1
|
Xu J, Guo YQ, Guo SH, Xu MZ, Li C, Gong YQ, Lu K. Divergent associations of inflammatory markers with bone turnover markers in elderly patients with osteoporotic fractures. Sci Rep 2024; 14:24907. [PMID: 39438524 PMCID: PMC11496696 DOI: 10.1038/s41598-024-75704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The association between inflammatory markers (IMs) and bone turnover markers (BTMs) in osteoporotic fracture patients has not been comprehensively studied. Therefore, this study examined the correlation between the platelet-to-lymphocyte ratio (PLR), neutrophil-to-lymphocyte ratio (NLR), or Monocyte-to-lymphocyte ratio (MLR) and BTMs in osteoporosis (OP) fracture patients. This retrospective cross-sectional study analyzed 740 OP fracture patients admitted to the hospital from January 2017 to July 2022. MLR, NLR, and PLR were calculated based on each patient's complete blood count. The relationship between IMs and BTMs was assessed using three models by adjusting variables. Furthermore, the potential curve relationship between IMs and BTMs was also determined via the threshold effect analysis and curve fittings. In addition, stratified analysis was performed on each adjusted variable to confirm the stability of the results. After adjusting the variables, the results showed that NLR was negatively correlated with procollagen type 1 N-terminal propeptide (P1NP) (β = -1.1788, 95% CI: -1.7230 to -0.6345, P-value < 0.0001) and β-C-terminal telopeptide of type I collagen (β-CTX) (β = -0.0104, 95% CI: -0.0145 to -0.0062, P-value < 0.0001), Furthermore, MLR was negatively correlated with P1NP (β = -17.4523, 95% CI: -27.7335 to -7.1710, P-value = 0.0009) and β-CTX (β = -0.1327, 95% CI: -0.2211 to -0.0443, P-value = 0.0034). However, PLR indicated a positive correlation with P1NP (β = 0.0326, 95% CI: 0.0007 to 0.0645, P-value = 0.0458) and β-CTX (β = 0.0003, 95% CI: 0.0001 to 0.0006, P-value = 0.0204). The threshold effect analysis and curve fittings revealed the presence of a turning point between NLR, MLR, and P1NP, β-CTX. In addition, the stratified analysis validated the result's stability. In conclusion, this study indicates a negative correlation between NLR and MLR with P1NP, while PLR shows a positive correlation with P1NP. Additionally, NLR and MLR exhibit a negative correlation with β-CTX, whereas PLR demonstrates a positive correlation with β-CTX. Further research is required to assess the intricate mechanisms linking IM with bone metabolism.
Collapse
Affiliation(s)
- Jian Xu
- Department of Orthopedics, The First People's Hospital of Kunshan, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yue-Qin Guo
- Endocrine Department, The Fifth People's Hospital of Kunshan, Suzhou, Jiangsu, China
| | - Shao-Han Guo
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Min-Zhe Xu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Chong Li
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ya-Qin Gong
- Information Department, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China
| | - Ke Lu
- Department of Orthopedics, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, China.
| |
Collapse
|
2
|
Li Q, Wang J, Zhao C. From Genomics to Metabolomics: Molecular Insights into Osteoporosis for Enhanced Diagnostic and Therapeutic Approaches. Biomedicines 2024; 12:2389. [PMID: 39457701 PMCID: PMC11505085 DOI: 10.3390/biomedicines12102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Osteoporosis (OP) is a prevalent skeletal disorder characterized by decreased bone mineral density (BMD) and increased fracture risk. The advancements in omics technologies-genomics, transcriptomics, proteomics, and metabolomics-have provided significant insights into the molecular mechanisms driving OP. These technologies offer critical perspectives on genetic predispositions, gene expression regulation, protein signatures, and metabolic alterations, enabling the identification of novel biomarkers for diagnosis and therapeutic targets. This review underscores the potential of these multi-omics approaches to bridge the gap between basic research and clinical applications, paving the way for precision medicine in OP management. By integrating these technologies, researchers can contribute to improved diagnostics, preventative strategies, and treatments for patients suffering from OP and related conditions.
Collapse
Affiliation(s)
- Qingmei Li
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| | - Jihan Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Congzhe Zhao
- Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China
| |
Collapse
|
3
|
Li X, Long H, Wen D, Chen B, Chen L, Li B. Genetic insights into the association between serum cytokines and frozen shoulder risk: A bidirectional mendelian randomization study. Cytokine 2024; 183:156736. [PMID: 39173280 DOI: 10.1016/j.cyto.2024.156736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Although existing studies have indicated a connection between chronic low-grade inflammation and the onset of frozen shoulder (FS), the precise causal relationship between distinct circulating inflammatory factors and FS has yet to be thoroughly evaluated. In this study, we employed a bidirectional two-sample Mendelian randomization (MR) analysis to investigate the potential causal relationship between systemic cytokines and FS. METHODS A genome-wide association dataset comprising 41 serum cytokines from 8,293 individuals of Finnish descent was utilized, along with FS data from the UK Biobank included 10,104 FS cases and 451,099 controls. The primary MR method was the inverse variance weighted approach, and four additional MR techniques (MR-Egger, weighted median, simple mode, and weighted mode) were also employed to support and validate the findings. Heterogeneity and horizontal pleiotropy assessments were assessed using Cochrane's Q and MR-Egger intercept tests. Moreover, a series of sensitivity analyses were conducted to strengthen the accuracy and credibility of these findings. RESULTS Based on the IVW method, genetically predicted increasing levels of growth regulated oncogene alpha (GROa) (OR=1.08, 95 % CI 1.02-1.13, P=0.005), interferon gamma-induced protein 10 (IP-10) (OR=1.09, 95 % CI 1.02-1.17, P=0.010), regulated on activation, C-C Motif Chemokine Ligand 5 (CCL5) (OR=1.11, 95 % CI 1.03-1.20, P=0.007) were suggestively associated with an increased risk of FS. Reverse MR analysis revealed no significant causal effect of FS on the 41 systemic inflammatory factors. No heterogeneity or horizontal pleiotropy was observed in our analysis. CONCLUSION This study established a causal association between 41 systemic inflammatory factors and FS, indicating that elevated levels of GROa, IP-10 and CCL5 were associated with a higher risk of FS. Further research is warranted to explore the potential of these biomarkers as early predictors and therapeutic targets for FS.
Collapse
Affiliation(s)
- Xuefei Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Han Long
- Huazhong University of Science and Technology, Tongji Medical College, School of Medicine and Health Management, Wuhan 430022, China
| | - Dusu Wen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Biao Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Bin Li
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
4
|
Kim NY, Kim JE, Choi CH, Chung KH. Chronic kidney disease in postmenopausal women is associated with tooth loss. Menopause 2024; 31:663-668. [PMID: 38860929 DOI: 10.1097/gme.0000000000002375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVE Menopause is characterized by changes in reproductive hormone levels that can negatively affect bone. Chronic kidney disease (CKD) and tooth loss are also important and common health issues after menopause. This study aimed to evaluate the association between CKD and tooth loss in postmenopausal women. METHODS The study evaluated 64,971 participants who participated in the Korean National Health and Nutrition Examination Survey (KNHANES) from 2010-2018, including postmenopausal women, aged 40 to 79 years. Participants were divided into two groups based on the number of teeth in their dentition (≥20 and <20). MAIN OUTCOME MEASURES The association between CKD and tooth loss was analyzed using multivariate logistic regression. Age, income, education, smoking, alcohol intake, body mass index, hypertension, diabetes, annual oral examination, toothbrushing, and the use of oral care products were considered. Subgroup analyses were further conducted according to age (40-65 yr and 66-79 yr). RESULTS After adjusting for covariates, CKD and estimated glomerular filtration rate were significantly associated with having ≥20 teeth (PT20; CKD: odds ratio [OR] 1.41, 95% confidence interval [CI] 1.04-1.90; estimated glomerular filtration rate (10 mL/min/1.73 m 2 ): OR 0.90, 95% CI 0.86-0.94). Importantly, the association between CKD and PT20 was significant in postmenopausal women, aged 66 to 79 years (OR 1.45, 95% CI 1.05-2.01). CONCLUSIONS In postmenopausal women, CKD and tooth loss may be associated. The association is significant in postmenopausal women, aged 66 to 79 years.
Collapse
Affiliation(s)
- Na-Yeong Kim
- From the Department of Preventive and Public Health Dentistry, Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Ji-Eun Kim
- From the Department of Preventive and Public Health Dentistry, Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | | | | |
Collapse
|
5
|
Lechner J, von Baehr V, Notter F, Schick F. Osteoimmune Interaction and TH-1/TH-2 Ratio in Jawbone Marrow Defects: An Underestimated Association - Original Research. Biologics 2024; 18:147-161. [PMID: 38859969 PMCID: PMC11164205 DOI: 10.2147/btt.s448587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Introduction Osteoimmunology recognizes the relationship between bone cells and immune cells. Chronic osteoimmune dysregulation is present in bone marrow defects of the jaw (BMDJ) as fatty-degenerative osteonecrosis (FDOJ). In comparison to samples from healthy jaw bone, the cytokine analysis of samples of BMDJ/FDOJ from 128 patients showed downregulated TNF-α and IL-6 expression and the singular overexpression of the chemokine RANTES/CCL5. Aim and Objectives This paper raises the question of whether the osteoimmune defects due to incomplete wound healing in BMDJ/FDOJ in 128 patients are related to dysregulation of the Th1/Th2 ratio and regulatory T cell (T-reg) expression in a control group of 197 BMDJ/FDOJ patients, each presenting with BMDJ/FJOD and one of seven different immune disorders. Material and Methods In the control group, serum concentrations of the cytokines IFN-y and IL-4 were determined after stimulated cytokine release and displayed as Th1/Th2 ratios. Results Data show a shift in Th2 in more than 80% (n = 167) of the control cohort of 197 chronically ill patients with concomitant BMDJ/FDOJ. In these 167 subjects, the Th1/Th2 ratio was <6.1 demonstrating impaired immune regulation. Forty-seven subjects or 30% showed not only a shift in Th2 but also excessive T-reg overactivation with levels of >1.900 pg/mL, indicating strongly downregulated immune activity. Discussion BMDJ/FDOJ is characterized by a lack of Th1 cytokines and an excessive expression of RANTES/CCL5 and IL-1ra and, thus, the inversion of an acute inflammatory cytokine pattern. In contrast, abdominal fat contains a very high proportion of regulatory Th1 cells and produces an inflammatory immune response through the high overexpression of TNF-α and IL-6. The lack of Th1 activation in BMDJ/FDOJ areas inhibits normal wound healing and supports the persistence of BMDJ/FDOJ. Conclusion The Th1/Th2 ratio requires greater consideration, especially with respect to wound healing following dental surgical interventions, such as jaw surgery, implantation and augmentation, to avoid the emergence of the osteoimmune situation that is characteristic of BMDJ/FDOJ.
Collapse
Affiliation(s)
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | | | | |
Collapse
|
6
|
Ferrà-Cañellas MDM, Garcia-Sureda L. Exploring the Potential of Micro-Immunotherapy in the Treatment of Periodontitis. Life (Basel) 2024; 14:552. [PMID: 38792574 PMCID: PMC11122531 DOI: 10.3390/life14050552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Periodontitis, characterized by the progressive destruction of dental support tissues due to altered immune responses, poses a significant concern for public health. This condition involves intricate interactions between the immune response and oral microbiome, where innate and adaptive immune responses, with their diverse cell populations and inflammatory mediators, play crucial roles in this immunopathology. Indeed, cytokines, chemokines, growth factors, and immune cells perform key functions in tissue remodeling. Focusing on periodontal therapies, our attention turns to micro-immunotherapy (MI), employing low doses (LDs) and ultra-low doses (ULDs) of immunological signaling molecules like cytokines, growth factors, and hormones. Existing studies across various fields lay the groundwork for the application of MI in periodontitis, highlighting its anti-inflammatory and regenerative potential in soft tissue models based on in vitro research. In summary, this review underscores the versatility and potential of MI in managing periodontal health, urging further investigations to solidify its clinical integration. MI supports an innovative approach by modulating immune responses at low doses to address periodontitis.
Collapse
Affiliation(s)
- Maria del Mar Ferrà-Cañellas
- Preclinical Research Department, Labo’Life España, 07330 Consell, Spain
- Group of Cell Therapy and Tissue Engineering, Research Institute on Health Sciences (IUNICS), University of the Balearic Islands, 07122 Palma de Mallorca, Spain
- Health Research Institute of the Balearic Islands (IdISBa), 07122 Palma de Mallorca, Spain
| | | |
Collapse
|
7
|
Li C, Liu Y, Deng M, Li J, Li S, Li X, Zuo Y, Shen C, Wang Y. Comparison of the therapeutic effects of mesenchymal stem cells derived from human dental pulp (DP), adipose tissue (AD), placental amniotic membrane (PM), and umbilical cord (UC) on postmenopausal osteoporosis. Front Pharmacol 2024; 15:1349199. [PMID: 38601464 PMCID: PMC11004311 DOI: 10.3389/fphar.2024.1349199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 04/12/2024] Open
Abstract
Background: Osteoporosis is a systemic bone disease characterized by bone loss and microstructural degeneration. Recent preclinical and clinical trials have further demonstrated that the transplantation of mesenchymal stem cells (MSCs) derived from human adipose tissue (AD), dental pulp (DP), placental amniotic membrane (AM), and umbilical cord (UC) tissues can serve as an effective form of cell therapy for osteoporosis. However, MSC-mediated osteoimmunology and the ability of these cells to regulate osteoclast-osteoblast differentiation varies markedly among different types of MSCs. Methods: In this study, we investigated whether transplanted allogeneic MSCs derived from AD, DP, AM, and UC tissues were able to prevent osteoporosis in an ovariectomy (OVX)-induced mouse model of osteoporosis. The homing and immunomodulatory ability of these cells as well as their effects on osteoblastogenesis and the maintenance of bone formation were compared for four types of MSCs to determine the ideal source of MSCs for the cell therapy-based treatment of OVX-induced osteoporosis. The bone formation and bone resorption ability of these four types of MSCs were analyzed using micro-computed tomography analyses and histological staining. In addition, cytokine array-based analyses of serological markers and bioluminescence imaging assays were employed to evaluate cell survival and homing efficiency. Immune regulation was determined by flow cytometer assay to reflect the mechanisms of osteoporosis treatment. Conclusion: These analyses demonstrated that MSCs isolated from different tissues have the capacity to treat osteoporosis when transplanted in vivo. Importantly, DP-MSCs infusion was able to maintain trabecular bone mass more efficiently with corresponding improvements in trabecular bone volume, mineral density, number, and separation. Among the tested MSC types, DP-MSCs were also found to exhibit greater immunoregulatory capabilities, regulating the Th17/Treg and M1/M2 ratios. These data thus suggest that DP-MSCs may represent an effective tool for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Chuncai Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yincong Liu
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingxing Deng
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Shengqi Li
- Sichuan Provincial Cells Tissue Bank, Chengdu, China
| | - Xiaoyu Li
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuling Zuo
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Hospital of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chongyang Shen
- Stem Cells Research Center, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yichao Wang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Vasconcelos e Cruz J, Notter F, Schick F, Lechner J. Comparison of Cytokine RANTES/CCL5 Inflammation in Apical Periodontitis and in Jawbone Cavitations - Retrospective Clinical Study. J Inflamm Res 2024; 17:67-80. [PMID: 38197033 PMCID: PMC10775705 DOI: 10.2147/jir.s442693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024] Open
Abstract
Background Apical periodontitis (AP) is one of the most common endodontic diseases associated with osteo destructive cytokine production. The literature also reports cytokine studies in fatty degenerative osteonecrotic bone marrow defects (BMDJ/FDOJ) independent of AP. Objective We compare the RANTES/CCL5 (R/C) chemokine production between AP and BMDJ/FDOJ. For both pathologies, the R/C expression was also compared to radiographic diagnosis in 2D-OPG, 3D-CBCT/DVT. Material and Methods Postoperative samples were collected and divided in three different groups: HB (healthy jawbone) (n=19), APs (n=19), and BMDJ/FDOJ (n=7). The R/C expression was evaluated using multiplex analysis. In addition, two clinical cases from AP and BMDJ/FDOJ groups were randomly selected and radiographic diagnosis in 2D-OPG and 3D-CBCT/DVT was compared to TAU measurements and R/C expression in AP and in BMDJ/FDOJ. Results BMDJ/FDOJ showed the highest R/C expression (2498.71 pg/mL), followed by AP (841.85 pg/mL) and HB (149.85 pg/mL) (AP vs BMDJ/FDOJ = p=0.01; AP vs HB = p=<0.01; BMDJ/FDOJ vs HB = p=<0.01). In both clinical cases, the radiographic findings depict the AP areas in OPG and CBCT/DVT, in contrast to the BMDJ/FDOJ areas. Conversely, the systemic immunological R/C expressions are threefold and fivefold excessive in both cases. Discussion AP is recognized as a pathology requiring treatment, while the pathogenesis of BMDJ/FDOJ is controversially discussed in the literature, despite stronger potential systemic immunological effects (breast cancer (case 1) and multiple sclerosis (case 2)). The inadequate radiographic representation of reduced bone density in BMDJ/FDOJ areas could be a reason for this contradiction. Conclusion The data presented provide the first quantitative analysis of R/C expression in AP and BMDJ/FDOJ. BMDJ/FDOJ showed high R/C expression than AP, besides the diagnostic through radiographs being extremely poor. To cover this imprecision, a radiation-free TAU device is available.
Collapse
Affiliation(s)
- Joana Vasconcelos e Cruz
- Dental Materials, Egas Moniz School of Health & Science, Caparica, Portugal
- Dental Materials, Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), Caparica, Portugal
| | - Florian Notter
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| | - Fabian Schick
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| | | |
Collapse
|
9
|
Lechner J, McMahon RE, Bouquot JE, Notter F, Schick F. Is preexisting inflamed jaw marrow a "hidden" co-morbidity affecting outcomes of COVID-19 infections? - Clinical comparative study. Int J Immunopathol Pharmacol 2024; 38:3946320241265265. [PMID: 38889772 PMCID: PMC11186393 DOI: 10.1177/03946320241265265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction: Exceedingly high levels of the chemokine CCL5/RANTES have been found in fatty degenerated osteonecrotic alveolar bone cavities (FDOJ) and aseptic ischemic osteolysis of the jaw (AIOJ) from toothless regions. Because CCL5/RANTES seems to have a prominent role in creating the COVID-19 "cytokine storm", some researchers have used the monoclonal antibody Leronlimab to block the CCR5 on inflammatory cells.Objective: Is preexisting FDOJ/AIOJ jaw marrow pathology a "hidden" co-morbidity affecting some COVID-19 infections? To what extent does the chronic CCL5/RANTES expression from preexisting FDOJ/AIOJ areas contribute to the progression of the acute cytokine storm in COVID-19 patients?Methods: Authors report on reducing the COVID-19 "cytokine storm" by treating infected patients through targeting the chemokine receptor 5 (CCR5) with Leronlimab and interrupting the activation of CCR5 by high CCL5/RANTES signaling, thus dysregulating the inflammatory phase of the viremia. Surgical removal of FDOJ/AIOJ lesions with high CCL5/RANTES from patients with inflammatory diseases may be classified as a co-morbid disease.Results: Both multiplex analysis of 249 FDOJ/AIOJ bone tissue samples as well as serum levels of CCL5/RANTES displayed exceedingly high levels in both specimens.Discussion: By the results the authors hypothesize that chronic CCL5/RANTES induction from FDOJ/AIOJ areas may sensitize CCR5 throughout the immune system, thus, enabling it to amplify its response when confronted with the virus. As conventional intraoral radiography does little to assess the quality of the alveolar bone, ultrasonography units are available to help dentists locate the FDOJ/AIOJ lesions in an office setting.Conclusion: The authors propose a new approach to containment of the COVID-19 cytokine storm by a prophylactic focus for future viral-related pandemics, which may be early surgical clean-up of CCL5/RANTES expression sources in the FDOJ/AIOJ areas, thus diminishing a possible pre-sensitization of CCR5. A more complete dental examination includes trans-alveolar ultrasono-graphy (TAU) for hidden FDOJ/AIOJ lesions.
Collapse
Affiliation(s)
| | - Robert E McMahon
- Residual Infection In Bone (RIIB) Project, Indiana University, Indianapolis, IN, USA
| | - Jerry E Bouquot
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, University of Texas, Houston, TX USA
| | - Florian Notter
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| | - Fabian Schick
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| |
Collapse
|
10
|
Brassolatti P, de Castro CA, dos Santos HL, Simões IT, Almeida-Lopes L, da Silva JV, Duarte FO, Luna GLF, Beck WR, Bossini PS, Anibal FDF. Systemic and local inflammatory response after implantation of biomaterial in critical bone injuries. Acta Cir Bras 2023; 38:e383823. [PMID: 37851783 PMCID: PMC10578104 DOI: 10.1590/acb383823] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2023] [Indexed: 10/20/2023] Open
Abstract
PURPOSE To evaluate inflammatory response in critical bone injuries after implantation of the biomaterial composed of hydroxyapatite (HA)/poly (lactic-coglycolic acid) (PLGA)/BLEED. METHODS Forty-eight male Wistar rats (280 ± 20 grams) were divided into two groups: control group (CG), in which the animals do not receive any type of treatment; and biomaterial group (BG), in which the animals received the HA/PLGA/BLEED scaffold. Critical bone injury was induced in the medial region of the skull calotte with the aid of a trephine drill 8 mm in diameter. The biomaterial was implanted in the form of 1.5-mm thick scaffolds. Serum and calotte were collected at one, three and seven days. RESULTS Biomaterial had a significant effect on the morphological structure of the bone, accelerating osteoblast activation within three days, without causing exacerbated systemic inflammation. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that BG induced upregulation of osteogenic genes such as runt-related transcription factor 2, and stimulated genes of inflammatory pathways such as tumor necrosis factor-α, on the first day without overexpressing genes related to bone matrix degradation, such as tissue inhibitor of metalloproteinases-1 and matrix metalloproteinase-9. CONCLUSIONS The HA/PLGA/BLEED® association can be used as a bone graft to aid bone repair, as it is capable of modulating expression of important genes at this stage of the repair process.
Collapse
Affiliation(s)
- Patricia Brassolatti
- Universidade Federal de São Carlos – Postgraduate Program in Evolutionary Genetics and Molecular Biology – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Cynthia Aparecida de Castro
- Universidade Federal de São Carlos – Postgraduate Program in Evolutionary Genetics and Molecular Biology – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Hugo Leonardo dos Santos
- Universidade Federal de São Carlos – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Isabelle Taira Simões
- Universidade Federal de São Carlos – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | | | | | - Fernanda Oliveira Duarte
- Universidade Federal de São Carlos – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Genoveva Lourdes Flores Luna
- Universidade Federal de São Carlos – Postgraduate Program in Evolutionary Genetics and Molecular Biology – Department of Morphology and Pathology – São Carlos (SP) – Brazil
| | - Wladimir Rafael Beck
- Universidade Federal de São Carlos – Department of Physiological Sciences – São Carlos (SP) – Brazil
| | - Paulo Sergio Bossini
- Institute of Research and Education in the Health Area – São Carlos (SP) – Brazil
| | | |
Collapse
|
11
|
Chen S, Sun X, Jin J, Zhou G, Li Z. Association between inflammatory markers and bone mineral density: a cross-sectional study from NHANES 2007-2010. J Orthop Surg Res 2023; 18:305. [PMID: 37069682 PMCID: PMC10108543 DOI: 10.1186/s13018-023-03795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/12/2023] [Indexed: 04/19/2023] Open
Abstract
PURPOSE Monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR) are acknowledged as novel inflammatory markers. However, studies investigating the correlation between inflammatory markers and osteoporosis (OP) remain scarce. We aimed to investigate the relationship between NLR, MLR, PLR and bone mineral density (BMD). METHODS A total of 9054 participants from the National Health and Nutrition Examination Survey were included in the study. MLR, NLR and PLR were calculated for each patient based on routine blood tests. Given the complex study design and sample weights, the relationship between inflammatory markers and BMD was evaluated through weighted multivariable-adjusted logistic regression and smooth curve fittings. In addition, several subgroup analyses were conducted to assess the robustness of the outcomes. RESULTS This study observed no significant relationship between MLR and lumbar spine BMD (P = 0.604). However, NLR was positively correlated with lumbar spine BMD (β = 0.004, 95% CI: 0.001 to 0.006, P = 0.001) and PLR was negatively linked to lumbar spine BMD (β = - 0.001, 95% CI: - 0.001 to - 0.000, P = 0.002) after accounting for covariates. When bone density measurements were changed to the total femur and femoral neck, PLR was still significantly positively correlated with total femur (β = - 0.001, 95% CI: - 0.001, - 0.000, P = 0.001) and femoral neck BMD (β = - 0.001, 95% CI: - 0.002, - 0.001, P < 0.001). After converting PLR to a categorical variable (quartiles), participants in the highest PLR quartile had a 0.011/cm2 lower BMD than those in the lowest PLR quartile (β = - 0.011, 95% CI: - 0.019, - 0.004, P = 0.005). According to subgroup analyses stratified by gender and age, the negative correlation with PLR and lumbar spine BMD remained in males and age < 18 groups, but not in female and other age groups. CONCLUSIONS NLR and PLR were positively and negatively correlated with lumbar BMD, respectively. And PLR might serve as a potential inflammatory predictor of osteoporosis outperforming MLR and NLR. The complex correlation between the inflammation markers and bone metabolism requires further evaluation in large prospective studies.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Xiaohe Sun
- Department of Oncology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Jie Jin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China
| | - Guowei Zhou
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, No.155, Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu Province, People's Republic of China.
| | - Zhiwei Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, No.23, Nanhu Road, Jianye District, Nanjing, 210017, Jiangsu Province, People's Republic of China.
| |
Collapse
|
12
|
Meng B, Yang B, Qu Y, Liu Y, Wu D, Fu C, He Y, Chen X, Liu C, Kou X, Cao Y. Dual Role of Interleukin-20 in Different Stages of Osteoclast Differentiation and Its Osteoimmune Regulation during Alveolar Bone Remodeling. Int J Mol Sci 2023; 24:ijms24043810. [PMID: 36835229 PMCID: PMC9961846 DOI: 10.3390/ijms24043810] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Osteoimmunology mediators are critical to balance osteoblastogenesis and osteoclastogenesis to maintain bone homeostasis. A lot of the osteoimmunology mediators are regulated by interleukin-20 (IL-20). However, little is known about the role of IL-20 in bone remodeling. Here, we showed that IL-20 expression was correlated with osteoclast (OC) activity in remodeled alveolar bone during orthodontic tooth movement (OTM). Ovariectomize (OVX) in rats promoted OC activity and enhanced IL-20 expression, while blocking OC inhibited IL-20 expression in osteoclasts. In vitro, IL-20 treatment promoted survival, inhibited apoptosis of the preosteoclast at the early stages of osteoclast differentiation, and boosted the formation of osteoclasts and their bone resorption function at the late stages. More importantly, anti-IL-20 antibody treatment blocked IL-20-induced osteoclastogenesis and the subsequent bone resorption function. Mechanistically, we showed that IL-20 synergistically acts with RANKL to activate the NF-κB signaling pathway to promote the expression of c-Fos and NFATc1 to promote osteoclastogenesis. Moreover, we found that local injection of IL-20 or anti-IL-20 antibody enhanced osteoclast activity and accelerated OTM in rats, while blocking IL-20 reversed this phenomenon. This study revealed a previously unknown role of IL-20 in regulating alveolar bone remodeling and implies the application of IL-20 to accelerated OTM.
Collapse
Affiliation(s)
- Bowen Meng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Benyi Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yan Qu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yuanbo Liu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Dongle Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chaoran Fu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yifan He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Xi Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chufeng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510260, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| | - Yang Cao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- South China Center of Craniofacial Stem Cell Research, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Correspondence: (X.K.); (Y.C.)
| |
Collapse
|
13
|
Zheng J, Yao Z, Xue L, Wang D, Tan Z. The role of immune cells in modulating chronic inflammation and osteonecrosis. Front Immunol 2022; 13:1064245. [PMID: 36582244 PMCID: PMC9792770 DOI: 10.3389/fimmu.2022.1064245] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Osteonecrosis occurs when, under continuous stimulation by adverse factors such as glucocorticoids or alcohol, the death of local bone and marrow cells leads to abnormal osteoimmune function. This creates a chronic inflammatory microenvironment, which interferes with bone regeneration and repair. In a variety of bone tissue diseases, innate immune cells and adaptive immune cells interact with bone cells, and their effects on bone metabolic homeostasis have attracted more and more attention, thus developing into a new discipline - osteoimmunology. Immune cells are the most important regulator of inflammation, and osteoimmune disorder may be an important cause of osteonecrosis. Elucidating the chronic inflammatory microenvironment regulated by abnormal osteoimmune may help develop potential treatments for osteonecrosis. This review summarizes the inflammatory regulation of bone immunity in osteonecrosis, explains the pathophysiological mechanism of osteonecrosis from the perspective of osteoimmunology, and provides new ideas for the treatment of osteonecrosis.
Collapse
Affiliation(s)
- Jianrui Zheng
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhi Yao
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Deli Wang
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| | - Zhen Tan
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, China,*Correspondence: Lixiang Xue, ; Deli Wang, ; Zhen Tan,
| |
Collapse
|
14
|
Feng SY, Lei J, Li YX, Shi WG, Wang RR, Yap AU, Wang YX, Fu KY. Increased joint loading induces subchondral bone loss of the temporomandibular joint via the RANTES-CCRs-Akt2 axis. JCI Insight 2022; 7:158874. [PMID: 36173680 PMCID: PMC9675482 DOI: 10.1172/jci.insight.158874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022] Open
Abstract
Early-stage temporomandibular joint osteoarthritis (TMJOA) is characterized by excessive subchondral bone loss. Emerging evidence suggests that TMJ disc displacement is involved, but the pathogenic mechanism remains unclear. Here, we established a rat model of TMJOA that simulated disc displacement with a capacitance-based force-sensing system to directly measure articular surface pressure in vivo. Micro-CT, histological staining, immunofluorescence staining, IHC staining, and Western blot were used to assess pathological changes and underlying mechanisms of TMJOA in the rat model in vivo as well as in RAW264.7 cells in vitro. We found that disc displacement led to significantly higher pressure on the articular surface, which caused rapid subchondral bone loss via activation of the RANTES-chemokine receptors-Akt2 (RANTES-CCRs-Akt2) axis. Inhibition of RANTES or Akt2 attenuated subchondral bone loss and resulted in improved subchondral bone microstructure. Cytological studies substantiated that RANTES regulated osteoclast formation by binding to its receptor CCRs and activating the Akt2 pathway. The clinical evidence further supported that RANTES was a potential biomarker for predicting subchondral bone loss in early-stage TMJOA. Taken together, this study demonstrates important functions of the RANTES-CCRs-Akt2 axis in the regulation of subchondral bone remodeling and provides further knowledge of how disc displacement causes TMJOA.
Collapse
Affiliation(s)
- Shi-Yang Feng
- Center for Temporomandibular Disorders & Orofacial Pain, and,Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jie Lei
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yu-Xiang Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Ge Shi
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Ran-Ran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Adrian Ujin Yap
- Center for Temporomandibular Disorders & Orofacial Pain, and,Department of Dentistry, Ng Teng Fong General Hospital and Faculty of Dentistry, National University Health System, Singapore, Singapore.,National Dental Research Institute Singapore, National Dental Centre Singapore and Duke-NUS Medical School, Singapore Health Services, Singapore, Singapore
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Kai-Yuan Fu
- Center for Temporomandibular Disorders & Orofacial Pain, and,National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
15
|
Berbari R, Nassif N, Sfeir E. Inflammatory Status of Excavated Pulp Tissue and Internal Root Resorption in Pulpotomized Primary Molars. JOURNAL OF DENTISTRY (SHIRAZ, IRAN) 2022; 23:284-291. [PMID: 36506886 PMCID: PMC9719593 DOI: 10.30476/dentjods.2021.88927.1374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Statement of the Problem Internal root resorption after pulpotomy is a pathological phenomenon and can lead to early root resorption and subsequent loss of the tooth. Purpose To assess the relationship between initial inflammatory coronal pulp status in decayed primary molars treated by pulpotomy and internal root resorption after one-year follow-up. Materials and Method In this clinical in vivo and in vitro experiment, vital pulpotomies were performed on 50 primary molars from 50 patients aged 5 to 10 years. Coronal pulp was carefully removed followed by hemostasis and placement of a reinforced zinc oxide eugenol over the vital radicular pulp. Enzyme-linked immunosorbent assay (ELISA) assay was done on coronal pulp samples and the level of tumor necrosis factor-alpha (TNF- α) and interlukin-6 (IL-6) was measured. After a 12-month follow-up, periapical radiographs were taken from pulpotomized teeth. Kolmogorov-Smirnov, Chi-square, Kruskal-Wallis, and Mann-Whitney tests were implemented. Results 11 treated teeth (22%) showed an internal root resorption as diagnosed on X-rays. No significant association was found between TNF- α, IL-6 levels, and pathological root resorption respectively (p= 0.953) and (p= 0.944). A significant association between age and pathological root resorption was observed (p= 0.031). No significant association between remaining dentin thickness and pathological root resorption was established (p= 0.346). Conclusion There was no association between pro-inflammatory cytokines levels/ TNF-α, IL-6 and internal root resorption following pulpotomy in pediatric patients.
Collapse
Affiliation(s)
- Roula Berbari
- Dept. of Pediatric Dentistry and Public Health, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Nahla Nassif
- Dept. of Pediatric Dentistry and Public Health, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| | - Elia Sfeir
- Dept. of Pediatric Dentistry and Public Health, Faculty of Dental Medicine, Lebanese University, Beirut, Lebanon
| |
Collapse
|
16
|
Xu J, Zhang S, Si H, Zeng Y, Wu Y, Liu Y, Li M, Wu L, Shen B. A genetic correlation scan identifies blood proteins associated with bone mineral density. BMC Musculoskelet Disord 2022; 23:530. [PMID: 35659283 PMCID: PMC9164489 DOI: 10.1186/s12891-022-05453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteoporosis is a common metabolic bone disease that is characterized by low bone mass. However, limited efforts have been made to explore the functional relevance of the blood proteome to bone mineral density across different life stages. Methods Using genome-wide association study summary data of the blood proteome and two independent studies of bone mineral density, we conducted a genetic correlation scan of bone mineral density and the blood proteome. Linkage disequilibrium score regression analysis was conducted to assess genetic correlations between each of the 3283 plasma proteins and bone mineral density. Results Linkage disequilibrium score regression identified 18 plasma proteins showing genetic correlation signals with bone mineral density in the TB-BMD cohort, such as MYOM2 (coefficient = 0.3755, P value = 0.0328) among subjects aged 0 ~ 15, POSTN (coefficient = − 0.5694, P value = 0.0192) among subjects aged 30 ~ 45 and PARK7 (coefficient = − 0.3613, P value = 0.0052) among subjects aged over 60. Conclusions Our results identified multiple plasma proteins associated with bone mineral density and provided novel clues for revealing the functional relevance of plasma proteins to bone mineral density. Supplementary Information The online version contains supplementary material available at 10.1186/s12891-022-05453-z.
Collapse
|
17
|
Whole Genome Sequencing Unravels New Genetic Determinants of Early-Onset Familial Osteoporosis and Low BMD in Malta. Genes (Basel) 2022; 13:genes13020204. [PMID: 35205249 PMCID: PMC8871631 DOI: 10.3390/genes13020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Osteoporosis is a skeletal disease with a strong genetic background. The study aimed to identify the genetic determinants of early-onset familial osteoporosis and low bone mineral density (BMD) in a two-generation Maltese family. Methods: Fifteen relatives aged between 28–74 years were recruited. Whole genome sequencing was conducted on 12 relatives and shortlisted variants were genotyped in the Malta Osteoporotic Fracture Study (MOFS) for replication. Results: Sequential variant filtering following a dominant inheritance pattern identified rare missense variants within SELP, TGF-β2 and ADAMTS20, all of which were predicted to be likely pathogenic and participate in osteoimmunology. TGF-β2 c.1136C>T was identified in five individuals from the MOFS in heterozygosity, four of whom had osteopenia/osteoporosis at the lumbar spine and hip, and/or had sustained a low-trauma fracture. Heterozygosity for the ADAMTS20 c.4090A>T was accompanied by lower total hip BMD (p = 0.018) and lower total serum calcium levels in MOFS (p < 0.01), recapitulating the findings from the family. Women carrying at least one copy of the alternative allele (TC/CC) for SELP c.2177T>C exhibited a tendency for lower lumbar spine BMD and/or wrist fracture history relative to women with TT genotype. Conclusions: Our findings suggest that the identified variants, alone or in combination, could be causal factors of familial osteoporosis and low BMD, requiring replication in larger collections.
Collapse
|
18
|
Mamun-Or-Rashid ANM, Lucy TT, Yagi M, Yonei Y. Inhibitory Effects of Astaxanthin on CML-HSA-Induced Inflammatory and RANKL-Induced Osteoclastogenic Gene Expression in RAW 264.7 Cells. Biomedicines 2021; 10:biomedicines10010054. [PMID: 35052734 PMCID: PMC8772757 DOI: 10.3390/biomedicines10010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/08/2023] Open
Abstract
Objective: Elevated levels of serum Nε-carboxymethyllysine (CML), a well-known advanced glycation end-product (AGE), were observed in patients with inflammation or osteoporosis. Astaxanthin was reported to possess anti-inflammatory and antioxidant effects. In the present study, we investigated the effects of commercially available dietary supplement AstaReal ACTR (ASR) capsule content as astaxanthin on CML-HSA-induced inflammatory and receptor activator of nuclear factor-kappa-Β ligand (RANKL)-induced osteoclastogenic gene expression. Methods: RAW 264.7 murine macrophage cells were stimulated with CML-HSA to trigger inflammatory gene expression and treated with either a vehicle control or varied concentrations of astaxanthin. Inflammatory gene expression was measured using an enzyme-linked immunosorbent assay (ELISA) or qPCR. We triggered osteoclastogenesis using RANKL, and osteoclastogenic gene expression was measured through tartrate-resistant acid phosphatase (TRAP) activity, staining, immunofluorescence, and qPCR analyses. Results: CML-HSA showed a stimulatory effect on inflammatory gene expression, and astaxanthin reduced the expression by at least two-fold. The levels of autoinflammatory gene expression were reduced by astaxanthin. The RANKL-induced osteoclastogenesis was significantly inhibited by astaxanthin, with reductions in the activation of nuclear factor-κB (NF-κB), the expression of NFATc1 (nuclear factor of activated T cells 1), multinucleated cell formation, and the expression of mature osteoclast marker genes. Conclusion: Astaxanthin has potential as a remedy for CML-HSA-induced inflammation and RANKL-induced excessive bone loss.
Collapse
|
19
|
Lechner J, Zimmermann B, Schmidt M. Focal Bone-Marrow Defects in the Jawbone Determined by Ultrasonography-Validation of New Trans-Alveolar Ultrasound Technique for Measuring Jawbone Density in 210 Participants. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3135-3146. [PMID: 34392995 DOI: 10.1016/j.ultrasmedbio.2021.07.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound imaging of the jawbone is not currently used in dental medicine to determine bone density. Bone-marrow defects in the human jawbone (BMDJ/FDOJ) are widely discussed in dentistry owing to their role in implant failures and as sources of inflammation in various immune diseases. The use of through-transmission alveolar ultrasonography (TAU) to locate BMDJ/FDOJ was evaluated in this study using a new TAU apparatus (TAU-n). The objective was to determine whether TAU-n readings accurately indicate the clinical parameters to detect BMDJ/FDOJ. Three parameters were compared with TAU-n measurements: 2-D orthopantomogram, Hounsfield units using digital volume tomography and post-operatively measured levels of RANTES/CCL5 expression in BMDJ/FDOJ samples. Based on the available clinical data, Hounsfield units, RANTES/CCL5 expression and TAU-n color codes yielded consistent results with respect to bone mineral density. Thus, ultrasonography with TAU-n is a reliable and efficient diagnostic method to screen for BMDJ/FDOJ in dentistry.
Collapse
|
20
|
Li Y, Cai B, Zhang Z, Qu G, Chen L, Chen G, Liang T, Yang C, Fan L, Zhang Z. Salicylic acid-based nanomedicine with self-immunomodulatory activity facilitates microRNA therapy for metabolic skeletal disorders. Acta Biomater 2021; 130:435-446. [PMID: 34089908 DOI: 10.1016/j.actbio.2021.05.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022]
Abstract
Metabolic skeletal disorders remain a major clinical challenge. The complexity of this disease requires a strategy to address the net effects of both inflammation and impaired bone formation. microRNA-based gene therapy provides several therapeutic advantages to tackle these issues. Herein, we describe a microRNA-21 (miR-21) delivery system with an additional therapeutic effect from that of the delivery carrier itself. Poly (salicylic acid) (PSA) is, for the first time, synthesized via polycondensation of salicylic acid (SA), a bioactive ingredient widely used for anti-inflammation in medicine. PSA can self-assemble into nanoparticles (PSA-NPs) and can effectively deliver genes both in vitro and in vivo. The carrier was then attached to repetitive sequences of aspartate, serine, serine (DSS)6 for delivering miRNAs specifically to bone-formation surfaces. In vitro studies showed that miR-21@PSA-NP could effectively realize the intracellular delivery of miR-21 with low toxicity, while in vivo results indicated that the miR-21@PSA-NP-DSS6 prolonged blood circulation time, enhanced bone accumulation, and significantly improved the efficacy of miR-21-based bone anabolic therapy in osteoporotic mice. The constructed delivery system (miR-21@PSA-NP-DSS6) inherited the advantages of both SA and miR-21, which could ameliorate bone-inflamed niche and rescued the impaired bone formation ability. The synergy of anti-inflammatory and pro-osteogenic effects significantly improved trabecular bone microstructure in osteoporotic mice. STATEMENT OF SIGNIFICANCE: The complexity of metabolic skeletal disorders requires a strategy to address the net effects of both inflammation and impaired bone formation. microRNA-based gene therapy provides several therapeutic advantages to tackle these issues. We develop a novel microRNA-21 delivery system with additional therapeutic effect from that of the gene carrier itself. Poly (salicylic acid) (PSA) nanoparticles, for the first time, synthesized via polycondensation of salicylic acid and can effectively deliver genes both in vitro and in vivo. The constructed delivery system (miR-21@PSA-NP-DSS6) inherited the advantages of both SA (commonly used anti-inflammation drug in medicine) and miR-21 (a pro-osteogenic molecule), which could ameliorate bone-inflamed niche, rescued impaired bone formation ability and significantly improved trabecular bone microstructure in osteoporotic mice.
Collapse
Affiliation(s)
- Yan Li
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Bolei Cai
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhaoyichun Zhang
- School of Stomatology, Zhejiang Chinese Medicine University, Hangzhou 310053, China
| | - Guanlin Qu
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lu Chen
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guojun Chen
- The Department of Biomedical Engineering and the Rosalind & Morris Goodman Cancer Research Centre, McGill Unviersity, Montreal, Quebec, Canada
| | - Tingxizi Liang
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of 7, Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chi Yang
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Ling Fan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an, Shaanxi 710072, China.
| | - Zhiyuan Zhang
- National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
21
|
Lechner J, von Baehr V, Schick F. RANTES/CCL5 Signaling from Jawbone Cavitations to Epistemology of Multiple Sclerosis - Research and Case Studies. Degener Neurol Neuromuscul Dis 2021; 11:41-50. [PMID: 34262389 PMCID: PMC8275106 DOI: 10.2147/dnnd.s315321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The role played by signaling pathways in the cell-cell communication associated with multiple sclerosis (MS) progression has become a critical area in research. Chemokine RANTES (regulated upon activation, normal T-cell expressed and secreted), also named chemokine C-C motif ligand 5 (CCL5; R/C), is a protein that has been investigated in neuroinflammatory research due to its link to MS development. OBJECTIVE Research on bone marrow defects in the jawbone (BMDJ), which morphologically presents as fatty-degenerative osteonecrosis of the jawbone (FDOJ), presents overexpression of R/C signaling in affected areas. Here, we try to elucidate the potential link between jawbone-derived R/C and MS. METHODS Seventeen BMDJ/FDOJ samples extracted from 17 MS patients, as well as samples from 19 healthy controls, were analyzed for R/C expression using bead-based Luminex® analysis. The serum R/C levels from 10 MS patients were examined. Further, bone density, histology, and R/C expression were analyzed in two clinical case studies. RESULTS High R/C overexpression was found in all BMDJ/FDOJ samples obtained from the MS group. Serum R/C levels were also upregulated in the MS group. R/C serum levels in the MS cohort were higher than in the healthy controls. In contrast, the histology of BMDJ/FDOJ samples showed no inflammatory cells. DISCUSSION R/C-induced "silent inflammation" in MS is widely discussed in the scientific literature, along with R/C triggering of inflammation in the central nervous system, which might be key in the development of MS. CONCLUSION The authors suspect that BMDJ/FDOJ may serve as a trigger of MS progression via R/C overexpression. As such, the dental and medical communities should be made aware of BMDJ/FDOJ in cases of MS.
Collapse
|
22
|
Lechner J, Schmidt M, von Baehr V, Schick F. Undetected Jawbone Marrow Defects as Inflammatory and Degenerative Signaling Pathways: Chemokine RANTES/CCL5 as a Possible Link Between the Jawbone and Systemic Interactions? J Inflamm Res 2021; 14:1603-1612. [PMID: 33911892 PMCID: PMC8071694 DOI: 10.2147/jir.s307635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/07/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cytokines, especially chemokines, are of increasing interest in immunology. This study characterizes the little-known phenomenon of “bone marrow defects of the jawbone” (BMDJ) with known overexpression of the chemokine RANTES/CCL5 (R/C). Purpose Our investigation clarifies why BMDJ and the intensity of local R/C overexpression are challenging to detect, as examined in patients with seven different systemic immunological diseases. Specifically, we investigate whether R/C overexpression is specific to certain disease groups or if it represents a type of signal disruption found in all systemic immunological diseases. Patients and Methods In a total of 301 patients, BMDJ was surgically repaired during clinical practice to reduce “silent inflammation” associated with the presence of jaw-related pathologies. In each case of BMDJ, bone density was measured preoperatively (in Hounsfield units [HU]), while R/C expression was measured postoperatively. Each of the 301 patients suffered from allergies, atypical facial and trigeminal pain, or were diagnosed with neurodegenerative diseases, tumors, rheumatism, chronic fatigue syndrome, or parasympathetic disorders. Results In all BMDJ cases, strongly negative HU values indicated decreased bone density or osteolysis. Consistently, all cases of BMDJ showed elevated R/C expression. These findings were consistently observed in every disease group. Discussion BMDJ was confirmed in all patients, as verified by the HU measurements and laboratory results related to R/C expression. The hypothesis that a specific subset of the seven disease groups could be distinguished either based on the increased presence of BMDJ and by the overexpression of R/C could not be confirmed. A brief literature review confirms the importance of R/C in the etiology of each of the seven disease groups. Conclusion In this research, the crucial role played by BMDJ and the chemokine R/C in inflammatory and immune diseases is discussed for seven groups of patients. Each specific immune disease can be influenced or propelled by BMDJ-derived R/C inflammatory signaling pathways.
Collapse
Affiliation(s)
- Johann Lechner
- Head of the Clinic for Integrative Dentistry, Munich, Germany
| | | | - Volker von Baehr
- Head of the Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | - Fabian Schick
- Dental Surgeon, Clinic for Integrative Dentistry, Munich, Germany
| |
Collapse
|
23
|
Lechner J, von Baehr V, Zimmermann B. Osteonecrosis of the Jaw Beyond Bisphosphonates: Are There Any Unknown Local Risk Factors? Clin Cosmet Investig Dent 2021; 13:21-37. [PMID: 33505172 PMCID: PMC7829671 DOI: 10.2147/ccide.s288603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Bisphosphonate (BP)-related osteonecrosis of the jaw (BRONJ) is a complication of intravenous (IV) BP therapy. BP therapy locally affects the dentoalveolar area, while systemic effects are associated with parenteral/IV BP use. Despite numerous publications, the pathogenesis of BRONJ is not fully understood, as only some patients receiving IV BPs develop BRONJ. PURPOSE Can impaired bone remodeling (found in aseptic-ischemic osteonecrosis of the jaw [AIOJ], bone marrow defects [BMD], or fatty-degenerative osteonecrosis of the jaw [FDOJ]) represent a risk factor for BRONJ formation? PATIENTS AND METHODS A literature search clarified the relationship between AIOJ, BMD, FDOJ, and BRONJ, in which common characteristics related to signal cascades, pathohistology, and diagnostics are explored and compared. A case description examining non-exposed BRONJ is presented. DISCUSSION Non-exposed BRONJ variants may represent one stage in undetected BMD development, and progression to BRONJ results from BPs. CONCLUSION Unresolved wound healing at extraction sites, where wisdom teeth have been removed for example, may contribute to the pathogenesis of BRONJ. With IV BP administration, persisting AIOJ/BMD/FDOJ areas may be behind BRONJ development. Therapeutic recommendations include IV BP administration following AIOJ/BMD/FDOJ diagnosis and surgical removal of ischemic areas. BPs should not be regarded as the only cause of osteonecrosis.
Collapse
Affiliation(s)
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics, Berlin, Germany
| | | |
Collapse
|
24
|
Cortes-Altamirano JL, Morraz-Varela A, Reyes-Long S, Gutierrez M, Bandala C, Clavijo-Cornejo D, Alfaro-Rodriguez A. Chemical Mediators' Expression Associated with the Modulation of Pain in Rheumatoid Arthritis. Curr Med Chem 2021; 27:6208-6218. [PMID: 31419924 DOI: 10.2174/0929867326666190816225348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The management of pain in patients with rheumatoid arthritis (RA) is a complex subject due to the autoimmune nature of the pathology. Studies have shown that chemical mediators play a fundamental role in the determination, susceptibility and modulation of pain at different levels of the central and peripheral nervous system, resulting in interesting novel molecular targets to mitigate pain in patients with RA. However, due to the complexity of pain physiology in RA cand the many chemical mediators, the results of several studies are controversial. OBJECTIVE The aim of this study was to identify the chemical mediators that are able to modulate pain in RA. METHOD In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation index for studies that evaluated the expression of chemical mediators on the modulation of pain in RA. RESULTS Few studies have highlighted the importance of the expression of some chemical mediators that modulate pain in patients with rheumatoid arthritis. The expression of TRPV1, ASIC-3, and TDV8 encode ionic channels in RA and modulates pain, likewise, the transcription factors in RA, such as TNFα, TGF-β1, IL-6, IL-10, IFN-γ, IL-1b, mTOR, p21, caspase 3, EDNRB, CGRPCALCB, CGRP-CALCA, and TAC1 are also directly involved in pain perception. CONCLUSION The expression of all chemical mediators is directly related to RA and the modulation of pain by a complex intra and extracellular signaling pathway, however, transcription factors are involved in modulating acute pain, while the ionic channels are involved in chronic pain in RA.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Department of Chiropractic, State University of the Valley of Ecatepec (UNEVE), Ecatepec de Morelos, Estado de México, México
| | - Abril Morraz-Varela
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| | - Samuel Reyes-Long
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Marwin Gutierrez
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Cindy Bandala
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Denise Clavijo-Cornejo
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Alfonso Alfaro-Rodriguez
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| |
Collapse
|
25
|
Negligible Effect of Estrogen Deficiency on Development of Skeletal Changes Induced by Type 1 Diabetes in Experimental Rat Models. Mediators Inflamm 2020; 2020:2793804. [PMID: 33204216 PMCID: PMC7665927 DOI: 10.1155/2020/2793804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/09/2020] [Accepted: 08/05/2020] [Indexed: 01/21/2023] Open
Abstract
Although postmenopausal osteoporosis often occurs concurrently with diabetes, little is known about interactions between estrogen deficiency and hyperglycemia in the skeletal system. In the present study, the effects of estrogen deficiency on the development of biochemical, microstructural, and mechanical changes induced by streptozotocin-induced diabetes mellitus (DM) in the rat skeletal system were investigated. The experiments were carried out on nonovariectomized (NOVX) and ovariectomized (OVX) control and diabetic mature female Wistar rats. Serum levels of bone turnover markers (CTX-I and osteocalcin) and 23 cytokines, bone mass and mineralization, histomorphometric parameters, and mechanical properties of cancellous and compact bone were determined. The results were subjected to two-way ANOVA and principal component analysis (PCA). Estrogen deficiency induced osteoporotic changes, with increased bone resorption and formation, and worsening of microstructure (femoral metaphyseal BV/TV decreased by 13.0%) and mechanical properties of cancellous bone (the maximum load in the proximal tibial metaphysis decreased by 34.2%). DM in both the NOVX and OVX rats decreased bone mass, increased bone resorption and decreased bone formation, and worsened cancellous bone microarchitecture (for example, the femoral metaphyseal BV/TV decreased by 17.3% and 18.1%, respectively, in relation to the NOVX controls) and strength (the maximum load in the proximal tibial metaphysis decreased by 35.4% and 48.1%, respectively, in relation to the NOVX controls). Only in the diabetic rats, profound increases in some cytokine levels were noted. In conclusion, the changes induced by DM in female rats were only slightly intensified by estrogen deficiency. Despite similar effects on bone microstructure and strength, the influence of DM on the skeletal system was based on more profound systemic homeostasis changes than those induced by estrogen deficiency.
Collapse
|
26
|
Ye X, Jiang H, Wang Y, Ji Y, Jiang X. A correlative studies between osteoporosis and blood cell composition: Implications for auxiliary diagnosis of osteoporosis. Medicine (Baltimore) 2020; 99:e20864. [PMID: 32590789 PMCID: PMC7328927 DOI: 10.1097/md.0000000000020864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/02/2020] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Osteoporosis is defined as a metabolic skeletal disease characterized by a decrease of the bone mass per unit volume, caused by a variety of reasons. Increasing evidence indicate that the host inflammatory response was correlated with the occurrence and development of osteoporosis, and it has been recognized that T lymphocytes and B lymphocytes play a critical role in pathogenesis of inflammatory bone disease. Between January 2018 and December 2018, retrospective analysis of 487 patients (exclusion of patients with recent infections and hematologic disorders whose leukocyte counts or classifications are markedly abnormal) who underwent bone mineral density (BMD) examinations in Huzhou Central Hospital. The patients were divided into normal bone density group, osteopenia group, and osteoporosis group according to the T score of BMD in the left femoral neck, respectively. Statistics of the lymphocyte ratio and the monocyte ratio in the blood routine examination results during the same period were performed so as to make a comparison of the differences among the groups. The correlation of the lymphocyte ratio and monocyte ratio with the T score of BMD in the left femoral neck was also analyzed. The difference between neutrocyte ratio lymphocyte ratio and the monocyte ratio was statistically significant in both males and females among the normal bone density group, osteopenia group and osteoporosis group (P < .01 or P < .05). Inflammation plays an important role in the progression of osteoporosis. By monitoring these three indicators in blood routine examination, early intervention for osteoporosis may become possible.
Collapse
Affiliation(s)
| | - Haowei Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Yongli Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Yafeng Ji
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, HuZhou, Zhejiang, China
| |
Collapse
|
27
|
Lechner J, Zimmermann B, Schmidt M, von Baehr V. Ultrasound Sonography to Detect Focal Osteoporotic Jawbone Marrow Defects Clinical Comparative Study with Corresponding Hounsfield Units and RANTES/CCL5 Expression. Clin Cosmet Investig Dent 2020; 12:205-216. [PMID: 32801922 PMCID: PMC7401665 DOI: 10.2147/ccide.s247345] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction The presently used impulse echo ultrasound examination is not suitable to provide relevant and reliable information about the jawbone, because ultrasound (US) almost completely reflects from the hard cortical jawbone. At the same time, "focal osteoporotic bone marrow defects" (BoneMarrowDefects = BMD) in jawbone are the subject of scientific presentations and discussions. Purpose Can a newly developed trans-alveolar ultrasonic sonography (TAU-n) device locate and ascertain BMD? Patients and Methods TAU-n consists of a two-part handpiece with an extraoral ultrasound transmitter and an intraoral ultrasound receiver. The TAU-n computer display shows the different jawbone densities with corresponding colour coding. The changes in jawbone density are also displayed numerically. The validation of TAU-n readings: A usual orthopantomogram (2D-OPG) on its own is not suitable for unequivocally determining jawbone density and has to be excluded from this validation. For validation, a 3D-digital volume tomogram@/cone beam computer tomogram (DVT@/CBCT) with the capacity to measure Hounsfield units (HU) and a TAU-n are used to determine the presence of preoperative BMD in 82 patient cases. Postoperatively, histology samples and multiplex analysis of RANTES@/CCL5 (R@/C) expression derived from surgically cleaned BMD areas are evaluated. Results In all 82 bone samples, DVT-HU, TAU-n values and R/C expressions show the presence of BMD with chronic inflammatory character. However, five histology samples showed no evidence of BMD. All four evaluation criteria (DVT-HU, TAU-n, R/C, histology) confirm the presence of BMD in each of the 82 samples. Conclusion The TAU-n method almost completely matches the diagnostic reliability of the other methods. The newly developed TAU-n scanner is a reliable and radiation-free option to detect BMD.
Collapse
Affiliation(s)
- Johann Lechner
- Department of Clinical Research, Clinic Integrative Dentistry, Munich, Germany
| | | | - Marlene Schmidt
- Department of Statistics, STEYR Motorenwerke, Steyr, Austria
| | - Volker von Baehr
- Department of Immunology and Allergology, Institute for Medical Diagnostics Berlin, Germany
| |
Collapse
|
28
|
Possible Mechanisms Involved in the Cooccurrence of Oral Lichen Planus and Hashimoto's Thyroiditis. Mediators Inflamm 2020; 2020:6309238. [PMID: 32089646 PMCID: PMC7024099 DOI: 10.1155/2020/6309238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 01/22/2020] [Indexed: 02/05/2023] Open
Abstract
Oral lichen planus (OLP) is a chronic inflammatory oral mucosal disorder mediated by T cells, with a multifactorial etiology. Hashimoto's thyroiditis (HT) is a common autoimmune disease characterized by hypothyroidism. Although many clinical studies conducted over the past several decades have reported the cooccurrence of OLP and HT, the underlying mechanism remains unclear. This review summarizes potential mechanisms that might be involved in the cooccurrence of OLP and HT. We find that OLP and HT share a common or overlapping pathogenesis in terms of immune, heredity, environmental, and hormonal factors, which might cause cooccurrence. Furthermore, considering the latency of HT, a routine screen for thyroid diseases, particularly HT, is suggested for confirmed OLP patients.
Collapse
|
29
|
Li Z, Zhu X, Xu R, Wang Y, Hu R, Xu W. Deacylcynaropicrin Inhibits RANKL-Induced Osteoclastogenesis by Inhibiting NF-κB and MAPK and Promoting M2 Polarization of Macrophages. Front Pharmacol 2019; 10:599. [PMID: 31231214 PMCID: PMC6567936 DOI: 10.3389/fphar.2019.00599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Inflammation can promote the maturity of osteoclasts and bone resorption in many bone disease such as osteoporosis and arthritis. Here, we aimed to investigate the inhibitory effects of deacylcynaropicrin (DAC) on osteoclastogenesis and bone resorption induced by RANKL. Bone-marrow-derived macrophages were used for assessing the influence of DAC on polarization of macrophages and osteoclastogenesis in vitro. Inducible nitric oxide synthase (iNOS) and CD206, as well as osteoclastogenesis markers, nuclear factor of activated T-cells 1 (NFATc1), and c-Fos, were qualitatively analyzed by immunofluorescence, flow cytometry, reverse transcription polymerase chain reaction, and Western blotting. The results showed that DAC significantly inhibited osteoclastogenesis by suppressing the expression levels of c-Fos and NFATc1 through nuclear factor-κB, c-Jun N-terminal kinase (JNK), and Akt pathway. Moreover, immunohistochemistry and enzyme-linked immunosorbent assays showed that DAC reduced the release of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in vivo. Finally, DAC also promoted macrophage polarization from M1 to M2 types. In conclusion, these results demonstrated that DAC suppressed RANKL-induced inflammation and osteoclastogenesis and therefore it can be used as a potential treatment for osteoporosis, arthritis, osteolysis, and aseptic loosening of artificial prostheses.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Xiaodong Zhu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruijun Xu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Yi Wang
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Ruixi Hu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Wei Xu
- Department of Orthopaedics, TongRen Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|