Mandrell RE. Occurrence of generic Escherichia coli, E. coli O157 and Salmonella spp. in water and sediment from leafy green produce farms and streams on the Central California coast. Int J Food Microbiol 2013; 165:65-76. [DOI: 10.1016/j.ijfoodmicro.2013.04.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 03/27/2013] [Accepted: 04/01/2013] [Indexed: 10/26/2022]
|
36
|
Parmley EJ, Pintar K, Majowicz S, Avery B, Cook A, Jokinen C, Gannon V, Lapen DR, Topp E, Edge TA, Gilmour M, Pollari F, Reid-Smith R, Irwin R. A Canadian application of one health: integration of Salmonella data from various Canadian surveillance programs (2005-2010). Foodborne Pathog Dis 2013; 10:747-56. [PMID: 23786604 DOI: 10.1089/fpd.2012.1438] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most bacterial pathogens associated with human enteric illness have zoonotic origins and can be transmitted directly from animals to people or indirectly through food and water. This multitude of potential exposure routes and sources makes the epidemiology of these infectious agents complex. To better understand these illnesses and identify solutions to reduce human disease, an integrative approach like One Health is needed. This article considers the issue of Salmonella in Canada and interprets data collected by several Canadian surveillance and research programs. We describe recovery of Salmonella from various samples collected along the exposure pathway and compare the serovars detected in the different components under surveillance (animal, food, environment, and human). We then present three examples to illustrate how an approach that interprets multiple sources of surveillance data together is able to address issues that transcend multiple departments and jurisdictions. First, differences observed in recovery of Salmonella from different cuts of fresh chicken collected by different programs emphasize the importance of considering the surveillance objectives and how they may influence the information that is generated. Second, the high number of Salmonella Enteritidis cases in Canada is used to illustrate the importance of ongoing, concurrent surveillance of human cases and exposure sources to information domestic control and prevention strategies. Finally, changing patterns in the occurrence of ceftiofur-resistant Salmonella Heidelberg in retail meats and humans demonstrates how integrated surveillance can identify an issue in an exposure source and link it to a trend in human disease. Taken together, surveillance models that encompass different scales can leverage infrastructure, costs, and benefits and generate a multidimensional picture that can better inform disease prevention and control programs.
Collapse
Affiliation(s)
- Elizabeth Jane Parmley
- Laboratory for Foodborne Zoonoses, Public Health Agency of Canada, Guelph, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Marti R, Gannon VPJ, Jokinen C, Lanthier M, Lapen DR, Neumann NF, Ruecker NJ, Scott A, Wilkes G, Zhang Y, Topp E. Quantitative multi-year elucidation of fecal sources of waterborne pathogen contamination in the South Nation River basin using bacteroidales microbial source tracking markers. WATER RESEARCH 2013; 47:2315-2324. [PMID: 23497974 DOI: 10.1016/j.watres.2013.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/30/2013] [Accepted: 02/02/2013] [Indexed: 06/01/2023]
Abstract
Over a seven-year period (2004-2010) 1095 water samples were obtained from the South Nation River basin at multiple watershed monitoring sites (Ontario, Canada). Real-time PCR using Bacteroidales specific markers was used to identify the origin (human (10% prevalence), ruminant (22%), pig (~2%), Canada goose (4%) and muskrat (7%)) of fecal pollution. In parallel, the distribution of fecal indicator bacteria and waterborne pathogens (Cryptosporidium oocysts, Giardia cysts, Escherichia coli O157:H7, Salmonella enterica and Campylobacter spp.) was evaluated. Associations between the detection of specific Bacteroidales markers and the presence of fecal indicator bacteria, pathogens, and distinct land use or environmental variables were evaluated. Linear correlations between Bacteroidales markers and fecal indicator bacteria were weak. However, mean marker densities, and the presence and absence of markers could be discriminated on the basis of threshold fecal indicator densities. The ruminant-specific Bacteroidales marker was the most frequently detected marker in water, consistent with the large number of dairy farms in the study area. Detection of the human or the ruminant markers were associated with a slightly higher risk of detecting S. enterica. Detection of the muskrat marker was related to more frequent Campylobacter spp. detections. Important positive associations between markers and pathogens were found among: i) total Bacteroidales and Cryptosporidium and Giardia, ii) ruminant marker and S. enterica, and iii) muskrat and Campylobacter spp.
Collapse
Affiliation(s)
- Romain Marti
- Agriculture and Agri-Food Canada, 1391 Sandford Str., London, Ontario N5V 4T3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomas JL, Slawson RM, Taylor WD. Salmonella serotype diversity and seasonality in urban and rural streams. J Appl Microbiol 2013; 114:907-22. [PMID: 23167768 DOI: 10.1111/jam.12079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/26/2012] [Accepted: 11/13/2012] [Indexed: 11/27/2022]
Abstract
AIMS To investigate the prevalence, seasonality and genetic diversity of Salmonella enterica serotypes, particularly those of human and veterinary health significance, in urban and rural streams. METHODS AND RESULTS Using a swab collection technique and multiple culture media for isolation, Salmonella were detected in 78.4% of water samples (November 2003 to July 2005) taken from urban and rural/agricultural streams in the Grand River watershed (Ontario, Canada). Among 235 isolates, there were 38 serotypes, with the predominant serotypes and phagetypes (PT) being Salmonella Typhimurium PT 104 and Salmonella Heidelberg PT 19. These are also the most common Salmonella serotypes found in humans and farm animals locally and across Canada, a trend not commonly reported. The urban stream had more frequent Salmonella occurrence, greater serotype diversity and greater genetic variability (based on pulsed field gel electrophoresis) of specific strains compared with the rural/agricultural streams. Distinct seasonality in serotypes of health significance was observed only in the rural/agricultural streams, which is likely a reflection of seasonal source inputs in these watersheds. Despite the lower occurrence of these strains in stream water in the colder months, laboratory studies did not support reduced survival of Salm. Typhimurium and Salm. Heidelberg at lower temperatures, although survival differences were observed with other serotypes. CONCLUSIONS A diverse range of Salmonella serotypes and PT were obtained from both urban and rural/agricultural streams, with the predominant strains being those most frequently associated with human and veterinary disease in Canada. SIGNIFICANCE AND IMPACT OF THE STUDY The ubiquitous nature of Salmonella in water and the predominance of serotypes/PT of human or veterinary health significance suggest that the aquatic environment is a reservoir for this bacterium and could be involved in the transport and dissemination of this pathogen between hosts.
Collapse
Affiliation(s)
- J L Thomas
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| | | | | |
Collapse
|
39
|
Spatiotemporal analysis of Cryptosporidium species/genotypes and relationships with other zoonotic pathogens in surface water from mixed-use watersheds. Appl Environ Microbiol 2012; 79:434-48. [PMID: 23124241 DOI: 10.1128/aem.01924-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nearly 690 raw surface water samples were collected during a 6-year period from multiple watersheds in the South Nation River basin, Ontario, Canada. Cryptosporidium oocysts in water samples were enumerated, sequenced, and genotyped by detailed phylogenetic analysis. The resulting species and genotypes were assigned to broad, known host and human infection risk classes. Wildlife/unknown, livestock, avian, and human host classes occurred in 21, 13, 3, and <1% of sampled surface waters, respectively. Cryptosporidium andersoni was the most commonly detected livestock species, while muskrat I and II genotypes were the most dominant wildlife genotypes. The presence of Giardia spp., Salmonella spp., Campylobacter spp., and Escherichia coli O157:H7 was evaluated in all water samples. The greatest significant odds ratios (odds of pathogen presence when host class is present/odds of pathogen presence when host class is absent) for Giardia spp., Campylobacter spp., and Salmonella spp. in water were associated, respectively, with livestock (odds ratio of 3.1), avian (4.3), and livestock (9.3) host classes. Classification and regression tree analyses (CART) were used to group generalized host and human infection risk classes on the basis of a broad range of environmental and land use variables while tracking cooccurrence of zoonotic pathogens in these groupings. The occurrence of livestock-associated Cryptosporidium was most strongly related to agricultural water pollution in the fall (conditions also associated with elevated odds ratios of other zoonotic pathogens occurring in water in relation to all sampling conditions), whereas wildlife/unknown sources of Cryptosporidium were geospatially associated with smaller watercourses where urban/rural development was relatively lower. Conditions that support wildlife may not necessarily increase overall human infection risks associated with Cryptosporidium since most Cryptosporidium genotypes classed as wildlife in this study (e.g., muskrat I and II genotype) do not pose significant infection risks to humans. Consequently, from a human health perspective, land use practices in agricultural watersheds that create opportunities for wildlife to flourish should not be rejected solely on the basis of their potential to increase relative proportions of wildlife fecal contamination in surface water. The present study suggests that mitigating livestock fecal pollution in surface water in this region would likely reduce human infection risks associated with Cryptosporidium and other zoonotic pathogens.
Collapse
|
40
|
Muttray A, Reinisch C, Miller J, Ernst W, Gillis P, Losier M, Sherry J. Haemocytic leukemia in Prince Edward Island (PEI) soft shell clam (Mya arenaria): spatial distribution in agriculturally impacted estuaries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 424:130-142. [PMID: 22425172 DOI: 10.1016/j.scitotenv.2012.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 01/25/2012] [Accepted: 02/15/2012] [Indexed: 05/31/2023]
Abstract
Intensive farming of potatoes in Prince Edward Island (PEI) relies on the repeated and widespread application of fertilizers and pesticides. In PEI the main potato farming areas are in close proximity and drain directly to estuaries. Runoff from high agricultural activity watersheds could impact benthic organism health in the depositional zone of downstream estuaries. The estuarine filter feeder Mya arenaria (soft-shell clam) could be particularly vulnerable to both particle-adsorbed and water soluble contaminants. M. arenaria is susceptible to haemocytic leukemia. In May 2009, we established that heavily proliferated leukemia (HPL) prevalence was generally higher in PEI estuaries located downstream of high intensity potato farming (Dunk and Wilmot estuaries) watersheds than in estuaries downstream of lower intensity areas. Using Mab-1E10 based immunocytochemistry we observed that leukemic haemocytes from the Dunk and Wilmot estuaries were 1E10 negative whereas those from the Ox/Sheep estuary (low potato farming intensity) were 1E10 positive. The expression of genes in the p53 tumour suppressor pathway enabled us to differentiate groups of leukemic and normal M. arenaria, validating our diagnoses. In October 2009, we confirmed that HPL prevalence was elevated in the Dunk and Wilmot estuaries compared to reference (Souris River). Moreover, leukemia prevalence declined with distance from the river mouths along transects through the Dunk and Wilmot estuaries. The pesticides ß-endosulfan and α-endosulfan were detected in surface sediments from the Dunk and Wilmot estuaries, but not in sediments from either the Souris River or several other lower intensity potato farming watersheds. Our study provides evidence of an association between intensity of potato farming and prevalence of clam leukemia at downstream estuaries in PEI.
Collapse
Affiliation(s)
- Annette Muttray
- Environment Canada, Water Science & Technology Directorate, 867 Lakeshore Road, Burlington, ON, Canada L7R 4A6.
| | | | | | | | | | | | | |
Collapse
|
41
|
Peters DL, Baird DJ, Monk WA, Armanini DG. Establishing standards and assessment criteria for ecological instream flow needs in agricultural regions of Canada. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:41-51. [PMID: 22218172 DOI: 10.2134/jeq2011.0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Agricultural land use can place heavy demands on regional water resources, strongly influencing the quantity and timing of water flows needed to sustain natural ecosystems. The effects of agricultural practices on streamflow conditions are multifaceted, as they also contribute to the severity of impacts arising from other stressors within the river ecosystem. Thus, river scientists need to determine the quantity of water required to sustain important aquatic ecosystem components and ecological services, to support wise apportionment of water for agricultural use. It is now apparent that arbitrarily defined minimum flows are inadequate for this task because the complex habitat requirements of the biota, which underpin the structure and function of a river ecosystem, are strongly influenced by predictable temporal variations in flow. We present an alternative framework for establishing a first-level, regional ecological instream flow needs standard based on adoption of the Indicators of Hydrologic Alteration/Range of Variability Approach as a broadly applicable hydrological assessment tool, coupling this to the Canadian Ecological Flow Index which assesses ecological responses to hydrological alteration. By explicitly incorporating a new field-based ecological assessment tool for small agricultural streams, we provide a necessary verification of altered hydrology that is broadly applicable within Canada and essential to ensure the continuous feedback between the application of flow management criteria and ecological condition.
Collapse
Affiliation(s)
- Daniel L Peters
- Environment Canada, Water & Climate Impacts Research Centre, Univ. of Victoria, Victoria BC V8W 3R4, Canada.
| | | | | | | |
Collapse
|
42
|
Chambers PA, Culp JM, Roberts ES, Bowerman M. Development of environmental thresholds for streams in agricultural watersheds. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:1-6. [PMID: 22218168 DOI: 10.2134/jeq2011.0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Global increases in consumption of chemical nutrients, application of pesticides, and water withdrawal to enhance agricultural yield have resulted in degraded water quality and reduced water availability. Efforts to safeguard or improve environmental conditions of agroecosystems have usually focused on managing on-farm activities to reduce materials loss and conserve habitat. Another management measure for improving environmental quality is adoption of environmental performance standards (also called outcome-based standards). This special collection of six papers presents the results of four years of research to devise scientifically credible approaches for setting environmental performance standards to protect water quantity and quality in Canadian agriculturally dominated watersheds. The research, conducted as part of Canada's National Agri-Environmental Standards Initiative, aimed to identify Ideal Performance Standards (the desired environmental state needed to maintain ecosystem health) and Achievable Performance Standards (the environmental conditions achievable using currently available and recommended best available processes and technologies). Overviews of the papers, gaps in knowledge, and future research directions are presented. As humans, livestock, and wildlife (both terrestrial and aquatic) experience greater pressures to share the same limited water resources, innovative research is needed that incorporates a landscape perspective, economics, farm practices, and ecology to advance the development and application of tools for protecting water resources in agricultural watersheds.
Collapse
Affiliation(s)
- P A Chambers
- Environment Canada, Canada Centre for Inland Waters, Burlington, ON L7R 4A6, Canada.
| | | | | | | |
Collapse
|