1
|
Wu M, Liu Z, Gao Y. Design and Fabrication of Microelectrodes for Dielectrophoresis and Electroosmosis in Microsystems for Bio-Applications. MICROMACHINES 2025; 16:190. [PMID: 40047690 PMCID: PMC11857776 DOI: 10.3390/mi16020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 03/09/2025]
Abstract
Microfluidic technology has emerged as a multidisciplinary field, integrating fluid dynamics, electronics, materials science, etc., enabling precise manipulation of small volumes of fluids and particles for various bio-applications. Among the forms of energy integrated into microfluidic systems, electric fields are particularly advantageous for achieving precise control at the microscale. This review focuses on the design and fabrication of microelectrodes that drive electrokinetic phenomena, dielectrophoresis (DEP) and electroosmotic flow (EOF), key techniques for particle and fluid manipulation in microfluidic devices. DEP relies on non-uniform electric fields to manipulate particles based on their dielectric properties, while EOF utilizes uniform electric fields to generate consistent fluid flow across microchannels. Advances in microelectrode fabrication, including photolithography, soft lithography, and emerging non-cleanroom techniques, are discussed. Additionally, the review explores innovative approaches such as rapid prototyping, contactless electrodes, and three-dimensional structures, along with material considerations like conductive polymers and carbon composites. The review discusses the role of microelectrodes in enhancing device functionality, scalability, and reliability. The paper also identifies challenges, including the need for improved fabrication reproducibility and multifunctional integration. Finally, potential future research directions are proposed to further optimize DEP- and EOF-based microsystems for advanced biomedical and diagnostic applications.
Collapse
Affiliation(s)
- Mengren Wu
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Zijian Liu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Yuan Gao
- Department of Mechanical Engineering, University of Memphis, Memphis, TN 38152, USA
| |
Collapse
|
2
|
Fardoost A, Karimi K, Govindaraju H, Jamali P, Javanmard M. Applications of microfluidics in mRNA vaccine development: A review. BIOMICROFLUIDICS 2024; 18:061502. [PMID: 39553921 PMCID: PMC11567697 DOI: 10.1063/5.0228447] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
The transformative potential of microfluidics in the development of mRNA vaccines is explored in this review, highlighting its pivotal role in enhancing easy-to-use functionality, efficacy, and production efficiency. Moreover, we examine the innovative applications of microfluidics in biomedical research, including its contribution to the rapid and cost-effective synthesis of lipid nanoparticles for mRNA delivery and delve into the advantages of mRNA vaccines, such as targeted delivery and controlled expression. Furthermore, it outlines the future prospects of microfluidic devices, their cutting-edge examples in both research and industry, and the potential to revolutionize vaccine formulation and production. The integration of microfluidics with mRNA vaccine development represents a significant advancement in public health and disease prevention strategies.
Collapse
Affiliation(s)
- Ali Fardoost
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Koosha Karimi
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Harshitha Govindaraju
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Pegah Jamali
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Mehdi Javanmard
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
3
|
Timilsina SS, Li X. A paper-in-polymer-pond (PiPP) hybrid microfluidic microplate for multiplexed ultrasensitive detection of cancer biomarkers. LAB ON A CHIP 2024; 24:4962-4973. [PMID: 39327979 DOI: 10.1039/d4lc00485j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Conventional affinity-based colorimetric enzyme-linked immunosorbent assay (ELISA) is one of the most widely used methods for the detection of biomarkers. However, rapid point-of-care (POC) detection of multiple cancer biomarkers by conventional ELISA is limited by long incubation time, large reagent volume, and costly instrumentation along with low sensitivity due to the nature of colorimetric methods. Herein, we have developed a reusable and cost-effective paper-in-polymer-pond (PiPP) hybrid microfluidic microplate for ultrasensitive and high-throughput multiplexed detection of disease biomarkers within an hour without using specialized instruments. A piece of pre-patterned chromatography paper placed in the PMMA polymer pond facilitates rapid protein immobilization to avoid intricate surface modifications of polymer and can be changed with a fresh paper layer to reuse the device. Reagents can be simply delivered from the top PMMA layer to multiple microwells in the middle PMMA layer via flow-through microwells, thereby increasing the efficiency of washing and avoiding repeated manual pipetting or costly robots. Quantitative colorimetric analysis was achieved by calculating the brightness of images scanned by an office scanner or a smartphone camera. Sandwich-type immunoassay was performed in the PiPP hybrid device after the optimization of multiple assay conditions. Limits of detection of 0.32 ng mL-1 for carcinoembryonic antigen (CEA) and 0.20 ng mL-1 for prostate-specific antigen (PSA) were obtained, which were about 10-fold better than those of commercial ELISA kits. We envisage that this simple but versatile hybrid device can have broad applications in various bioassays in resource-limited settings.
Collapse
Affiliation(s)
- Sanjay S Timilsina
- Department of Chemistry & Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA.
| | - XiuJun Li
- Department of Chemistry & Biochemistry, University of Texas at El Paso, 500 W University Ave, El Paso, TX, USA.
- Forensic Science & Environmental Science and Engineering, 500 W University Ave, El Paso, TX, USA
| |
Collapse
|
4
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
5
|
Smith S, Sypabekova M, Kim S. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication. BIOSENSORS 2024; 14:249. [PMID: 38785723 PMCID: PMC11118809 DOI: 10.3390/bios14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
The demand for easy-to-use, affordable, accessible, and reliable technology is increasing in biological, chemical, and medical research. Microfluidic devices have the potential to meet these standards by offering cost-effective, highly sensitive, and highly specific diagnostic tests with rapid performance and minimal sample volumes. Traditional microfluidic device fabrication methods, such as photolithography and soft lithography, are time-consuming and require specialized equipment and expertise, making them costly and less accessible to researchers and clinicians and limiting the applicability and potential of microfluidic devices. To address this, researchers have turned to using new low-cost materials, such as double-sided tape for microfluidic device fabrication, which offers simple and low-cost processes. The innovation of low-cost and easy-to-make microfluidic devices improves the potential for more devices to be transitioned from laboratories to commercialized products found in stores, offices, and homes. This review serves as a comprehensive summary of the growing interest in and use of double-sided tape-based microfluidic devices in the last 20 years. It discusses the advantages of using double-sided tape, the fabrication techniques used to create and bond microfluidic devices, and the limitations of this approach in certain applications.
Collapse
Affiliation(s)
| | | | - Seunghyun Kim
- Department of Electrical & Computer Engineering, Baylor University, Waco, TX 76798, USA; (S.S.); (M.S.)
| |
Collapse
|
6
|
Mohammadi M, Ahmed Qadir S, Mahmood Faraj A, Hamid Shareef O, Mahmoodi H, Mahmoudi F, Moradi S. Navigating the future: Microfluidics charting new routes in drug delivery. Int J Pharm 2024:124142. [PMID: 38648941 DOI: 10.1016/j.ijpharm.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/30/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Microfluidics has emerged as a transformative force in the field of drug delivery, offering innovative avenues to produce a diverse range of nano drug delivery systems. Thanks to its precise manipulation of small fluid volumes and its exceptional command over the physicochemical characteristics of nanoparticles, this technology is notably able to enhance the pharmacokinetics of drugs. It has initiated a revolutionary phase in the domain of drug delivery, presenting a multitude of compelling advantages when it comes to developing nanocarriers tailored for the delivery of poorly soluble medications. These advantages represent a substantial departure from conventional drug delivery methodologies, marking a paradigm shift in pharmaceutical research and development. Furthermore, microfluidic platformsmay be strategically devised to facilitate targeted drug delivery with the objective of enhancing the localized bioavailability of pharmaceutical substances. In this paper, we have comprehensively investigated a range of significant microfluidic techniques used in the production of nanoscale drug delivery systems. This comprehensive review can serve as a valuable reference and offer insightful guidance for the development and optimization of numerous microfluidics-fabricated nanocarriers.
Collapse
Affiliation(s)
- Mohammad Mohammadi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Syamand Ahmed Qadir
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Aryan Mahmood Faraj
- Department of Medical Laboratory Sciences, Halabja Technical College of Applied Sciences, Sulaimani Polytechnic University, Halabja, Iraq
| | - Osama Hamid Shareef
- Department of Medical Laboratory Techniques, Halabja Technical Institute, Research Center, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| | - Hassan Mahmoodi
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mahmoudi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Meng Z, Tayyab M, Lin Z, Raji H, Javanmard M. A computer vision enhanced smart phone platform for microfluidic urine glucometry. Analyst 2024; 149:1719-1726. [PMID: 38334484 DOI: 10.1039/d3an01356a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Glucose is an important biomarker for diagnosing and prognosing various diseases, including diabetes and hypoglycemia, which can have severe side effects, symptoms, and even lead to death in patients. As a result, there is a need for quick and economical glucose level measurements to help identify those at potential risk. With the increase in smartphone users, portable smartphone glucose sensors are becoming popular. In this paper, we present a disposable microfluidic glucose sensor that accurately and rapidly quantifies glucose levels in human urine using a combination of colorimetric analysis and computer vision. This glucose sensor implements a disposable microfluidic device based on medical-grade tapes and glucose analysis strips on a glass slide integrated with a custom-made polydimethylsiloxane (PDMS) micropump that accelerates capillary flow, making it economical, convenient, rapid, and equipment-free. After absorbing the target solution, the disposable device is slid into the 3D-printed main chassis and illuminated exclusively with Light Emitting Diode (LED) illumination, which is pivotal to color-sensitive experiments. After collecting images, the images are imported into the algorithm to measure the glucose levels using computer vision and average RGB values measurements. This article illustrates the impressive accuracy and consistency of the glucose sensor in quantifying glucose in sucrose water. This is evidenced by the close agreement between the computer vision method used by the sensor and the traditional method of measuring in the biology field, as well as the small variation observed between different sensor performances. The exponential regression curve used in the study further confirms the strong relationship between glucose concentrations and average RGB values, with an R-square value of 0.997 indicating a high degree of correlation between these variables. The article also emphasizes the potential transferability of the solution described to other types of assays and smartphone-based sensors.
Collapse
Affiliation(s)
- Zhuolun Meng
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Muhammad Tayyab
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Zhongtian Lin
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Hassan Raji
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| | - Mehdi Javanmard
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, NJ, USA.
| |
Collapse
|
8
|
Gatto ML, Mengucci P, Mattioli-Belmonte M, Munteanu D, Nasini R, Tognoli E, Denti L, Gatto A. Features of Vat-Photopolymerized Masters for Microfluidic Device Manufacturing. Bioengineering (Basel) 2024; 11:80. [PMID: 38247957 PMCID: PMC10813418 DOI: 10.3390/bioengineering11010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/23/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
The growing interest in advancing microfluidic devices for manipulating fluids within micrometer-scale channels has prompted a shift in manufacturing practices, moving from single-component production to medium-size batches. This transition arises due to the impracticality of lab-scale manufacturing methods in accommodating the increased demand. This experimental study focuses on the design of master benchmarks 1-5, taking into consideration critical parameters such as rib width, height, and the relative width-to-height ratio. Notably, benchmarks 4 and 5 featured ribs that were strategically connected to the inlet, outlet, and reaction chamber of the master, enhancing their utility for subsequent replica production. Vat photopolymerization was employed for the fabrication of benchmarks 1-5, while replicas of benchmarks 4 and 5 were generated through polydimethylsiloxane casting. Dimensional investigations of the ribs and channels in both the master benchmarks and replicas were conducted using an optical technique validated through readability analysis based on the Michelson global contrast index. The primary goal was to evaluate the potential applicability of vat photopolymerization technology for efficiently producing microfluidic devices through a streamlined production process. Results indicate that the combination of vat photopolymerization followed by replication is well suited for achieving a minimum rib size of 25 µm in width and an aspect ratio of 1:12 for the master benchmark.
Collapse
Affiliation(s)
- Maria Laura Gatto
- Department of Industrial Engineering and Mathematical Sciences (DIISM), Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Paolo Mengucci
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche 12, 60131 Ancona, Italy;
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/a, 60126 Ancona, Italy;
- INSTM, National Consortium of Materials Science and Technology, Via G. Giusti 9, 50121 Florence, Italy
| | - Daniel Munteanu
- Material Science Department, Transilvania University of Brasov, 29 Eroilor Blvd., 500036 Brasov, Romania;
| | - Roberto Nasini
- Prosilas S.r.l., Via Terracini 14, 60212 Civitanova Marche, Italy
| | - Emanuele Tognoli
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (L.D.); (A.G.)
| | - Lucia Denti
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (L.D.); (A.G.)
| | - Andrea Gatto
- Department of Engineering “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (L.D.); (A.G.)
| |
Collapse
|
9
|
Dowling R, Narkowicz R, Lenz K, Oelschlägel A, Lindner J, Kostylev M. Resonance-Based Sensing of Magnetic Nanoparticles Using Microfluidic Devices with Ferromagnetic Antidot Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:19. [PMID: 38202474 PMCID: PMC10780436 DOI: 10.3390/nano14010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
We demonstrated resonance-based detection of magnetic nanoparticles employing novel designs based upon planar (on-chip) microresonators that may serve as alternatives to conventional magnetoresistive magnetic nanoparticle detectors. We detected 130 nm sized magnetic nanoparticle clusters immobilized on sensor surfaces after flowing through PDMS microfluidic channels molded using a 3D printed mold. Two detection schemes were investigated: (i) indirect detection incorporating ferromagnetic antidot nanostructures within microresonators, and (ii) direct detection of nanoparticles without an antidot lattice. Using scheme (i), magnetic nanoparticles noticeably downshifted the resonance fields of an antidot nanostructure by up to 207 G. In a similar antidot device in which nanoparticles were introduced via droplets rather than a microfluidic channel, the largest shift was only 44 G with a sensitivity of 7.57 G/ng. This indicated that introduction of the nanoparticles via microfluidics results in stronger responses from the ferromagnetic resonances. The results for both devices demonstrated that ferromagnetic antidot nanostructures incorporated within planar microresonators can detect nanoparticles captured from dispersions. Using detection scheme (ii), without the antidot array, we observed a strong resonance within the nanoparticles. The resonance's strength suggests that direct detection is more sensitive to magnetic nanoparticles than indirect detection using a nanostructure, in addition to being much simpler.
Collapse
Affiliation(s)
- Reyne Dowling
- Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia;
| | - Ryszard Narkowicz
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Kilian Lenz
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Antje Oelschlägel
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Jürgen Lindner
- Institute for Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; (R.N.); (K.L.); (J.L.)
| | - Mikhail Kostylev
- Department of Physics, The University of Western Australia, Crawley, WA 6009, Australia;
| |
Collapse
|
10
|
Lovegrove JT, Kent B, Förster S, Garvey CJ, Stenzel MH. The flow of anisotropic nanoparticles in solution and in blood. EXPLORATION (BEIJING, CHINA) 2023; 3:20220075. [PMID: 38264690 PMCID: PMC10742203 DOI: 10.1002/exp.20220075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 01/25/2024]
Abstract
The alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in-plane aligned 1D-nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non-spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non-spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X-ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles.
Collapse
Affiliation(s)
- Jordan Thomas Lovegrove
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| | - Ben Kent
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| | | | - Christopher J. Garvey
- Forschungsneutronenquelle Heinz Maier‐Leibnitz FRM II and Physik Department E13Technische Universität MünchenGarchingGermany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
11
|
Meng Z, Raji H, Tayyab M, Javanmard M. Cell phone microscopy enabled low-cost manufacturable colorimetric urine glucose test. Biomed Microdevices 2023; 25:43. [PMID: 37930426 DOI: 10.1007/s10544-023-00682-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
Glucose serves as a pivotal biomarker crucial for the monitoring and diagnosis of a spectrum of medical conditions, encompassing hypoglycemia, hyperglycemia, and diabetes, all of which may precipitate severe clinical manifestations in individuals. As a result, there is a growing demand within the medical domain for the development of rapid, cost-effective, and user-friendly diagnostic tools. In this research article, we introduce an innovative glucose sensor that relies on microfluidic devices meticulously crafted from disposable, medical-grade tapes. These devices incorporate glucose urine analysis strips securely affixed to microscope glass slides. The microfluidic channels are intricately created through laser cutting, representing a departure from traditional cleanroom techniques. This approach streamlines production processes, enhances cost-efficiency, and obviates the need for specialized equipment. Subsequent to the absorption of the target solution, the disposable device is enclosed within a 3D-printed housing. Image capture is seamlessly facilitated through the use of a smartphone camera for subsequent colorimetric analysis. Our study adeptly demonstrates the glucose sensor's capability to accurately quantify glucose concentrations within sucrose solutions. This is achieved by employing an exponential regression model, elucidating the intricate relationship between glucose concentrations and average RGB (Red-Green-Blue) values. Furthermore, our comprehensive analysis reveals minimal variation in sensor performance across different instances. Significantly, this study underscores the potential adaptability and versatility of our solution for a wide array of assay types and smartphone-based sensor systems, making it particularly promising for deployment in resource-constrained settings and undeveloped countries. The robust correlation established between glucose concentrations and average RGB values, substantiated by an impressive R-square value of 0.98709, underscores the effectiveness and reliability of our pioneering approach within the medical field.
Collapse
Affiliation(s)
- Zhuolun Meng
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA
| | - Hassan Raji
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA
| | - Muhammad Tayyab
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA
| | - Mehdi Javanmard
- Electrical and Computer Engineering, Rutgers University-New Brunswick, 94 Brett Road, Piscataway, 08854, New Jersey, USA.
| |
Collapse
|
12
|
Oladokun R, Adekanmbi EO, An V, Gangavaram I, Srivastava SK. Dielectrophoretic profiling of erythrocytes to study the impacts of metabolic stress, temperature, and storage duration utilizing a point-and-planar microdevice. Sci Rep 2023; 13:17281. [PMID: 37828082 PMCID: PMC10570315 DOI: 10.1038/s41598-023-44022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
Dielectrophoresis (DEP) is widely utilized for trapping and sorting various types of cells, including live and dead cells and healthy and infected cells. This article focuses on the dielectric characterization of erythrocytes (red blood cells or RBCs) by quantifying DEP crossover frequency using a novel point-and-planar microwell device platform. Numerical simulations using COMSOL Multiphysics software demonstrate that the distribution of the DEP force is influenced by factors such as the shape of the point electrode, spacing between the point and planar electrodes, and the type of bioparticle being investigated. The dependency on electrode spacing is experimentally evaluated by analyzing the DEP crossover response of erythrocytes. Furthermore, the results are validated against the traditional electrical characterization technique called electrorotation, which typically requires laborious fabrication and operation using quadrupole electrodes. Other significant factors, including erythrocyte storage age and the changes in cell properties over time since collection, osmolarity, and temperature, are also assessed to determine the optimal conditions for erythrocyte characterization. The findings indicate a significant difference between fresh and stored erythrocyte samples (up to 4 days), highlighting the importance of maintaining an isotonic medium for cell storage.
Collapse
Affiliation(s)
- Raphael Oladokun
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Dr., PO Box 6102, Morgantown, WV, 26506-6102, USA
| | | | - Vanessa An
- Summer 2022 High School Intern, Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Isha Gangavaram
- Summer 2022 High School Intern, Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV, USA
| | - Soumya K Srivastava
- Department of Chemical and Biomedical Engineering, West Virginia University, 1306 Evansdale Dr., PO Box 6102, Morgantown, WV, 26506-6102, USA.
| |
Collapse
|
13
|
Cardoso BD, Castanheira EMS, Lanceros‐Méndez S, Cardoso VF. Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Adv Healthc Mater 2023; 12:e2202936. [PMID: 36898671 PMCID: PMC11468737 DOI: 10.1002/adhm.202202936] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/27/2023] [Indexed: 03/12/2023]
Abstract
The clinical translations of drugs and nanomedicines depend on coherent pharmaceutical research based on biologically accurate screening approaches. Since establishing the 2D in vitro cell culture method, the scientific community has improved cell-based drug screening assays and models. Those advances result in more informative biochemical assays and the development of 3D multicellular models to describe the biological complexity better and enhance the simulation of the in vivo microenvironment. Despite the overall dominance of conventional 2D and 3D cell macroscopic culture methods, they present physicochemical and operational challenges that impair the scale-up of drug screening by not allowing a high parallelization, multidrug combination, and high-throughput screening. Their combination and complementarity with microfluidic platforms enable the development of microfluidics-based cell culture platforms with unequivocal advantages in drug screening and cell therapies. Thus, this review presents an updated and consolidated view of cell culture miniaturization's physical, chemical, and operational considerations in the pharmaceutical research scenario. It clarifies advances in the field using gradient-based microfluidics, droplet-based microfluidics, printed-based microfluidics, digital-based microfluidics, SlipChip, and paper-based microfluidics. Finally, it presents a comparative analysis of the performance of cell-based methods in life research and development to achieve increased precision in the drug screening process.
Collapse
Affiliation(s)
- Beatriz D. Cardoso
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| | - Elisabete M. S. Castanheira
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
| | - Senentxu Lanceros‐Méndez
- Physics Centre of Minho and Porto Universities (CF‐UM‐UP), Campus de GualtarUniversity of MinhoBraga4710‐057Portugal
- LaPMET‐Laboratory of Physics for Materials and Emergent TechnologiesUniversity of Minho4710‐057BragaPortugal
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
- IKERBASQUEBasque Foundation for ScienceBilbao48009Spain
| | - Vanessa F. Cardoso
- Center for MicroElectromechanical Systems (CMEMS‐UMinho)Campus de AzurémUniversity of Minho4800‐058GuimarãesPortugal
- LABBELS‐Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical SystemsUniversity of MinhoBraga/GuimarãesPortugal
| |
Collapse
|
14
|
Saitta L, Cutuli E, Celano G, Tosto C, Stella G, Cicala G, Bucolo M. A Regression Approach to Model Refractive Index Measurements of Novel 3D Printable Photocurable Resins for Micro-Optofluidic Applications. Polymers (Basel) 2023; 15:2690. [PMID: 37376336 DOI: 10.3390/polym15122690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this work, a quadratic polynomial regression model was developed to aid practitioners in the determination of the refractive index value of transparent 3D printable photocurable resins usable for micro-optofluidic applications. The model was experimentally determined by correlating empirical optical transmission measurements (the dependent variable) to known refractive index values (the independent variable) of photocurable materials used in optics, thus obtaining a related regression equation. In detail, a novel, simple, and cost-effective experimental setup is proposed in this study for the first time for collecting the transmission measurements of smooth 3D printed samples (roughness ranging between 0.04 and 2 μm). The model was further used to determine the unknown refractive index value of novel photocurable resins applicable in vat photopolymerization (VP) 3D printing techniques for manufacturing micro-optofluidic (MoF) devices. In the end, this study proved how knowledge of this parameter allowed us to compare and interpret collected empirical optical data from microfluidic devices made of more traditional materials, i.e., Poly(dimethylsiloxane) (PDMS), up to novel 3D printable photocurable resins suitable for biological and biomedical applications. Thus, the developed model also provides a quick method to evaluate the suitability of novel 3D printable resins for MoF device fabrication within a well-defined range of refractive index values (1.56; 1.70).
Collapse
Affiliation(s)
- Lorena Saitta
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Emanuela Cutuli
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giovanni Celano
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Claudio Tosto
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Giovanna Stella
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Gianluca Cicala
- Department of Civil Engineering and Architecture, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
- INSTM-UDR CT, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Maide Bucolo
- Department of Electrical Electronic and Computer Science Engineering, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| |
Collapse
|
15
|
Nemati S, Shalileh F, Mirjalali H, Omidfar K. Toward waterborne protozoa detection using sensing technologies. Front Microbiol 2023; 14:1118164. [PMID: 36910193 PMCID: PMC9999019 DOI: 10.3389/fmicb.2023.1118164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Lin Z, Zou Z, Pu Z, Wu M, Zhang Y. Application of microfluidic technologies on COVID-19 diagnosis and drug discovery. Acta Pharm Sin B 2023; 13:S2211-3835(23)00061-8. [PMID: 36855672 PMCID: PMC9951611 DOI: 10.1016/j.apsb.2023.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has boosted the development of antiviral research. Microfluidic technologies offer powerful platforms for diagnosis and drug discovery for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) diagnosis and drug discovery. In this review, we introduce the structure of SARS-CoV-2 and the basic knowledge of microfluidic design. We discuss the application of microfluidic devices in SARS-CoV-2 diagnosis based on detecting viral nucleic acid, antibodies, and antigens. We highlight the contribution of lab-on-a-chip to manufacturing point-of-care equipment of accurate, sensitive, low-cost, and user-friendly virus-detection devices. We then investigate the efforts in organ-on-a-chip and lipid nanoparticles (LNPs) synthesizing chips in antiviral drug screening and mRNA vaccine preparation. Microfluidic technologies contribute to the ongoing SARS-CoV-2 research efforts and provide tools for future viral outbreaks.
Collapse
Affiliation(s)
- Zhun Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyu Zou
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhe Pu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Minhao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yuanqing Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
17
|
Li Z, Liu H, Wang D, Zhang M, Yang Y, Ren TL. Recent advances in microfluidic sensors for nutrients detection in water. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Meng Z, Tayyab M, Lin Z, Raji H, Javanmard M. A Smartphone-Based Disposable Hemoglobin Sensor Based on Colorimetric Analysis. SENSORS (BASEL, SWITZERLAND) 2022; 23:394. [PMID: 36616992 PMCID: PMC9823837 DOI: 10.3390/s23010394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Hemoglobin is a biomarker of interest for the diagnosis and prognosis of various diseases such as anemia, sickle cell disease, and thalassemia. In this paper, we present a disposable device that has the potential of being used in a setting for accurately quantifying hemoglobin levels in whole blood based on colorimetric analysis using a smartphone camera. Our biosensor employs a disposable microfluidic chip which is made using medical-grade tapes and filter paper on a glass slide in conjunction with a custom-made PolyDimethylSiloaxane (PDMS) micropump for enhancing capillary flow. Once the blood flows through the device, the glass slide is imaged using a smartphone equipped with a custom 3D printed attachment. The attachment has a Light Emitting Diode (LED) that functions as an independent light source to reduce the noise caused by background illumination and external light sources. We then use the RGB values obtained from the image to quantify the hemoglobin levels. We demonstrated the capability of our device for quantifying hemoglobin in Bovine Hemoglobin Powder, Frozen Beef Blood, and human blood. We present a logarithmic model that specifies the relationship between the Red channel of the RGB values and Hemoglobin concentration.
Collapse
|
19
|
Microfluidics in smart packaging of foods. Food Res Int 2022; 161:111873. [DOI: 10.1016/j.foodres.2022.111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
|
20
|
Jo D, Kim SY, Kang HW, Pyo SH, Jeong NK, Bae NH, Lee SJ, Kim YT, Lee KG. Micro-injection Molded Droplet Generation System for Digital PCR Application. BIOCHIP JOURNAL 2022; 16:433-440. [PMID: 36091641 PMCID: PMC9446600 DOI: 10.1007/s13206-022-00079-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Sensitive, effective, and quantitative analysis of infectious pathogens is an important task for the prevention of human health threats. Herein, we present an advanced approach to producing gene-encapsulated microdroplets for quantitative analysis using a micropatterned metal mold and injection molding technique with an automatically operated system. An injection molded microdroplet generation device was successfully fabricated with a minimum channel width of 30 μm and optimized to produce 100 μm diameter droplets. The optimized microchannel design and flow rate also enable the production of stable numbers of microdroplets (~ 16,000 droplets). To verify the applicability of our device and system to droplet-based digital PCR analysis, Escherichia coli (E. coli) O157:H7 was selected as a model bacterial pathogen, and the stx2 gene was amplified in the microdroplets. The generated microdroplets exhibit both chemical and mechanical stability, and our results are similar to those obtained by a commercially available method. Accordingly, the usefulness of the microdroplet generative device and system is confirmed as a simple, fast, and reliable tool for the quantitative molecular analysis of infectious diseases.
Collapse
Affiliation(s)
- Daae Jo
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - So Young Kim
- Bio R&D Lab, BioTNS Co.Ltd, 19-12 Daehak-ro 76 beonan-gil, Daejeon, 34141 Republic of Korea
- Department of Biology, Soon Chun Hyang University, 22 Soonchunhyang-ro, Chungcheongnam-do, Asan-si, 31538 Republic of Korea
| | - Hyeon Woo Kang
- Bio R&D Lab, BioTNS Co.Ltd, 19-12 Daehak-ro 76 beonan-gil, Daejeon, 34141 Republic of Korea
- Department of Biology, Soon Chun Hyang University, 22 Soonchunhyang-ro, Chungcheongnam-do, Asan-si, 31538 Republic of Korea
| | - Sung Han Pyo
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Jeong
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam ho Bae
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Seok Jae Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Yong Tae Kim
- Department of Chemical Engineering and Biotechnology, Tech University of Korea, 237 Sangidaehak-ro, Siheung-si, Gyeonggi-do 15073 Republic of Korea
| | - Kyoung G. Lee
- National Nanofab Center, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
21
|
Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mahsa Akbari Kenari
- Department of Chemical Engineering Polytechnique Montreal Montreal Quebec Canada
| | - Erfan Rezvani Ghomi
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| | | | | | - Javad Deylami
- School of Physical and Mathematical Sciences Nanyang Technological University Singapore Singapore
| | - Seeram Ramakrishna
- Center for Nanotechnology and Sustainability, Department of Mechanical Engineering National University of Singapore Singapore Singapore
| |
Collapse
|
22
|
Hoyle H, Stenger C, Przyborski S. Design considerations of benchtop fluid flow bioreactors for bio-engineered tissue equivalents in vitro. BIOMATERIALS AND BIOSYSTEMS 2022; 8:100063. [PMID: 36824373 PMCID: PMC9934498 DOI: 10.1016/j.bbiosy.2022.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/08/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
One of the major aims of bio-engineering tissue equivalents in vitro is to create physiologically relevant culture conditions to accurately recreate the cellular microenvironment. This often includes incorporation of factors such as the extracellular matrix, co-culture of multiple cell types and three-dimensional culture techniques. These advanced techniques can recapitulate some of the properties of tissue in vivo, however fluid flow is a key aspect that is often absent. Fluid flow can be introduced into cell and tissue culture using bioreactors, which are becoming increasingly common as we seek to produce increasingly accurate tissue models. Bespoke technology is continuously being developed to tailor systems for specific applications and to allow compatibility with a range of culture techniques. For effective perfusion of a tissue culture many parameters can be controlled, ranging from impacts of the fluid flow such as increased shear stress and mass transport, to potentially unwanted side effects such as temperature fluctuations. A thorough understanding of these properties and their implications on the culture model can aid with a more accurate interpretation of results. Improved and more complete characterisation of bioreactor properties will also lead to greater accuracy when reporting culture conditions in protocols, aiding experimental reproducibility, and allowing more precise comparison of results between different systems. In this review we provide an analysis of the different factors involved in the development of benchtop flow bioreactors and their potential biological impacts across a range of applications.
Collapse
Key Words
- 3D, three-dimensional
- ABS, acrylonitrile butadiene styrene
- ALI, air-liquid interface
- Bioreactors
- CFD, computational fluid dynamics
- Cell culture
- ECM, extracellular matrix
- FDM, fused deposition modelling
- Fluid flow
- PC, polycarbonate
- PET, polyethylene terephthalate
- PLA, polylactic acid
- PTFE, polytetrafluoroethylene
- SLA, stereolithography
- Tissue engineering
- UL, unstirred layer
- UV, ultraviolet light
Collapse
Affiliation(s)
- H.W. Hoyle
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - C.M.L. Stenger
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - S.A. Przyborski
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK,NETPark Incubator, Reprocell Europe Ltd., Thomas Wright Way, Sedgefield TS21 3FD, UK,Corresponding author at: Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
23
|
Luo H, Liu S, Shi L, Li Z, Bai Q, Du X, Wang L, Zha H, Li C. Paper-Based Fluidic Sensing Platforms for β-Adrenergic Agonist Residue Point-of-Care Testing. BIOSENSORS 2022; 12:bios12070518. [PMID: 35884321 PMCID: PMC9313176 DOI: 10.3390/bios12070518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The illegal use of β-adrenergic agonists during livestock growth poses a threat to public health; the long-term intake of this medication can cause serious physiological side effects and even death. Therefore, rapid detection methods for β-adrenergic agonist residues on-site are required. Traditional detection methods such as liquid chromatography have limitations in terms of expensive instruments and complex operations. In contrast, paper methods are low cost, ubiquitous, and portable, which has led to them becoming the preferred detection method in recent years. Various paper-based fluidic devices have been developed to detect β-adrenergic agonist residues, including lateral flow immunoassays (LFAs) and microfluidic paper-based analytical devices (μPADs). In this review, the application of LFAs for the detection of β-agonists is summarized comprehensively, focusing on the latest advances in novel labeling and detection strategies. The use of μPADs as an analytical platform has attracted interest over the past decade due to their unique advantages and application for detecting β-adrenergic agonists, which are introduced here. Vertical flow immunoassays are also discussed for their shorter assay time and stronger multiplexing capabilities compared with LFAs. Furthermore, the development direction and prospects for the commercialization of paper-based devices are considered, shedding light on the development of point-of-care testing devices for β-adrenergic agonist residue detection.
Collapse
Affiliation(s)
- Hongzhi Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Department of Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu 610072, China;
| | - Lina Shi
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Zhu Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China;
| | - Qianwen Bai
- Sichuan Jinxin Women & Children Hospital, Chengdu 610066, China;
| | - Xiaoxin Du
- Office of Scientific Research & Development, University of Electronic Science and Technology, Chengdu 610054, China;
| | - Lijun Wang
- Department of Ophthalmology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
- Correspondence: (L.W.); (H.Z.); (C.L.)
| | - He Zha
- Department of Laboratory Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi 563002, China;
- Correspondence: (L.W.); (H.Z.); (C.L.)
| | - Chenzhong Li
- Department of Biochemistry and Molecular Biology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Correspondence: (L.W.); (H.Z.); (C.L.)
| |
Collapse
|
24
|
Chen M, Aluunmani R, Bolognesi G, Vladisavljević GT. Facile Microfluidic Fabrication of Biocompatible Hydrogel Microspheres in a Novel Microfluidic Device. Molecules 2022; 27:molecules27134013. [PMID: 35807255 PMCID: PMC9268728 DOI: 10.3390/molecules27134013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) microgels with tuneable size and porosity find applications as extracellular matrix mimics for tissue-engineering scaffolds, biosensors, and drug carriers. Monodispersed PEGDA microgels were produced by modular droplet microfluidics using the dispersed phase with 49–99 wt% PEGDA, 1 wt% Darocur 2959, and 0–50 wt% water, while the continuous phase was 3.5 wt% silicone-based surfactant dissolved in silicone oil. Pure PEGDA droplets were fully cured within 60 s at the UV light intensity of 75 mW/cm2. The droplets with higher water content required more time for curing. Due to oxygen inhibition, the polymerisation started in the droplet centre and advanced towards the edge, leading to a temporary solid core/liquid shell morphology, confirmed by tracking the Brownian motion of fluorescent latex nanoparticles within a droplet. A volumetric shrinkage during polymerisation was 1–4% for pure PEGDA droplets and 20–32% for the droplets containing 10–40 wt% water. The particle volume increased by 36–50% after swelling in deionised water. The surface smoothness and sphericity of the particles decreased with increasing water content in the dispersed phase. The porosity of swollen particles was controlled from 29.7% to 41.6% by changing the water content in the dispersed phase from 10 wt% to 40 wt%.
Collapse
|
25
|
Bhardwaj T, Ramana LN, Sharma TK. Current Advancements and Future Road Map to Develop ASSURED Microfluidic Biosensors for Infectious and Non-Infectious Diseases. BIOSENSORS 2022; 12:357. [PMID: 35624657 PMCID: PMC9139021 DOI: 10.3390/bios12050357] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023]
Abstract
Better diagnostics are always essential for the treatment and prevention of a disease. Existing technologies for detecting infectious and non-infectious diseases are mostly tedious, expensive, and do not meet the World Health Organization's (WHO) ASSURED (affordable, sensitive, specific, user-friendly, rapid and robust, equipment-free, and deliverable to end user) criteria. Hence, more accurate, sensitive, and faster diagnostic technologies that meet the ASSURED criteria are highly required for timely and evidenced-based treatment. Presently, the diagnostics industry is finding interest in microfluidics-based biosensors, as this integration comprises all qualities, such as reduction in the size of the equipment, rapid turnaround time, possibility of parallel multiple analysis or multiplexing, etc. Microfluidics deal with the manipulation/analysis of fluid within micrometer-sized channels. Biosensors comprise biomolecules immobilized on a physicochemical transducer for the detection of a specific analyte. In this review article, we provide an outline of the history of microfluidics, current practices in the selection of materials in microfluidics, and how and where microfluidics-based biosensors have been used for the diagnosis of infectious and non-infectious diseases. Our inclination in this review article is toward the employment of microfluidics-based biosensors for the improvement of already existing/traditional methods in order to reduce efforts without compromising the accuracy of the diagnostic test. This article also suggests the possible improvements required in microfluidic chip-based biosensors in order to meet the ASSURED criteria.
Collapse
Affiliation(s)
- Tanu Bhardwaj
- NCR Biotech Science Cluster, Translational Health Science and Technology Institute, 3rd Milestone, Gurugram Expressway, Faridabad 121001, India;
| | - Lakshmi Narashimhan Ramana
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India;
| | - Tarun Kumar Sharma
- Department of Medical Biotechnology, Gujarat Biotechnology University, Gujarat International Finance and Tec (GIFT) City, Gandhinagar 382355, India
| |
Collapse
|
26
|
Rapid Detection of Direct Compound Toxicity and Trailing Detection of Indirect Cell Metabolite Toxicity in a 96-Well Fluidic Culture Device for Cell-Based Screening Environments: Tactics in Six Sigma Quality Control Charts. APPLIED SCIENCES-BASEL 2022. [PMID: 37502123 PMCID: PMC10374175 DOI: 10.3390/app12062786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microfluidic screening tools, in vitro, evolve amid varied scientific disciplines. One emergent technique, simultaneously assessing cell toxicity from a primary compound and ensuing cell-generated metabolites (dual-toxicity screening), entails in-line systems having sequentially aligned culture chambers. To explore dual-tox screens, we probe the dissemination of nutrients involving 1-way transport with upstream compound dosing, midstream cascading flows, and downstream cessation. Distribution of flow gives rise to broad concentration ranges of dosing compound (0→ICcompound100) and wide-ranging concentration ranges of generated cell metabolites (0→ICmetabolites100). Innately, single-pass unidirectional flow retains 1st pass informative traits across the network, composed of nine interconnected culture wells, preserving both compound and cell-secreted byproducts as data indicators in each adjacent culture chamber. Thereafter, to assess effective compound hepatotoxicity (0→ECcompound100) and simultaneously classify for cell-metabolite toxicity (0→ECmetabolite100), we reveal utility by analyzing culture viability against ramping exposures of acetaminophen (APAP) and nefazodone (NEF), compounds of hepatic significance. We then discern metabolite generation with an emphasis on amplification across µchannel multiwell sites. Lastly, using conventional cell functions as indicator tools to assess dual toxicity, we investigate a non-drug induced liver injury (non-DILI) compound and DILI compound. The technology is for predictive evaluations of new compound formulations, new chemical entities (NCE), or drugs that have previously failed testing for unresolved reasons.
Collapse
|
27
|
Semi-Automated Microfluidic Device Combined with a MiniPCR-Duplex Lateral Flow Dipstick for Screening and Visual Species Identification of Lymphatic Filariae. MICROMACHINES 2022; 13:mi13020336. [PMID: 35208460 PMCID: PMC8880723 DOI: 10.3390/mi13020336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/17/2022]
Abstract
Lymphatic filariasis (LF) is a leading cause of permanent disability worldwide that has been listed as a neglected tropical disease by the World Health Organization. Significant progress made by the Global Program to Eliminate Lymphatic Filariasis (GPELF) has led to a substantial decline in the population of the worm that causes LF infection. Diagnostic assays capable of detecting low levels of parasite presence are needed to diagnose LF. There is also a need for new tools that can be used in areas where multiple filarial species are coendemic and for mass screening or for use in a point-of-care setting. In the present study, we applied our previously developed semi-automated microfluidic device in combination with our recently developed mini polymerase chain reaction (miniPCR) with a duplex lateral flow dipstick (DLFD) (miniPCR-DLFD) for rapid mass screening and visual species identification of lymphatic filariae in human blood. The study samples comprised 20 Brugia malayi microfilariae (mf) positive human blood samples, 14 Wuchereria bancrofti mf positive human blood samples and 100 mf negative human blood samples. Microfilariae detection and visual species identification was performed using the microfluidic device. To identify the species of the mf trapped in the microfluidic chips, DNA of the trapped mf was extracted for miniPCR amplification of W. bancrofti and B. malayi DNA followed by DLFD. Thick blood smear staining for microfilariae detection was used as the gold standard technique. Microfilariae screening and visual species identification using our microfluidic device plus miniPCR-DLFD platform yielded results concordant with those of the gold standard thick blood smear technique. The microfluidic device, the miniPCR and the DLFD are all portable and do not require additional equipment. Use of this screening and visual species identification platform will facilitate reliable, cost-effective, and rapid surveillance for the presence of LF infection in resource-poor settings.
Collapse
|
28
|
Kukkar D, Zhang D, Jeon B, Kim KH. Recent advances in wearable biosensors for non-invasive monitoring of specific metabolites and electrolytes associated with chronic kidney disease: Performance evaluation and future challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116570] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Cultivating human tissues and organs over lab-on-a-chip models: Recent progress and applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:205-240. [PMID: 35094775 DOI: 10.1016/bs.pmbts.2021.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In vivo models are indispensable for preclinical studies for various human disease modeling and drug screening, however, face several obstacles such as animal model species differences and ethical clearance. Additionally, it is difficult to accurately predict the organ interaction, drug efficacy, and toxicity using conventional in vitro two-dimensional (2D) cell culture models. The microfluidic-based systems provide excellent opportunity to recapitulate the human organ/tissue functions under in vitro conditions. The organ/tissue-on-chip models are one of best emerging technologies that offer functional organs/tissues on a microfluidic chip. This technology has potential to noninvasively study the organ physiology, tissue development, and diseases etymology. This chapter comprises the benifits of 2D and three-dimensional (3D) in vitro cultures as well as highlights the importance of microfluidic-based lab-on-a-chip technique. The development of different organs/tissues-on-chip models and their biomedical application in various diseases such as cardiovascular diseases, neurodegenerative diseases, respiratory-based diseases, cancers, liver and kidney diseases, etc., have also been discussed.
Collapse
|
30
|
Mikhailov N, Plotnikova L, Singh P, Giniatullin R, Hämäläinen RH. Functional Characterization of Mechanosensitive Piezo1 Channels in Trigeminal and Somatic Nerves in a Neuron-on-Chip Model. Int J Mol Sci 2022; 23:ijms23031370. [PMID: 35163293 PMCID: PMC8835985 DOI: 10.3390/ijms23031370] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Mechanosensitive ion channels, Piezo1 and 2, are activated by pressure and involved in diverse physiological functions, including senses of touch and pain, proprioception and many more. Understanding their function is important for elucidating the mechanosensitive mechanisms of a range of human diseases. Recently, Piezo channels were suggested to be contributors to migraine pain generation. Migraine is typically characterized by allodynia and mechanical hyperalgesia associated with the activation and sensitization of trigeminal ganglion (TG) nerve fibers. Notably, migraine specific medicines are ineffective for other types of pain, suggesting a distinct underlying mechanism. To address, in a straightforward manner, the specificity of the mechanosensitivity of trigeminal vs. somatic nerves, we compared the activity of Piezo1 channels in mouse TG neurons vs. dorsal root ganglia (DRG) neurons. We assessed the functional expression of Piezo1 receptors using a conventional live calcium imaging setup equipped with a multibarrel application system and utilizing a microfluidic chip-based setup. Surprisingly, the TG neurons, despite higher expression of the Piezo1 gene, were less responsive to Piezo1 agonist Yoda1 than the DRG neurons. This difference was more prominent in the chip-based setup, suggesting that certain limitations of the conventional approach, such as turbulence, can be overcome by utilizing microfluidic devices with laminar solution flow.
Collapse
Affiliation(s)
- Nikita Mikhailov
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
| | - Lidiia Plotnikova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
| | | | - Rashid Giniatullin
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
- Correspondence: (R.G.); (R.H.H.)
| | - Riikka H. Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; (N.M.); (L.P.)
- Correspondence: (R.G.); (R.H.H.)
| |
Collapse
|
31
|
Ching T, Toh YC, Hashimoto M. Design and fabrication of micro/nanofluidics devices and systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:15-58. [PMID: 35033282 DOI: 10.1016/bs.pmbts.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This chapter provides an overview of the science, engineering, and design methods required in the development of micro/nanofluidic devices. Section 2 provides the scientific background of fluid mechanics and physical phenomena in micro/nanoscale. Section 3 gives a brief overview of the existing fabrication techniques employed in micro/nanofluidics. The techniques are grouped into three categories: (1) subtractive manufacturing, (2) formative manufacturing, and (3) additive manufacturing. The advantages and disadvantages of each manufacturing technique are also discussed. Implementation of the fluidic devices beyond laboratory demonstrations is not trivial, which requires a good understanding of the problems of interest and the end-users. To that end, Section 4 introduces the design thinking approach and its application to develop micro/nanofluidic devices. Finally, Section 5 concludes the chapter with future outlooks.
Collapse
Affiliation(s)
- Terry Ching
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore; Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yi-Chin Toh
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia; Centre for Biomedical Technologies, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Michinao Hashimoto
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, Singapore; Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, Singapore.
| |
Collapse
|
32
|
Tajeddin A, Mustafaoglu N. Design and Fabrication of Organ-on-Chips: Promises and Challenges. MICROMACHINES 2021; 12:1443. [PMID: 34945293 PMCID: PMC8707724 DOI: 10.3390/mi12121443] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/14/2021] [Accepted: 11/21/2021] [Indexed: 02/07/2023]
Abstract
The advent of the miniaturization approach has influenced the research trends in almost all disciplines. Bioengineering is one of the fields benefiting from the new possibilities of microfabrication techniques, especially in cell and tissue culture, disease modeling, and drug discovery. The limitations of existing 2D cell culture techniques, the high time and cost requirements, and the considerable failure rates have led to the idea of 3D cell culture environments capable of providing physiologically relevant tissue functions in vitro. Organ-on-chips are microfluidic devices used in this context as a potential alternative to in vivo animal testing to reduce the cost and time required for drug evaluation. This emerging technology contributes significantly to the development of various research areas, including, but not limited to, tissue engineering and drug discovery. However, it also brings many challenges. Further development of the technology requires interdisciplinary studies as some problems are associated with the materials and their manufacturing techniques. Therefore, in this paper, organ-on-chip technologies are presented, focusing on the design and fabrication requirements. Then, state-of-the-art materials and microfabrication techniques are described in detail to show their advantages and also their limitations. A comparison and identification of gaps for current use and further studies are therefore the subject of the final discussion.
Collapse
Affiliation(s)
- Alireza Tajeddin
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
| | - Nur Mustafaoglu
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla 34596, Istanbul, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Tuzla 34596, Istanbul, Turkey
| |
Collapse
|
33
|
Organ-Chip Models: Opportunities for Precision Medicine in Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13174487. [PMID: 34503294 PMCID: PMC8430573 DOI: 10.3390/cancers13174487] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Among all types of cancer, Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest survival rates, partly due to the failure of current chemotherapeutics. This treatment failure can be attributed to the complicated nature of the tumor microenvironment, where the rich fibro-inflammatory responses can hinder drug delivery and efficacy at the tumor site. Moreover, the high molecular variations in PDAC create a large heterogeneity in the tumor microenvironment among patients. Current in vivo and in vitro options for drug testing are mostly ineffective in recapitulating the complex cellular interactions and individual variations in the PDAC tumor microenvironment, and as a result, they fail to provide appropriate models for individualized drug screening. Organ-on-a-chip technology combined with patient-derived organoids may provide the opportunity for developing personalized treatment options in PDAC. Abstract Pancreatic Ductal Adenocarcinoma (PDAC) is an expeditiously fatal malignancy with a five-year survival rate of 6–8%. Conventional chemotherapeutics fail in many cases due to inadequate primary response and rapidly developing resistance. This treatment failure is particularly challenging in pancreatic cancer because of the high molecular heterogeneity across tumors. Additionally, a rich fibro-inflammatory component within the tumor microenvironment (TME) limits the delivery and effectiveness of anticancer drugs, further contributing to the lack of response or developing resistance to conventional approaches in this cancer. As a result, there is an urgent need to model pancreatic cancer ex vivo to discover effective drug regimens, including those targeting the components of the TME on an individualized basis. Patient-derived three-dimensional (3D) organoid technology has provided a unique opportunity to study patient-specific cancerous epithelium. Patient-derived organoids cultured with the TME components can more accurately reflect the in vivo tumor environment. Here we present the advances in organoid technology and multicellular platforms that could allow for the development of “organ-on-a-chip” approaches to recapitulate the complex cellular interactions in PDAC tumors. We highlight the current advances of the organ-on-a-chip-based cancer models and discuss their potential for the preclinical selection of individualized treatment in PDAC.
Collapse
|
34
|
Joseph A, Rajendran A, Karthikeyan A, Nair BG. Implantable Microfluidic Device: An Epoch of Technology. Curr Pharm Des 2021; 28:679-689. [PMID: 34525928 DOI: 10.2174/1381612827666210825114403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/28/2021] [Indexed: 11/22/2022]
Abstract
Implantable microfluidic devices are milestones in developing devices that can either measure parameters like ocular pressure and blood glucose level or deliver various components for therapeutic needs or behavioral modification. Researchers are currently focusing on the miniaturization of almost all its tools for a better healthcare platform. Implantable microfluidic devices are a combination of various systems including, but not limited to, microfluidic platforms, reservoirs, sensors, and actuators, implanted inside the body of a living entity (in vivo) with the purpose of directly or indirectly helping the entity. It is a multidisciplinary approach with immense potential in the area of the biomedical field. Significant resources are utilizing on for the research and development of these devices for various applications. The induction of an implantable microfluidic device into an animal would enable us to measure the responses without any repeated invasive procedures. Such data would help in the development of a better drug delivery profile. Implantable microfluidic devices with reservoirs deliver specific chemical or biological products to treat situations like cancers and diabetes. They can also deliver fluorophores for specific imaging inside the body. Implantable microfluidic devices help provide a microenvironment for various cell differentiation procedure. These devices know no boundaries, and this article reviews these devices based on their design and applications.
Collapse
Affiliation(s)
- Abey Joseph
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| | - Arivazhagan Rajendran
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| | - Akash Karthikeyan
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| | - Baiju G Nair
- School of Biotechnology, National Institute of Technology, Calicut, Kerala, India; b Institute of Advanced Energy, Kyoto University; c RIKEN, Nanomedical Engineering Laboratory. Japan
| |
Collapse
|
35
|
Kukla DA, Khetani SR. Bioengineered Liver Models for Investigating Disease Pathogenesis and Regenerative Medicine. Semin Liver Dis 2021; 41:368-392. [PMID: 34139785 DOI: 10.1055/s-0041-1731016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Owing to species-specific differences in liver pathways, in vitro human liver models are utilized for elucidating mechanisms underlying disease pathogenesis, drug development, and regenerative medicine. To mitigate limitations with de-differentiated cultures, bioengineers have developed advanced techniques/platforms, including micropatterned cocultures, spheroids/organoids, bioprinting, and microfluidic devices, for perfusing cell cultures and liver slices. Such techniques improve mature functions and culture lifetime of primary and stem-cell human liver cells. Furthermore, bioengineered liver models display several features of liver diseases including infections with pathogens (e.g., malaria, hepatitis C/B viruses, Zika, dengue, yellow fever), alcoholic/nonalcoholic fatty liver disease, and cancer. Here, we discuss features of bioengineered human liver models, their uses for modeling aforementioned diseases, and how such models are being augmented/adapted for fabricating implantable human liver tissues for clinical therapy. Ultimately, continued advances in bioengineered human liver models have the potential to aid the development of novel, safe, and efficacious therapies for liver disease.
Collapse
Affiliation(s)
- David A Kukla
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Salman R Khetani
- Deparment of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
36
|
Ballacchino G, Weaver E, Mathew E, Dorati R, Genta I, Conti B, Lamprou DA. Manufacturing of 3D-Printed Microfluidic Devices for the Synthesis of Drug-Loaded Liposomal Formulations. Int J Mol Sci 2021; 22:ijms22158064. [PMID: 34360832 PMCID: PMC8348465 DOI: 10.3390/ijms22158064] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Microfluidic technique has emerged as a promising tool for the production of stable and monodispersed nanoparticles (NPs). In particular, this work focuses on liposome production by microfluidics and on factors involved in determining liposome characteristics. Traditional fabrication techniques for microfluidic devices suffer from several disadvantages, such as multistep processing and expensive facilities. Three-dimensional printing (3DP) has been revolutionary for microfluidic device production, boasting facile and low-cost fabrication. In this study, microfluidic devices with innovative micromixing patterns were developed using fused deposition modelling (FDM) and liquid crystal display (LCD) printers. To date, this work is the first to study liposome production using LCD-printed microfluidic devices. The current study deals with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) liposomes with cholesterol (2:1) prepared using commercial and 3D-printed microfluidic devices. We evaluated the effect of microfluidic parameters, chip manufacturing, material, and channel design on liposomal formulation by analysing the size, PDI, and ζ-potential. Curcumin exhibits potent anticancer activity and it has been reported that curcumin-loaded liposomes formulated by microfluidics show enhanced encapsulation efficiency when compared with other reported systems. In this work, curcumal liposomes were produced using the developed microfluidic devices and particle sizing, ζ-potential, encapsulation efficiency, and in vitro release studies were performed at 37 °C.
Collapse
Affiliation(s)
- Giulia Ballacchino
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
| | - Edward Weaver
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
| | - Essyrose Mathew
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.D.); (I.G.)
- Correspondence: (B.C.); (D.A.L.); Tel.: +39-0382-987378 (B.C.); +44-(0)28-9097-2617 (D.A.L.)
| | - Dimitrios A. Lamprou
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (G.B.); (E.W.); (E.M.)
- Correspondence: (B.C.); (D.A.L.); Tel.: +39-0382-987378 (B.C.); +44-(0)28-9097-2617 (D.A.L.)
| |
Collapse
|
37
|
Cirillo AI, Tomaiuolo G, Guido S. Membrane Fouling Phenomena in Microfluidic Systems: From Technical Challenges to Scientific Opportunities. MICROMACHINES 2021; 12:820. [PMID: 34357230 PMCID: PMC8305447 DOI: 10.3390/mi12070820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/13/2022]
Abstract
The almost ubiquitous, though undesired, deposition and accumulation of suspended/dissolved matter on solid surfaces, known as fouling, represents a crucial issue strongly affecting the efficiency and sustainability of micro-scale reactors. Fouling becomes even more detrimental for all the applications that require the use of membrane separation units. As a matter of fact, membrane technology is a key route towards process intensification, having the potential to replace conventional separation procedures, with significant energy savings and reduced environmental impact, in a broad range of applications, from water purification to food and pharmaceutical industries. Despite all the research efforts so far, fouling still represents an unsolved problem. The complex interplay of physical and chemical mechanisms governing its evolution is indeed yet to be fully unraveled and the role played by foulants' properties or operating conditions is an area of active research where microfluidics can play a fundamental role. The aim of this review is to explore fouling through microfluidic systems, assessing the fundamental interactions involved and how microfluidics enables the comprehension of the mechanisms characterizing the process. The main mathematical models describing the fouling stages will also be reviewed and their limitations discussed. Finally, the principal dynamic investigation techniques in which microfluidics represents a key tool will be discussed, analyzing their employment to study fouling.
Collapse
Affiliation(s)
- Andrea Iginio Cirillo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Giovanna Tomaiuolo
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico, 80125 Naples, Italy; (A.I.C.); (S.G.)
- CEINGE Advanced Biotechnologies, 80131 Naples, Italy
| |
Collapse
|
38
|
Naef NU, Seeger S. Silicone Nanofilament Support Layers in an Open-Channel System for the Fast Reduction of Para-Nitrophenol. NANOMATERIALS 2021; 11:nano11071663. [PMID: 34202653 PMCID: PMC8305141 DOI: 10.3390/nano11071663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
Chemical vapor phase deposition was used to create hydrophobic nanostructured surfaces on glass slides. Subsequently, hydrophilic channels were created by sputtering a metal catalyst on the channels while masking the outside. The surface tension gradient between the hydrophilic surface in the channels and the outside hydrophobicity formed the open-channel system. The reduction of para-nitrophenol (PNP) was studied on these devices. When compared to nanostructure-free reference systems, the created nanostructures, namely, silicone nanofilaments (SNFs) and nano-bagels, had superior catalytic performance (73% and 66% conversion to 55% at 0.5 µL/s flow rate using 20 nm platinum) and wall integrity; therefore, they could be readily used multiple times. The created nanostructures were stable under the reaction conditions, as observed with scanning electron microscopy. Transition electron microscopy studies of platinum-modified SNFs revealed that the catalyst is present as nanoparticles ranging up to 13 nm in size. By changing the target in the sputter coating unit, molybdenum, gold, nickel and copper were evaluated for their catalytic efficiency. The relative order was platinum < gold = molybdenum < nickel < copper. The decomposition of sodium borohydride (NaBH4) by platinum as a concurrent reaction to the para-nitrophenol reduction terminates the reaction before completion, despite a large excess of reducing agent. Gold had the same catalytic rate as molybdenum, while nickel was two times and copper about four times faster than gold. In all cases, there was a clear improvement in catalysis of silicone nanofilaments compared to a flat reference system.
Collapse
|
39
|
Moccia C, Haase K. Engineering Breast Cancer On-chip-Moving Toward Subtype Specific Models. Front Bioeng Biotechnol 2021; 9:694218. [PMID: 34249889 PMCID: PMC8261144 DOI: 10.3389/fbioe.2021.694218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the second leading cause of death among women worldwide, and while hormone receptor positive subtypes have a clear and effective treatment strategy, other subtypes, such as triple negative breast cancers, do not. Development of new drugs, antibodies, or immune targets requires significant re-consideration of current preclinical models, which frequently fail to mimic the nuances of patient-specific breast cancer subtypes. Each subtype, together with the expression of different markers, genetic and epigenetic profiles, presents a unique tumor microenvironment, which promotes tumor development and progression. For this reason, personalized treatments targeting components of the tumor microenvironment have been proposed to mitigate breast cancer progression, particularly for aggressive triple negative subtypes. To-date, animal models remain the gold standard for examining new therapeutic targets; however, there is room for in vitro tools to bridge the biological gap with humans. Tumor-on-chip technologies allow for precise control and examination of the tumor microenvironment and may add to the toolbox of current preclinical models. These new models include key aspects of the tumor microenvironment (stroma, vasculature and immune cells) which have been employed to understand metastases, multi-organ interactions, and, importantly, to evaluate drug efficacy and toxicity in humanized physiologic systems. This review provides insight into advanced in vitro tumor models specific to breast cancer, and discusses their potential and limitations for use as future preclinical patient-specific tools.
Collapse
Affiliation(s)
| | - Kristina Haase
- European Molecular Biology Laboratory, European Molecular Biology Laboratory Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Kwizera EA, Sun M, White AM, Li J, He X. Methods of Generating Dielectrophoretic Force for Microfluidic Manipulation of Bioparticles. ACS Biomater Sci Eng 2021; 7:2043-2063. [PMID: 33871975 PMCID: PMC8205986 DOI: 10.1021/acsbiomaterials.1c00083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Manipulation of microscale bioparticles including living cells is of great significance to the broad bioengineering and biotechnology fields. Dielectrophoresis (DEP), which is defined as the interactions between dielectric particles and the electric field, is one of the most widely used techniques for the manipulation of bioparticles including cell separation, sorting, and trapping. Bioparticles experience a DEP force if they have a different polarization from the surrounding media in an electric field that is nonuniform in terms of the intensity and/or phase of the electric field. A comprehensive literature survey shows that the DEP-based microfluidic devices for manipulating bioparticles can be categorized according to the methods of creating the nonuniformity via patterned microchannels, electrodes, and media to generate the DEP force. These methods together with the theory of DEP force generation are described in this review, to provide a summary of the methods and materials that have been used to manipulate various bioparticles for various specific biological outcomes. Further developments of DEP-based technologies include identifying materials that better integrate with electrodes than current popular materials (silicone/glass) and improving the performance of DEP manipulation of bioparticles by combining it with other methods of handling bioparticles. Collectively, DEP-based microfluidic manipulation of bioparticles holds great potential for various biomedical applications.
Collapse
Affiliation(s)
- Elyahb A. Kwizera
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Mingrui Sun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Alisa M. White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
41
|
Ferrari E, Ugolini GS, Piutti C, Marzorati S, Rasponi M. Plasma-enhanced protein patterning in a microfluidic compartmentalized platform for multi-organs-on-chip: a liver-tumor model. Biomed Mater 2021; 16. [PMID: 34030149 DOI: 10.1088/1748-605x/ac0454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 11/12/2022]
Abstract
A microfluidic technique is presented for micropatterning protein domains and cell cultures within permanently bonded organs-on-chip devices. This method is based on the use of polydimethylsiloxane layers coupled with the plasma ablation technique for selective protein removal. We show how this technique can be employed to generate a multi-organin vitromodel directly within a microscale platform suitable for pharmacokinetic-based drug screening. We miniaturized a liver model based on micropatterned co-cultures in dual-compartment microfluidic devices. The cytotoxic effect of liver-metabolized Tegafur on colon cancer cell line was assessed using two microfluidic devices where microgrooves and valves systems are used to model drug diffusion between culture compartments. The platforms can reproduce the metabolism of Tegafur in the liver, thus killing colon cancer cells. The proposed plasma-enhanced microfluidic protein patterning method thus successfully combines the ability to generate precise cell micropatterning with the intrinsic advantages of microfluidics in cell biology.
Collapse
Affiliation(s)
- Erika Ferrari
- Politecnico di Milano, Department of Electronics, Information and Bioengineering, Via Golgi 39, Milano 20133, Italy
| | - Giovanni Stefano Ugolini
- Politecnico di Milano, Department of Electronics, Information and Bioengineering, Via Golgi 39, Milano 20133, Italy
| | - Claudia Piutti
- Accelera Srl, Viale Pasteur 10, 20014 Nerviano, MI, Italy
| | | | - Marco Rasponi
- Politecnico di Milano, Department of Electronics, Information and Bioengineering, Via Golgi 39, Milano 20133, Italy
| |
Collapse
|
42
|
Uddin SM, Sayad A, Chan J, Huynh DH, Skafidas E, Kwan P. Heater Integrated Lab-on-a-Chip Device for Rapid HLA Alleles Amplification towards Prevention of Drug Hypersensitivity. SENSORS (BASEL, SWITZERLAND) 2021; 21:3413. [PMID: 34068416 PMCID: PMC8153606 DOI: 10.3390/s21103413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
HLA-B*15:02 screening before administering carbamazepine is recommended to prevent life-threatening hypersensitivity. However, the unavailability of a point-of-care device impedes this screening process. Our research group previously developed a two-step HLA-B*15:02 detection technique utilizing loop-mediated isothermal amplification (LAMP) on the tube, which requires two-stage device development to translate into a portable platform. Here, we report a heater-integrated lab-on-a-chip device for the LAMP amplification, which can rapidly detect HLA-B alleles colorimetrically. A gold-patterned micro-sized heater was integrated into a 3D-printed chip, allowing microfluidic pumping, valving, and incubation. The performance of the chip was tested with color dye. Then LAMP assay was conducted with human genomic DNA samples of known HLA-B genotypes in the LAMP-chip parallel with the tube assay. The LAMP-on-chip results showed a complete match with the LAMP-on-tube assay, demonstrating the detection system's concurrence.
Collapse
Affiliation(s)
- Shah Mukim Uddin
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
| | - Abkar Sayad
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Jianxiong Chan
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
| | - Duc Hau Huynh
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
| | - Efstratios Skafidas
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
- Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Patrick Kwan
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia; (S.M.U.); (J.C.); (D.H.H.); (E.S.)
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia;
- Department of Electrical and Electronic Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
43
|
Improvement of the Machining Performance of the TW-ECDM Process Using Magnetohydrodynamics (MHD) on Quartz Material. MATERIALS 2021; 14:ma14092377. [PMID: 34063586 PMCID: PMC8141110 DOI: 10.3390/ma14092377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 01/14/2023]
Abstract
Many microslits are typically manufactured on quartz substrates and are used to improve their industrial performance. The fabrication of microslits on quartz is difficult and expensive to achieve using recent traditional machining processes due to its hardness, electrically insulating nature, and brittleness. The key objective of the current study was to demonstrate the fabrication of microslits on quartz material through a magnetohydrodynamics (MHD)-assisted traveling wire-electrochemical discharge micromachining process. Hydrogen gas bubbles were concentrated around the entire wire surface during electrolysis. This led to a less active dynamic region of the wire electrode, which decreased the adequacy of the electrolysis process and the machining effectiveness. The test results affirmed that the MHD convection approach evacuated the gas bubbles more rapidly and improved the void fraction in the gas bubble scattering layer. Furthermore, the improvements in the material removal rate and length of the cut were 85.28% and 48.86%, respectively, and the surface roughness was reduced by 30.39% using the MHD approach. A crossover methodology with a Taguchi design and ANOVA was utilized to study the machining performance. This exploratory investigation gives an unused strategy that shows a few advantages over the traditional TW-ECDM process.
Collapse
|
44
|
Cuadros-Rodríguez L, Jiménez-Carvelo AM, Fernández-Ramos M. Multivariate thinking for optical microfluidic analytical devices – A tutorial review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Shukla K, Agarwalla S, Duraiswamy S, Gupta RK. Recent advances in heterogeneous micro-photoreactors for wastewater treatment application. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Desai D, Guerrero YA, Balachandran V, Morton A, Lyon L, Larkin B, Solomon DE. Towards a microfluidics platform for the continuous manufacture of organic and inorganic nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 35:102402. [PMID: 33932590 DOI: 10.1016/j.nano.2021.102402] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 12/19/2022]
Abstract
In the last decade, microfluidics has opened new avenues for the synthesis of nanomaterials. However, the adoption of this production technique has been limited to a few high-value, low-production-volume organic nanoparticles. While there are several technical factors that can be attributed to this slow adoption, an important aspect to consider is the lack of a unified platform capable of producing a wide range of nanomaterials. In this work, we highlight a micro-mixing platform that can manufacture both organic and in-organic nanoparticles over a wide size range (nm-μm). We show that the platform can predictably and reproducibly create size and shape-controlled formulations with high homogeneity through input flow parameters. We further explore parallelization of this platform and discuss key technical constraints for high-volume production. We believe that the platform presented in this work can accelerate the adoption of nanomaterials relevant to a range of industries that encompass pharmaceutics, diagnostics, and cosmeceuticals.
Collapse
|
47
|
Fabrication Protocol for Thermoplastic Microfluidic Devices: Nanoliter Volume Bioreactors for Cell Culturing. Methods Mol Biol 2021. [PMID: 33900574 DOI: 10.1007/7651_2021_397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Microfluidic devices consist of microchannels etched or embossed into substrates made of polymer, glass or silicon. Intricate connections of the microchannels to reactors with some smart mechanical structures such as traps or curvatures fulfil the desired functionalities such as mixing, separation, flow control or setting the environment for biochemical reactions. Here, we describe the fabrication methods of a thermoplastic microbioreactor step by step. First, material selection is made, then, production methods are determined with the equipment that can be easily procured in a laboratory. COP with its outstanding characteristics among many polymers was chosen. Two types of microbioreactors, with and without electrodes, are designed with AutoCAD and L-edit softwares. Photolithography and electrochemical wet etching are used for master mold preparation. Thermal evaporator is employed for pure chromium and gold deposition on COP substrate and etchants are used to form the interdigitated electrodes. Once the master mold produced, hot embossing is used to obtain the designed shape on drilled and planarized COP. Cover COP, with or without electrodes, is bonded to the hot embossed COP via thermo-compression and thermoplastic microfluidic device is realized. Tubings are connected to the device and a bridge between the macro and micro world is established. Yeast or mammalian cells labeled or tagged with GFP/RFP on specific gene products are loaded into the microfluidic device, and real time data on cell dimensions and fluorescence intensity are collected using inverted fluorescence microscope, and finally image processing is used to analyze the acquired data.
Collapse
|
48
|
Markoski A, Wong IY, Borenstein JT. 3D Printed Monolithic Device for the Microfluidic Capture, Perfusion, and Analysis of Multicellular Spheroids. FRONTIERS IN MEDICAL TECHNOLOGY 2021; 3:646441. [PMID: 35047914 PMCID: PMC8757790 DOI: 10.3389/fmedt.2021.646441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/22/2021] [Indexed: 11/30/2022] Open
Abstract
Microfluidic systems for the analysis of tissue models of cancer and other diseases are rapidly emerging, with an increasing recognition that perfusion is required to recapitulate critical aspects of the in vivo microenvironment. Here we report on the first application of 3D printing for the fabrication of monolithic devices suitable for capturing and imaging tumor spheroids under dynamic perfusion flow. Resolution of the printing process has been refined to a level sufficient to obtain high precision features that enable capture and retention of tumor spheroids in a perfusion flow stream that provides oxygen and nutrient requirements sufficient to sustain viability over several days. Use of 3D printing enables rapid design cycles, based on optimization of computational fluid dynamic analyses, much more rapidly than conventional techniques involving replica molding from photolithographic masters. Ultimately, these prototype design and fabrication approaches may be useful in generating highly multiplexed monolithic arrays capable of supporting rapid and efficient evaluation of therapeutic candidates in the cancer drug discovery process.
Collapse
Affiliation(s)
- Alex Markoski
- Department of Synthetic Biology and Bio Instrumentation, Draper, Bioengineering Division, Cambridge, MA, United States
- Joint Program in Cancer Biology, Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
| | - Ian Y. Wong
- Joint Program in Cancer Biology, Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI, United States
- *Correspondence: Ian Y. Wong
| | - Jeffrey T. Borenstein
- Department of Synthetic Biology and Bio Instrumentation, Draper, Bioengineering Division, Cambridge, MA, United States
- Jeffrey T. Borenstein
| |
Collapse
|
49
|
Forigua A, Kirsch RL, Willerth SM, Elvira KS. Recent advances in the design of microfluidic technologies for the manufacture of drug releasing particles. J Control Release 2021; 333:258-268. [PMID: 33766691 DOI: 10.1016/j.jconrel.2021.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Drug releasing particles are valued for their ability to deliver therapeutics to targeted locations and for their controllable release patterns. The development of microfluidic technologies, which are designed specifically to manipulate small amounts of fluids, to manufacture particles for drug delivery applications reflects a recent trend due to the advantages they confer in terms of control over particle size and material composition. This review takes a comprehensive look at the different types of microfluidic devices used to fabricate such particles from different types of biomaterials, and at how the on-chip features enable the production of particles with different types of properties. The review concludes by suggesting avenues for future work that will enable these technologies to fulfill their potential and be used in industrial settings for the manufacture of drug releasing particles with unique capabilities.
Collapse
Affiliation(s)
- Alejandro Forigua
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Rebecca L Kirsch
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8W 2Y2, Canada; Division of Medical Sciences, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| |
Collapse
|
50
|
Scott SM, Ali Z. Fabrication Methods for Microfluidic Devices: An Overview. MICROMACHINES 2021; 12:319. [PMID: 33803689 PMCID: PMC8002879 DOI: 10.3390/mi12030319] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/20/2022]
Abstract
Microfluidic devices offer the potential to automate a wide variety of chemical and biological operations that are applicable for diagnostic and therapeutic operations with higher efficiency as well as higher repeatability and reproducibility. Polymer based microfluidic devices offer particular advantages including those of cost and biocompatibility. Here, we describe direct and replication approaches for manufacturing of polymer microfluidic devices. Replications approaches require fabrication of mould or master and we describe different methods of mould manufacture, including mechanical (micro-cutting; ultrasonic machining), energy-assisted methods (electrodischarge machining, micro-electrochemical machining, laser ablation, electron beam machining, focused ion beam (FIB) machining), traditional micro-electromechanical systems (MEMS) processes, as well as mould fabrication approaches for curved surfaces. The approaches for microfluidic device fabrications are described in terms of low volume production (casting, lamination, laser ablation, 3D printing) and high-volume production (hot embossing, injection moulding, and film or sheet operations).
Collapse
Affiliation(s)
| | - Zulfiqur Ali
- Healthcare Innovation Centre, School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley TS1 3BX, UK
| |
Collapse
|