1
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
2
|
Smith EJ, Beaumont RE, Dudhia J, Guest DJ. Equine Embryonic Stem Cell-Derived Tenocytes are Insensitive to a Combination of Inflammatory Cytokines and Have Distinct Molecular Responses Compared to Primary Tenocytes. Stem Cell Rev Rep 2024; 20:1040-1059. [PMID: 38396222 PMCID: PMC11087315 DOI: 10.1007/s12015-024-10693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Tissue fibrosis following tendon injury is a major clinical problem due to the increased risk of re-injury and limited treatment options; however, its mechanism remains unclear. Evidence suggests that insufficient resolution of inflammation contributes to fibrotic healing by disrupting tenocyte activity, with the NF-κB pathway being identified as a potential mediator. Equine embryonic stem cell (ESC) derived tenocytes may offer a potential cell-based therapy to improve tendon regeneration, but how they respond to an inflammatory environment is largely unknown. Our findings reveal for the first time that, unlike adult tenocytes, ESC-tenocytes are unaffected by IFN-γ, TNFα, and IL-1β stimulation; producing minimal changes to tendon-associated gene expression and generating 3-D collagen gel constructs indistinguishable from unstimulated controls. Inflammatory pathway analysis found these inflammatory cytokines failed to activate NF-κB in the ESC-tenocytes. However, NF-κB could be activated to induce changes in gene expression following stimulation with NF-κB pharmaceutical activators. Transcriptomic analysis revealed differences between cytokine and NF-κB signalling components between adult and ESC-tenocytes, which may contribute to the mechanism by which ESC-tenocytes escape inflammatory stimuli. Further investigation of these molecular mechanisms will help guide novel therapies to reduce fibrosis and encourage superior tendon healing.
Collapse
Affiliation(s)
- Emily J Smith
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| | - Ross E Beaumont
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Jayesh Dudhia
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Deborah J Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK.
| |
Collapse
|
3
|
Kotomura N, Shimono Y, Ishihara S. CYP19A1 Expression Is Controlled by mRNA Stability of the Upstream Transcription Factor AP-2γ in Placental JEG3 Cells. Endocrinology 2024; 165:bqae055. [PMID: 38717933 DOI: 10.1210/endocr/bqae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Indexed: 05/21/2024]
Abstract
CYP19A1 encodes aromatase, which converts testosterone to estrogen, and is induced during placental maturation. To elucidate the molecular mechanism underlying this function, histone methylation was analyzed using the placental cytotrophoblast cell line, JEG3. Treatment of JEG3 cells with 3-deazaneplanocin A, an inhibitor of several methyltransferases, resulted in increased CYP19A1 expression, accompanied by removal of the repressive mark H3K27me3 from the CYP19A1 promoter. However, this increase was not observed in cells treated with GSK126, another specific inhibitor for H3K27me3 methylation. Expression of TFAP2C, which encodes AP-2γ, a transcription factor that regulates CYP19A1, was also elevated on 3-deazaneplanocin A treatment. Interestingly, TFAP2C messenger RNA (mRNA) was readily degraded in JEG3 cells but protected from degradation in the presence of 3-deazaneplanocin A. TFAP2C mRNA contained N6-methyladenosines, which were reduced on drug treatment. These observations indicate that the TFAP2C mRNA undergoes adenosine methylation and rapid degradation, whereas 3-deazaneplanocin A suppresses methylation, resulting in an increase in AP-2γ levels. We conclude that the increase in AP-2γ expression via stabilization of the TFAP2C mRNA is likely to underlie the increased CYP19A1 expression.
Collapse
Affiliation(s)
- Naoe Kotomura
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Yohei Shimono
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Satoru Ishihara
- Department of Biochemistry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
4
|
Xu X, Qiao D, Brasier AR. Cooperative interaction of interferon regulatory factor -1 and bromodomain-containing protein 4 on RNA polymerase activation for intrinsic innate immunity. Front Immunol 2024; 15:1366235. [PMID: 38601157 PMCID: PMC11004252 DOI: 10.3389/fimmu.2024.1366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Introduction The human orthopneumovirus, Respiratory Syncytial Virus (RSV), is the causative agent of severe lower respiratory tract infections (LRTI) and exacerbations of chronic lung diseases. In immune competent hosts, RSV productively infects highly differentiated epithelial cells, where it elicits robust anti-viral, cytokine and remodeling programs. By contrast, basal cells are relatively resistant to RSV infection, in part, because of constitutive expression of an intrinsic innate immune response (IIR) consisting of a subgroup of interferon (IFN) responsive genes. The mechanisms controlling the intrinsic IIR are not known. Methods Here, we use human small airway epithelial cell hSAECs as a multipotent airway stem cell model to examine regulatory control of an intrinsic IIR pathway. Results We find hSAECs express patterns of intrinsic IIRs, highly conserved with pluri- and multi-potent stem cells. We demonstrate a core intrinsic IIR network consisting of Bone Marrow Stromal Cell Antigen 2 (Bst2), Interferon Induced Transmembrane Protein 1 (IFITM1) and Toll-like receptor (TLR3) expression are directly under IRF1 control. Moreover, expression of this intrinsic core is rate-limited by ambient IRF1• phospho-Ser 2 CTD RNA Polymerase II (pSer2 Pol II) complexes binding to their proximal promoters. In response to RSV infection, the abundance of IRF1 and pSer2 Pol II binding is dramatically increased, with IRF1 complexing to the BRD4 chromatin remodeling complex (CRC). Using chromatin immunoprecipitation in IRF1 KD cells, we find that the binding of BRD4 is IRF1 independent. Using a small molecule inhibitor of the BRD4 acetyl lysine binding bromodomain (BRD4i), we further find that BRD4 bromodomain interactions are required for stable BRD4 promoter binding to the intrinsic IIR core promoters, as well as for RSV-inducible pSer2 Pol II recruitment. Surprisingly, BRD4i does not disrupt IRF1-BRD4 interactions, but disrupts both RSV-induced BRD4 and IRF1 interactions with pSer2 Pol II. Conclusions We conclude that the IRF1 functions in two modes- in absence of infection, ambient IRF1 mediates constitutive expression of the intrinsic IIR, whereas in response to RSV infection, the BRD4 CRC independently activates pSer2 Pol II to mediates robust expression of the intrinsic IIR. These data provide insight into molecular control of anti-viral defenses of airway basal cells.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
5
|
Apte MM, Khattar E, Tupe RS. Mechanistic role of Syzygium cumini (L.) Skeels in glycation induced diabetic nephropathy via RAGE-NF-κB pathway and extracellular proteins modifications: A molecular approach. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117573. [PMID: 38110133 DOI: 10.1016/j.jep.2023.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Syzygium cumini (L.) Skeels (SC), an ancient medicinal plant, is used as a complementary and alternative medicine for treating diabetes mellitus and its associated complications, such as diabetic nephropathy (DN). Phytochemicals present in SC homeopathic formulations possess anti-glycemic, anti-glycation, anti-inflammatory, and antioxidant properties. Additionally, the non-enzymatic formation of advanced glycation end products (AGEs) increases during hyperglycemia in diabetes. AGEs interaction with their receptor of AGEs (RAGE) promotes inflammation via Nuclear Factor-κB (NF-κB) and the accumulation of Extracellular Matrix (ECM) proteins, contributing to the renal dysfunction in DN. However, the molecular mechanism through which SC formulations interact with the AGEs-RAGE-NF-κB pathway has not yet been investigated. AIM This study aims to examine the impact of SC formulations on the RAGE-NF-κB pathway and ECM protein modifications in glycation-induced DN using a molecular approach. MATERIALS AND METHODS Human serum albumin (10 mg/ml) was glycated with MGO (55 mM) in the presence of SC formulations - Mother tincture (MT), 30C, 200C for 7 days. Glycated samples were added to renal cells (HEK 293) for 24 h. Subsequently, cellular gene and protein expressions of RAGE, NF-κB, vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), collagen IV (Col IV), and fibronectin were determined using RT-qPCR and Western blot analysis. The immunofluorescence, luciferase assay, and chromatin immunoprecipitation techniques were employed to gain insights into glycation-induced NF-κB nuclear translocation, transcriptional activity, and its effect on RAGE promoter activity in SC-treated cells. RESULTS SC formulations significantly downregulated glycation-induced elevated levels of RAGE and NF-κB. Mechanistically, SC formulations prevented NF-κB nuclear translocation, transcriptional activity, and RAGE promoter activity. Also, SC formulations significantly attenuated glycation-enhanced expressions of inflammatory cytokines (IL-6, TNF-α, and VEGF) and ECM proteins (Col IV and fibronectin). CONCLUSION Our findings enlighten the molecular mechanism of SC in DN by targeting the AGEs-RAGE-NF-κB signaling pathway, inflammatory responses, and ECM accumulation. Hence, the study validates the protective role of SC formulations and signifies its novel potential for treating DN.
Collapse
Affiliation(s)
- Mayura M Apte
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| | - Ekta Khattar
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, India.
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University) (SIU), Lavale, Pune, Maharashtra State, India.
| |
Collapse
|
6
|
Simón-Fuentes M, Ríos I, Herrero C, Lasala F, Labiod N, Luczkowiak J, Roy-Vallejo E, Fernández de Córdoba-Oñate S, Delgado-Wicke P, Bustos M, Fernández-Ruiz E, Colmenares M, Puig-Kröger A, Delgado R, Vega MA, Corbí ÁL, Domínguez-Soto Á. MAFB shapes human monocyte-derived macrophage response to SARS-CoV-2 and controls severe COVID-19 biomarker expression. JCI Insight 2023; 8:e172862. [PMID: 37917179 PMCID: PMC10807725 DOI: 10.1172/jci.insight.172862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Monocyte-derived macrophages, the major source of pathogenic macrophages in COVID-19, are oppositely instructed by macrophage CSF (M-CSF) or granulocyte macrophage CSF (GM-CSF), which promote the generation of antiinflammatory/immunosuppressive MAFB+ (M-MØ) or proinflammatory macrophages (GM-MØ), respectively. The transcriptional profile of prevailing macrophage subsets in severe COVID-19 led us to hypothesize that MAFB shapes the transcriptome of pulmonary macrophages driving severe COVID-19 pathogenesis. We have now assessed the role of MAFB in the response of monocyte-derived macrophages to SARS-CoV-2 through genetic and pharmacological approaches, and we demonstrate that MAFB regulated the expression of the genes that define pulmonary pathogenic macrophages in severe COVID-19. Indeed, SARS-CoV-2 potentiated the expression of MAFB and MAFB-regulated genes in M-MØ and GM-MØ, where MAFB upregulated the expression of profibrotic and neutrophil-attracting factors. Thus, MAFB determines the transcriptome and functions of the monocyte-derived macrophage subsets that underlie pulmonary pathogenesis in severe COVID-19 and controls the expression of potentially useful biomarkers for COVID-19 severity.
Collapse
Affiliation(s)
- Miriam Simón-Fuentes
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Israel Ríos
- Immunometabolism and Inflammation Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Cristina Herrero
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Fátima Lasala
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Nuria Labiod
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Joanna Luczkowiak
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Emilia Roy-Vallejo
- Rheumatology Department, University Hospital La Princesa and Research Institute, Madrid, Spain
| | | | - Pablo Delgado-Wicke
- Molecular Biology Unit, University Hospital La Princesa and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Spanish National Research Council (CSIC), University of Seville, Virgen del Rocio University Hospital (HUVR), Seville, Spain
| | - Elena Fernández-Ruiz
- Molecular Biology Unit, University Hospital La Princesa and Research Institute, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Colmenares
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Amaya Puig-Kröger
- Immunometabolism and Inflammation Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Rafael Delgado
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Universidad Complutense School of Medicine, Madrid, Spain
| | - Miguel A. Vega
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Ángel L. Corbí
- Myeloid Cell Laboratory, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | |
Collapse
|
7
|
Gao Z, Wang M, Smith A, Boyes J. YY1 Binding to Regulatory Elements That Lack Enhancer Activity Promotes Locus Folding and Gene Activation. J Mol Biol 2023; 435:168315. [PMID: 37858706 DOI: 10.1016/j.jmb.2023.168315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Enhancers activate their cognate promoters over huge distances but how enhancer/promoter interactions become established is not completely understood. There is strong evidence that cohesin-mediated loop extrusion is involved but this does not appear to be a universal mechanism. Here, we identify an element within the mouse immunoglobulin lambda (Igλ) light chain locus, HSCλ1, that has characteristics of active regulatory elements but lacks intrinsic enhancer or promoter activity. Remarkably, knock-out of the YY1 binding site from HSCλ1 reduces Igλ transcription significantly and disrupts enhancer/promoter interactions, even though these elements are >10 kb from HSCλ1. Genome-wide analyses of mouse embryonic stem cells identified 2671 similar YY1-bound, putative genome organizing elements that lie within CTCF/cohesin loop boundaries but that lack intrinsic enhancer activity. We suggest that such elements play a fundamental role in locus folding and in facilitating enhancer/promoter interactions.
Collapse
Affiliation(s)
- Zeqian Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Miao Wang
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
8
|
Gao Z, Smith AL, Scott JF, Bevington S, Boyes J. Temporal analyses reveal a pivotal role for sense and antisense enhancer RNAs in coordinate immunoglobulin lambda locus activation. Nucleic Acids Res 2023; 51:10344-10363. [PMID: 37702072 PMCID: PMC10602925 DOI: 10.1093/nar/gkad741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
Transcription enhancers are essential activators of V(D)J recombination that orchestrate non-coding transcription through complementary, unrearranged gene segments. How transcription is coordinately increased at spatially distinct promoters, however, remains poorly understood. Using the murine immunoglobulin lambda (Igλ) locus as model, we find that three enhancer-like elements in the 3' Igλ domain, Eλ3-1, HSCλ1 and HSE-1, show strikingly similar transcription factor binding dynamics and close spatial proximity, suggesting that they form an active enhancer hub. Temporal analyses show coordinate recruitment of complementary V and J gene segments to this hub, with comparable transcription factor binding dynamics to that at enhancers. We find further that E2A, p300, Mediator and Integrator bind to enhancers as early events, whereas YY1 recruitment and eRNA synthesis occur later, corresponding to transcription activation. Remarkably, the interplay between sense and antisense enhancer RNA is central to both active enhancer hub formation and coordinate Igλ transcription: Antisense Eλ3-1 eRNA represses Igλ activation whereas temporal analyses demonstrate that accumulating levels of sense eRNA boost YY1 recruitment to stabilise enhancer hub/promoter interactions and lead to coordinate transcription activation. These studies therefore demonstrate for the first time a critical role for threshold levels of sense versus antisense eRNA in locus activation.
Collapse
Affiliation(s)
- Zeqian Gao
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair L Smith
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - James N F Scott
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Sarah L Bevington
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Joan Boyes
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
9
|
Qiao D, Xu X, Zhang Y, Yang J, Brasier AR. RSV replication modifies the XBP1s binding complex on the IRF1 upstream enhancer to potentiate the mucosal anti-viral response. Front Immunol 2023; 14:1197356. [PMID: 37564646 PMCID: PMC10411192 DOI: 10.3389/fimmu.2023.1197356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction The unfolded protein response (UPR) has emerged as an important signaling pathway mediating anti-viral defenses to Respiratory Syncytial Virus (RSV) infection. Earlier we found that RSV replication predominantly activates the evolutionarily conserved Inositol Requiring Enzyme 1α (IRE1α)-X-Box Binding Protein 1 spliced (XBP1s) arm of the Unfolded Protein Response (UPR) producing inflammation, metabolic adaptation and cellular plasticity, yet the mechanisms how the UPR potentiates inflammation are not well understood. Methods To understand this process better, we examined the genomic response integrating RNA-seq and Cleavage Under Targets and Release Using Nuclease (CUT&RUN) analyses. These data were integrated with an RNA-seq analysis conducted on RSV-infected small airway cells ± an IRE1α RNAse inhibitor. Results We identified RSV induced expression changes in ~3.2K genes; of these, 279 required IRE1α and were enriched in IL-10/cytokine signaling pathways. From this data set, we identify those genes directly under XBP1s control by CUT&RUN. Although XBP1s binds to ~4.2 K high-confidence genomic binding sites, surprisingly only a small subset of IL10/cytokine signaling genes are directly bound. We further apply CUT&RUN to find that RSV infection enhances XBP1s loading on 786 genomic sites enriched in AP1/Fra-1, RELA and SP1 binding sites. These control a subset of cytokine regulatory factor genes including IFN response factor 1 (IRF1), CSF2, NFKB1A and DUSP10. Focusing on the downstream role of IRF1, selective knockdown (KD) and overexpression experiments demonstrate IRF1 induction controls type I and -III interferon (IFN) and IFN-stimulated gene (ISG) expression, demonstrating that ISG are indirectly regulated by XBP1 through IRF1 transactivation. Examining the mechanism of IRF1 activation, we observe that XBP1s directly binds a 5' enhancer sequence whose XBP1s loading is increased by RSV. The functional requirement for the enhancer is demonstrated by targeting a dCas9-KRAB silencer, reducing IRF1 activation. Chromatin immunoprecipitation shows that XBP1 is required, but not sufficient, for RSV-induced recruitment of activated phospho-Ser2 Pol II to the enhancer. Discussion We conclude that XBP1s is a direct activator of a core subset of IFN and cytokine regulatory genes in response to RSV. Of these IRF1 is upstream of the type III IFN and ISG response. We find that RSV modulates the XBP1s binding complex on the IRF1 5' enhancer whose activation is required for IRF1 expression. These findings provide novel insight into how the IRE1α-XBP1s pathway potentiates airway mucosal anti-viral responses.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Xiaofang Xu
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yueqing Zhang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Jun Yang
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Zhou H, Feng W, Yu J, Shafiq TA, Paulo JA, Zhang J, Luo Z, Gygi SP, Moazed D. SENP3 and USP7 regulate Polycomb-rixosome interactions and silencing functions. Cell Rep 2023; 42:112339. [PMID: 37014752 PMCID: PMC10777863 DOI: 10.1016/j.celrep.2023.112339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
The rixosome and PRC1 silencing complexes are associated with deSUMOylating and deubiquitinating enzymes, SENP3 and USP7, respectively. How deSUMOylation and deubiquitylation contribute to rixosome- and Polycomb-mediated silencing is not fully understood. Here, we show that the enzymatic activities of SENP3 and USP7 are required for silencing of Polycomb target genes. SENP3 deSUMOylates several rixosome subunits, and this activity is required for association of the rixosome with PRC1. USP7 associates with canonical PRC1 (cPRC1) and deubiquitinates the chromodomain subunits CBX2 and CBX4, and inhibition of USP activity results in disassembly of cPRC1. Finally, both SENP3 and USP7 are required for Polycomb- and rixosome-dependent silencing at an ectopic reporter locus. These findings demonstrate that SUMOylation and ubiquitination regulate the assembly and activities of the rixosome and Polycomb complexes and raise the possibility that these modifications provide regulatory mechanisms that may be utilized during development or in response to environmental challenges.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenzhi Feng
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Juntao Yu
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Sharma AK, Fitieh AM, Locke AJ, Ali JYH, Ismail IH. Quantification of protein enrichment at site-specific DNA double-strand breaks by chromatin immunoprecipitation in cultured human cells. STAR Protoc 2023; 4:101917. [PMID: 36520630 PMCID: PMC9758495 DOI: 10.1016/j.xpro.2022.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Here, we present a chromatin-immunoprecipitation-based protocol to quantify the recruitment of proteins adjacent to site-specific DNA double-strand breaks (DSBs), such as proteins involved in DSB repair. We describe steps to induce DSBs in U2OS osteosarcoma cells stably expressing the restriction endonucleases FokI or AsiSI. We then detail the procedures of chromatin isolation and immunoprecipitation, followed by protein elution and quantitative-PCR-based quantification of DNA. This protocol cannot be used on DSBs generated at random loci by DNA damaging agents. For complete details on the use and execution of this protocol, please refer to Fitieh et al. (2022).1.
Collapse
Affiliation(s)
- Ajit K Sharma
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Amira Mohammed Fitieh
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt
| | - Andrew J Locke
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Jana Yasser Hafez Ali
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada; Biophysics Department, Faculty of Science, Cairo University, 12613 Giza, Egypt.
| |
Collapse
|
12
|
Ajgaonkar S, Hirst JJ, Norris M, Zakar T. Regulation of inflammatory genes in decidual cells: Involvement of the bromodomain and extra-terminal family proteins. PLoS One 2023; 18:e0280645. [PMID: 36897880 PMCID: PMC10004631 DOI: 10.1371/journal.pone.0280645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/05/2023] [Indexed: 03/11/2023] Open
Abstract
The decidua undergoes proinflammatory activation in late pregnancy, promoting labor. Bromodomain and Extra-Terminal (BET) family proteins interact with acetylated histones and may control gene expression in inflammation. Here, we assessed whether BETs are involved in inflammatory gene regulation in human decidual cells. We have treated primary cultures of decidual stromal cells (DSCs) from term pregnancies with endotoxin (LPS) and measured the expression of a panel of pro-and anti-inflammatory genes. BET involvement was assessed using the selective BET inhibitors (+)-JQ1 and I-BET-762 or the negative control compound (-)-JQ1. Histone 3 and -4 acetylation and BETs binding at the target gene promoters were determined to assess whether these processes are involved in the actions of LPS, BETs, and BET inhibitors. LPS increased the expression of the proinflammatory (PTGS2, IL6, CXCL8/IL8, TNF) and the anti-inflammatory (IL10, IDO1) genes of the panel. The constitutively expressed inflammatory genes (PTGS1, PTGES) were unaffected. The BET inhibitors, but not the control compound, reduced the basal and LPS-induced expression of PTGS1, PTGS2, IL6, CXCL8/IL8, IL10, and IDO1. TNF expression was not changed by BET inhibition. The dominant BETs were Bromodomain-containing protein -2 (BRD2) and -4L (BRD4L) in DSCs. LPS increased histone 4 acetylation at the CXCL8/IL8 and TNF promoters and histone 3 and -4 acetylation at the IDO1 promoter, while (+)-JQ1 abrogated histone acetylation at several promoters. Overall, histone acetylation and promoter binding of BETs showed no consistent relationship with gene expression across the gene panel and the treatments. BET proteins, predominantly BRD2 and BRD4L, control critical pro- and anti-inflammatory genes in DSCs. TNF induction exemplifies a BET-independent pathway. Changing histone acetylation at the promoters is not a general obligatory requirement for inflammatory gene expression in response to LPS. BETs likely act at chromatin loci separate from the examined promoters. BET inhibitors may block decidual activation at labor.
Collapse
Affiliation(s)
- Sandeep Ajgaonkar
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Jonathan J. Hirst
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Mary Norris
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Tamas Zakar
- College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, NSW, Australia
- Mothers and Babies Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, New Lambton Heights, NSW, Australia
- * E-mail:
| |
Collapse
|
13
|
RELA∙8-Oxoguanine DNA Glycosylase1 Is an Epigenetic Regulatory Complex Coordinating the Hexosamine Biosynthetic Pathway in RSV Infection. Cells 2022; 11:cells11142210. [PMID: 35883652 PMCID: PMC9319012 DOI: 10.3390/cells11142210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
Respiratory syncytial virus (RSV), or human orthopneumovirus, is a negative-sense RNA virus that is the causative agent of severe lower respiratory tract infections in children and is associated with exacerbations of adult lung disease. The mechanisms how severe and/or repetitive virus infections cause declines in pulmonary capacity are not fully understood. We have recently discovered that viral replication triggers epithelial plasticity and metabolic reprogramming involving the hexosamine biosynthetic pathway (HBP). In this study, we examine the relationship between viral induced innate inflammation and the activation of hexosamine biosynthesis in small airway epithelial cells. We observe that RSV induces ~2-fold accumulation of intracellular UDP-GlcNAc, the end-product of the HBP and the obligate substrate of N glycosylation. Using two different silencing approaches, we observe that RSV replication activates the HBP pathway in a manner dependent on the RELA proto-oncogene (65 kDa subunit). To better understand the effect of RSV on the cellular N glycoproteome, and its RELA dependence, we conduct affinity enriched LC-MS profiling in wild-type and RELA-silenced cells. We find that RSV induces the accumulation of 171 N glycosylated peptides in a RELA-dependent manner; these proteins are functionally enriched in integrins and basal lamina formation. To elaborate this mechanism of HBP expression, we demonstrate that RSV infection coordinately induces the HBP pathway enzymes in a manner requiring RELA; these genes include Glutamine-Fructose-6-Phosphate Transaminase 1 (GFPT)-1/2, Glucosamine-Phosphate N-Acetyltransferase (GNPNAT)-1, phosphoglucomutase (PGM)-3 and UDP-N-Acetylglucosamine Pyrophosphorylase (UAP)-1. Using small-molecule inhibitor(s) of 8-oxoguanine DNA glycosylase1 (OGG1), we observe that OGG1 is also required for the expression of HBP pathway. In proximity ligation assays, RSV induces the formation of a nuclear and mitochondrial RELA∙OGG1 complex. In co-immunoprecipitaton (IP) experiments, we discover that RSV induces Ser 536-phosphorylated RELA to complex with OGG1. Chromatin IP experiments demonstrate a major role of OGG1 in supporting the recruitment of RELA and phosphorylated RNA Pol II to the HBP pathway genes. We conclude that the RELA∙OGG1 complex is an epigenetic regulator mediating metabolic reprogramming and N glycoprotein modifications of integrins in response to RSV. These findings have implications for viral-induced adaptive epithelial responses.
Collapse
|
14
|
Zhou H, Stein CB, Shafiq TA, Shipkovenska G, Kalocsay M, Paulo JA, Zhang J, Luo Z, Gygi SP, Adelman K, Moazed D. Rixosomal RNA degradation contributes to silencing of Polycomb target genes. Nature 2022; 604:167-174. [PMID: 35355014 PMCID: PMC8986528 DOI: 10.1038/s41586-022-04598-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
Polycomb repressive complexes 1 and 2 (PRC1 and PRC2) are histone-modifying and -binding complexes that mediate the formation of facultative heterochromatin and are required for silencing of developmental genes and maintenance of cell fate1–3. Multiple pathways of RNA decay work together to establish and maintain heterochromatin in fission yeast, including a recently identified role for a conserved RNA-degradation complex known as the rixosome or RIX1 complex4–6. Whether RNA degradation also has a role in the stability of mammalian heterochromatin remains unknown. Here we show that the rixosome contributes to silencing of many Polycomb targets in human cells. The rixosome associates with human PRC complexes and is enriched at promoters of Polycomb target genes. Depletion of either the rixosome or Polycomb results in accumulation of paused and elongating RNA polymerase at Polycomb target genes. We identify point mutations in the RING1B subunit of PRC1 that disrupt the interaction between PRC1 and the rixosome and result in diminished silencing, suggesting that direct recruitment of the rixosome to chromatin is required for silencing. Finally, we show that the RNA endonuclease and kinase activities of the rixosome and the downstream XRN2 exoribonuclease, which degrades RNAs with 5′ monophosphate groups generated by the rixosome, are required for silencing. Our findings suggest that rixosomal degradation of nascent RNA is conserved from fission yeast to human, with a primary role in RNA degradation at facultative heterochromatin in human cells. The rixosome associates with Polycomb repressive complexes and chromatin and has a role in silencing of Polycomb target gene expression in human cells via degradation of nascent RNA transcripts.
Collapse
Affiliation(s)
- Haining Zhou
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Chad B Stein
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Tiasha A Shafiq
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jiuchun Zhang
- Initiative for Genome Editing and Neurodegeneration, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Zhenhua Luo
- Precision Medicine Institute, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Steven P Gygi
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Schilders KAA, Edel GG, Eenjes E, Oresta B, Birkhoff J, Boerema-de Munck A, Buscop-van Kempen M, Liakopoulos P, Kolovos P, Demmers JAA, Poot R, Wijnen RMH, Tibboel D, Rottier RJ. Identification of SOX2 Interacting Proteins in the Developing Mouse Lung With Potential Implications for Congenital Diaphragmatic Hernia. Front Pediatr 2022; 10:881287. [PMID: 35615634 PMCID: PMC9124971 DOI: 10.3389/fped.2022.881287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/04/2022] [Indexed: 12/02/2022] Open
Abstract
Congenital diaphragmatic hernia is a structural birth defect of the diaphragm, with lung hypoplasia and persistent pulmonary hypertension. Aside from vascular defects, the lungs show a disturbed balance of differentiated airway epithelial cells. The Sry related HMG box protein SOX2 is an important transcription factor for proper differentiation of the lung epithelium. The transcriptional activity of SOX2 depends on interaction with other proteins and the identification of SOX2-associating factors may reveal important complexes involved in the disturbed differentiation in CDH. To identify SOX2-associating proteins, we purified SOX2 complexes from embryonic mouse lungs at 18.5 days of gestation. Mass spectrometry analysis of SOX2-associated proteins identified several potential candidates, among which were the Chromodomain Helicase DNA binding protein 4 (CHD4), Cut-Like Homeobox1 (CUX1), and the Forkhead box proteins FOXP2 and FOXP4. We analyzed the expression patterns of FOXP2, FOXP4, CHD4, and CUX1 in lung during development and showed co-localization with SOX2. Co-immunoprecipitations validated the interactions of these four transcription factors with SOX2, and large-scale chromatin immunoprecipitation (ChIP) data indicated that SOX2 and CHD4 bound to unique sites in the genome, but also co-occupied identical regions, suggesting that these complexes could be involved in co-regulation of genes involved in the respiratory system.
Collapse
Affiliation(s)
- Kim A A Schilders
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gabriëla G Edel
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Evelien Eenjes
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Bianca Oresta
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Judith Birkhoff
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Anne Boerema-de Munck
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Marjon Buscop-van Kempen
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Panagiotis Liakopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - Raymond Poot
- Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| | - Rene M H Wijnen
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Dick Tibboel
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center (MC)-Sophia Children's Hospital, Rotterdam, Netherlands.,Department of Cell Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
16
|
Yamaguchi K, Kadota M, Nishimura O, Ohishi Y, Naito Y, Kuraku S. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies. Mol Ecol 2021; 30:5923-5934. [PMID: 34432923 PMCID: PMC9292758 DOI: 10.1111/mec.16146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 07/28/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
The recent development of ecological studies has been fueled by the introduction of massive information based on chromosome-scale genome sequences, even for species for which genetic linkage is not accessible. This was enabled mainly by the application of Hi-C, a method for genome-wide chromosome conformation capture that was originally developed for investigating the long-range interaction of chromatins. Performing genomic scaffolding using Hi-C data is highly resource-demanding and employs elaborate laboratory steps for sample preparation. It starts with building a primary genome sequence assembly as an input, which is followed by computation for genome scaffolding using Hi-C data, requiring careful validation. This article presents technical considerations for obtaining optimal Hi-C scaffolding results and provides a test case of its application to a reptile species, the Madagascar ground gecko (Paroedura picta). Among the metrics that are frequently used for evaluating scaffolding results, we investigate the validity of the completeness assessment of chromosome-scale genome assemblies using single-copy reference orthologues.
Collapse
Affiliation(s)
- Kazuaki Yamaguchi
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Mitsutaka Kadota
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Osamu Nishimura
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuta Ohishi
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuki Naito
- Database Center for Life Science (DBCLS)MishimaJapan
| | - Shigehiro Kuraku
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Molecular Life History LaboratoryNational Institute of GeneticsMishimaJapan
- Department of GeneticsSokendai (Graduate University for Advanced Studies)MishimaJapan
| |
Collapse
|
17
|
Halari CD, Renaud SJ, Lala PK. Molecular mechanisms in IL-1β-mediated decorin production by decidual cells. Mol Hum Reprod 2021; 27:6463501. [PMID: 34915564 DOI: 10.1093/molehr/gaab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
Decorin, a small leucine-rich proteoglycan produced by decidual cells restrains trophoblast differentiation, migration and invasiveness of extra-villous trophoblast cells. Decidual overproduction of decorin is associated with preeclampsia, and elevated decorin levels in maternal plasma are a predictive biomarker of preeclampsia. Furthermore, decorin plays an autocrine role in maturation of human endometrial stromal cells into decidual cells. Thus, a balanced decorin production by the decidua is critical for healthy pregnancy. However, the molecular mechanisms regulating decorin production by the decidua are unclear. Interleukin-1 beta is an inflammation-associated multi-functional cytokine, and is reported to induce decidualization in primates. Hence, the present study was designed: (i) to test if exogenous Interleukin-1 beta stimulated decorin production by human endometrial stromal cells; and if so, (ii) to identify the cellular source of Interleukin-1 beta in first trimester decidual tissue; (iii) to identify the downstream molecular partners in Interleukin-1 beta mediated decorin production by human endometrial stromal cells. Results revealed that (i) amongst multiple pro-inflammatory cytokines tested, Interleukin-1 beta alone stimulated decorin production by these cells; (ii) both macrophages and decidual cells in first trimester decidua produced Interleukin-1 beta; (iii) Interleukin-1 beta mediated decorin production was dependent on Interleukin-1 receptor activation, followed by activation and nuclear translocation of nuclear factor kappa B and its binding to the decorin promoter. These results reveal that Interleukin-1 beta plays a novel role in inducing decorin production by human endometrial stromal cells by activating nuclear factor kappa B.
Collapse
Affiliation(s)
- C D Halari
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - S J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - P K Lala
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Children's Health Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
18
|
Qiao D, Skibba M, Xu X, Garofalo RP, Zhao Y, Brasier AR. Paramyxovirus replication induces the hexosamine biosynthetic pathway and mesenchymal transition via the IRE1α-XBP1s arm of the unfolded protein response. Am J Physiol Lung Cell Mol Physiol 2021; 321:L576-L594. [PMID: 34318710 PMCID: PMC8461800 DOI: 10.1152/ajplung.00127.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The paramyxoviridae, respiratory syncytial virus (RSV), and murine respirovirus are enveloped, negative-sense RNA viruses that are the etiological agents of vertebrate lower respiratory tract infections (LRTIs). We observed that RSV infection in human small airway epithelial cells induced accumulation of glycosylated proteins within the endoplasmic reticulum (ER), increased glutamine-fructose-6-phosphate transaminases (GFPT1/2) and accumulation of uridine diphosphate (UDP)-N-acetylglucosamine, indicating activation of the hexosamine biosynthetic pathway (HBP). RSV infection induces rapid formation of spliced X-box binding protein 1 (XBP1s) and processing of activating transcription factor 6 (ATF6). Using pathway selective inhibitors and shRNA silencing, we find that the inositol-requiring enzyme (IRE1α)-XBP1 arm of the unfolded protein response (UPR) is required not only for activation of the HBP, but also for expression of mesenchymal transition (EMT) through the Snail family transcriptional repressor 1 (SNAI1), extracellular matrix (ECM)-remodeling proteins fibronectin (FN1), and matrix metalloproteinase 9 (MMP9). Probing RSV-induced open chromatin domains by ChIP, we find XBP1 binds and recruits RNA polymerase II to the IL6, SNAI1, and MMP9 promoters and the intragenic superenhancer of glutamine-fructose-6-phosphate transaminase 2 (GFPT2). The UPR is sustained through RSV by an autoregulatory loop where XBP1 enhances Pol II binding to its own promoter. Similarly, we investigated the effects of murine respirovirus infection on its natural host (mouse). Murine respirovirus induces mucosal growth factor response, EMT, and the indicators of ECM remodeling in an IRE1α-dependent manner, which persists after viral clearance. These data suggest that IRE1α-XBP1s arm of the UPR pathway is responsible for paramyxovirus-induced metabolic adaptation and mucosal remodeling via EMT and ECM secretion.
Collapse
Affiliation(s)
- Dianhua Qiao
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Melissa Skibba
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaofang Xu
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Roberto P Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin.,Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
19
|
Nowak K, Jabłońska E, Ratajczak-Wrona W. NF-κB-An Important Player in Xenoestrogen Signaling in Immune Cells. Cells 2021; 10:1799. [PMID: 34359968 PMCID: PMC8304139 DOI: 10.3390/cells10071799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the immune system is critical for an effective defense against pathogenic factors such as bacteria and viruses. All the cellular processes taking place in an organism are strictly regulated by an intracellular network of signaling pathways. In the case of immune cells, the NF-κB pathway is considered the key signaling pathway as it regulates the expression of more than 200 genes. The transcription factor NF-κB is sensitive to exogenous factors, such as xenoestrogens (XEs), which are compounds mimicking the action of endogenous estrogens and are widely distributed in the environment. Moreover, XE-induced modulation of signaling pathways may be crucial for the proper development of the immune system. In this review, we summarize the effects of XEs on the NF-κB signaling pathway. Based on our analysis, we constructed a model of XE-induced signaling in immune cells and found that in most cases XEs activate NF-κB. Our analysis indicated that the indirect impact of XEs on NF-κB in immune cells is related to the modulation of estrogen signaling and other pathways such as MAPK and JAK/STAT. We also summarize the role of these aspects of signaling in the development and further functioning of the immune system in this paper.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Waszyngtona 15A, 15-269 Bialystok, Poland; (E.J.); (W.R.-W.)
| | | | | |
Collapse
|
20
|
Texari L, Spann NJ, Troutman TD, Sakai M, Seidman JS, Heinz S. An optimized protocol for rapid, sensitive and robust on-bead ChIP-seq from primary cells. STAR Protoc 2021; 2:100358. [PMID: 33718886 PMCID: PMC7921621 DOI: 10.1016/j.xpro.2021.100358] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Integrative analysis of next-generation sequencing data can help understand disease mechanisms. Specifically, ChIP-seq can illuminate where transcription regulators bind to regulate transcription. A major obstacle to performing this assay on primary cells is the low numbers obtained from tissues. The extensively validated ChIP-seq protocol presented here uses small volumes and single-pot on-bead library preparation to generate diverse high-quality ChIP-seq data. This protocol allows for medium-to-high-throughput ChIP-seq of low-abundance cells and can also be applied to other mammalian cells. For complete details on the use and execution of this protocol, please refer to Brigidi et al. (2019), Carlin et al. (2018), Heinz et al. (2018), Nott et al. (2019), Sakai et al. (2019), and Seidman et al. (2020).
Collapse
Affiliation(s)
- Lorane Texari
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathanael J. Spann
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ty D. Troutman
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason S. Seidman
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sven Heinz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
21
|
Xu X, Qiao D, Dong C, Mann M, Garofalo RP, Keles S, Brasier AR. The SWI/SNF-Related, Matrix Associated, Actin-Dependent Regulator of Chromatin A4 Core Complex Represses Respiratory Syncytial Virus-Induced Syncytia Formation and Subepithelial Myofibroblast Transition. Front Immunol 2021; 12:633654. [PMID: 33732255 PMCID: PMC7957062 DOI: 10.3389/fimmu.2021.633654] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetics plays an important role in the priming the dynamic response of airway epithelial cells to infectious and environmental stressors. Here, we examine the epigenetic role of the SWI/SNF Related, Matrix Associated, Actin Dependent Regulator of Chromatin A4 (SMARCA4) in the epithelial response to RSV infection. Depletion of SMARCA4 destabilized the abundance of the SMARCE1/ARID1A SWI/SNF subunits, disrupting the innate response and triggering a hybrid epithelial/mesenchymal (E/M) state. Assaying SMARCA4 complex-regulated open chromatin domains by transposase cleavage -next generation sequencing (ATAC-Seq), we observed that the majority of cleavage sites in uninfected cells have reduced chromatin accessibility. Paradoxically, SMARCA4 complex-depleted cells showed enhanced RSV-inducible chromatin opening and gene expression in the EMT pathway genes, MMP9, SNAI1/2, VIM, and CDH2. Focusing on the key MMP9, we observed that SMARCA4 complex depletion reduced basal BRD4 and RNA Polymerase II binding, but enhanced BRD4/Pol II binding in response to RSV infection. In addition, we observed that MMP9 secretion in SMARCA4 complex deficient cells contributes to mesenchymal transition, cellular fusion (syncytia) and subepithelial myofibroblast transition. We conclude the SMARCA4 complex is a transcriptional repressor of epithelial plasticity, whose depletion triggers a hybrid E/M state that affects the dynamic response of the small airway epithelial cell in mucosal remodeling via paracrine MMP9 activity.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Dianhua Qiao
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Chenyang Dong
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
| | - Morgan Mann
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Roberto P. Garofalo
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Sunduz Keles
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Internal Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
22
|
Helbling JC, Kinouchi K, Trifilieff P, Sassone-Corsi P, Moisan MP. Combined Gene Expression and Chromatin Immunoprecipitation From a Single Mouse Hippocampus. Curr Protoc 2021; 1:e33. [PMID: 33566459 DOI: 10.1002/cpz1.33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
All neuronal cells hold the same genetic information but vary by their structural and functional plasticity depending on the brain area and environmental influences. Such variability involves specific gene regulation, which is driven by transcription factors (TFs). In the field of neuroscience, epigenetics is the main mechanism that has been investigated to understand the dynamic modulation of gene expression by behavioral responses, stress responses, memory processes, etc. Nowadays, gene expression analyzed by real-time quantitative PCR and TF binding estimated by chromatin immunoprecipitation (ChIP) enables one to dissect this regulation. Because of the wide range of transgenic models, as well as cost-effective aspects, mouse models are widely used neuroscience. Thus, we have set up a protocol that allows extraction of both RNA for gene expression analysis and chromatin for ChIP experiment from a single mouse hippocampus. Using such protocols, information regarding gene expression and regulatory molecular mechanisms from the same animal can be integrated and correlated with neurobiological and behavioral outcomes. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Hippocampus isolation from mouse brain Basic Protocol 2: RNA extraction and gene expression analysis from a mouse half hippocampus Basic Protocol 3: ChIP from one hemisphere side mouse hippocampus.
Collapse
Affiliation(s)
| | - Kenichiro Kinouchi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California Irvine, Irvine, California
- Department of Endocrinology, Metabolism, and Nephrology, School of Medicine, Keio University, Tokyo, Japan
| | - Pierre Trifilieff
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Paolo Sassone-Corsi
- Department of Biological Chemistry, Center for Epigenetics and Metabolism, U1233 INSERM, University of California Irvine, Irvine, California
- Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California Irvine, Irvine, California
| | - Marie-Pierre Moisan
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
23
|
Alizada A, Khyzha N, Wang L, Antounians L, Chen X, Khor M, Liang M, Rathnakumar K, Weirauch MT, Medina-Rivera A, Fish JE, Wilson MD. Conserved regulatory logic at accessible and inaccessible chromatin during the acute inflammatory response in mammals. Nat Commun 2021; 12:567. [PMID: 33495464 PMCID: PMC7835376 DOI: 10.1038/s41467-020-20765-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The regulatory elements controlling gene expression during acute inflammation are not fully elucidated. Here we report the identification of a set of NF-κB-bound elements and common chromatin landscapes underlying the acute inflammatory response across cell-types and mammalian species. Using primary vascular endothelial cells (human/mouse/bovine) treated with the pro-inflammatory cytokine, Tumor Necrosis Factor-α, we identify extensive (~30%) conserved orthologous binding of NF-κB to accessible, as well as nucleosome-occluded chromatin. Regions with the highest NF-κB occupancy pre-stimulation show dramatic increases in NF-κB binding and chromatin accessibility post-stimulation. These 'pre-bound' regions are typically conserved (~56%), contain multiple NF-κB motifs, are utilized by diverse cell types, and overlap rare non-coding mutations and common genetic variation associated with both inflammatory and cardiovascular phenotypes. Genetic ablation of conserved, 'pre-bound' NF-κB regions within the super-enhancer associated with the chemokine-encoding CCL2 gene and elsewhere supports the functional relevance of these elements.
Collapse
Affiliation(s)
- Azad Alizada
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nadiya Khyzha
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Liangxi Wang
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Lina Antounians
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Melvin Khor
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Minggao Liang
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kumaragurubaran Rathnakumar
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Alejandra Medina-Rivera
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Mexico
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- University Health Network, Toronto General Hospital Research Institute, Toronto, Canada.
- University Health Network, Peter Munk Cardiac Centre, Toronto, Canada.
| | - Michael D Wilson
- Hospital for Sick Children, Genetics and Genome Biology, Toronto, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| |
Collapse
|
24
|
Chromatin Immunoprecipitation (ChIP) to Study DNA-Protein Interactions. Methods Mol Biol 2021. [PMID: 33420999 DOI: 10.1007/978-1-0716-1186-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chromatin immunoprecipitation (ChIP) is a method used to examine the genomic localization of a target of interest (e.g., proteins, protein posttranslational modifications, or DNA elements). As ChIP provides a snapshot of in vivo DNA-protein interactions, it lends insight to the mechanisms of gene expression and genome regulation. This chapter provides a detailed protocol focused on native-ChIP (N-ChIP), a robust approach to profile stable DNA-protein interactions. We also describe best practices for ChIP , including defined controls to ensure specific and efficient target enrichment and methods for data normalization.
Collapse
|
25
|
Ranawaka B, Tanurdzic M, Waterhouse P, Naim F. An optimised chromatin immunoprecipitation (ChIP) method for starchy leaves of Nicotiana benthamiana to study histone modifications of an allotetraploid plant. Mol Biol Rep 2020; 47:9499-9509. [PMID: 33237398 PMCID: PMC7723940 DOI: 10.1007/s11033-020-06013-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 10/26/2022]
Abstract
All flowering plants have evolved through multiple rounds of polyploidy throughout the evolutionary process. Intergenomic interactions between subgenomes in polyploid plants are predicted to induce chromatin modifications such as histone modifications to regulate expression of gene homoeologs. Nicotiana benthamiana is an ancient allotetraploid plant with ecotypes collected from climatically diverse regions of Australia. Studying the chromatin landscape of this unique collection will likely shed light on the importance of chromatin modifications in gene regulation in polyploids as well its implications in adaptation of plants in environmentally diverse conditions. Generally, chromatin immunoprecipitation and high throughput DNA sequencing (ChIP-seq) is used to study chromatin modifications. However, due to the starchy nature of mature N. benthamiana leaves, previously published protocols were unsuitable. The higher amounts of starch in leaves that co-precipitated with nuclei hindered downstream processing of DNA. Here we present an optimised ChIP protocol for N. benthamiana leaves to facilitate comparison of chromatin modifications in two closely related ecotypes. Several steps of ChIP were optimised including tissue harvesting, nuclei isolation, nuclei storage, DNA shearing and DNA recovery. Commonly available antibodies targeting histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 9 dimethylation (H3K9me2) histone modifications were used and success of ChIP was confirmed by PCR and next generation sequencing. Collectively, our optimised method is the first comprehensive ChIP method for mature starchy leaves of N. benthamiana to enable studies of chromatin landscape at the genome-wide scale.
Collapse
Affiliation(s)
- Buddhini Ranawaka
- Centre for Agriculture and Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Milos Tanurdzic
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Peter Waterhouse
- Centre for Agriculture and Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Fatima Naim
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
26
|
Bellet MM, Pieroni S, Castelli M, Piobbico D, Fallarino F, Romani L, Della-Fazia MA, Servillo G. HOPS/Tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death Dis 2020; 11:865. [PMID: 33060567 PMCID: PMC7567074 DOI: 10.1038/s41419-020-03086-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/23/2022]
Abstract
HOPS/Tmub1 is a ubiquitously expressed transmembrane ubiquitin-like protein that shuttles between nucleus and cytoplasm during cell cycle progression. HOPS causes cell cycle arrest in G0/G1 phase, an event associated to stabilization of p19Arf, an important tumor suppressor protein. Moreover, HOPS plays an important role in driving centrosomal assembly and maintenance, mitotic spindle proper organization, and ultimately a correct cell division. Recently, HOPS has been described as an important regulator of p53, which acts as modifier, stabilizing p53 half-life and playing a key role in p53 mediating apoptosis after DNA damage. NF-κB is a transcription factor with a central role in many cellular events, including inflammation and apoptosis. Our experiments demonstrate that the transcriptional activity of the p65/RelA NF-κB subunit is regulated by HOPS. Importantly, Hops−/− cells have remarkable alterations of pro-inflammatory responses. Specifically, we found that HOPS enhances NF-κB activation leading to increase transcription of inflammatory mediators, through the reduction of IκBα stability. Notably, this effect is mediated by a direct HOPS binding to the E3 ubiquitin ligase TRAF6, which lessens TRAF6 stability ultimately leading increased IKK complex activation. These findings uncover a previously unidentified function of HOPS/Tmub1 as a novel modulator of TRAF6, regulating inflammatory responses driven by activation of the NF-κB signaling pathway. The comprehension on how HOPS/Tmub1 takes part to the inflammatory processes in vivo and whether this function is important in the control of proliferation and tumorigenesis could establish the basis for the development of novel pharmacological strategies.
Collapse
Affiliation(s)
- Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefania Pieroni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Marilena Castelli
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy.
| |
Collapse
|
27
|
Guo Y, Ye Q, Deng P, Cao Y, He D, Zhou Z, Wang C, Zaytseva YY, Schwartz CE, Lee EY, Evers BM, Morris AJ, Liu S, She QB. Spermine synthase and MYC cooperate to maintain colorectal cancer cell survival by repressing Bim expression. Nat Commun 2020; 11:3243. [PMID: 32591507 PMCID: PMC7320137 DOI: 10.1038/s41467-020-17067-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Dysregulation of polyamine metabolism has been linked to the development of colorectal cancer (CRC), but the underlying mechanism is incompletely characterized. Here, we report that spermine synthase (SMS), a polyamine biosynthetic enzyme, is overexpressed in CRC. Targeted disruption of SMS in CRC cells results in spermidine accumulation, which inhibits FOXO3a acetylation and allows subsequent translocation to the nucleus to transcriptionally induce expression of the proapoptotic protein Bim. However, this induction is blunted by MYC-driven expression of miR-19a and miR-19b that repress Bim production. Pharmacological or genetic inhibition of MYC activity in SMS-depleted CRC cells dramatically induces Bim expression and apoptosis and causes tumor regression, but these effects are profoundly attenuated by silencing Bim. These findings uncover a key survival signal in CRC through convergent repression of Bim expression by distinct SMS- and MYC-mediated signaling pathways. Thus, combined inhibition of SMS and MYC signaling may be an effective therapy for CRC. Polyamine metabolism is frequently dysregulated in cancers. Here, the authors show that a polyamine biosynthetic enzyme, spermine synthase, is overexpressed in colorectal cancers and cooperates with MYC to prevent cancer cell apoptosis by repression of proapoptotic protein, Bim.
Collapse
Affiliation(s)
- Yubin Guo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.,Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Pan Deng
- Superfund Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Yanan Cao
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Daheng He
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Zhaohe Zhou
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Biostatistics, University of Kentucky College of Public Health, Lexington, KY, 40506, USA
| | - Yekaterina Y Zaytseva
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | | | - Eun Y Lee
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky College of Medicine, and Lexington Veterans Affairs Medical Center, Lexington, KY, 40506, USA
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA. .,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
28
|
Lloyd SM, Bao X. Pinpointing the Genomic Localizations of Chromatin-Associated Proteins: The Yesterday, Today, and Tomorrow of ChIP-seq. ACTA ACUST UNITED AC 2020; 84:e89. [PMID: 31483109 DOI: 10.1002/cpcb.89] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chromatin-associated proteins are instrumental for controlling spatiotemporal gene expression. Determining where these proteins bind across the genome is critical for understanding gene regulation. A widely used technique at present is ChIP-seq, which leverages chromatin fragmentation, antibody-mediated enrichment, next-generation sequencing, and data analysis to uncover the genomic sequences and patterns of protein-DNA interactions. In this article, we will provide an overview of how ChIP-seq was developed, the key elements of the experimentation and data analysis pipeline, and the recent variations that push the boundaries of precision and cell number requirements. We will also briefly discuss how future development of ChIP-seq may further advance our understanding of chromatin biology. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Sarah M Lloyd
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
| | - Xiaomin Bao
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois.,Department of Dermatology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
| |
Collapse
|
29
|
Mishra PK, Yoo CM, Hong E, Rhee HW. Photo-crosslinking: An Emerging Chemical Tool for Investigating Molecular Networks in Live Cells. Chembiochem 2020; 21:924-932. [PMID: 31794116 DOI: 10.1002/cbic.201900600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Studying protein-protein interactions (PPIs) is useful for understanding cellular functions and mechanisms. Evaluating these PPIs under conditions as similar as possible to native conditions can be achieved using photo-crosslinking methods because of their on-demand ability to generate reactive species in situ by irradiation with UV light. Various fusion tag, metabolic incorporation, and amber codon suppression approaches using various crosslinkers containing aryl azide, benzophenone, and diazirines have been applied in live cells. Mass spectrometry and immunological techniques are used to identify crosslinked proteins based on their capture transient and context-dependent interactions. Herein we discuss various incorporation methods and crosslinkers that have been used for interactome mapping in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chang-Mo Yoo
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 360-4 Dongnae-dong, Dong-gu, Daegu, 41061, Republic of Korea
| | - Hyun Woo Rhee
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
30
|
Mendez JM, Keestra-Gounder AM. NF-κB-dependent Luciferase Activation and Quantification of Gene Expression in Salmonella Infected Tissue Culture Cells. J Vis Exp 2020. [PMID: 31984953 DOI: 10.3791/60567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The dimeric transcription factor NF-κB regulates many cellular response pathways, including inflammatory pathways by inducing the expression of various cytokines and chemokines. NF-κB is constitutively expressed and is sequestered in the cytosol by the inhibitory protein nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor, alpha (IκBα). Activation of NF-κB requires the degradation of IκBα, which then exposes a nuclear localization signal on NF-κB and promotes its trafficking to the nucleus. Once in the nucleus, NF-κB binds to the promotor region of NF-κB target genes such as interleukin 6 (IL-6) and IL-23, to promote their expression. The activation of NF-κB occurs independently of transcription or translation. Therefore, the activation state of NF-κB must be measured either by quantifying NF-κB specifically in the nucleus, or by quantifying expression of NF-κB target genes. In this protocol, cells stably transfected with an NF-κB::luciferase reporter construct are assayed for NF-κB activation using in vitro tissue culture techniques. These cells are infected with Salmonella Typhimurium to activate NF-κB, which traffics to the nucleus and binds to κB sites in the promoter region of luciferase, inducing its expression. Cells are lysed and analyzed with the luciferase assay system. The amount of luciferase produced by the cells correlates with the intensity of the luminescence signal, which is detected by a plate reader. The luminescence signal generated by this procedure provides a quick and highly sensitive method by which to assess NF-κB activation under a range of conditions. This protocol also utilizes quantitative reverse transcription PCR (RT-qPCR) to detect relative mRNA levels that are indicative of gene expression.
Collapse
Affiliation(s)
- Jonathan M Mendez
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus
| | | |
Collapse
|
31
|
Liu J, Cai L, Sun W, Cheng R, Wang N, Jin L, Rozovsky S, Seiple IB, Wang L. Photocaged Quinone Methide Crosslinkers for Light‐Controlled Chemical Crosslinking of Protein–Protein and Protein–DNA Complexes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jun Liu
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Lingchao Cai
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Wei Sun
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Rujin Cheng
- University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 USA
| | - Nanxi Wang
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Ling Jin
- University of Florida Department of Microbiology and Cell Science Gainesville FL 32611 USA
| | - Sharon Rozovsky
- University of Delaware Department of Chemistry and Biochemistry Newark DE 19716 USA
| | - Ian B. Seiple
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| | - Lei Wang
- University of California, San Francisco Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute 555 Mission Bay Blvd. South San Francisco CA 94158 USA
| |
Collapse
|
32
|
Liu J, Cai L, Sun W, Cheng R, Wang N, Jin L, Rozovsky S, Seiple IB, Wang L. Photocaged Quinone Methide Crosslinkers for Light-Controlled Chemical Crosslinking of Protein-Protein and Protein-DNA Complexes. Angew Chem Int Ed Engl 2019; 58:18839-18843. [PMID: 31644827 DOI: 10.1002/anie.201910135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/14/2019] [Indexed: 01/24/2023]
Abstract
Small-molecule crosslinkers are invaluable for probing biomolecular interactions and for crosslinking mass spectrometry. Existing chemical crosslinkers target only a small selection of amino acids, while conventional photo-crosslinkers target almost all residues non-specifically, complicating data analysis. Herein, we report photocaged quinone methide (PQM)-based crosslinkers that target nine nucleophilic residues through Michael addition, including Gln, Arg, and Asn, which are inaccessible to existing chemical crosslinkers. PQM crosslinkers were used in vitro, in Escherichia coli, and in mammalian cells to crosslink dimeric proteins and endogenous membrane receptors. The heterobifunctional crosslinker NHQM could crosslink proteins to DNA, for which few crosslinkers exist. The photoactivatable reactivity of these crosslinkers and their ability to target multiple amino acids will enhance the use of chemical crosslinking for studies of protein-protein and protein-DNA networks and for structural biology.
Collapse
Affiliation(s)
- Jun Liu
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Lingchao Cai
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Wei Sun
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Rujin Cheng
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716, USA
| | - Nanxi Wang
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Ling Jin
- University of Florida, Department of Microbiology and Cell Science, Gainesville, FL, 32611, USA
| | - Sharon Rozovsky
- University of Delaware, Department of Chemistry and Biochemistry, Newark, DE, 19716, USA
| | - Ian B Seiple
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| | - Lei Wang
- University of California, San Francisco, Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, 555 Mission Bay Blvd. South, San Francisco, CA, 94158, USA
| |
Collapse
|
33
|
Steroidogenic control of liver metabolism through a nuclear receptor-network. Mol Metab 2019; 30:221-229. [PMID: 31767173 PMCID: PMC6819870 DOI: 10.1016/j.molmet.2019.09.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Objective Coupling metabolic and reproductive pathways is essential for the survival of species. However, the functions of steroidogenic enzymes expressed in metabolic tissues are largely unknown. Methods and results Here, we show that in the liver, the classical steroidogenic enzyme Cyp17a1 forms an essential nexus for glucose and ketone metabolism during feed-fast cycles. Both gain- and loss-of-function approaches are used to show that hepatic Cyp17a1 is induced by fasting, catalyzes the production of at least one hormone-ligand (DHEA) for the nuclear receptor PPARα, and is ultimately required for maintaining euglycemia and ketogenesis during nutrient deprivation. The feedback-loop that terminates Cyp17a1-PPARα activity, and re-establishes anabolic liver metabolism during re-feeding is mapped to postprandial bile acid-signaling, involving the receptors FXR, SHP and LRH-1. Conclusions Together, these findings represent a novel paradigm of homeostatic control in which nutritional cues feed-forward on to metabolic pathways by influencing extragonadal steroidogenesis. The classical steroidogenic enzyme, Cyp17a1, is upregulated in liver during fasting. CYP17a1 produces a hormone-ligand for the nuclear receptor PPARα and affects glucose and lipid handling in the liver. Hepatic Cyp17a1 is essential for maintaining glycaemia and ketones during fasting. Bile acids, via a nuclear receptor cascade, repress hepatic Cyp17a1 as part of the re-feeding response.
Collapse
|
34
|
The H3K9 Methylation Writer SETDB1 and its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells. Genes (Basel) 2019; 10:genes10100750. [PMID: 31557926 PMCID: PMC6826936 DOI: 10.3390/genes10100750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022] Open
Abstract
SETDB1 (SET Domain Bifurcated histone lysine methyltransferase 1) is a key lysine methyltransferase (KMT) required in embryonic stem cells (ESCs), where it silences transposable elements and DNA repeats via histone H3 lysine 9 tri-methylation (H3K9me3), independently of DNA methylation. The H3K9 methylation reader M-Phase Phosphoprotein 8 (MPP8) is highly expressed in ESCs and germline cells. Although evidence of a cooperation between H3K9 KMTs and MPP8 in committed cells has emerged, the interplay between H3K9 methylation writers and MPP8 in ESCs remains elusive. Here, we show that MPP8 interacts physically and functionally with SETDB1 in ESCs. Indeed, combining biochemical, transcriptomic and genomic analyses, we found that MPP8 and SETDB1 co-regulate a significant number of common genomic targets, especially the DNA satellite repeats. Together, our data point to a model in which the silencing of a class of repeated sequences in ESCs involves the cooperation between the H3K9 methylation writer SETDB1 and its reader MPP8.
Collapse
|
35
|
Rollins DA, Rogatsky I. Dual Cross-Linking Chromatin Immunoprecipitation Protocol for Next-Generation Sequencing (ChIPseq) in Macrophages. Methods Mol Biol 2019; 1951:87-98. [PMID: 30825146 DOI: 10.1007/978-1-4939-9130-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages arise from distinct progenitor cell populations throughout development and are one of the most diverse cell types, capable of performing discrete functions, undergoing distinct modes of activation, and infiltrating or residing in numerous niches in the body. In adapting to their environments, macrophages display high levels of plasticity which is associated with profound epigenomic and transcriptional changes. Understanding these changes has been greatly facilitated by the next-generation sequencing (NGS)-based approaches such as RNAseq and chromatin immunoprecipitation (ChIP)seq. Despite the recent advances, obtaining quality ChIPseq data in macrophages for endogenous factors and especially coregulators recruited to DNA indirectly has proved to be extremely challenging. Here, we describe a dual crosslinking protocol for ChIPseq in macrophages that we developed for difficult-to-ChIP transcription factors, coregulators, and their posttranslational modifications. Further, we provide guidance on crucial optimization steps throughout this protocol. Although our experience has been predominantly in murine and human macrophages, we believe our protocols can be modified and optimized to study signal-induced epigenomic changes in any cell type of choice.
Collapse
Affiliation(s)
- David A Rollins
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- The David Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY, USA
- Mayo Clinic School of Medicine M.D. Program, Rochester, MN, USA
| | - Inez Rogatsky
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA.
- The David Rosensweig Genomics Center, Hospital for Special Surgery Research Institute, New York, NY, USA.
| |
Collapse
|
36
|
Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators. PLoS Genet 2018; 14:e1007797. [PMID: 30500810 PMCID: PMC6268010 DOI: 10.1371/journal.pgen.1007797] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/30/2018] [Indexed: 01/06/2023] Open
Abstract
Retinoblastoma (pRb) is a multifunctional regulator, which was likely present in the last common ancestor of all eukaryotes. The Arabidopsis pRb homolog RETINOBLASTOMA RELATED 1 (RBR1), similar to its animal counterparts, controls not only cell proliferation but is also implicated in developmental decisions, stress responses and maintenance of genome integrity. Although most functions of pRb-type proteins involve chromatin association, a genome-wide understanding of RBR1 binding sites in Arabidopsis is still missing. Here, we present a plant chromatin immunoprecipitation protocol optimized for genome-wide studies of indirectly DNA-bound proteins like RBR1. Our analysis revealed binding of Arabidopsis RBR1 to approximately 1000 genes and roughly 500 transposable elements, preferentially MITES. The RBR1-decorated genes broadly overlap with previously identified targets of two major transcription factors controlling the cell cycle, i.e. E2F and MYB3R3 and represent a robust inventory of RBR1-targets in dividing cells. Consistently, enriched motifs in the RBR1-marked domains include sequences related to the E2F consensus site and the MSA-core element bound by MYB3R transcription factors. Following up a key role of RBR1 in DNA damage response, we performed a meta-analysis combining the information about the RBR1-binding sites with genome-wide expression studies under DNA stress. As a result, we present the identification and mutant characterization of three novel genes required for growth upon genotoxic stress. The Retinoblastoma (pRb) tumor suppressor is a master regulator of the cell cycle and its inactivation is associated with many types of cancer. Since pRb’s first description as a transcriptional repressor of genes important for cell cycle progression, many more functions have been elucidated, e.g. in developmental decisions and genome integrity. Homologs of human pRb have been identified in most eukaryotes, including plants, indicating an ancient evolutionary origin of pRb-type proteins. We describe here the first genome-wide DNA-binding study for a plant pRb protein, i.e. RBR1, the only pRb homolog in Arabidopsis thaliana. We see prominent binding of RBR1 to the 5’ region of genes involved in cell cycle regulation, chromatin organization and DNA repair. Moreover, we also reveal extensive binding of RBR1 to specific classes of DNA transposons. Since RBR1 is involved in a plethora of processes, our dataset provides a valuable resource for researches from different fields. As an example, we used our dataset to successfully identify new genes necessary for growth upon DNA damage exerted by drugs such as cisplatin or the environmentally prevalent metal aluminum.
Collapse
|
37
|
Klykov O, Steigenberger B, Pektaş S, Fasci D, Heck AJR, Scheltema RA. Efficient and robust proteome-wide approaches for cross-linking mass spectrometry. Nat Protoc 2018; 13:2964-2990. [DOI: 10.1038/s41596-018-0074-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Rey M, Dupré M, Lopez-Neira I, Duchateau M, Chamot-Rooke J. eXL-MS: An Enhanced Cross-Linking Mass Spectrometry Workflow To Study Protein Complexes. Anal Chem 2018; 90:10707-10714. [PMID: 30125099 DOI: 10.1021/acs.analchem.8b00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The analysis of proteins and protein complexes by cross-linking mass spectrometry (XL-MS) has expanded in the past decade. However, mostly used approaches suffer important limitations in term of efficiency and sensitivity. We describe here a new workflow based on the advanced use of the trifunctional cross-linker NNP9. NNP9 carries an azido group allowing the quantitative and selective introduction of a biotin molecule into cross-linked proteins. The incorporation is performed by click-chemistry using an adapted version of the enhanced filter-aided sample preparation (eFASP) protocol. This protocol, based on the use of a molecular filter, allows a very high recovery of peptides after enzymatic digestion and complete removal of contaminants. This in turn offers the possibility for one to analyze very large membrane proteins solubilized in detergent. After trypsin digestion, biotinylated peptides can be easily enriched on monoavidin beads and analyzed by LC-MS/MS. The whole workflow was developed on creatine kinase in the presence of detergent. It led to a drastic improvement in the number of identified cross-linked peptides (407 vs 81), compared to the conventional approach using a gel-based separation. One great advantage of our enhanced cross-linking mass spectrometry (eXL-MS) workflow is its high efficiency, allowing the analysis of a very low amount of material (15 μg). We also demonstrate that higher-energy collision dissociation (HCD) outperforms electron-transfer/higher-energy collision dissociation (EThcD) in terms of number of cross-linked peptides identified, but EThcD leads to better sequence coverage than HCD and thus easier localization of cross-linking sites.
Collapse
Affiliation(s)
- Martial Rey
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteur , Paris , 75015 , France
| | - Mathieu Dupré
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteur , Paris , 75015 , France
| | - Isabel Lopez-Neira
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteur , Paris , 75015 , France
| | - Magalie Duchateau
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteur , Paris , 75015 , France
| | - Julia Chamot-Rooke
- Mass Spectrometry for Biology Unit, CNRS USR 2000 , Institut Pasteur , Paris , 75015 , France
| |
Collapse
|
39
|
Papachristou EK, Kishore K, Holding AN, Harvey K, Roumeliotis TI, Chilamakuri CSR, Omarjee S, Chia KM, Swarbrick A, Lim E, Markowetz F, Eldridge M, Siersbaek R, D'Santos CS, Carroll JS. A quantitative mass spectrometry-based approach to monitor the dynamics of endogenous chromatin-associated protein complexes. Nat Commun 2018; 9:2311. [PMID: 29899353 PMCID: PMC5998130 DOI: 10.1038/s41467-018-04619-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/03/2018] [Indexed: 11/10/2022] Open
Abstract
Understanding the dynamics of endogenous protein-protein interactions in complex networks is pivotal in deciphering disease mechanisms. To enable the in-depth analysis of protein interactions in chromatin-associated protein complexes, we have previously developed a method termed RIME (Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins). Here, we present a quantitative multiplexed method (qPLEX-RIME), which integrates RIME with isobaric labelling and tribrid mass spectrometry for the study of protein interactome dynamics in a quantitative fashion with increased sensitivity. Using the qPLEX-RIME method, we delineate the temporal changes of the Estrogen Receptor alpha (ERα) interactome in breast cancer cells treated with 4-hydroxytamoxifen. Furthermore, we identify endogenous ERα-associated proteins in human Patient-Derived Xenograft tumours and in primary human breast cancer clinical tissue. Our results demonstrate that the combination of RIME with isobaric labelling offers a powerful tool for the in-depth and quantitative characterisation of protein interactome dynamics, which is applicable to clinical samples.
Collapse
Affiliation(s)
- Evangelia K Papachristou
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Andrew N Holding
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kate Harvey
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | - Soleilmane Omarjee
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Kee Ming Chia
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alex Swarbrick
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, UNSW, Sydney, NSW 2052, Australia
| | - Elgene Lim
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, UNSW, Sydney, NSW 2052, Australia
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Matthew Eldridge
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Rasmus Siersbaek
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Clive S D'Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK. Clive.D'
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK.
| |
Collapse
|
40
|
Pavlaki I, Alammari F, Sun B, Clark N, Sirey T, Lee S, Woodcock DJ, Ponting CP, Szele FG, Vance KW. The long non-coding RNA Paupar promotes KAP1-dependent chromatin changes and regulates olfactory bulb neurogenesis. EMBO J 2018; 37:embj.201798219. [PMID: 29661885 PMCID: PMC5978383 DOI: 10.15252/embj.201798219] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 01/08/2023] Open
Abstract
Many long non‐coding RNAs (lncRNAs) are expressed during central nervous system (CNS) development, yet their in vivo roles and mechanisms of action remain poorly understood. Paupar, a CNS‐expressed lncRNA, controls neuroblastoma cell growth by binding and modulating the activity of transcriptional regulatory elements in a genome‐wide manner. We show here that the Paupar lncRNA directly binds KAP1, an essential epigenetic regulatory protein, and thereby regulates the expression of shared target genes important for proliferation and neuronal differentiation. Paupar promotes KAP1 chromatin occupancy and H3K9me3 deposition at a subset of distal targets, through the formation of a ribonucleoprotein complex containing Paupar, KAP1 and the PAX6 transcription factor. Paupar‐KAP1 genome‐wide co‐occupancy reveals a fourfold enrichment of overlap between Paupar and KAP1 bound sequences, the majority of which also appear to associate with PAX6. Furthermore, both Paupar and Kap1 loss‐of‐function in vivo disrupt olfactory bulb neurogenesis. These observations provide important conceptual insights into the trans‐acting modes of lncRNA‐mediated epigenetic regulation and the mechanisms of KAP1 genomic recruitment, and identify Paupar and Kap1 as regulators of neurogenesis in vivo.
Collapse
Affiliation(s)
- Ioanna Pavlaki
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Farah Alammari
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Bin Sun
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Neil Clark
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Tamara Sirey
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Sheena Lee
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dan J Woodcock
- Warwick Systems Biology Centre, University of Warwick, Coventry, UK
| | - Chris P Ponting
- MRC Human Genetics Unit, The Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Keith W Vance
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
41
|
Nagalingam K, Lorenc MT, Manoli S, Cameron SL, Clarke AR, Dudley KJ. Chromatin immunoprecipitation (ChIP) method for non-model fruit flies (Diptera: Tephritidae) and evidence of histone modifications. PLoS One 2018; 13:e0194420. [PMID: 29543899 PMCID: PMC5854383 DOI: 10.1371/journal.pone.0194420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 03/03/2018] [Indexed: 11/19/2022] Open
Abstract
Interactions between DNA and proteins located in the cell nucleus play an important role in controlling physiological processes by specifying, augmenting and regulating context-specific transcription events. Chromatin immunoprecipitation (ChIP) is a widely used methodology to study DNA-protein interactions and has been successfully used in various cell types for over three decades. More recently, by combining ChIP with genomic screening technologies and Next Generation Sequencing (e.g. ChIP-seq), it has become possible to profile DNA-protein interactions (including covalent histone modifications) across entire genomes. However, the applicability of ChIP-chip and ChIP-seq has rarely been extended to non-model species because of a number of technical challenges. Here we report a method that can be used to identify genome wide covalent histone modifications in a group of non-model fruit fly species (Diptera: Tephritidae). The method was developed by testing and refining protocols that have been used in model organisms, including Drosophila melanogaster. We demonstrate that this method is suitable for a group of economically important pest fruit fly species, viz., Bactrocera dorsalis, Ceratitis capitata, Zeugodacus cucurbitae and Bactrocera tryoni. We also report an example ChIP-seq dataset for B. tryoni, providing evidence for histone modifications in the genome of a tephritid fruit fly for the first time. Since tephritids are major agricultural pests globally, this methodology will be a valuable resource to study taxa-specific evolutionary questions and to assist with pest management. It also provides a basis for researchers working with other non-model species to undertake genome wide DNA-protein interaction studies.
Collapse
Affiliation(s)
- Kumaran Nagalingam
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Michał T. Lorenc
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Sahana Manoli
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Stephen L. Cameron
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Qld, Australia
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Anthony R. Clarke
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| | - Kevin J. Dudley
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology (QUT), Brisbane, Qld, Australia
| |
Collapse
|
42
|
Poulsen LLC, Edelmann RJ, Krüger S, Diéguez-Hurtado R, Shah A, Stav-Noraas TE, Renzi A, Szymanska M, Wang J, Ehling M, Benedito R, Kasprzycka M, Bækkevold E, Sundnes O, Midwood KS, Scott H, Collas P, Siebel CW, Adams RH, Haraldsen G, Sundlisæter E, Hol J. Inhibition of Endothelial NOTCH1 Signaling Attenuates Inflammation by Reducing Cytokine-Mediated Histone Acetylation at Inflammatory Enhancers. Arterioscler Thromb Vasc Biol 2018; 38:854-869. [PMID: 29449332 DOI: 10.1161/atvbaha.117.310388] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/23/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Endothelial upregulation of adhesion molecules serves to recruit leukocytes to inflammatory sites and appears to be promoted by NOTCH1; however, current models based on interactions between active NOTCH1 and NF-κB components cannot explain the transcriptional selectivity exerted by NOTCH1 in this context. APPROACH AND RESULTS Observing that Cre/Lox-induced conditional mutations of endothelial Notch modulated inflammation in murine contact hypersensitivity, we found that IL (interleukin)-1β stimulation induced rapid recruitment of RELA (v-rel avian reticuloendotheliosis viral oncogene homolog A) to genomic sites occupied by NOTCH1-RBPJ (recombination signal-binding protein for immunoglobulin kappa J region) and that NOTCH1 knockdown reduced histone H3K27 acetylation at a subset of NF-κB-directed inflammatory enhancers. CONCLUSIONS Our findings reveal that NOTCH1 signaling supports the expression of a subset of inflammatory genes at the enhancer level and demonstrate how key signaling pathways converge on chromatin to coordinate the transition to an infla mmatory endothelial phenotype.
Collapse
Affiliation(s)
- Lars la Cour Poulsen
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Reidunn Jetne Edelmann
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Stig Krüger
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Rodrigo Diéguez-Hurtado
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Akshay Shah
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Tor Espen Stav-Noraas
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Anastasia Renzi
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Monika Szymanska
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Junbai Wang
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Manuel Ehling
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Rui Benedito
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Monika Kasprzycka
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Espen Bækkevold
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Olav Sundnes
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Kim S Midwood
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Helge Scott
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Philippe Collas
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Christian W Siebel
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Ralf H Adams
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Guttorm Haraldsen
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.).
| | - Eirik Sundlisæter
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| | - Johanna Hol
- From the Department of Pathology, Oslo University Hospital Rikshospitalet (L.l.C.P., R.J.E., S.K., T.E.S.-N., A.R., M.S., J.W., M.K., E.B., O.S., H.S., G.H., E.S., J.H.), Department of Pathology, Institute for Clinical Medical Sciences (H.S., G.H.) and Department of Molecular Medicine, Institute for Basal Medical Sciences (A.S., P.C.), University of Oslo, Norway; Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, University of Münster, Germany (R.D.-H., M.E., R.B., R.H.A.); Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, United Kingdom (K.S.M.); and Department of Discovery Oncology, Genentech, Inc, South San Francisco, CA (C.W.S.)
| |
Collapse
|
43
|
Ray S, Coulter DW, Gray SD, Sughroue JA, Roychoudhury S, McIntyre EM, Chaturvedi NK, Bhakat KK, Joshi SS, McGuire TR, Sharp JG. Suppression of STAT3 NH 2 -terminal domain chemosensitizes medulloblastoma cells by activation of protein inhibitor of activated STAT3 via de-repression by microRNA-21. Mol Carcinog 2018; 57:536-548. [PMID: 29280516 DOI: 10.1002/mc.22778] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is a malignant pediatric brain tumor with poor prognosis. Signal transducers and activators of transcription-3 (STAT3) is constitutively activated in MB where it functions as an oncoprotein, mediating cancer progression and metastasis. Here, we have delineated the functional role of activated STAT3 in MB, by using a cell permeable STAT3-NH2 terminal domain inhibitor (S3-NTDi) that specifically perturbs the structure/function of STAT3. We have implemented several biochemical experiments using human MB tumor microarray (TMA) and pediatric MB cell lines, derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/SHH tumors. Treatment of MB cells with S3-NTDi leads to growth inhibition, cell cycle arrest, and apoptosis. S3-NTDi downregulated expression of STAT3 target genes, delayed migration of MB cells, attenuated epithelial-mesenchymal transition (EMT) marker expressions and reduced cancer stem-cell associated protein expressions in MB-spheres. To elucidate mechanisms, we showed that S3-NTDi induce expression of pro-apoptotic gene, C/EBP-homologous protein (CHOP), and decrease association of STAT3 to the proximal promoter of CCND1 and BCL2. Of note, S3-NTDi downregulated microRNA-21, which in turn, de-repressed Protein Inhibitor of Activated STAT3 (PIAS3), a negative regulator of STAT3 signaling pathway. Furthermore, combination therapy with S3-NTDi and cisplatin significantly decreased highly aggressive MYC-amplified MB cell growth and induced apoptosis by downregulating STAT3 regulated proliferation and anti-apoptotic gene expression. Together, our results revealed an important role of STAT3 in regulating MB pathogenesis. Disruption of this pathway with S3-NTDi, therefore, may serves as a promising candidate for targeted MB therapy by enhancing chemosensitivity of MB cells and potentially improving outcomes in high-risk patients.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Don W Coulter
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shawn D Gray
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason A Sughroue
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shrabasti Roychoudhury
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Erin M McIntyre
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nagendra K Chaturvedi
- Department of Pediatrics, Hematology and Oncology Division, University of Nebraska Medical Center, Omaha, Nebraska
| | - Kishor K Bhakat
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Shantaram S Joshi
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Timothy R McGuire
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska
| | - John G Sharp
- Department of Genetics, Cell Biology, and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
44
|
Ernst O, Vayttaden SJ, Fraser IDC. Measurement of NF-κB Activation in TLR-Activated Macrophages. Methods Mol Biol 2018; 1714:67-78. [PMID: 29177856 DOI: 10.1007/978-1-4939-7519-8_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nuclear factor kappa-B (NF-κB) is a key transcription factor in the regulation of the innate immune inflammatory response in activated macrophages. NF-κB functions as a homo- or hetero-dimer derived from one or more of the five members of the NF-κB family, and is activated through a well-studied process of stimulus-dependent inhibitor degradation, post-translational modification, nuclear translocation, and chromatin binding. Its activity is subject to multiple levels of feedback control through both inhibitor protein activity and direct regulation of NF-κB components. Many methods have been developed to measure and quantify NF-κB activation. In this chapter, we summarize available methods and present a protocol for image-based measurement of NF-κB activation in macrophages activated with microbial stimuli. Using either a stably expressed GFP-tagged fusion of the RelA NF-κB protein, or direct detection of endogenous RelA by immunocytochemistry, we describe data collection and analysis to quantify NF-κB cytosol to nuclear translocation in single cells using fluorescence microscopy.
Collapse
Affiliation(s)
- Orna Ernst
- Signaling Systems Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sharat J Vayttaden
- Signaling Systems Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Iain D C Fraser
- Signaling Systems Unit, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
45
|
Abstract
Macrophages are highly polymorphic depending upon their cellular origin and their tissue environment. The different forms that a macrophage can adopt fundamentally reflect different transcription patterns. In addition, macrophages are exquisitely sensitive to a wide variety of signals coming from either infectious agents or damaged tissues. Most of the responses to these signals involve rapid and massive modifications of transcription. The control of transcription relies on the one hand on the posttranslational modification of histones, and on the other hand on the binding on the chromatin of multiple protein complexes. Immunoprecipitation of cross-linked chromatin with specific antibodies will allow to identify the DNA regions bound by the targeted protein, or carrying the targeted histone modification. By taking a snapshot of the macrophage chromatin composition, this technique will be useful to address specific macrophage biology questions at the DNA level, but also to tackle fundamental problems in transcriptional control in a highly suited model cellular system. In this chapter we describe a protocol of chromatin immunoprecipitation in murine bone marrow-derived macrophages that can easily be adapted to other macrophage populations.
Collapse
|
46
|
Wang J, Ye Q, Cao Y, Guo Y, Huang X, Mi W, Liu S, Wang C, Yang HS, Zhou BP, Evers BM, She QB. Snail determines the therapeutic response to mTOR kinase inhibitors by transcriptional repression of 4E-BP1. Nat Commun 2017; 8:2207. [PMID: 29263324 PMCID: PMC5738350 DOI: 10.1038/s41467-017-02243-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 11/15/2017] [Indexed: 12/20/2022] Open
Abstract
Loss of 4E-BP1 expression has been linked to cancer progression and resistance to mTOR inhibitors, but the mechanism underlying 4E-BP1 downregulation in tumors remains unclear. Here we identify Snail as a strong transcriptional repressor of 4E-BP1. We find that 4E-BP1 expression inversely correlates with Snail level in cancer cell lines and clinical specimens. Snail binds to three E-boxes present in the human 4E-BP1 promoter to repress transcription of 4E-BP1. Ectopic expression of Snail in cancer cell lines lacking Snail profoundly represses 4E-BP1 expression, promotes cap-dependent translation in polysomes, and reduces the anti-proliferative effect of mTOR kinase inhibitors. Conversely, genetic and pharmacological inhibition of Snail function restores 4E-BP1 expression and sensitizes cancer cells to mTOR kinase inhibitors by enhancing 4E-BP1-mediated translation-repressive effect on cell proliferation and tumor growth. Our study reveals a critical Snail-4E-BP1 signaling axis in tumorigenesis, and provides a rationale for targeting Snail to improve mTOR-targeted therapies. 4E-BP1 is a translational repressor critical in mTOR signaling, whereas Snail is a critical promoter of epithelial to mesenchymal transition. Here the authors show that Snail induces resistance to mTOR inhibitors by repressing 4E-BP1 expression and promoting cell cycle progression via upregulating cycD.
Collapse
Affiliation(s)
- Jun Wang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Qing Ye
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Yanan Cao
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Yubin Guo
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiuping Huang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenting Mi
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Chi Wang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Biostatistics, University of Kentucky College of Public Health, Lexington, KY, 40506, USA
| | - Hsin-Sheng Yang
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Binhua P Zhou
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - B Mark Evers
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.,Department of Surgery, University of Kentucky College of Medicine, Lexington, KY, 40506, USA
| | - Qing-Bai She
- Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40506, USA. .,Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, 40506, USA.
| |
Collapse
|
47
|
Rahmoun M, Lavery R, Laurent-Chaballier S, Bellora N, Philip GK, Rossitto M, Symon A, Pailhoux E, Cammas F, Chung J, Bagheri-Fam S, Murphy M, Bardwell V, Zarkower D, Boizet-Bonhoure B, Clair P, Harley VR, Poulat F. In mammalian foetal testes, SOX9 regulates expression of its target genes by binding to genomic regions with conserved signatures. Nucleic Acids Res 2017; 45:7191-7211. [PMID: 28472341 PMCID: PMC5499551 DOI: 10.1093/nar/gkx328] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/17/2017] [Indexed: 01/22/2023] Open
Abstract
In mammalian embryonic gonads, SOX9 is required for the determination of Sertoli cells that orchestrate testis morphogenesis. To identify genetic networks directly regulated by SOX9, we combined analysis of SOX9-bound chromatin regions from murine and bovine foetal testes with sequencing of RNA samples from mouse testes lacking Sox9. We found that SOX9 controls a conserved genetic programme that involves most of the sex-determining genes. In foetal testes, SOX9 modulates both transcription and directly or indirectly sex-specific differential splicing of its target genes through binding to genomic regions with sequence motifs that are conserved among mammals and that we called ‘Sertoli Cell Signature’ (SCS). The SCS is characterized by a precise organization of binding motifs for the Sertoli cell reprogramming factors SOX9, GATA4 and DMRT1. As SOX9 biological role in mammalian gonads is to determine Sertoli cells, we correlated this genomic signature with the presence of SOX9 on chromatin in foetal testes, therefore equating this signature to a genomic bar code of the fate of foetal Sertoli cells. Starting from the hypothesis that nuclear factors that bind to genomic regions with SCS could functionally interact with SOX9, we identified TRIM28 as a new SOX9 partner in foetal testes.
Collapse
Affiliation(s)
- Massilva Rahmoun
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| | - Rowena Lavery
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Sabine Laurent-Chaballier
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France
| | - Nicolas Bellora
- Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC), Universidad Nacional del Comahue - CONICET, Bariloche, Argentina
| | - Gayle K Philip
- VLSCI, LAB-14, 700 Swanston Street, Carlton 3053, Victoria, Australia
| | - Moïra Rossitto
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| | - Aleisha Symon
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Eric Pailhoux
- INRA Biologie du Développement et Reproduction, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France
| | - Florence Cammas
- Institut de Recherche en Cancérologie de Montpellier, IRCM, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier F-34298, France
| | - Jessica Chung
- VLSCI, LAB-14, 700 Swanston Street, Carlton 3053, Victoria, Australia
| | - Stefan Bagheri-Fam
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Mark Murphy
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson hall, 321 Church St, SE, Minneapolis, MN 55455, USA
| | - Vivian Bardwell
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson hall, 321 Church St, SE, Minneapolis, MN 55455, USA
| | - David Zarkower
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson hall, 321 Church St, SE, Minneapolis, MN 55455, USA
| | - Brigitte Boizet-Bonhoure
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| | - Philippe Clair
- University of Montpellier, Montpellier GenomiX, bat 24, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Vincent R Harley
- The Hudson Institute of Medical Research and Department of Anatomy, Monash University, Melbourne, Australia
| | - Francis Poulat
- Institute of Human Genetics, CNRS-University of Montpellier UMR9002, 34396 Montpellier cedex 5, France
| |
Collapse
|
48
|
Ravindran P, Verma V, Stamm P, Kumar PP. A Novel RGL2-DOF6 Complex Contributes to Primary Seed Dormancy in Arabidopsis thaliana by Regulating a GATA Transcription Factor. MOLECULAR PLANT 2017; 10:1307-1320. [PMID: 28917589 DOI: 10.1016/j.molp.2017.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 05/17/2023]
Abstract
The DELLA protein RGA-LIKE2 (RGL2) is a key transcriptional repressor of gibberellic acid (GA) signaling that regulates seed germination. We identified GATA12, a gene encoding a GATA-type zinc finger transcription factor, as one of the downstream targets of RGL2 in Arabidopsis thaliana. Our data show that freshly harvested (unstratified) seeds of GATA12 antisense suppression lines have reduced dormancy compared with the wild-type, while ectopic expression lines show enhanced seed dormancy. We show that GATA12 expression is negatively regulated by GA, and its transcript levels decline dramatically under dormancy-breaking conditions such as dry storage and cold stratification of seeds. GATA12 promoter has several GAMYB- and DOF-associated motifs that are known to be GA- and RGL2-responsive, respectively. Chromatin immunoprecipitation assay showed that a protein complex containing RGL2 can bind to GATA12 promoter and thereby regulate its expression. RGL2 lacks a DNA binding domain and requires a transcription factor to induce GATA12 expression. Our data show that this RGL2-containing protein complex includes DNA BINDING1 ZINC FINGER6 (DOF6), which is a known negative regulator of germination in freshly harvested seeds. We further show that this novel RGL2-DOF6 complex is required for activating GATA12 expression, thus revealing a molecular mechanism to enforce primary seed dormancy.
Collapse
Affiliation(s)
- Pratibha Ravindran
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Vivek Verma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Petra Stamm
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Prakash P Kumar
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
49
|
EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma. Oncogene 2017; 36:5995-6005. [PMID: 28671673 PMCID: PMC5666320 DOI: 10.1038/onc.2017.202] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 02/06/2023]
Abstract
Ewing sarcoma (EWS) is a paediatric bone cancer with high metastatic potential. Cellular plasticity resulting from dynamic cytoskeletal reorganization, typically regulated via the Rho pathway, is a prerequisite for metastasis initiation. Here, we interrogated the role of the Ewing sarcoma driver oncogene EWS-FLI1 in cytoskeletal reprogramming. We report that EWS-FLI1 strongly represses the activity of the Rho-F-actin signal pathway transcriptional effector MRTFB, affecting the expression of a large number of EWS-FLI1-anticorrelated genes including structural and regulatory cytoskeletal genes. Consistent with this finding, chromatin immunoprecipitation sequencing (ChIP-seq) revealed strong overlaps in myocardin-related transcription factor B (MRTFB) and EWS-FLI1 chromatin occupation, especially for EWS-FLI1-anticorrelated genes. Binding of the transcriptional co-activator Yes-associated protein (YAP)-1, enrichment of TEAD-binding motifs in these shared genomic binding regions and overlapping transcriptional footprints of MRTFB and TEAD factors led us to propose synergy between MRTFB and the YAP/TEAD complex in the regulation of EWS-FLI1-anticorrelated genes. We propose that EWS-FLI1 suppresses the Rho-actin pathway by perturbation of a MRTFB/YAP-1/TEAD transcriptional module, which directly affects the actin-autoregulatory feedback loop. As spontaneous fluctuations in EWS-FLI1 levels of Ewing sarcoma cells in vitro and in vivo, associated with a switch between a proliferative, non-migratory EWS-FLI1-high and a non-proliferative highly migratory EWS-FLI1-low state, were recently described, our data provide a mechanistic basis for the underlying EWS-FLI1-dependent reversible cytoskeletal reprogramming of Ewing sarcoma cells.
Collapse
|
50
|
Tiwari V, Kamran MZ, Ranjan A, Nimesh H, Singh M, Tandon V. Akt1/NFκB signaling pathway activation by a small molecule DMA confers radioprotection to intestinal epithelium in xenograft model. Free Radic Biol Med 2017; 108:564-574. [PMID: 28435051 DOI: 10.1016/j.freeradbiomed.2017.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/06/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Normal tissue protection and recovery of radiation-induced damage are of paramount importance for development of radioprotector. Radioprotector which selectively protects normal tissues over cancerous tissues improves the therapeutic window of radiation therapy. In the present study, small bisbenzimidazole molecule, DMA (5-(4-methylpiperazin-1-yl)-2-[2'-(3,4-dimethoxy-phenyl)-5'-benzimidazolyl]-benzimidazole) was evaluated for in vivo radioprotective effects to selectively protect normal tissue over tumor with underlying molecular mechanism. Administration of single DMA dose prior to radiation has enhanced survival of Balb/c mice against sublethal and supralethal total body irradiation. DMA ameliorated radiation-induced damage of normal tissues such as hematopoietic (HP) and gastrointestinal tract (GI) system. Oxidative stress marker Malondialdehyde level was decreased by DMA whereas it maintained endogenous antioxidant status by increasing the level of reduced glutathione, glutathione reductase, glutathione-s-transferase, superoxide dismutase and total thiol content in hepatic tissue of irradiated mice. Mechanistic studies revealed that DMA treatment prior to radiation leads to Akt1/NFκB signaling which reduced radiation-induced genomic instability in normal cells. However, these pathways were not activated in tumor tissues when subjected to DMA treatment in similar conditions. Abrogation of Akt1 and NFκB genes resulted in no radioprotection by DMA and enhanced apoptosis against radiation. Plasma half-life of DMA was 3.5h and 2.65h at oral and intravenous dose respectively and 90% clearance was observed in 16h. In conclusion, these data suggests that DMA has potential to be developed as a safe radioprotective agent for radiation countermeasures and an adjuvant in cancer therapy.
Collapse
Affiliation(s)
- Vinod Tiwari
- Chemical Biology Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Mohammad Zahid Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi 110067, India
| | - Atul Ranjan
- Department of Cancer Biology, The University of Kansas Cancer Center, 3901 Rainbow Blvd, Kansas City, KS 66010, USA
| | - Hemlata Nimesh
- Chemical Biology Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Manish Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi 110067, India
| | - Vibha Tandon
- Chemical Biology Research Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India; Special Centre for Molecular Medicine, Jawaharlal Nehru University, Delhi 110067, India.
| |
Collapse
|