1
|
El-Agamy SE, Guillaud L, Kono K, Wu Y, Terenzio M. FMRP Long-Range Transport and Degradation Are Mediated by Dynlrb1 in Sensory Neurons. Mol Cell Proteomics 2023; 22:100653. [PMID: 37739344 PMCID: PMC10625159 DOI: 10.1016/j.mcpro.2023.100653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
The fragile X messenger ribonucleoprotein 1 (FMRP) is a multifunctional RNA-binding protein implicated in human neurodevelopmental and neurodegenerative disorders. FMRP mediates the localization and activity-dependent translation of its associated mRNAs through the formation of phase-separated condensates that are trafficked by microtubule-based motors in axons. Axonal transport and localized mRNA translation are critical processes for long-term neuronal survival and are closely linked to the pathogenesis of neurological diseases. FMRP dynein-mediated axonal trafficking is still largely unexplored but likely to constitute a key process underlying FMRP spatiotemporal translational regulation. Here, we show that dynein light chain roadblock 1 (Dynlrb1), a subunit of the dynein complex, is a critical regulator of FMRP function. In sensory axons, FMRP associates with endolysosomal organelles, likely through annexin A11, and is retrogradely trafficked by the dynein complex in a Dynlrb1-dependent manner. Moreover, Dynlrb1 silencing induced FMRP granule accumulation and repressed the translation of microtubule-associated protein 1b, one of its primary mRNA targets. Our findings suggest that Dynlrb1 regulates FMRP function through the control of its transport and targeted degradation.
Collapse
Affiliation(s)
- Sara Emad El-Agamy
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Laurent Guillaud
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Keiko Kono
- Membranology Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan
| | - Yibo Wu
- YCI Laboratory for Next-Generation Proteomics, RIKEN Center of Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Chemical Biology Mass Spectrometry Platform (ChemBioMS), Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Marco Terenzio
- Molecular Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Kunigami-gun, Okinawa, Japan.
| |
Collapse
|
2
|
Katz LS, Argmann C, Lambertini L, Scott DK. T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Mol Metab 2022; 66:101646. [PMID: 36455788 PMCID: PMC9731891 DOI: 10.1016/j.molmet.2022.101646] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Thyroid hormone (T3) and high glucose concentrations are critical components of β-cell maturation and function. In the present study, we asked whether T3 and glucose signaling pathways coordinately regulate transcription of genes important for β-cell function and proliferation. METHODS RNA-seq analysis was performed on cadaveric human islets from five different donors in response to low and high glucose concentrations and in the presence or absence of T3. Gene expression was also studies in sorted human β-cells, mouse islets and Ins-1 cells by RT-qPCR. Silencing of the thyroid hormone receptors (THR) was conducted using lentiviruses. Proliferation was assessed by ki67 immunostaining in primary human/mouse islets. Chromatin immunoprecipitation and proximity ligation assay were preformed to validate interactions of ChREBP and THR. RESULTS We found glucose-mediated expression of carbohydrate response element binding protein alpha and beta (ChREBPα and ChREBPβ) mRNAs and their target genes are highly dependent on T3 concentrations in rodent and human β-cells. In β-cells, T3 and glucose coordinately regulate the expression of ChREBPβ and PCK1 (phosphoenolpyruvate carboxykinase-1) among other important genes for β-cell maturation. Additionally, we show the thyroid hormone receptor (THR) and ChREBP interact, and their relative response elements are located near to each other on mutually responsive genes. In FACS-sorted adult human β-cells, we found that high concentrations of glucose and T3 induced the expression of PCK1. Next, we show that overexpression of Pck1 together with dimethyl malate (DMM), a substrate precursor, significantly increased β-cell proliferation in human islets. Finally, using a Cre-Lox approach, we demonstrated that ChREBPβ contributes to Pck1-dependent β-cell proliferation in mouse β-cells. CONCLUSIONS We conclude that T3 and glucose act together to regulate ChREBPβ, leading to increased expression and activity of Pck1, and ultimately increased β-cell proliferation.
Collapse
Affiliation(s)
- Liora S Katz
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Carmen Argmann
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Treppiedi D, Marra G, Di Muro G, Catalano R, Mangili F, Esposito E, Calebiro D, Arosio M, Peverelli E, Mantovani G. Dimerization of GPCRs: Novel insight into the role of FLNA and SSAs regulating SST 2 and SST 5 homo- and hetero-dimer formation. Front Endocrinol (Lausanne) 2022; 13:892668. [PMID: 35992099 PMCID: PMC9389162 DOI: 10.3389/fendo.2022.892668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
The process of GPCR dimerization can have profound effects on GPCR activation, signaling, and intracellular trafficking. Somatostatin receptors (SSTs) are class A GPCRs abundantly expressed in pituitary tumors where they represent the main pharmacological targets of somatostatin analogs (SSAs), thanks to their antisecretory and antiproliferative actions. The cytoskeletal protein filamin A (FLNA) directly interacts with both somatostatin receptor type 2 (SST2) and 5 (SST5) and regulates their expression and signaling in pituitary tumoral cells. So far, the existence and physiological relevance of SSTs homo- and hetero-dimerization in the pituitary have not been explored. Moreover, whether octreotide or pasireotide may play modulatory effects and whether FLNA may participate to this level of receptor organization have remained elusive. Here, we used a proximity ligation assay (PLA)-based approach for the in situ visualization and quantification of SST2/SST5 dimerization in rat GH3 as well as in human melanoma cells either expressing (A7) or lacking (M2) FLNA. First, we observed the formation of endogenous SST5 homo-dimers in GH3, A7, and M2 cells. Using the PLA approach combined with epitope tagging, we detected homo-dimers of human SST2 in GH3, A7, and M2 cells transiently co-expressing HA- and SNAP-tagged SST2. SST2 and SST5 can also form endogenous hetero-dimers in these cells. Interestingly, FLNA absence reduced the basal number of hetero-dimers (-36.8 ± 6.3% reduction of PLA events in M2, P < 0.05 vs. A7), and octreotide but not pasireotide promoted hetero-dimerization in both A7 and M2 (+20.0 ± 11.8% and +44.1 ± 16.3% increase of PLA events in A7 and M2, respectively, P < 0.05 vs. basal). Finally, immunofluorescence data showed that SST2 and SST5 recruitment at the plasma membrane and internalization are similarly induced by octreotide and pasireotide in GH3 and A7 cells. On the contrary, in M2 cells, octreotide failed to internalize both receptors whereas pasireotide promoted robust receptor internalization at shorter times than in A7 cells. In conclusion, we demonstrated that in GH3 cells SST2 and SST5 can form both homo- and hetero-dimers and that FLNA plays a role in the formation of SST2/SST5 hetero-dimers. Moreover, we showed that FLNA regulates SST2 and SST5 intracellular trafficking induced by octreotide and pasireotide.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giusy Marra
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Genesio Di Muro
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- University Sapienza of Rome, Rome, Italy
| | - Rosa Catalano
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Federica Mangili
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Emanuela Esposito
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Maura Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Erika Peverelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- *Correspondence: Erika Peverelli,
| | - Giovanna Mantovani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Endocrinology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
4
|
Mao H, Sun Y. Neddylation-Independent Activities of MLN4924. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:363-372. [PMID: 31898238 DOI: 10.1007/978-981-15-1025-0_21] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MLN4924, also known as pevonedistat, is a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8)-activating enzyme (NAE) to block the entire neddylation modification cascade, leading to inactivation of cullin-RING ligases (CRLs), since activation of CRLs requires cullin neddylation. MLN4924 showed impressive anticancer activity in many preclinical studies and is currently in several Phase I/II clinical trials for anticancer therapy as a single agent or in combination with chemotherapeutic drugs.In addition to well-characterized anti-neddylation activity, recent studies showed that MLN4924 has several neddylation-independent activities. First, MLN4924 triggers EGFR dimerization to activate EGFR and its downstream RAS/MAPK and PI3K/AKT1 signals, leading to enhanced tumor sphere formation, accelerated EGF-mediated wound healing, and inhibited ciliogenesis. Second, MLN4924 induces PKM2 tetramerization to promote glycolysis, thus affecting energy metabolism. Third, MLN4924 inhibits the interaction between ACT1 (NF-κB activator 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) and attenuates IL-17A-mediated activation of NF-κB to reduce pulmonary inflammation. Fourth, MLN4924 inhibits IRF3 binding to the IFN-β promoter to inhibit IFN-β production. And finally, MLN4924 activates the JNK signaling pathway to reduce c-FLIP levels, thus enhancing TRAIL-induced apoptosis. This chapter will summarize these neddylation-independent activities of MLN4924 and discuss the underlying mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Hongmei Mao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Gilbert Family Neurofibromatosis Institute, Centers for Cancer and Immunology Research and Neuroscience Research, The Children's National Hospital, Washington, DC, USA
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Krieger CC, Boutin A, Jang D, Morgan SJ, Banga JP, Kahaly GJ, Klubo-Gwiezdzinska J, Neumann S, Gershengorn MC. Arrestin-β-1 Physically Scaffolds TSH and IGF1 Receptors to Enable Crosstalk. Endocrinology 2019; 160:1468-1479. [PMID: 31127272 PMCID: PMC6542485 DOI: 10.1210/en.2019-00055] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/20/2019] [Indexed: 01/14/2023]
Abstract
Endogenously expressed TSH receptors (TSHRs) on orbital fibroblasts of patients with Graves ophthalmopathy (GO) use crosstalk with IGF1 receptors (IGF1R) to synergistically stimulate secretion of hyaluronan (HA), a major component of GO pathology. We previously showed crosstalk occurred upstream of mitogen-activated protein kinase (ERK) phosphorylation. Because other G protein-coupled receptors engage arrestin-β-1 (ARRB1) and ERK, we tested whether ARRB1 was a necessary component of TSHR/IGF1R crosstalk. HA secretion was stimulated by the TSHR-stimulating monoclonal antibodies M22 and KSAb1, or immunoglobulins from patients with GO (GO-Igs). Treatment with M22, as previously shown, resulted in biphasic dose-response stimulation of HA secretion. The high-potency phase was IGF1R dependent, and the low-potency phase was partly IGF1R independent. KSAb1 produced a monophasic dose-response stimulation of HA secretion, whose potency was lowered >20-fold after IGF1R knockdown. ARRB1 knockdown abolished M22's high-potency phase and lowered KSAb1's potency and efficacy. ARRB1 knockdown inhibited GO-Ig stimulation of HA secretion and of ERK phosphorylation. Last, ARRB1 was shown to be necessary for TSHR/IGF1R proximity. In contrast, ARRB2 knockdowns did not show these effects. Thus, TSHR must neighbor IGF1R for crosstalk in GO fibroblasts to occur, and this depends on ARRB1 acting as a scaffold. Similar scaffolding of TSHR and IGF1R by ARRB1 was found in human osteoblast-like cells and human thyrocytes. These findings support a model of TSHR/IGF1R crosstalk that may be a general mechanism for G-protein-coupled receptor/receptor tyrosine kinase crosstalk dependent on ARRB1.
Collapse
Affiliation(s)
- Christine C Krieger
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Alisa Boutin
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daesong Jang
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah J Morgan
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - J Paul Banga
- Faculty of Life Sciences & Medicine, King’s College London, The Rayne Institute, London, United Kingdom
| | - George J Kahaly
- Molecular Thyroid Research Laboratory, Department of Medicine I, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Joanna Klubo-Gwiezdzinska
- Metabolic Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Susanne Neumann
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marvin C Gershengorn
- Laboratory of Endocrinology and Receptor Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
6
|
LSD1 destabilizes FBXW7 and abrogates FBXW7 functions independent of its demethylase activity. Proc Natl Acad Sci U S A 2019; 116:12311-12320. [PMID: 31152129 DOI: 10.1073/pnas.1902012116] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FBXW7 acts as a typical tumor suppressor, with loss-of-function alterations in human cancers, by promoting ubiquitylation and degradation of many oncoproteins. Lysine-specific demethylase 1 (LSD1) is a well-characterized histone demethylase. Whether LSD1 has demethylase-independent activity remains elusive. Here we report that LSD1 directly binds to FBXW7 to destabilize FBXW7 independent of its demethylase activity. Specifically, LSD1 is a pseudosubstrate of FBXW7 and LSD1-FBXW7 binding does not trigger LSD1 ubiquitylation, but instead promotes FBXW7 self-ubiquitylation by preventing FBXW7 dimerization. The self-ubiquitylated FBXW7 is subjected to degradation by proteasome as well as lysosome in a manner dependent on autophagy protein p62/SQSTM1. Biologically, LSD1 destabilizes FBXW7 to abrogate its functions in growth suppression, nonhomologous end-joining repair, and radioprotection. Collectively, our study revealed a previously unknown activity of LSD1, which likely contributes to its oncogenic function. Targeting LSD1 protein, not only its demethylase activity, might be a unique approach for LSD1-based drug discovery for anticancer application.
Collapse
|
7
|
Chen X, Cai G, Liu C, Zhao J, Gu C, Wu L, Hamilton TA, Zhang CJ, Ko J, Zhu L, Qin J, Vidimos A, Koyfman S, Gastman BR, Jensen KB, Li X. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1 + stem cells. J Exp Med 2018; 216:195-214. [PMID: 30578323 PMCID: PMC6314525 DOI: 10.1084/jem.20171849] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/10/2018] [Accepted: 10/23/2018] [Indexed: 12/31/2022] Open
Abstract
This study provides mechanistic insight into how IL-17 receptor adopts EGFR to activate ERK5 axis in Lrig1+ stem cells for their proliferation and migration during wounding healing and tumorigenesis. Lrig1 marks a distinct population of stem cells restricted to the upper pilosebaceous unit in normal epidermis. Here we report that IL-17A–mediated activation of EGFR plays a critical role in the expansion and migration of Lrig1+ stem cells and their progenies in response to wounding, thereby promoting wound healing and skin tumorigenesis. Lrig1-specific deletion of the IL-17R adaptor Act1 or EGFR in mice impairs wound healing and reduces tumor formation. Mechanistically, IL-17R recruits EGFR for IL-17A–mediated signaling in Lrig1+ stem cells. While TRAF4, enriched in Lrig1+ stem cells, tethers IL-17RA and EGFR, Act1 recruits c-Src for IL-17A–induced EGFR transactivation and downstream activation of ERK5, which promotes the expansion and migration of Lrig1+ stem cells. This study demonstrates that IL-17A activates the IL-17R–EGFR axis in Lrig1+ stem cells linking wound healing to tumorigenesis.
Collapse
Affiliation(s)
- Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Gang Cai
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Chunfang Gu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Ling Wu
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Thomas A Hamilton
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Cun-Jin Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| | - Jennifer Ko
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Anatomical Pathology, Cleveland Clinic, Cleveland, OH
| | - Liang Zhu
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
| | - Jun Qin
- Department of Molecular Cardiology, Cleveland Clinic, Cleveland, OH
| | | | - Shlomo Koyfman
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, OH
| | - Brian R Gastman
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH.,Department of Dermatology, Cleveland Clinic, Cleveland, OH.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, OH
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
8
|
In Situ Proximity Ligation Assay (PLA) Analysis of Protein Complexes Formed Between Golgi-Resident, Glycosylation-Related Transporters and Transferases in Adherent Mammalian Cell Cultures. Methods Mol Biol 2018; 1496:133-43. [PMID: 27632007 DOI: 10.1007/978-1-4939-6463-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In situ proximity ligation assay (PLA) is a novel, revolutionary technique that can be employed to visualize protein complexes in fixed cells and tissues. This approach enables demonstration of close (i.e., up to 40 nm) proximity between any two proteins of interest that can be detected using a pair of specific antibodies that have been raised in distinct species. Primary antibodies bound to the target proteins are subsequently recognized by two PLA probes, i.e., secondary antibodies conjugated with oligonucleotides that anneal when brought into close proximity in the presence of two connector oligonucleotides and a DNA ligase forming a circular DNA molecule. In the next step, the resulting circular DNA is amplified by a rolling circle polymerase. Finally, fluorescent oligonucleotide probes hybridize to complementary fragments of the amplified DNA molecule, forming a typical, spot-like pattern of PLA signal that reflects subcellular localization of protein complexes. Here we describe the use of in situ PLA in adherent cultures of mammalian cells in order to visualize interactions between Golgi-resident, functionally related glycosyltransferases and nucleotide sugar transporters relevant to N-glycan biosynthesis.
Collapse
|
9
|
Battistone MA, Nair AV, Barton CR, Liberman RN, Peralta MA, Capen DE, Brown D, Breton S. Extracellular Adenosine Stimulates Vacuolar ATPase-Dependent Proton Secretion in Medullary Intercalated Cells. J Am Soc Nephrol 2017; 29:545-556. [PMID: 29222395 DOI: 10.1681/asn.2017060643] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Acidosis is an important complication of AKI and CKD. Renal intercalated cells (ICs) express the proton pumping vacuolar H+-ATPase (V-ATPase) and are extensively involved in acid-base homeostasis. H+ secretion in type A intercalated cells (A-ICs) is regulated by apical vesicle recycling and stimulated by cAMP. In other cell types, cAMP is increased by extracellular agonists, including adenosine, through purinergic receptors. Adenosine is a Food and Drug Administration-approved drug, but very little is known about the effect of adenosine on IC function. Therefore, we investigated the role of adenosine in the regulation of V-ATPase in ICs. Intravenous treatment of mice with adenosine or agonists of ADORA2A and ADORA2B purinergic P1 receptors induced V-ATPase apical membrane accumulation in medullary A-ICs but not in cortical A-ICs or other IC subtypes. Both receptors are located in A-IC apical membranes, and adenosine injection increased urine adenosine concentration and decreased urine pH. Cell fractionation showed that adenosine or an ADORA2A or ADORA2B agonist induced V-ATPase translocation from vesicles to the plasma membrane and increased protein kinase A (PKA)-dependent protein phosphorylation in purified medullary ICs that were isolated from mice. Either ADORA2A or ADORA2B antagonists or the PKA inhibitor mPKI blocked these effects. Finally, a fluorescence pH assay showed that adenosine activates V-ATPase in isolated medullary ICs. Our study shows that medullary A-ICs respond to luminal adenosine through ADORA2A and ADORA2B receptors in a cAMP/PKA pathway-dependent mechanism to induce V-ATPase-dependent H+ secretion.
Collapse
Affiliation(s)
- Maria A Battistone
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anil V Nair
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claire R Barton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rachel N Liberman
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria A Peralta
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane E Capen
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dennis Brown
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sylvie Breton
- Program in Membrane Biology, Center for Systems Biology, Nephrology Division, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. Nat Commun 2017; 8:1775. [PMID: 29176560 PMCID: PMC5701173 DOI: 10.1038/s41467-017-01854-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/19/2017] [Indexed: 01/06/2023] Open
Abstract
Integration of chemical probes into proteomic workflows enables the interrogation of protein activity, rather than abundance. Current methods limit the biological contexts that can be addressed due to sample homogenization, signal-averaging, and bias toward abundant proteins. Here we report a platform that integrates family-wide chemical probes with proximity-dependent oligonucleotide amplification and imaging to quantify enzyme activity in native contexts with high spatial resolution. Application of this method, activity-dependent proximity ligation (ADPL), to serine hydrolase and cysteine protease enzymes enables quantification of differential enzyme activity resulting from endogenous changes in localization and expression. In a competitive format, small-molecule target engagement with endogenous proteins in live cells can be quantified. Finally, retention of sample architecture enables interrogation of complex environments such as cellular co-culture and patient samples. ADPL should be amenable to diverse probe and protein families to detect active enzymes at scale and resolution out of reach with current methods. The interrogation of enzyme activity involves the ensemble averaging of many cells, loss of spatial relationships and is often biased to abundant proteins. Here the authors develop activity-dependent proximity ligation to quantify enzyme activity at the cellular and sub-cellular level in relevant biological contexts.
Collapse
|
11
|
Samarasekera GDNG, Auld VJ. C-terminal Src kinase (Csk) regulates the tricellular junction protein Gliotactin independent of Src. Mol Biol Cell 2017; 29:123-136. [PMID: 29167383 PMCID: PMC5909926 DOI: 10.1091/mbc.e17-04-0251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/30/2022] Open
Abstract
The tricellular junction (TCJ) forms at the convergence of three neighboring epithelia. The targeting of Gliotactin, an essential TCJ protein, to the TCJ is controlled by phosphorylation and endocytosis. C-terminal Src kinase controls endocytosis of Gliotactin in an Src-independent manner. Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein.
Collapse
Affiliation(s)
| | - Vanessa Jane Auld
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
12
|
Leloup N, Lössl P, Meijer DH, Brennich M, Heck AJR, Thies-Weesie DME, Janssen BJC. Low pH-induced conformational change and dimerization of sortilin triggers endocytosed ligand release. Nat Commun 2017; 8:1708. [PMID: 29167428 PMCID: PMC5700061 DOI: 10.1038/s41467-017-01485-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/19/2017] [Indexed: 11/24/2022] Open
Abstract
Low pH-induced ligand release and receptor recycling are important steps for endocytosis. The transmembrane protein sortilin, a β-propeller containing endocytosis receptor, internalizes a diverse set of ligands with roles in cell differentiation and homeostasis. The molecular mechanisms of pH-mediated ligand release and sortilin recycling are unresolved. Here we present crystal structures that show the sortilin luminal segment (s-sortilin) undergoes a conformational change and dimerizes at low pH. The conformational change, within all three sortilin luminal domains, provides an altered surface and the dimers sterically shield a large interface while bringing the two s-sortilin C-termini into close proximity. Biophysical and cell-based assays show that members of two different ligand families, (pro)neurotrophins and neurotensin, preferentially bind the sortilin monomer. This indicates that sortilin dimerization and conformational change discharges ligands and triggers recycling. More generally, this work may reveal a double mechanism for low pH-induced ligand release by endocytosis receptors. Sortilin is an endocytosis receptor with a luminal β-propeller domain. Here the authors present the structures of the β-propeller domain at neutral and acidic pH, which reveal that sortilin dimerises and undergoes conformational changes at low pH and further propose a model for low pH-induced ligand release by endocytosis receptors.
Collapse
Affiliation(s)
- Nadia Leloup
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Philip Lössl
- Biomolecular Mass Spectrometry & Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dimphna H Meijer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Martha Brennich
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble, 38000, France
| | - Albert J R Heck
- Biomolecular Mass Spectrometry & Proteomics and Netherlands Proteomics Center, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Dominique M E Thies-Weesie
- Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Brobeil A, Chehab R, Dietel E, Gattenlöhner S, Wimmer M. Altered Protein Interactions of the Endogenous Interactome of PTPIP51 towards MAPK Signaling. Biomolecules 2017; 7:E55. [PMID: 28754031 PMCID: PMC5618236 DOI: 10.3390/biom7030055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions play a pivotal role in normal cellular functions as well as in carcinogenesis. The protein-protein interactions form functional clusters during signal transduction. To elucidate the fine calibration of the protein-protein interactions of protein tyrosine phosphatase interacting protein 51 (PTPIP51) a small molecule drug, namely LDC-3, directly targeting PTPIP51 is now available. Therefore, LDC-3 allows for the studying of the regulation of the endogenous interactome by modulating PTPIP51 binding capacity. Small interfering ribonucleic acid (siRNA) experiments show that the modification in PTPIP51 binding capacity is induced by LDC-3. Application of LDC-3 annuls the known regulatory phosphorylation mechanisms for PTPIP51 and consequently, significantly alters the assembly of the PTPIP51 associated protein complexes. The treatment of human keratinocytes (HaCaT cells) with LDC-3 induces an altered protein-protein interaction profile of the endogenous interactome of PTPIP51. In addition, LDC-3 stabilizes PTPIP51 within a mitogen activated protein kinase (MAPK) complex composed of Raf-1 and the scaffold protein 14-3-3, independent of the phosphorylation status of PTPIP51. Of note, under LDC-3 treatment the regulatory function of the PTP1B on PTPIP51 fails to impact the PTPIP51 interaction characteristics, as reported for the HaCaT cell line. In summary, LDC-3 gives the unique opportunity to directly modulate PTPIP51 in malignant cells, thus targeting potential dysregulated signal transduction pathways such as the MAPK cascade. The provided data give critical insights in the therapeutic potential of PTPIP51 protein interactions and thus are basic for possible targeted therapy regimens.
Collapse
Affiliation(s)
- Alexander Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
- Institute of Pathology, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Rajaa Chehab
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Eric Dietel
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Stefan Gattenlöhner
- Institute of Pathology, Justus-Liebig-University, 35392 Giessen, Germany. --unigiessen-st6e.de
| | - Monika Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany. --unigiessen-st6e.de
| |
Collapse
|
14
|
Close Encounters - Probing Proximal Proteins in Live or Fixed Cells. Trends Biochem Sci 2017; 42:504-515. [PMID: 28566215 DOI: 10.1016/j.tibs.2017.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/25/2017] [Accepted: 05/03/2017] [Indexed: 12/30/2022]
Abstract
The well-oiled machinery of the cellular proteome operates via variable expression, modifications, and interactions of proteins, relaying genomic and transcriptomic information to coordinate cellular functions. In recent years, a number of techniques have emerged that serve to identify sets of proteins acting in close proximity in the course of orchestrating cellular activities. These proximity-dependent assays, including BiFC, BioID, APEX, FRET, and isPLA, have opened up new avenues to examine protein interactions in live or fixed cells. We review herein the current status of proximity-dependent in situ techniques. We compare the advantages and limitations of the methods, underlining recent progress and the growing importance of these techniques in basic research, and we discuss their potential as tools for drug development and diagnostics.
Collapse
|
15
|
Tam JHK, Cobb MR, Seah C, Pasternak SH. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway. PLoS One 2016; 11:e0161445. [PMID: 27776132 PMCID: PMC5077117 DOI: 10.1371/journal.pone.0161445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023] Open
Abstract
The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease.
Collapse
Affiliation(s)
- Joshua H. K. Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6A 5B7
| | - M. Rebecca Cobb
- Program in Neuroscience, Western University, London, Ontario, Canada, N6A 5B7
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
| | - Stephen H. Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6A 5B7
- Program in Neuroscience, Western University, London, Ontario, Canada, N6A 5B7
- Department of Clinical Neurological Sciences, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
- * E-mail:
| |
Collapse
|
16
|
Ivanusic D, Denner J, Bannert N. Correlative Förster Resonance Electron Transfer-Proximity Ligation Assay (FRET-PLA) Technique for Studying Interactions Involving Membrane Proteins. ACTA ACUST UNITED AC 2016; 85:29.17.1-29.17.13. [PMID: 27479505 DOI: 10.1002/cpps.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This unit provides a guide and detailed protocol for studying membrane protein-protein interactions (PPI) using the acceptor-sensitized Förster resonance electron transfer (FRET) method in combination with the proximity ligation assay (PLA). The protocol in this unit is focused on the preparation of FRET-PLA samples and the detection of correlative FRET/PLA signals as well as on the analysis of FRET-PLA data and interpretation of correlative results when using cyan fluorescent protein (CFP) as a FRET donor and yellow fluorescent protein (YFP) as a FRET acceptor. The correlative application of FRET and PLA combines two powerful tools for monitoring PPI, yielding results that are more reliable than with either technique alone. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Daniel Ivanusic
- Robert Koch Institute, HIV and Other Retroviruses, Berlin, Germany
| | - Joachim Denner
- Robert Koch Institute, HIV and Other Retroviruses, Berlin, Germany
| | - Norbert Bannert
- Robert Koch Institute, HIV and Other Retroviruses, Berlin, Germany
| |
Collapse
|
17
|
Blockage of neddylation modification stimulates tumor sphere formation in vitro and stem cell differentiation and wound healing in vivo. Proc Natl Acad Sci U S A 2016; 113:E2935-44. [PMID: 27162365 DOI: 10.1073/pnas.1522367113] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MLN4924, also known as pevonedistat, is the first-in-class inhibitor of NEDD8-activating enzyme, which blocks the entire neddylation modification of proteins. Previous preclinical studies and current clinical trials have been exclusively focused on its anticancer property. Unexpectedly, we show here, to our knowledge for the first time, that MLN4924, when applied at nanomolar concentrations, significantly stimulates in vitro tumor sphere formation and in vivo tumorigenesis and differentiation of human cancer cells and mouse embryonic stem cells. These stimulatory effects are attributable to (i) c-MYC accumulation via blocking its degradation and (ii) continued activation of EGFR (epidermal growth factor receptor) and its downstream pathways, including PI3K/AKT/mammalian target of rapamycin and RAS/RAF/MEK/ERK, via inducing EGFR dimerization. Finally, MLN4924 accelerates EGF-mediated skin wound healing in mouse and stimulates cell migration in an in vitro culture setting. Taking these data together, our study reveals that neddylation modification could regulate stem cell proliferation and differentiation and that a low dose of MLN4924 might have a therapeutic value for stem cell therapy and tissue regeneration.
Collapse
|
18
|
Buntru A, Trepte P, Klockmeier K, Schnoegl S, Wanker EE. Current Approaches Toward Quantitative Mapping of the Interactome. Front Genet 2016; 7:74. [PMID: 27200083 PMCID: PMC4854875 DOI: 10.3389/fgene.2016.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 01/01/2023] Open
Abstract
Protein–protein interactions (PPIs) play a key role in many, if not all, cellular processes. Disease is often caused by perturbation of PPIs, as recently indicated by studies of missense mutations. To understand the associations of proteins and to unravel the global picture of PPIs in the cell, different experimental detection techniques for PPIs have been established. Genetic and biochemical methods such as the yeast two-hybrid system or affinity purification-based approaches are well suited to high-throughput, proteome-wide screening and are mainly used to obtain qualitative results. However, they have been criticized for not reflecting the cellular situation or the dynamic nature of PPIs. In this review, we provide an overview of various genetic methods that go beyond qualitative detection and allow quantitative measuring of PPIs in mammalian cells, such as dual luminescence-based co-immunoprecipitation, Förster resonance energy transfer or luminescence-based mammalian interactome mapping with bait control. We discuss the strengths and weaknesses of different techniques and their potential applications in biomedical research.
Collapse
Affiliation(s)
| | - Philipp Trepte
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| | | | | | - Erich E Wanker
- Max Delbrueck Center for Molecular Medicine Berlin, Germany
| |
Collapse
|
19
|
Ulke‐Lemée A, Turner SR, MacDonald JA. In situ Analysis of Smoothelin‐like 1 and Calmodulin Interactions in Smooth Muscle Cells by Proximity Ligation. J Cell Biochem 2015; 116:2667-75. [DOI: 10.1002/jcb.25215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/22/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Annegret Ulke‐Lemée
- Department of Biochemistry and Molecular BiologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 4Z6Canada
| | - Sara R. Turner
- Department of Biochemistry and Molecular BiologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 4Z6Canada
| | - Justin A. MacDonald
- Department of Biochemistry and Molecular BiologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaT2N 4Z6Canada
| |
Collapse
|
20
|
Mäemets-Allas K, Viil J, Jaks V. A Novel Inhibitor of AKT1-PDPK1 Interaction Efficiently Suppresses the Activity of AKT Pathway and Restricts Tumor Growth In Vivo. Mol Cancer Ther 2015; 14:2486-96. [PMID: 26294745 DOI: 10.1158/1535-7163.mct-15-0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/18/2015] [Indexed: 11/16/2022]
Abstract
The serine/threonine kinase AKT/PKB has a critical role in the regulation of cell proliferation. Because AKT signaling is deregulated in numerous human malignancies, it has become an attractive anticancer drug target. A number of small molecule AKT kinase inhibitors have been developed; however, severe side effects have prevented their use in clinical trials. To find inhibitors of AKT1 signaling with principally novel mechanism of action, we carried out a live cell-based screen for small molecule inhibitors of physical interaction between AKT1 and its primary activator PDPK1. The screen revealed one molecule-NSC156529, which downregulated AKT1 signaling, efficiently decreased the proliferation of human cancer cells in vitro, and substantially inhibited the growth of prostate tumor xenografts in vivo. Interestingly, the treated tumor xenografts exhibited higher expression level of normal prostate differentiation markers but did not show augmented cell death, suggesting that the identified compound primarily enhances the differentiation of malignant cells toward normal prostate epithelium and thus poses as an attractive lead compound for developing novel antitumor agents with less cytotoxic side effects.
Collapse
Affiliation(s)
- Kristina Mäemets-Allas
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. Competence Centre for Cancer Research, Tallinn, Estonia
| | - Janeli Viil
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. Competence Centre for Cancer Research, Tallinn, Estonia
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. Competence Centre for Cancer Research, Tallinn, Estonia. Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Whiting JL, Nygren PJ, Tunquist BJ, Langeberg LK, Seternes OM, Scott JD. Protein Kinase A Opposes the Phosphorylation-dependent Recruitment of Glycogen Synthase Kinase 3β to A-kinase Anchoring Protein 220. J Biol Chem 2015; 290:19445-57. [PMID: 26088133 DOI: 10.1074/jbc.m115.654822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 02/04/2023] Open
Abstract
The proximity of an enzyme to its substrate can influence rate and magnitude of catalysis. A-kinase anchoring protein 220 (AKAP220) is a multivalent anchoring protein that can sequester a variety of signal transduction enzymes. These include protein kinase A (PKA) and glycogen synthase kinase 3β (GSK3β). Using a combination of molecular and cellular approaches we show that GSK3β phosphorylation of Thr-1132 on AKAP220 initiates recruitment of this kinase into the enzyme scaffold. We also find that AKAP220 anchors GSK3β and its substrate β-catenin in membrane ruffles. Interestingly, GSK3β can be released from the multienzyme complex in response to PKA phosphorylation on serine 9, which suppresses GSK3β activity. The signaling scaffold may enhance this regulatory mechanism, as AKAP220 has the capacity to anchor two PKA holoenzymes. Site 1 on AKAP220 (residues 610-623) preferentially interacts with RII, whereas site 2 (residues 1633-1646) exhibits a dual specificity for RI and RII. In vitro affinity measurements revealed that site 2 on AKAP220 binds RII with ∼10-fold higher affinity than site 1. Occupancy of both R subunit binding sites on AKAP220 could provide a mechanism to amplify local cAMP responses and enable cross-talk between PKA and GSK3β.
Collapse
Affiliation(s)
- Jennifer L Whiting
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Patrick J Nygren
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Brian J Tunquist
- Translational Oncology, Array BioPharma, Inc., Boulder, Colorado 80301, and
| | - Lorene K Langeberg
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Ole-Morten Seternes
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195, Department of Pharmacy, University of Tromsø, The Arctic University of Norway, 9037 Tromsø, Norway
| | - John D Scott
- From the Howard Hughes Medical Institute, Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington 98195,
| |
Collapse
|
22
|
Greenwood C, Ruff D, Kirvell S, Johnson G, Dhillon HS, Bustin SA. Proximity assays for sensitive quantification of proteins. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:10-6. [PMID: 27077033 PMCID: PMC4822221 DOI: 10.1016/j.bdq.2015.04.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression.
Collapse
Affiliation(s)
- Christina Greenwood
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - David Ruff
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Sara Kirvell
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Gemma Johnson
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Harvinder S Dhillon
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Stephen A Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
23
|
PTPIP51—A New RelA-tionship with the NFκB Signaling Pathway. Biomolecules 2015; 5:485-504. [PMID: 25893721 PMCID: PMC4496682 DOI: 10.3390/biom5020485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/03/2015] [Accepted: 04/07/2015] [Indexed: 12/25/2022] Open
Abstract
The present study shows a new connection of protein tyrosine phosphatase interacting protein 51 (PTPIP51) to the nuclear factor κB (NFκB) signalling pathway. PTPIP51 mRNA and protein expression is regulated by RelA. If bound to the PTPIP51 promoter, RelA repress the mRNA and protein expression of PTPIP51. The parallel treatment with pyrrolidine dithiocarbamate (PDTC) reversed the suppression of PTPIP51 protein expression induced by TNFα. Using the intensity correlation analysis PTPIP51 verified a co-localization with RelA, which is also regulated by TNFα administration. Moreover, the direct interaction of PTPIP51 and RelA was established using the DuoLink proximity ligation assay. IκBα, the known inhibitor of RelA, also interacted with PTPIP51. This hints to the fact that in un-stimulated conditions PTPIP51 forms a complex with RelA and IκBα. The PTPIP51/RelA/IκBα complex is modulated by TNFα. Interestingly, the impact on the mitogen activated protein kinase pathway was negligible except in highest TNFα concentration. Here, PTPIP51 and Raf-1 interactions were slightly repressed. The newly established relationship of PTPIP51 and the NFκB signaling pathway provides the basis for a possible therapeutic impact.
Collapse
|
24
|
Brobeil A, Viard M, Petri MK, Steger K, Tag C, Wimmer M. Memory and PTPIP51--a new protein in hippocampus and cerebellum. Mol Cell Neurosci 2014; 64:61-73. [PMID: 25496818 DOI: 10.1016/j.mcn.2014.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 10/25/2014] [Accepted: 12/09/2014] [Indexed: 12/28/2022] Open
Abstract
Previously the expression of Protein Tyrosine Phosphatase Interacting Protein 51 (PTPIP51) in mouse brain was reported. Here, we investigated PTPIP51 mRNA and protein in two of the brain regions namely the hippocampus and the cerebellum of mouse brains. On a cellular level both the protein and the mRNA were related to the pyramidal cells of the hippocampal formation, the granular cells of the dentate gyrus and the cells of the adjacent strata. In the cerebellum PTPIP51 was traced in Purkinje cells, the cells of the molecular layer and the granular layer. On a subcellular level only partial co-localization was seen for the endoplasmic reticulum, but not with mitochondria. In addition the interactome of PTPIP51 was analysed. In hippocampal cells a strong interaction with PTP1B and vesicle-associated membrane protein-associated protein B (VAPB) was detected. A somewhat differing interaction profile was found in the cerebellum, where high interaction levels were found for 14-3-3, diacylglycerol kinase α (DGKα), NFκB and PTP1B. These interaction partners represent specific signalling pathways linked to building memory. PTPIP51 can be associated with nerve growth factor signalling, dendritic and axonal growth, synaptogenesis, and all processes needed for memory formation. Moreover, in HT-22 mouse hippocampal cells PTPIP51 expression was induced by administrating the fibroblast growth factor 1 (FGF-1), which is known to take part in learning/memory processes. Knocking down p38-MAPK also led to an up-regulation of PTPIP51 probably resembling a compensative mechanism. Thus, a possible connection to the processing of memories can be anticipated. Differences in the interaction profile in both regions may be attributed to the actual/local differences in memory formation.
Collapse
Affiliation(s)
- A Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany; Institute of Pathology, Justus-Liebig-University, 35385 Giessen, Germany.
| | - M Viard
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - M K Petri
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - K Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus-Liebig-University, 35385 Giessen, Germany
| | - C Tag
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| | - M Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35385 Giessen, Germany
| |
Collapse
|
25
|
Investigation of membrane protein-protein interactions using correlative FRET-PLA. Biotechniques 2014; 57:188-91, 193-8. [PMID: 25312088 DOI: 10.2144/000114215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/05/2014] [Indexed: 11/23/2022] Open
Abstract
Fluorescence resonance energy transfer (FRET) analysis and the recently developed proximity ligation assay (PLA) are widely used to study protein-protein interactions in situ. We have developed correlative FRET-PLA to monitor interactions between membrane proteins that frequently cause problems in confirmatory co-immunoprecipitation assays. Correlative FRET-PLA is particularly aimed at delivering robust and reliable results and is useful for investigating protein-protein interactions.
Collapse
|
26
|
Reyniers L, Del Giudice MG, Civiero L, Belluzzi E, Lobbestael E, Beilina A, Arrigoni G, Derua R, Waelkens E, Li Y, Crosio C, Iaccarino C, Cookson MR, Baekelandt V, Greggio E, Taymans JM. Differential protein-protein interactions of LRRK1 and LRRK2 indicate roles in distinct cellular signaling pathways. J Neurochem 2014; 131:239-50. [PMID: 24947832 PMCID: PMC4272680 DOI: 10.1111/jnc.12798] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1- and LRRK2-specific cellular processes by identifying their distinct interacting proteins. A protein microarray-based interaction screen was performed with recombinant 3xFlag-LRRK1 and 3xFlag-LRRK2 and, in parallel, co-immunoprecipitation followed by mass spectrometry was performed from SH-SY5Y neuroblastoma cell lines stably expressing 3xFlag-LRRK1 or 3xFlag-LRRK2. We identified a set of LRRK1- and LRRK2-specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14-3-3 consensus binding motifs. To assess the functional relevance of these interactions, SH-SY5Y-LRRK1 and -LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14-3-3 binding, or with EGF, an EGF-R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins. LRRK1 and LRRK2 (leucine-rich repeat kinase) interaction partners were identified by two different protein-protein interaction screens. These confirmed epidermal growth factor receptor (EGR-R) as a LRRK1-specific interactor, while 14-3-3 proteins were LRRK2-specific. Functional analysis of these interactions and the pathways they mediate shows that LRRK1 and LRRK2 signaling do not intersect, reflective of the differential role of both LRRKs in Parkinson's disease.
Collapse
Affiliation(s)
- Lauran Reyniers
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | | | - Laura Civiero
- Department of Biology, University of Padova, Padova, Italy
| | - Elisa Belluzzi
- Department of Biology, University of Padova, Padova, Italy
| | - Evy Lobbestael
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Alexandra Beilina
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Giorgio Arrigoni
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,Proteomics Center of Padova University, Padova, Italy
| | - Rita Derua
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of protein phosphorylation and proteomics, Leuven, Belgium
| | - Etienne Waelkens
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of protein phosphorylation and proteomics, Leuven, Belgium
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Crosio
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciro Iaccarino
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Mark R Cookson
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, Maryland, USA
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Elisa Greggio
- Department of Biology, University of Padova, Padova, Italy
| | - Jean-Marc Taymans
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Brobeil A, Koch P, Eiber M, Tag C, Wimmer M. The known interactome of PTPIP51 in HaCaT cells—Inhibition of kinases and receptors. Int J Biochem Cell Biol 2014. [DOI: 10.1016/j.biocel.2013.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Ishigaki Y, Nakamura Y, Tatsuno T, Hashimoto M, Iwabuchi K, Tomosugi N. RNA-binding protein RBM8A (Y14) and MAGOH localize to centrosome in human A549 cells. Histochem Cell Biol 2013; 141:101-9. [PMID: 23949737 DOI: 10.1007/s00418-013-1135-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2013] [Indexed: 10/26/2022]
Abstract
RBM8A (Y14) is carrying RNA-binding motif and forms the tight heterodimer with MAGOH. The heterodimer is known to be a member of exon junction complex on exporting mRNA and is required for mRNA metabolisms such as splicing, mRNA export and nonsense-mediated mRNA decay. Almost all RBM8A-MAGOH complexes localize in nucleoplasm and shuttle between nuclei and cytoplasm for RNA metabolism. Recently, the abnormality of G2/M transition and aberrant centrosome regulation in RBM8A- or MAGOH-deficient cells has been reported. These results prompt us to the reevaluation of the localization of RBM8A-MAGOH in human cells. Interestingly, our immunostaining experiments showed the localization of these proteins in centrosome in addition to nuclei. Furthermore, the transiently expressed eYFP-tagged RBM8A and Flag-tagged MAGOH also co-localized with centrosome signals. In addition, the proximity ligation in situ assay was performed to detect the complex formation in centrosome. Our experiments clearly showed that Myc-tagged RBM8A and Flag-tagged MAGOH formed a complex in centrosome. GFP-tagged PLK1 also co-localized with Myc-RBM8A. Our results show that RBM8A-MAGOH complex is required for M-phase progression via direct localization to centrosome rather than indirect effect.
Collapse
Affiliation(s)
- Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada-machi, Kahoku, 920-0293, Japan,
| | | | | | | | | | | |
Collapse
|
29
|
Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol 2013; 377:111-26. [PMID: 23921974 DOI: 10.1007/82_2013_334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein-protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.
Collapse
|
30
|
Krieger JR, Taylor P, Gajadhar AS, Guha A, Moran MF, McGlade CJ. Identification and selected reaction monitoring (SRM) quantification of endocytosis factors associated with Numb. Mol Cell Proteomics 2012; 12:499-514. [PMID: 23211419 DOI: 10.1074/mcp.m112.020768] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numb is an endocytic adaptor protein that regulates the endocytosis and trafficking of transmembrane receptors including Notch, E-cadherin, and integrins. Vertebrate Numb is alternatively spliced at exons 3 and 9 to give rise to four protein isoforms. Expression of these isoforms varies at different developmental stages, and although the function of Numb isoforms containing exon 3 has been studied, the role of exon 9 inclusion has not been shown. Here we use affinity purification and tandem mass spectrometry to identify Numb associated proteins, including novel interactions with REPS1, BMP2K, and BCR. In vitro binding measurements indicated exon 9-independent Numb interaction with REPS1 and Eps15 EH domains. Selected reaction monitoring mass spectrometry was used to quantitatively compare the proteins associated with the p72 and p66 Numb isoforms, which differ by the exon 9 region. This showed that significantly more EPS15 and three AP-2 subunit proteins bound Numb isoforms containing exon 9. The EPS15 preference for exon 9-containing Numb was confirmed in intact cells by using a proximity ligation assay. Finally, we used multiplexed selected reaction monitoring mass spectrometry to assess the dynamic regulation of Numb association with endocytic proteins. Numb hyper-phosphorylation resulted in disassociation of Numb endocytic complexes, while inhibition of endocytosis did not alter Numb association with the AP-2 complex but altered recruitment of EPS15, REPS1, and BMP2K. Hence, quantitative mass spectrometric analysis of Numb protein-protein interactions has provided new insights into the assembly and regulation of protein complexes important in development and cancer.
Collapse
Affiliation(s)
- Jonathan R Krieger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Mutations that hamper dimerization of foot-and-mouth disease virus 3A protein are detrimental for infectivity. J Virol 2012; 86:11013-23. [PMID: 22787230 DOI: 10.1128/jvi.00580-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays important roles in virus replication, virulence, and host range. In other picornaviruses, homodimerization of 3A has been shown to be relevant for its biological activity. In this work, FMDV 3A homodimerization was evidenced by an in situ protein fluorescent ligation assay. A molecular model of the FMDV 3A protein, derived from the nuclear magnetic resonance (NMR) structure of the poliovirus 3A protein, predicted a hydrophobic interface spanning residues 25 to 44 as the main determinant for 3A dimerization. Replacements L38E and L41E, involving charge acquisition at residues predicted to contribute to the hydrophobic interface, reduced the dimerization signal in the protein ligation assay and prevented the detection of dimer/multimer species in both transiently expressed 3A proteins and in synthetic peptides reproducing the N terminus of 3A. These replacements also led to production of infective viruses that replaced the acidic residues introduced (E) by nonpolar amino acids, indicating that preservation of the hydrophobic interface is essential for virus replication. Replacements that favored (Q44R) or impaired (Q44D) the polar interactions predicted between residues Q44 and D32 did not abolish dimer formation of transiently expressed 3A, indicating that these interactions are not critical for 3A dimerization. Nevertheless, while Q44R led to recovery of viruses that maintained the mutation, Q44D resulted in selection of infective viruses with substitution D44E with acidic charge but with structural features similar to those of the parental virus, suggesting that Q44 is involved in functions other than 3A dimerization.
Collapse
|
32
|
Brobeil A, Graf M, Eiber M, Wimmer M. Interaction of PTPIP51 with Tubulin, CGI-99 and Nuf2 During Cell Cycle Progression. Biomolecules 2012; 2:122-42. [PMID: 24970130 PMCID: PMC4030868 DOI: 10.3390/biom2010122] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/04/2012] [Accepted: 02/14/2012] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine phosphatase interacting protein 51 (PTPIP51), also known as regulator of microtubule dynamics protein 3, was identified as an in vitro and in vivo interaction partner of CGI-99 and Nuf-2. PTPIP51 mRNA is expressed in all stages of the cell cycle; it is highly expressed six hours post-nocodazole treatment and minimally expressed one hour post-nocodazole treatment. Recent investigations located PTPIP51 protein at the equatorial plate. This study reports the localization of the PTPIP51/CGI-99 and the PTPIP51/Nuf-2 complex at the equatorial region during mitosis. Moreover, Duolink proximity ligation assays revealed an association of PTPIP51 with the microtubular cytoskeleton and the spindle apparatus. High amounts of phosphorylated PTPIP51 associated with the spindle poles was seen by confocal microscopy. In parallel a strong interaction of PTPIP51 with the epidermal growth factor receptor phosphorylating PTPIP51 at the tyrosine 176 residue was seen. In the M/G1 transition a high level of interaction between PTPIP51 and PTP1B was registered, thus restoring the interaction of PTPIP51 and Raf-1, depleted in mitotic cells. Summarizing these new facts, we conclude that PTPIP51 is necessary for normal mitotic processes, impacting on chromosomal division and control of the MAPK pathway activity.
Collapse
Affiliation(s)
- Alexander Brobeil
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Michaela Graf
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Moritz Eiber
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
| | - Monika Wimmer
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, 35392 Giessen, Germany.
| |
Collapse
|
33
|
Gajadhar AS, Bogdanovic E, Muñoz DM, Guha A. In Situ Analysis of Mutant EGFRs Prevalent in Glioblastoma Multiforme Reveals Aberrant Dimerization, Activation, and Differential Response to Anti-EGFR Targeted Therapy. Mol Cancer Res 2012; 10:428-40. [DOI: 10.1158/1541-7786.mcr-11-0531] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Brobeil A, Bobrich M, Graf M, Kruchten A, Blau W, Rummel M, Oeschger S, Steger K, Wimmer M. PTPIP51 is phosphorylated by Lyn and c-Src kinases lacking dephosphorylation by PTP1B in acute myeloid leukemia. Leuk Res 2011; 35:1367-75. [DOI: 10.1016/j.leukres.2011.03.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/18/2011] [Accepted: 03/20/2011] [Indexed: 01/11/2023]
|
35
|
DeFazio-Eli L, Strommen K, Dao-Pick T, Parry G, Goodman L, Winslow J. Quantitative assays for the measurement of HER1-HER2 heterodimerization and phosphorylation in cell lines and breast tumors: applications for diagnostics and targeted drug mechanism of action. Breast Cancer Res 2011; 13:R44. [PMID: 21496232 PMCID: PMC3219207 DOI: 10.1186/bcr2866] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 03/17/2011] [Accepted: 04/15/2011] [Indexed: 01/10/2023] Open
Abstract
Introduction Ligand-bound and phosphorylated ErbB/HER heterodimers are potent signaling forms of this receptor family, and quantitative measurements of these active receptors may be predictive of patient response to targeted therapies. Using VeraTag™ technology, we developed and characterized quantitative assays measuring epidermal growth factor (EGF)-dependent increases in activated HER receptors in tumor cell line lysates and formalin-fixed, paraffin-embedded (FFPE) tumor sections. We demonstrated the ability of the assays to quantitatively measure changes in activated HER1 and HER2 receptor levels in cell lines following treatment with 2C4, erlotinib, and lapatinib. We utilized these assays to determine the prevalence and distribution of activated HER1, HER2, and HER1-HER2 heterodimers in 43 HER2-positive breast tumors. Methods Assays for activated HER1 and HER2 receptors in FFPE and cell lysate formats were developed using VeraTag™ technology, which requires the proximity of an antibody pair for light-dependent release of a fluorescently labeled tag, followed by capillary electrophoresis-based quantitation. Results Ligand-dependent and independent HER1-HER2 heterodimer levels measured by lysate and FFPE VeraTag™ assays trended with HER1 and HER2 expression levels in tumor cell lines, which was confirmed by co-immunoprecipitation. The formation of EGF-dependent HER1-HER2 heterodimers were inhibited by the HER2-targeted monoclonal antibody 2C4 and stabilized by the HER1 tyrosine kinase inhibitor (TKI) erlotinib. EGF-dependent HER1 and HER2 phosphorylation was inhibited by lapatinib and erlotinib. Further, we observed that dominant receptor signaling patterns may switch between HER1-HER1 and HER1-HER2, depending on drug mechanism of action and relative levels of HER receptors. In FFPE breast tumors that expressed both HER1 and HER2, HER1-HER2 heterodimers were detected in 25 to 50% of tumors, depending on detection method. The levels of activated phospho-HER1-HER2 heterodimers correlated with HER1 or HER2 levels in an analysis of 43 HER2-positive breast tumors. Conclusions VeraTag™ lysate assays can be used as a tool for understanding the mechanism of action of targeted HER-family inhibitors in the preclinical setting, while VeraTag™ FFPE assays of activated HER receptors combined with total HER2 measurements (HERmark®) in tumor samples may provide a more accurate prediction of clinical response to both HER1 and HER2 targeted therapies.
Collapse
Affiliation(s)
- Lisa DeFazio-Eli
- Department of Oncology Research and Development, Monogram Biosciences, Inc., 345 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Singh RK, Lokeshwar BL. The IL-8-regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res 2011; 71:3268-77. [PMID: 21398406 DOI: 10.1158/0008-5472.can-10-2769] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The proinflammatory chemokine receptor CXCR7 that binds the ligands CXCL11 and CXCL12 (SDF-1a) is elevated in a variety of human cancers, but its functions are not understood as it does not elicit classical chemokine receptor signaling. Here we report that the procancerous cytokine IL-8 (interleukin-8) upregulates CXCR7 expression along with ligand-independent functions of CXCR7 that promote the growth and proliferation of human prostate cancer cells (CaP cells). In cell culture, ectopic expression or addition of IL-8 selectively increased expression of CXCR7 at the level of mRNA and protein production. Conversely, suppressing IL-8 signaling abolished the ability of IL-8 to upregulate CXCR7. RNAi-mediated knockdown of CXCR7 in CaP cells caused multiple antitumor effects, including decreased cell proliferation, cell-cycle arrest in G(1) phase, and decreased expression of proteins involved in G(1) to S phase progression. In contrast, addition of the CXCR7 ligand SDF-1a and CXCL11 to CaP cells did not affect cell proliferation. Over expression of CXCR7 in normal prostate cells increased their proliferation in a manner associated with increased levels of phospho-EGFR (epidermal growth factor receptor; pY1110) and phospho-ERK1/2. Notably, coimmunoprecipitation studies established a physical association of CXCR7 with EGFR, linking CXCR7-mediated cell proliferation to EGFR activation. Consistent with these findings, CXCR7-depleted CaP tumors grew more slowly than control tumors, expressing decreased tumor-associated expression of VEGF, cyclin D1, and p-EGFR. Together, these results reveal a novel mechanism of ligand-independent growth promotion by CXCR7 and its coregulation by the proinflammatory factor IL-8 in prostate cancer.
Collapse
Affiliation(s)
- Rajendra Kumar Singh
- Department of Urology and Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | | |
Collapse
|
37
|
Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system. Nat Neurosci 2011; 14:314-23. [PMID: 21317905 DOI: 10.1038/nn.2756] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/14/2011] [Indexed: 01/06/2023]
Abstract
Neuronal connections are often organized in layers that contain synapses between neurons that have similar functions. In Drosophila, R7 and R8 photoreceptors, which detect different wavelengths, form synapses in distinct medulla layers. The mechanisms underlying the specificity of synaptic-layer selection remain unclear. We found that Golden Goal (Gogo) and Flamingo (Fmi), two cell-surface proteins involved in photoreceptor targeting, functionally interact in R8 photoreceptor axons. Our results indicate that Gogo promotes R8 photoreceptor axon adhesion to the temporary layer M1, whereas Gogo and Fmi collaborate to mediate axon targeting to the final layer M3. Structure-function analysis suggested that Gogo and Fmi interact with intracellular components through the Gogo cytoplasmic domain. Moreover, Fmi was also required in target cells for R8 photoreceptor axon targeting. We propose that Gogo acts as a functional partner of Fmi for R8 photoreceptor axon targeting and that the dynamic regulation of their interaction specifies synaptic-layer selection of photoreceptors.
Collapse
|
38
|
Gaborit N, Larbouret C, Vallaghe J, Peyrusson F, Bascoul-Mollevi C, Crapez E, Azria D, Chardès T, Poul MA, Mathis G, Bazin H, Pèlegrin A. Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies. J Biol Chem 2011; 286:11337-45. [PMID: 21282108 DOI: 10.1074/jbc.m111.223503] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In oncology, simultaneous inhibition of epidermal growth factor receptor (EGFR) and HER2 by monoclonal antibodies (mAbs) is an efficient therapeutic strategy but the underlying mechanisms are not fully understood. Here, we describe a time-resolved fluorescence resonance energy transfer (TR-FRET) method to quantify EGFR/HER2 heterodimers on cell surface to shed some light on the mechanism of such therapies. First, we tested this antibody-based TR-FRET assay in NIH/3T3 cell lines that express EGFR and/or HER2 and in various tumor cell lines. Then, we used the antibody-based TR-FRET assay to evaluate in vitro the effect of different targeted therapies on EGFR/HER2 heterodimers in the ovarian carcinoma cell line SKOV-3. A simultaneous incubation with Cetuximab (anti-EGFR) and Trastuzumab (anti-HER2) disturbed EGFR/HER2 heterodimers resulting in a 72% reduction. Cetuximab, Trastuzumab or Pertuzumab (anti-HER2) alone induced a 48, 44, or 24% reduction, respectively. In contrast, the tyrosine kinase inhibitors Erlotinib and Lapatinib had very little effect on EGFR/HER2 dimers concentration. In vivo, the combination of Cetuximab and Trastuzumab showed a better therapeutic effect (median survival and percentage of tumor-free mice) than the single mAbs. These results suggest a correlation between the extent of the mAb-induced EGFR/HER2 heterodimer reduction and the efficacy of such mAbs in targeted therapies. In conclusion, quantifying EGFR/HER2 heterodimers using our antibody-based TR-FRET assay may represent a useful method to predict the efficacy and explain the mechanisms of action of therapeutic mAbs, in addition to other commonly used techniques that focus on antibody-dependent cellular cytotoxicity, phosphorylation, and cell proliferation.
Collapse
Affiliation(s)
- Nadège Gaborit
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U896, Université Montpellier1, CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gaborit N, Larbouret C, Vallaghe J, Peyrusson F, Bascoul-Mollevi C, Crapez E, Azria D, Chardès T, Poul MA, Mathis G, Bazin H, Pèlegrin A. Time-resolved fluorescence resonance energy transfer (TR-FRET) to analyze the disruption of EGFR/HER2 dimers: a new method to evaluate the efficiency of targeted therapy using monoclonal antibodies. J Clin Oncol 2011; 30:1594-600. [PMID: 21282108 DOI: 10.1200/jco.2011.37.4207] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In oncology, simultaneous inhibition of epidermal growth factor receptor (EGFR) and HER2 by monoclonal antibodies (mAbs) is an efficient therapeutic strategy but the underlying mechanisms are not fully understood. Here, we describe a time-resolved fluorescence resonance energy transfer (TR-FRET) method to quantify EGFR/HER2 heterodimers on cell surface to shed some light on the mechanism of such therapies. First, we tested this antibody-based TR-FRET assay in NIH/3T3 cell lines that express EGFR and/or HER2 and in various tumor cell lines. Then, we used the antibody-based TR-FRET assay to evaluate in vitro the effect of different targeted therapies on EGFR/HER2 heterodimers in the ovarian carcinoma cell line SKOV-3. A simultaneous incubation with Cetuximab (anti-EGFR) and Trastuzumab (anti-HER2) disturbed EGFR/HER2 heterodimers resulting in a 72% reduction. Cetuximab, Trastuzumab or Pertuzumab (anti-HER2) alone induced a 48, 44, or 24% reduction, respectively. In contrast, the tyrosine kinase inhibitors Erlotinib and Lapatinib had very little effect on EGFR/HER2 dimers concentration. In vivo, the combination of Cetuximab and Trastuzumab showed a better therapeutic effect (median survival and percentage of tumor-free mice) than the single mAbs. These results suggest a correlation between the extent of the mAb-induced EGFR/HER2 heterodimer reduction and the efficacy of such mAbs in targeted therapies. In conclusion, quantifying EGFR/HER2 heterodimers using our antibody-based TR-FRET assay may represent a useful method to predict the efficacy and explain the mechanisms of action of therapeutic mAbs, in addition to other commonly used techniques that focus on antibody-dependent cellular cytotoxicity, phosphorylation, and cell proliferation.
Collapse
Affiliation(s)
- Nadège Gaborit
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U896, Université Montpellier1, CRLC Val d'Aurelle Paul Lamarque, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Genin EC, Geillon F, Gondcaille C, Athias A, Gambert P, Trompier D, Savary S. Substrate specificity overlap and interaction between adrenoleukodystrophy protein (ALDP/ABCD1) and adrenoleukodystrophy-related protein (ALDRP/ABCD2). J Biol Chem 2011; 286:8075-8084. [PMID: 21209459 DOI: 10.1074/jbc.m110.211912] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disorder caused by mutations in the ABCD1 gene, which encodes a peroxisomal member of the ATP-binding cassette (ABC) transporter subfamily D called ALDP. ALDP is supposed to function as a homodimer allowing the entry of CoA-esters of very-long chain fatty acids (VLCFA) into the peroxisome, the unique site of their β-oxidation. ALDP deficiency can be corrected by overexpression of ALDRP, its closest homolog. However, the exact nature of the substrates transported by ALDRP and its relationships with ALDP still remain unclear. To gain insight into the function of ALDRP, we used cell models allowing the induction in a dose-dependent manner of a wild type or a mutated non-functional ALDRP-EGFP fusion protein. We explored the consequences of the changes of ALDRP expression levels on the fatty acid content (saturated, monounsaturated, and polyunsaturated fatty acids) in phospholipids as well as on the levels of β-oxidation of 3 suspected substrates: C26:0, C24:0, and C22:6n-3 (DHA). We found an inverse correlation between the fatty acid content of saturated (C26:0, C24:0) and monounsaturated (C26:1, C24:1) VLCFA and the expression level of ALDRP. Interestingly, we obtained a transdominant-negative effect of the inactive ALDRP-EGFP on ALDP function. This effect is due to a physical interaction between ALDRP and ALDP that we evidenced by proximity ligation assays and coimmunoprecipitation. Finally, the β-oxidation assays demonstrate a role of ALDRP in the metabolism of saturated VLCFA (redundant with that of ALDP) but also a specific involvement of ALDRP in the metabolism of DHA.
Collapse
Affiliation(s)
- Emmanuelle C Genin
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Flore Geillon
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Catherine Gondcaille
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Anne Athias
- Plateforme de Lipidomique-IFR100, Hôpital du Bocage, Dijon F-21000, France
| | - Philippe Gambert
- Plateforme de Lipidomique-IFR100, Hôpital du Bocage, Dijon F-21000, France
| | - Doriane Trompier
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and
| | - Stéphane Savary
- From the INSERM, UMR866, Centre de Recherche Lipides, Nutrition, Cancer, Dijon F-21000,; the Université de Bourgogne, Laboratoire de Biochimie Métabolique et Nutritionnelle (LBMN), GDRCNRS 2583, 6 Bd Gabriel, Dijon F-21000, and.
| |
Collapse
|
41
|
Gohl C, Banovic D, Grevelhörster A, Bogdan S. WAVE forms hetero- and homo-oligomeric complexes at integrin junctions in Drosophila visualized by bimolecular fluorescence complementation. J Biol Chem 2010; 285:40171-9. [PMID: 20937809 DOI: 10.1074/jbc.m110.139337] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Dynamic actin polymerization drives a variety of morphogenetic events during metazoan development. Members of the WASP/WAVE protein family are central nucleation-promoting factors. They are embedded within regulatory networks of macromolecular complexes controlling Arp2/3-mediated actin nucleation in time and space. WAVE (Wiskott-Aldrich syndrome protein family verprolin-homologous protein) proteins are found in a conserved pentameric heterocomplex that contains Abi, Kette/Nap1, Sra-1/CYFIP, and HSPC300. Formation of the WAVE complex contributes to the localization, activity, and stability of the various WAVE proteins. Here, we established the Bimolecular Fluorescence Complementation (BiFC) technique in Drosophila to determine the subcellular localization of the WAVE complex in living flies. Using different split-YFP combinations, we are able to visualize the formation of the WAVE-Abi complex in vivo. We found that WAVE also forms dimers that are capable of forming higher order clusters with endogenous WAVE complex components. The N-terminal WAVE homology domain (WHD) of the WAVE protein mediates both WAVE-Abi and WAVE-WAVE interactions. Detailed localization analyses show that formation of WAVE complexes specifically takes place at basal cell compartments promoting actin polymerization. In the wing epithelium, hetero- and homooligomeric WAVE complexes co-localize with Integrin and Talin suggesting a role in integrin-mediated cell adhesion. RNAi mediated suppression of single components of the WAVE and the Arp2/3 complex in the wing further suggests that WAVE-dependent Arp2/3-mediated actin nucleation is important for the maintenance of stable integrin junctions.
Collapse
Affiliation(s)
- Christina Gohl
- Institut für Neurobiologie, Universität Münster, Badestr 9, 48149 Münster, Germany
| | | | | | | |
Collapse
|