1
|
Palominos C, Fuentes-Retamal S, Salazar JP, Guzmán-Rivera D, Correa P, Mellado M, Araya-Maturana R, Urra FA. Mitochondrial bioenergetics as a cell fate rheostat for responsive to Bcl-2 drugs: New cues for cancer chemotherapy. Cancer Lett 2024; 594:216965. [PMID: 38788967 DOI: 10.1016/j.canlet.2024.216965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Pro-survival BCL-2 proteins prevent the initiation of intrinsic apoptosis (mitochondria-dependent pathway) by inhibiting the pro-apoptotic proteins BAX and BAK, while BH3-only proteins promote apoptosis by blocking pro-survival BCL-2 proteins. Disruptions in this delicate balance contribute to cancer cell survival and chemoresistance. Recent advances in cancer therapeutics involve a new generation of drugs known as BH3-mimetics, which are small molecules designed to mimic the action of BH3-only proteins. Promising effects have been observed in patients with hematological and solid tumors undergoing treatment with these agents. However, the rapid emergence of mitochondria-dependent resistance to BH3-mimetics has been reported. This resistance involves increased mitochondrial respiration, altered mitophagy, and mitochondria with higher and tighter cristae. Conversely, mutations in isocitrate dehydrogenase 1 and 2, catalyzing R-2-hydroxyglutarate production, promote sensitivity to venetoclax. This evidence underscores the urgency for comprehensive studies on bioenergetics-based adaptive responses in both BH3 mimetics-sensitive and -resistant cancer cells. Ongoing clinical trials are evaluating BH3-mimetics in combination with standard chemotherapeutics. In this article, we discuss the role of mitochondrial bioenergetics in response to BH3-mimetics and explore potential therapeutic opportunities through metabolism-targeting strategies.
Collapse
Affiliation(s)
- Charlotte Palominos
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Sebastián Fuentes-Retamal
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Juan Pablo Salazar
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Daniela Guzmán-Rivera
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Universidad Andrés Bello. Escuela de Química y Farmacia, Facultad de Medicina, 8320000, Santiago, Chile
| | - Pablo Correa
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile
| | - Mathias Mellado
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile
| | - Ramiro Araya-Maturana
- Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Instituto de Química de Recursos Naturales, Universidad de Talca, Talca, 3460000, Chile
| | - Félix A Urra
- Metabolic Plasticity and Bioenergetics Laboratory, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, 8380453, Chile; Network for Snake Venom Research and Drug Discovery, Santiago, 8380453, Chile; Interdisciplinary Group on Mitochondrial Targeting and Bioenergetics (MIBI), Talca, 3480094, Chile; Interuniversity Center for Healthy Aging (CIES), Consortium of Universities of the State of Chile (CUECH), Santiago, 8320216, Chile.
| |
Collapse
|
2
|
Wyżewski Z, Stępkowska J, Kobylińska AM, Mielcarska A, Mielcarska MB. Mcl-1 Protein and Viral Infections: A Narrative Review. Int J Mol Sci 2024; 25:1138. [PMID: 38256213 PMCID: PMC10816053 DOI: 10.3390/ijms25021138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
MCL-1 is the prosurvival member of the Bcl-2 family. It prevents the induction of mitochondria-dependent apoptosis. The molecular mechanisms dictating the host cell viability gain importance in the context of viral infections. The premature apoptosis of infected cells could interrupt the pathogen replication cycle. On the other hand, cell death following the effective assembly of progeny particles may facilitate virus dissemination. Thus, various viruses can interfere with the apoptosis regulation network to their advantage. Research has shown that viral infections affect the intracellular amount of MCL-1 to modify the apoptotic potential of infected cells, fitting it to the "schedule" of the replication cycle. A growing body of evidence suggests that the virus-dependent deregulation of the MCL-1 level may contribute to several virus-driven diseases. In this work, we have described the role of MCL-1 in infections caused by various viruses. We have also presented a list of promising antiviral agents targeting the MCL-1 protein. The discussed results indicate targeted interventions addressing anti-apoptotic MCL1 as a new therapeutic strategy for cancers as well as other diseases. The investigation of the cellular and molecular mechanisms involved in viral infections engaging MCL1 may contribute to a better understanding of the regulation of cell death and survival balance.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland
| | - Justyna Stępkowska
- Institute of Family Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01-815 Warsaw, Poland;
| | - Aleksandra Maria Kobylińska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| | - Adriana Mielcarska
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Pediatrics, The Children’s Memorial Health Institute, Av. Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Matylda Barbara Mielcarska
- Division of Immunology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences—SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland; (A.M.K.); (M.B.M.)
| |
Collapse
|
3
|
Leśniak M, Lipniarska J, Majka P, Lejman M, Zawitkowska J. Recent Updates in Venetoclax Combination Therapies in Pediatric Hematological Malignancies. Int J Mol Sci 2023; 24:16708. [PMID: 38069030 PMCID: PMC10706781 DOI: 10.3390/ijms242316708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Venetoclax is a strongly effective B-cell lymphoma-2 inhibitor (BCL-2) with an ability to selectively restore the apoptotic potential of cancerous cells. It has been proven that in combination with immunotherapy, targeted therapies, and lower-intensity therapies such as hypomethylating agents (HMAs) or low-dose cytarabine (LDAC), the drug can improve overall outcomes for adult patients with acute myeloid leukemia (AML), chronic lymphocytic leukemia (CLL), and multiple myeloma (MM), amongst other hematological malignancies, but its benefit in pediatric hematology remains unclear. With a number of preclinical and clinical trials emerging, the newest findings suggest that in many cases of younger patients, venetoclax combination treatment can be well-tolerated, with a safety profile similar to that in adults, despite often leading to severe infections. Studies aim to determine the activity of BCL-2 inhibitor in the treatment of both primary and refractory acute leukemias in combination with standard and high-dose chemotherapy. Although more research is required to identify the optimal venetoclax-based regimen for the pediatric population and its long-term effects on patients' outcomes, it can become a potential therapeutic agent for pediatric oncology.
Collapse
Affiliation(s)
- Maria Leśniak
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Justyna Lipniarska
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Patrycja Majka
- Student Scientific Society of Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (M.L.); (J.L.); (P.M.)
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Joanna Zawitkowska
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
4
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Antimetastatic Properties of Prodigiosin and the BH3-Mimetic Obatoclax (GX15-070) in Melanoma. Pharmaceutics 2022; 15:pharmaceutics15010097. [PMID: 36678726 PMCID: PMC9862601 DOI: 10.3390/pharmaceutics15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Metastasis is the primary cause of death in cancer patients. Many current chemotherapeutic agents only show cytotoxic, but not antimetastatic properties. This leads to a reduction in tumor size, but allows cancer cells to disseminate, which ultimately causes patient death. Therefore, novel anticancer compounds with both effects need to be developed. In this work, we analyze the antimetastatic properties of prodigiosin and obatoclax (GX15-070), anticancer drugs of the Prodiginines (PGs) family. We studied PGs' effects on cellular adhesion and morphology in the human primary and metastatic melanoma cell lines, SK-MEL-28 and SK-MEL-5, and in the murine melanoma cell line, B16F10A. Cell adhesion sharply decreased in the treated cells, and this was accompanied by a reduction in filopodia protrusions and a significant decrease in the number of focal-adhesion structures. Moreover, cell migration was assessed through the wound-healing assay and cell motility was severely inhibited after 24 h of treatment. To elucidate the molecular mechanisms involved, changes in metastasis-related genes were analyzed through a gene-expression array. Key genes related to cellular invasion, migration and chemoresistance were significantly down-regulated. Finally, an in vivo model of melanoma-induced lung metastasis was established and significant differences in lung tumors were observed in the obatoclax-treated mice. Altogether, these results describe, in depth, PGs' cellular antimetastatic effects and identify in vivo antimetastatic properties of Obatoclax.
Collapse
|
6
|
Reece MD, Song C, Hancock SC, Pereira Ribeiro S, Kulpa DA, Gavegnano C. Repurposing BCL-2 and Jak 1/2 inhibitors: Cure and treatment of HIV-1 and other viral infections. Front Immunol 2022; 13:1033672. [PMID: 36569952 PMCID: PMC9782439 DOI: 10.3389/fimmu.2022.1033672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
B cell lymphoma 2 (BCL-2) family proteins are involved in the mitochondrial apoptotic pathway and are key modulators of cellular lifespan, which is dysregulated during human immunodeficiency virus type 1 (HIV-1) and other viral infections, thereby increasing the lifespan of cells harboring virus, including the latent HIV-1 reservoir. Long-lived cells harboring integrated HIV-1 DNA is a major barrier to eradication. Strategies reducing the lifespan of reservoir cells could significantly impact the field of cure research, while also providing insight into immunomodulatory strategies that can crosstalk to other viral infections. Venetoclax is a first-in-class orally bioavailable BCL-2 homology 3 (BH3) mimetic that recently received Food and Drug Administration (FDA) approval for treatment in myeloid and lymphocytic leukemia. Venetoclax has been recently investigated in HIV-1 and demonstrated anti-HIV-1 effects including a reduction in reservoir size. Another immunomodulatory strategy towards reduction in the lifespan of the reservoir is Jak 1/2 inhibition. The Jak STAT pathway has been implicated in BCL-2 and interleukin 10 (IL-10) expression, leading to a downstream effect of cellular senescence. Ruxolitinib and baricitinib are FDA-approved, orally bioavailable Jak 1/2 inhibitors that have been shown to indirectly decay the HIV-1 latent reservoir, and down-regulate markers of HIV-1 persistence, immune dysregulation and reservoir lifespan in vitro and ex vivo. Ruxolitinib recently demonstrated a significant decrease in BCL-2 expression in a human study of virally suppressed people living with HIV (PWH), and baricitinib recently received emergency use approval for the indication of coronavirus disease 2019 (COVID-19), underscoring their safety and efficacy in the viral infection setting. BCL-2 and Jak 1/2 inhibitors could be repurposed as immunomodulators for not only HIV-1 and COVID-19, but other viruses that upregulate BCL-2 anti-apoptotic proteins. This review examines potential routes for BCL-2 and Jak 1/2 inhibitors as immunomodulators for treatment and cure of HIV-1 and other viral infections.
Collapse
Affiliation(s)
- Monica D. Reece
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Colin Song
- Department of Chemistry, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Sarah C. Hancock
- Department of Biology, College of Arts and Sciences, Emory University, Atlanta, GA, United States
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Deanna A. Kulpa
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
| | - Christina Gavegnano
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, United States
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, United States
- Center for the Study of Human Health, College of Arts and Sciences, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Atlanta Veterans Affairs Medical Center, Decatur, GA, United States
- Center for Bioethics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Uthale A, Anantram A, Sulkshane P, Degani M, Teni T. Identification of bicyclic compounds that act as dual inhibitors of Bcl-2 and Mcl-1. Mol Divers 2022:10.1007/s11030-022-10494-6. [PMID: 35909144 DOI: 10.1007/s11030-022-10494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/02/2022] [Indexed: 10/16/2022]
Abstract
Elevated expression of anti-apoptotic proteins, such as Bcl-2 and Mcl-1 contributes to poor prognosis and resistance to current treatment modalities in multiple cancers. Here, we report the design, synthesis and characterization of benzimidazole chalcone and flavonoid scaffold-derived bicyclic compounds targeting both Bcl-2 and Mcl-1 by optimizing the structural differences in the binding sites of both these proteins. Initial docking screen of Bcl-2 and Mcl-1 with pro-apoptotic protein Bim revealed possible hits with optimal binding energies. All the optimized bicyclic compounds were screened for their in vitro cytotoxic activity against two oral cancer cell lines (AW8507 and AW13516) which express high levels of Bcl-2 and Mcl-1. Compound 4d from the benzimidazole chalcone series and compound 6d from the flavonoid series exhibited significant cytotoxic activity (IC50 7.12 μM and 17.18 μM, respectively) against AW13516 cell line. Time Resolved-Fluorescence Resonance Energy Transfer (TR-FRET) analysis further demonstrated that compound 4d and compound 6d could effectively inhibit the Bcl-2 and Mcl-1 proteins by displacing their BH3 binding partners. Both compounds exhibited potent activation of canonical pathway of apoptosis evident from appearance of cleaved Caspase-3 and PARP. Further, treatment of oral cancer cells with the inhibitors induced dissociation of the BH3 only protein Bim from Mcl-1 and Bak from Bcl-2 but failed to release Bax from Bcl-xL thereby confirming the nature of compounds as BH3-mimetics selectively targeting Bcl-2 and Mcl-1. Our study thus identifies bicyclic compounds as promising candidates for anti-apoptotic Bcl-2/Mcl-1 dual inhibitors with a potential for further development.
Collapse
Affiliation(s)
- Abhay Uthale
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Aarti Anantram
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India
| | - Prasad Sulkshane
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Mariam Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai, 400 019, India.
| | - Tanuja Teni
- Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, 410 210, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
8
|
A Novel Late-Stage Autophagy Inhibitor That Efficiently Targets Lysosomes Inducing Potent Cytotoxic and Sensitizing Effects in Lung Cancer. Cancers (Basel) 2022; 14:cancers14143387. [PMID: 35884450 PMCID: PMC9324127 DOI: 10.3390/cancers14143387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Lung cancer is the main cause of cancer-related deaths worldwide, mainly due to treatment resistance. For that reason, it is necessary to develop novel therapeutic strategies to overcome this phenomenon. The aim of our study was to design and characterize a synthetic anionophore, LAI-1, that would be able to efficiently disrupt lysosomal activity, leading to autophagy blockage, one of the most important resistance mechanisms in cancer cells. We confirmed that LAI-1 selectively localized in lysosomes, deacidifying them. This effect produced a blockage of autophagy, characterized by an abrogation of autophagosomes and lysosomes fusion. Moreover, LAI-1 produced cell death in lung cancer cells from different histological subtypes, inducing cytotoxicity more efficiently than other known autophagy inhibitors. Finally, LAI-1 was evaluated in combination therapy, showing sensitization to the first-line chemotherapeutic agent cisplatin. Altogether, LAI-1 is a novel late-stage autophagy inhibitor with potential therapeutic applications in tumors with cytoprotective autophagy. Abstract Overcoming resistance is one of the most challenging features in current anticancer therapy. Autophagy is a cellular process that confers resistance in some advanced tumors, since it enables cancer cells to adapt to stressful situations, such as anticancer treatments. Hence, the inhibition of this cytoprotective autophagy leads to tumor cells sensitization and death. In this regard, we designed a novel potent anionophore compound that specifically targets lysosomes, called LAI-1 (late-stage autophagy inhibitor-1), and evaluated its role in blocking autophagy and its potential anticancer effects in three lung cancer cell lines from different histological subtypes. Compared to other autophagy inhibitors, such as chloroquine and 3-Methyladenine, the LAI-1 treatment induced more potent anticancer effects in all tested cancer cells. LAI-1 was able to efficiently target and deacidify lysosomes, while acidifying cytoplasmic pH. Consequently, LAI-1 efficiently blocked autophagy, indicated by the increased LC3-II/I ratio and p62/SQSTM1 levels. Moreover, no colocalization was observed between autophagosomes, marked with LC3 or p62/SQSTM1, and lysosomes, stained with LAMP-1, after the LAI-1 treatment, indicating the blockage of autophagolysosome formation. Furthermore, LAI-1 induced cell death by activating apoptosis (enhancing the cleavage of caspase-3 and PARP) or necrosis, depending on the cancer cell line. Finally, LAI-1 sensitized cancer cells to the first-line chemotherapeutic agent cisplatin. Altogether, LAI-1 is a new late-stage autophagy inhibitor that causes lysosomal dysfunction and the blockage of autophagolysosome formation, as well as potently induces cancer cell death and sensitization to conventional treatments at lower concentrations than other known autophagy inhibitors, appearing as a potential new therapeutic approach to overcome cancer resistance.
Collapse
|
9
|
Islan GA, Rodenak-Kladniew B, Noacco N, Duran N, Castro GR. Prodigiosin: a promising biomolecule with many potential biomedical applications. Bioengineered 2022; 13:14227-14258. [PMID: 35734783 PMCID: PMC9342244 DOI: 10.1080/21655979.2022.2084498] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pigments are among the most fascinating molecules found in nature and used by human civilizations since the prehistoric ages. Although most of the bio-dyes reported in the literature were discovered around the eighties, the necessity to explore novel compounds for new biological applications has made them resurface as potential alternatives. Prodigiosin (PG) is an alkaloid red bio-dye produced by diverse microorganisms and composed of a linear tripyrrole chemical structure. PG emerges as a really interesting tool since it shows a wide spectrum of biological activities, such as antibacterial, antifungal, algicidal, anti-Chagas, anti-amoebic, antimalarial, anticancer, antiparasitic, antiviral, and/or immunosuppressive. However, PG vehiculation into different delivery systems has been proposed since possesses low bioavailability because of its high hydrophobic character (XLogP3-AA = 4.5). In the present review, the general aspects of the PG correlated with synthesis, production process, and biological activities are reported. Besides, some of the most relevant PG delivery systems described in the literature, as well as novel unexplored applications to potentiate its biological activity in biomedical applications, are proposed.
Collapse
Affiliation(s)
- German A Islan
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Boris Rodenak-Kladniew
- Facultad de Ciencias Médicas, Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, La Plata, Pcia de Bueos aires, Argentina
| | - Nehuen Noacco
- Desarrollo en Fermentaciones Industriales (CINDEFI), Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata)Laboratorio de Nanobiomateriales, Centro de Investigación y , La Plata, Argentina
| | - Nelson Duran
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,Nanomedicine Research Unit (Nanomed), Federal University of Abc (Ufabc), Santo André, Brazil
| | - Guillermo R Castro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Biological Institute, Department of Structural and Functional Biology, University of Campinas, Campinas, Brazil.,. Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de RosarioMax Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Rosario, Argentina
| |
Collapse
|
10
|
Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. BH3-mimetics: recent developments in cancer therapy. J Exp Clin Cancer Res 2021; 40:355. [PMID: 34753495 PMCID: PMC8576916 DOI: 10.1186/s13046-021-02157-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/26/2021] [Indexed: 01/11/2023] Open
Abstract
The hopeful outcomes from 30 years of research in BH3-mimetics have indeed served a number of solid paradigms for targeting intermediates from the apoptosis pathway in a variety of diseased states. Not only have such rational approaches in drug design yielded several key therapeutics, such outputs have also offered insights into the integrated mechanistic aspects of basic and clinical research at the genetics level for the future. In no other area of medical research have the effects of such work been felt, than in cancer research, through targeting the BAX-Bcl-2 protein-protein interactions. With these promising outputs in mind, several mimetics, and their potential therapeutic applications, have also been developed for several other pathological conditions, such as cardiovascular disease and tissue fibrosis, thus highlighting the universal importance of the intrinsic arm of the apoptosis pathway and its input to general tissue homeostasis. Considering such recent developments, and in a field that has generated so much scientific interest, we take stock of how the broadening area of BH3-mimetics has developed and diversified, with a focus on their uses in single and combined cancer treatment regimens and recently explored therapeutic delivery methods that may aid the development of future therapeutics of this nature.
Collapse
Affiliation(s)
- Paul A Townsend
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
- University of Manchester, Manchester, UK.
| | - Maria V Kozhevnikova
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Zamyatnin
- University of Surrey, Guildford, UK
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
- Sirius University of Science and Technology, Sochi, Russian Federation
| | - Surinder M Soond
- University of Surrey, Guildford, UK.
- Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| |
Collapse
|
11
|
Li J, Xu J, Li Z. Obatoclax, the pan-Bcl-2 inhibitor sensitizes hepatocellular carcinoma cells to promote the anti-tumor efficacy in combination with immune checkpoint blockade. Transl Oncol 2021; 14:101116. [PMID: 33975180 PMCID: PMC8131730 DOI: 10.1016/j.tranon.2021.101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/26/2021] [Indexed: 01/27/2023] Open
Abstract
Obatoclax, the Bcl-2 inhibitor directly impaired HCC cell growth. Obatoclax suppressed HCC development in vivo. Obatoclax sensitized HCC cells to T cell-mediated killing. Combination therapy of obatoclax and anti-PD-1 antibody synergically reduced HCC growth.
Bcl-2 family proteins play critical roles in regulating lymphocyte development and maintain homeostasis, and have also been proved to be involved in various cancer types development. However, the role of Bcl-2 in hepatocellular carcinoma (HCC) development has not been clearly studied. Here, we reported the pan-Bcl-2 inhibitor, obatoclax could directly inhibit HCC growth in vitro. We further demonstrated in murine HCC model that obatoclax also suppressed HCC development in vivo. We also proved that although obatoclax inhibited T cells expansion, it had no influence on T cells activation in vivo. Mechanism study revealed that obatoclax sensitized HCC cells to T cell-mediated killing. Combination therapy of obatoclax with anti-PD-1 antibody synergistically suppressed HCC development and prolonged the survival rate of tumor-bearing mice. The combination therapy promoted T cells activation and effector cytokines expression both in spleen and tumor. In summary, our results proved that obatoclax sensitized HCC cells to T cell -mediated killing. Combination of obatoclax with immune checkpoint blockade served as a promising therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Jingye Li
- Department of Medical oncology, Linyi Central Hospital, Shandong 276400, China
| | - Jinrong Xu
- Department of Cardiology, Linyi Central Hospital, Shandong 276400, China
| | - Zhibing Li
- Department of anesthesiology, Linyi Central Hospital, Shandong 276400, China.
| |
Collapse
|
12
|
Varghese FS, van Woudenbergh E, Overheul GJ, Eleveld MJ, Kurver L, van Heerbeek N, van Laarhoven A, Miesen P, den Hartog G, de Jonge MI, van Rij RP. Berberine and Obatoclax Inhibit SARS-Cov-2 Replication in Primary Human Nasal Epithelial Cells In Vitro. Viruses 2021; 13:282. [PMID: 33670363 PMCID: PMC7918080 DOI: 10.3390/v13020282] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2. Berberine, a plant-derived alkaloid, inhibited SARS-CoV-2 at low micromolar concentrations and obatoclax, which was originally developed as an anti-apoptotic protein antagonist, was effective at sub-micromolar concentrations. Time-of-addition studies indicated that berberine acts on the late stage of the viral life cycle. In agreement, berberine mildly affected viral RNA synthesis, but it strongly reduced infectious viral titers, leading to an increase in the particle-to-pfu ratio. In contrast, obatoclax acted at the early stage of the infection, which is in line with its activity to neutralize the acidic environment in endosomes. We assessed infection of primary human nasal epithelial cells that were cultured on an air-liquid interface and found that SARS-CoV-2 infection induced and repressed expression of specific sets of cytokines and chemokines. Moreover, both obatoclax and berberine inhibited SARS-CoV-2 replication in these primary target cells. We propose berberine and obatoclax as potential antiviral drugs against SARS-CoV-2 that could be considered for further efficacy testing.
Collapse
Affiliation(s)
- Finny S. Varghese
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (F.S.V.); (G.J.O.); (P.M.)
| | - Esther van Woudenbergh
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (E.v.W.); (M.J.E.); (M.I.d.J.)
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands;
| | - Gijs J. Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (F.S.V.); (G.J.O.); (P.M.)
| | - Marc J. Eleveld
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (E.v.W.); (M.J.E.); (M.I.d.J.)
| | - Lisa Kurver
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (L.K.); (A.v.L.)
| | - Niels van Heerbeek
- Department of Otolaryngology, Head and Neck Surgery, Radboudumc, 6500 HB Nijmegen, The Netherlands;
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (L.K.); (A.v.L.)
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (F.S.V.); (G.J.O.); (P.M.)
| | - Gerco den Hartog
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, 3721 MA Bilthoven, The Netherlands;
| | - Marien I. de Jonge
- Section Paediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (E.v.W.); (M.J.E.); (M.I.d.J.)
| | - Ronald P. van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands; (F.S.V.); (G.J.O.); (P.M.)
| |
Collapse
|
13
|
Maglangit F, Yu Y, Deng H. Bacterial pathogens: threat or treat (a review on bioactive natural products from bacterial pathogens). Nat Prod Rep 2021; 38:782-821. [PMID: 33119013 DOI: 10.1039/d0np00061b] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to the second quarter of 2020 Threat or treat? While pathogenic bacteria pose significant threats, they also represent a huge reservoir of potential pharmaceuticals to treat various diseases. The alarming antimicrobial resistance crisis and the dwindling clinical pipeline urgently call for the discovery and development of new antibiotics. Pathogenic bacteria have an enormous potential for natural products drug discovery, yet they remained untapped and understudied. Herein, we review the specialised metabolites isolated from entomopathogenic, phytopathogenic, and human pathogenic bacteria with antibacterial and antifungal activities, highlighting those currently in pre-clinical trials or with potential for drug development. Selected unusual biosynthetic pathways, the key roles they play (where known) in various ecological niches are described. We also provide an overview of the mode of action (molecular target), activity, and minimum inhibitory concentration (MIC) towards bacteria and fungi. The exploitation of pathogenic bacteria as a rich source of antimicrobials, combined with the recent advances in genomics and natural products research methodology, could pave the way for a new golden age of antibiotic discovery. This review should serve as a compendium to communities of medicinal chemists, organic chemists, natural product chemists, biochemists, clinical researchers, and many others interested in the subject.
Collapse
Affiliation(s)
- Fleurdeliz Maglangit
- Department of Biology and Environmental Science, College of Science, University of the Philippines Cebu, Lahug, Cebu City, 6000, Philippines. and Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Yi Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), Hubei Province Engineering and Technology Research Centre for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
14
|
Barros-Nepomuceno FWA, de Araújo Viana D, Pinheiro DP, de Cássia Evangelista de Oliveira F, Magalhães Ferreira J, R de Queiroz MG, Ma X, Cavalcanti BC, Pessoa C, Banwell MG. The Effects of the Alkaloid Tambjamine J on Mice Implanted with Sarcoma 180 Tumor Cells. ChemMedChem 2020; 16:420-428. [PMID: 32886437 DOI: 10.1002/cmdc.202000387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Indexed: 12/12/2022]
Abstract
The tambjamines are a small group of bipyrrolic alkaloids that, collectively, display a significant range of biological activities including antitumor, antimicrobial and immunosuppressive properties. The key objective of the present study was to undertake preclinical assessments of tambjamine J (T-J) so as to determine its in vivo antitumor effects. To that end, sarcoma 180 cells were transplanted in mice and the impacts of the title compound then evaluated using a range of protocols including hematological, biochemical, histopathological, genotoxic and clastogenic assays. As a result it was established that this alkaloid has a significant therapeutic window and effectively reduces tumor growth (by 40 % and 79 % at doses of 10 and 20 mg/kg/day, respectively). In this regard it displays similar antitumor activity to the anticancer agent cyclophosphamide and alters animal weight in an analogous manner.
Collapse
Affiliation(s)
- Francisco Washington A Barros-Nepomuceno
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Acarape, 62.785-000, CE, Brazil.,Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Daniel de Araújo Viana
- PATHOVET Laboratory, Pathological Anatomy and Veterinary Clinic, Fortaleza, 60.020.001, CE, Brazil
| | - Daniel Pascoalino Pinheiro
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | | | - Jamile Magalhães Ferreira
- Institute of Health Sciences, University for International Integration of the Afro-Brazilian Lusophony, Acarape, 62.785-000, CE, Brazil.,Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, 60.714.903, CE, Brazil
| | - Maria Goretti R de Queiroz
- Clinical and Toxicological Analysis Department, Faculty of Pharmacy, Odontology and Nursing, Federal University of Ceará, Fortaleza, 60.714.903, CE, Brazil
| | - Xinghua Ma
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bruno Coêlho Cavalcanti
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Claudia Pessoa
- Center for Research and Drug Development, Federal University of Ceará, Fortaleza, 60.430.275, CE, Brazil
| | - Martin G Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT, 2601, Australia.,Institute for Advanced and Applied Chemical Synthesis, Jinan University, Zhuhai, 519070, Guangdong, China
| |
Collapse
|
15
|
Opydo-Chanek M, Cichoń I, Rak A, Kołaczkowska E, Mazur L. The pan-Bcl-2 inhibitor obatoclax promotes differentiation and apoptosis of acute myeloid leukemia cells. Invest New Drugs 2020; 38:1664-1676. [PMID: 32367199 PMCID: PMC7575496 DOI: 10.1007/s10637-020-00931-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
One of the key features of acute myeloid leukemia (AML) is the arrest of differentiation at the early progenitor stage of myelopoiesis. Therefore, the identification of new agents that could overcome this differentiation block and force leukemic cells to enter the apoptotic pathway is essential for the development of new treatment strategies in AML. Regarding this, herein we report the pro-differentiation activity of the pan-Bcl-2 inhibitor, obatoclax. Obatoclax promoted differentiation of human AML HL-60 cells and triggered their apoptosis in a dose- and time-dependent manner. Importantly, obatoclax-induced apoptosis was associated with leukemic cell differentiation. Moreover, decreased expression of Bcl-2 protein was observed in obatoclax-treated HL-60 cells. Furthermore, differentiation of these cells was accompanied by the loss of their proliferative capacity, as shown by G0/G1 cell cycle arrest. Taken together, these findings indicate that the anti-AML effects of obatoclax involve not only the induction of apoptosis but also differentiation of leukemic cells. Therefore, obatoclax represents a promising treatment for AML that warrants further exploration.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - Iwona Cichoń
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Agnieszka Rak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Elżbieta Kołaczkowska
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| | - Lidia Mazur
- Department of Experimental Hematology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
16
|
Obatoclax, a Pan-BCL-2 Inhibitor, Downregulates Survivin to Induce Apoptosis in Human Colorectal Carcinoma Cells Via Suppressing WNT/β-catenin Signaling. Int J Mol Sci 2020; 21:ijms21051773. [PMID: 32150830 PMCID: PMC7084590 DOI: 10.3390/ijms21051773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is a highly prevailing cancer and the fourth leading cause of cancer mortality worldwide. Aberrant expression of antiapoptotic BCL-2 family proteins is closely linked to neoplastic progression and chemoresistance. Obatoclax is a clinically developed drug, which binds antiapoptotic BCL-2, BCL-xL, and MCL-1 for inhibition to elicit apoptosis. Survivin is an antiapoptotic protein, whose upregulation correlates with pathogenesis, therapeutic resistance, and poor prognosis in CRC. Herein, we provide the first evidence delineating the functional linkage between Obatoclax and survivin in the context of human CRC cells. In detail, Obatoclax was found to markedly downregulate survivin. This downregulation was mainly achieved via transcriptional repression, as Obatoclax lowered the levels of both survivin mRNA and promoter activity, while blocking proteasomal degradation failed to prevent survivin from downregulation by Obatoclax. Notably, ectopic survivin expression curtailed Obatoclax-induced apoptosis and cytotoxicity, confirming an essential role of survivin downregulation in Obatoclax-elicited anti-CRC effect. Moreover, Obatoclax was found to repress hyperactive WNT/β-catenin signaling activity commonly present in human CRC cells, and, markedly, ectopic expression of dominant-active β-catenin mutant rescued the levels of survivin along with elevated cell viability. We further revealed that, depending on the cell context, Obatoclax suppresses WNT/β-catenin signaling in HCT 116 cells likely via inducing β-catenin destabilization, or by downregulating LEF1 in DLD-1 cells. Collectively, we for the first time define survivin downregulation as a novel, pro-apoptotic mechanism of Obatoclax as a consequence of Obatocalx acting as an antagonist to WNT/β-catenin signaling.
Collapse
|
17
|
Khan T, Relitti N, Brindisi M, Magnano S, Zisterer D, Gemma S, Butini S, Campiani G. Autophagy modulators for the treatment of oral and esophageal squamous cell carcinomas. Med Res Rev 2019; 40:1002-1060. [PMID: 31742748 DOI: 10.1002/med.21646] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/16/2019] [Accepted: 11/08/2019] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinomas (OSCC) and esophageal squamous cell carcinomas (ESCC) exhibit a survival rate of less than 60% and 40%, respectively. Late-stage diagnosis and lack of effective treatment strategies make both OSCC and ESCC a significant health burden. Autophagy, a lysosome-dependent catabolic process, involves the degradation of intracellular components to maintain cell homeostasis. Targeting autophagy has been highlighted as a feasible therapeutic strategy with clinical utility in cancer treatment, although its associated regulatory mechanisms remain elusive. The detection of relevant biomarkers in biological fluids has been anticipated to facilitate early diagnosis and/or prognosis for these tumors. In this context, recent studies have indicated the presence of specific proteins and small RNAs, detectable in circulating plasma and serum, as biomarkers. Interestingly, the interplay between biomarkers (eg, exosomal microRNAs) and autophagic processes could be exploited in the quest for targeted and more effective therapies for OSCC and ESCC. In this review, we give an overview of the available biomarkers and innovative targeted therapeutic strategies, including the application of autophagy modulators in OSCC and ESCC. Additionally, we provide a viewpoint on the state of the art and on future therapeutic perspectives combining the early detection of relevant biomarkers with drug discovery for the treatment of OSCC and ESCC.
Collapse
Affiliation(s)
- Tuhina Khan
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Nicola Relitti
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Margherita Brindisi
- Department of Pharmacy, Department of Excellence 2018-2022, University of Napoli Federico IL, Napoli, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin, Dublin 2, Ireland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry, and Pharmacy, Department of Excellence 2018-2022, University of Siena, Siena, Italy
| |
Collapse
|
18
|
Abstract
Resistance to apoptosis is one of the hallmarks of cancer and members of the B-cell lymphoma 2 (BCL-2) family of proteins are central regulators of apoptosis. Many cancers become resistant to chemotherapy and apoptosis by up-regulating BCL-2 and other family members, making these proteins attractive targets for cancer therapy. Venetoclax is an orally administered, small-molecule apoptosis stimulant that targets BCL-2 proteins by acting as a BCL-2 homology domain 3 (BH3) mimetic. The drug is approved in the USA and EU as a monotherapy for the for the treatment of certain patients with chronic lymphocytic leukemia (CLL) and is in phase III clinical development for multiple myeloma (MM), and in phase II or I/II clinical trials for acute myeloid leukemia, and several B-cell malignancies, including diffuse large B-cell lymphoma, Waldenstrom's macroglobulinaemia, follicular lymphoma, and mantle-cell lymphoma.
Collapse
|
19
|
Current overview on the clinical update of Bcl-2 anti-apoptotic inhibitors for cancer therapy. Eur J Pharmacol 2019; 862:172655. [PMID: 31494078 DOI: 10.1016/j.ejphar.2019.172655] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 12/27/2022]
Abstract
Apoptosis is one of the major mechanisms exhibited in response to cell death and induction of apoptosis in tumour cells signifies a potential target for cancer therapy. Bcl-2 family proteins play a key role in regulation of the apoptotic pathway. Bcl-2 overexpression is commonly associated with various cancers including breast cancer, prostate cancer, B-cell lymphomas and colorectal adenocarcinomas etc. Thus, Bcl-2 is a novel anti-cancer target attracting medicinal chemists across the globe. Research investigations underlying Bcl-2 target have resulted in the generation of small molecule inhibitors, named as 'BH3-mimetics' (Bcl-2 homology 3 mimetics). These drugs display binding to pro-survival Bcl-2 proteins resulting in actuation of apoptosis of cancer cells. The first BH3 mimetics discovered as an outcome of structure-based drug design and Nuclear Magnetic Resonance (NMR)-based screening was ABT-263, an N-acylsulfonamide analogue. Thrombocytopenia a major dose-limiting toxicity, associated with ABT-263 had provoked the invention of a highly selective Bcl-2 inhibitor venetoclax. Several Bcl-2 inhibitors as small molecules are under clinical development and the results indicated that these molecules alone or in combination could be of potential application in cancer therapy. This review summarizes an up to date knowledge of the available small molecule inhibitors, their discovery, synthesis, current clinical and pre-clinical status.
Collapse
|
20
|
Mabonga L, Kappo AP. Protein-protein interaction modulators: advances, successes and remaining challenges. Biophys Rev 2019; 11:559-581. [PMID: 31301019 PMCID: PMC6682198 DOI: 10.1007/s12551-019-00570-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 12/12/2022] Open
Abstract
Modulating disease-relevant protein-protein interactions (PPIs) using small-molecule inhibitors is a quite indispensable diagnostic and therapeutic strategy in averting pathophysiological cues and disease progression. Over the years, targeting intracellular PPIs as drug design targets has been a challenging task owing to their highly dynamic and expansive interfacial areas (flat, featureless and relatively large). However, advances in PPI-focused drug discovery technology have been reported and a few drugs are already on the market, with some potential drug-like candidates already in clinical trials. In this article, we review the advances, successes and remaining challenges in the application of small molecules as valuable PPI modulators in disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Lloyd Mabonga
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa, 3886, South Africa.
| |
Collapse
|
21
|
Matarlo JS, Krumpe LRH, Heinz WF, Oh D, Shenoy SR, Thomas CL, Goncharova EI, Lockett SJ, O'Keefe BR. The Natural Product Butylcycloheptyl Prodiginine Binds Pre-miR-21, Inhibits Dicer-Mediated Processing of Pre-miR-21, and Blocks Cellular Proliferation. Cell Chem Biol 2019; 26:1133-1142.e4. [PMID: 31155509 DOI: 10.1016/j.chembiol.2019.04.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Identification of RNA-interacting pharmacophores could provide chemical probes and, potentially, small molecules for RNA-based therapeutics. Using a high-throughput differential scanning fluorimetry assay, we identified small-molecule natural products with the capacity to bind the discrete stem-looped structure of pre-miR-21. The most potent compound identified was a prodiginine-type compound, butylcycloheptyl prodiginine (bPGN), with the ability to inhibit Dicer-mediated processing of pre-miR-21 in vitro and in cells. Time-dependent RT-qPCR, western blot, and transcriptomic analyses showed modulation of miR-21 expression and its target genes such as PDCD4 and PTEN upon treatment with bPGN, supporting on-target inhibition. Consequently, inhibition of cellular proliferation in HCT-116 colorectal cancer cells was also observed when treated with bPGN. The discovery that bPGN can bind and modulate the expression of regulatory RNAs such as miR-21 helps set the stage for further development of this class of natural product as a molecular probe or therapeutic agent against miRNA-dependent diseases.
Collapse
Affiliation(s)
- Joe S Matarlo
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Lauren R H Krumpe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Daniel Oh
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Shilpa R Shenoy
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Cheryl L Thomas
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ekaterina I Goncharova
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Biomedical Informatics and Data Science Directorate, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stephen J Lockett
- Optical Microscopy and Analysis Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Barry R O'Keefe
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA; Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
22
|
The chemical biology of apoptosis: Revisited after 17 years. Eur J Med Chem 2019; 177:63-75. [PMID: 31129454 DOI: 10.1016/j.ejmech.2019.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
A balance of Bcl-2 family proteins dictates cell survival or death, as the interactions between these proteins regulate mitochondrial apoptotic signaling pathways. However, cancer cells frequently show upregulation of pro-survival Bcl-2 proteins and sequester activated pro-apoptotic BH3-only proteins driven by diverse cytotoxic stresses, resulting in tumor progression and chemoresistance. Synthetic molecules from either structure-based design or screening procedures to engage and inactivate pro-survival Bcl-2 proteins and restore apoptotic process represent a chemical biological means of selectively killing malignant cells. 17 years ago, one of us reviewed on the discovery of novel Bcl-2 targeted agents [1]. Here we revisit this area and examine the progress and current status of small molecule Bcl-2 inhibitor development, demonstrating the Bcl-2 family as a valid target for cancer therapy and providing successful examples for the discovery of inhibitors that target protein-protein interactions.
Collapse
|
23
|
Steele TM, Talbott GC, Sam A, Tepper CG, Ghosh PM, Vinall RL. Obatoclax, a BH3 Mimetic, Enhances Cisplatin-Induced Apoptosis and Decreases the Clonogenicity of Muscle Invasive Bladder Cancer Cells via Mechanisms That Involve the Inhibition of Pro-Survival Molecules as Well as Cell Cycle Regulators. Int J Mol Sci 2019; 20:ijms20061285. [PMID: 30875757 PMCID: PMC6470498 DOI: 10.3390/ijms20061285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Several studies by our group and others have determined that expression levels of Bcl-2 and/or Bcl-xL, pro-survival molecules which are associated with chemoresistance, are elevated in patients with muscle invasive bladder cancer (MI-BC). The goal of this study was to determine whether combining Obatoclax, a BH3 mimetic which inhibits pro-survival Bcl-2 family members, can improve responses to cisplatin chemotherapy, the standard of care treatment for MI-BC. Three MI-BC cell lines (T24, TCCSuP, 5637) were treated with Obatoclax alone or in combination with cisplatin and/or pre-miR-34a, a molecule which we have previously shown to inhibit MI-BC cell proliferation via decreasing Cdk6 expression. Proliferation, clonogenic, and apoptosis assays confirmed that Obatoclax can decrease cell proliferation and promote apoptosis in a dose-dependent manner. Combination treatment experiments identified Obatoclax + cisplatin as the most effective treatment. Immunoprecipitation and Western analyses indicate that, in addition to being able to inhibit Bcl-2 and Bcl-xL, Obatoclax can also decrease cyclin D1 and Cdk4/6 expression levels. This has not previously been reported. The combined data demonstrate that Obatoclax can inhibit cell proliferation, promote apoptosis, and significantly enhance the effectiveness of cisplatin in MI-BC cells via mechanisms that likely involve the inhibition of both pro-survival molecules and cell cycle regulators.
Collapse
Affiliation(s)
- Thomas M Steele
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
- VA Northern California Health Care System (VANCHCS), Sacramento, CA 95655, USA.
- Department of Urologic Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - George C Talbott
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
| | - Anhao Sam
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Paramita M Ghosh
- VA Northern California Health Care System (VANCHCS), Sacramento, CA 95655, USA.
- Department of Urologic Surgery, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Ruth L Vinall
- Department of Pharmaceutical & Biomedical Sciences, California Northstate University College of Pharmacy (CNUCOP), Elk Grove, CA 95757, USA.
| |
Collapse
|
24
|
Oudenaarden CRL, van de Ven RAH, Derksen PWB. Re-inforcing the cell death army in the fight against breast cancer. J Cell Sci 2018; 131:131/16/jcs212563. [DOI: 10.1242/jcs.212563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
ABSTRACT
Metastatic breast cancer is responsible for most breast cancer-related deaths. Disseminated cancer cells have developed an intrinsic ability to resist anchorage-dependent apoptosis (anoikis). Anoikis is caused by the absence of cellular adhesion, a process that underpins lumen formation and maintenance during mammary gland development and homeostasis. In healthy cells, anoikis is mostly governed by B-cell lymphoma-2 (BCL2) protein family members. Metastatic cancer cells, however, have often developed autocrine BCL2-dependent resistance mechanisms to counteract anoikis. In this Review, we discuss how a pro-apoptotic subgroup of the BCL2 protein family, known as the BH3-only proteins, controls apoptosis and anoikis during mammary gland homeostasis and to what extent their inhibition confers tumor suppressive functions in metastatic breast cancer. Specifically, the role of the two pro-apoptotic BH3-only proteins BCL2-modifying factor (BMF) and BCL2-interacting mediator of cell death (BIM) will be discussed here. We assess current developments in treatment that focus on mimicking the function of the BH3-only proteins to induce apoptosis, and consider their applicability to restore normal apoptotic responses in anchorage-independent disseminating tumor cells.
Collapse
Affiliation(s)
- Clara R. L. Oudenaarden
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Lund University, Department of Experimental Oncology, Scheelevägen 2, 22363 Lund, Sweden
| | - Robert A. H. van de Ven
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
- Harvard Medical School, Department of Cell Biology, 250 Longwood Avenue, Boston, MA 02115, USA
| | - Patrick W. B. Derksen
- UMC Utrecht, Department of Pathology, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| |
Collapse
|
25
|
Cheung S, Wu D, Daly HC, Busschaert N, Morgunova M, Simpson JC, Scholz D, Gale PA, O'Shea DF. Real-Time Recording of the Cellular Effects of the Anion Transporter Prodigiosin. Chem 2018. [DOI: 10.1016/j.chempr.2018.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Dual inhibitors of the pro-survival proteins Bcl-2 and Mcl-1 derived from natural compound meiogynin A. Eur J Med Chem 2018; 148:26-38. [DOI: 10.1016/j.ejmech.2018.01.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 11/23/2022]
|
27
|
Obatoclax impairs lysosomal function to block autophagy in cisplatin-sensitive and -resistant esophageal cancer cells. Oncotarget 2018; 7:14693-707. [PMID: 26910910 PMCID: PMC4924745 DOI: 10.18632/oncotarget.7492] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 12/29/2015] [Indexed: 12/13/2022] Open
Abstract
Obatoclax, a pan-inhibitor of anti-apoptotic Bcl-2 proteins, exhibits cytotoxic effect on cancer cells through both apoptosis-dependent and -independent pathways. Here we show that obatoclax caused cytotoxicity in both cisplatin-sensitive and -resistant esophageal cancer cells. Although obatoclax showed differential apoptogenic effects in these cells, it consistently blocked autophagic flux, which was evidenced by concomitant accumulation of LC3-II and p62. Obatoclax was trapped in lysosomes and induced lysosome clustering. Obatoclax also substantially reduced the expression of lysosomal cathepsins B, D and L. Moreover, cathepsin knockdown was sufficient to induce cytotoxicity, connecting lysosomal function to cell viability. Consistent with the known function of autophagy, obatoclax caused the accumulation of polyubiquitinated proteins and showed synergy with proteasome inhibition. Taken together, our studies unveiled impaired lysosomal function as a novel mechanism whereby obatoclax mediates its cytotoxic effect in esophageal cancer cells.
Collapse
|
28
|
Robak P, Robak T. Novel synthetic drugs currently in clinical development for chronic lymphocytic leukemia. Expert Opin Investig Drugs 2017; 26:1249-1265. [PMID: 28942659 DOI: 10.1080/13543784.2017.1384814] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Over the last few years, several new synthetic drugs, particularly Bruton's tyrosine kinase (BTK), phosphatidylinositol 3-kinase (PI3K) and BCL-2 inhibitors have been developed and investigated in chronic lymphocytic leukemia (CLL). Areas covered: This review highlights key aspects of BTK, PI3K and BCL-2 inhibitors that are currently at various stages of preclinical and clinical development in CLL. A literature review of the MEDLINE database for articles in English concerning CLL, B-cell receptor, BCL-2 antagonists, BTK inhibitors and PI3K inhibitors, was conducted via PubMed. Publications from 2000 through July 2017 were scrutinized. The search terms used were acalabrutinib, ACP-196, BGB-3111, ONO-4059, GS-4059, duvelisib, IPI-145, TGR-1202, copanlisib, Bay 80-6946, buparlisib, BKM-120, BCL-2 inhibitors, venetoclax, ABT-263, navitoclax, CDK inhibitors, alvocidib, flavopiridol, dinaciclib, SCH 727,965, palbociclib, PD-0332991, in conjunction with CLL. Conference proceedings from the previous five years of the ASH and EHA Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. Expert opinion: The use of new synthetic drugs is a promising strategy for the treatment of CLL. Data from ongoing and future clinical trials will aid in better defining the status of new drugs in the treatment of CLL.
Collapse
Affiliation(s)
- Pawel Robak
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- b Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
29
|
Abstract
INTRODUCTION Myelofibrosis (MF) is characterized by bone marrow fibrosis with subsequent extramedullary hematopoiesis and abnormal cytokine expression leading to splenomegaly, constitutional symptoms and cytopenias. The discovery of the JAK2 V617F mutation in the majority of MF patients has been followed by significant progress in drug development for MF. Areas covered: In this article, we review advances in the understanding of the underlying disease biology, prognostic assessment and therapeutic modalities for MF. We provide clinical trial evidence behind using the JAK2 inhibitor ruxolitinib, erythropoiesis stimulating agents, androgens, immunomodulatory drugs, interferon, cytoreductive drugs and hypomethylating agents in MF. Finally, we review novel therapeutic options for MF including the new JAK1/2 inhibitors, ruxolitinib based combination approaches as well as novel therapeutic agents. Expert commentary: Despite significant reduction of splenomegaly and improvement of symptom burden and a signal for survival improvement, ruxolitinib does not lead to major reductions in JAK2 V617F allele burden and bone marrow fibrosis. No ruxolitinib-based combination approach has so far demonstrated superiority over ruxolitinib monotherapy. The novel JAK2 inhibitors pacritinib and momelotinib, other JAK inhibitors, telomerase inhibitors, anti-fibrosis agents and hsp90 inhibitors are in different stages of development.
Collapse
Affiliation(s)
- Maximilian Stahl
- a Yale University School of Medicine , Department of Internal Medicine, Section of Hematology and the Yale Cancer Center , New Haven , CT , USA
| | - Amer M Zeidan
- a Yale University School of Medicine , Department of Internal Medicine, Section of Hematology and the Yale Cancer Center , New Haven , CT , USA
| |
Collapse
|
30
|
Rahman M, MacNeil SM, Jenkins DF, Shrestha G, Wyatt SR, McQuerry JA, Piccolo SR, Heiser LM, Gray JW, Johnson WE, Bild AH. Activity of distinct growth factor receptor network components in breast tumors uncovers two biologically relevant subtypes. Genome Med 2017; 9:40. [PMID: 28446242 PMCID: PMC5406893 DOI: 10.1186/s13073-017-0429-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/11/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN components, or pathways, and the inability to study complex signaling networks in patient tumors. Here, pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the consequent phenotypic impact of GRFN activity patterns. METHODS Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit Adaptive Signature Selection and InteGratioN (ASSIGN) was used to estimate pathway activity for GFRN components in 1119 breast tumors from The Cancer Genome Atlas (TCGA) and across 55 breast cancer cell lines from the Integrative Cancer Biology Program (ICBP43). These signatures were investigated for their relationship to pro- and anti-apoptotic protein expression and drug response in breast cancer cell lines. RESULTS Application of these signatures to breast tumor gene expression data identified two novel discrete phenotypes characterized by concordant, aberrant activation of either the HER2, IGF1R, and AKT pathways ("the survival phenotype") or the EGFR, KRAS (G12V), RAF1, and BAD pathways ("the growth phenotype"). These phenotypes described a significant amount of the variability in the total expression data across breast cancer tumors and characterized distinctive patterns in apoptosis evasion and drug response. The growth phenotype expressed lower levels of BIM and higher levels of MCL-1 proteins. Further, the growth phenotype was more sensitive to common chemotherapies and targeted therapies directed at EGFR and MEK. Alternatively, the survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, but more resistant to chemotherapies. CONCLUSIONS Gene expression profiling revealed a bifurcation pattern in GFRN activity represented by two discrete phenotypes. These phenotypes correlate to unique mechanisms of apoptosis and drug response and have the potential of pinpointing targetable aberration(s) for more effective breast cancer treatments.
Collapse
Affiliation(s)
- Mumtahena Rahman
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Shelley M MacNeil
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - David F Jenkins
- Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Gajendra Shrestha
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA
| | - Sydney R Wyatt
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA
| | - Jasmine A McQuerry
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Stephen R Piccolo
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA.,Department of Biology, Brigham Young University, Provo, UT, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - Joe W Gray
- Department of Biomedical Engineering, Center for Spatial Systems Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University, Portland, OR, USA
| | - W Evan Johnson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.,Division of Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Andrea H Bild
- Department of Pharmacology and Toxicology, University of Utah, 30 S 2000 E, Salt Lake City, UT, 84108, USA. .,Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA. .,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
31
|
Opydo-Chanek M, Gonzalo O, Marzo I. Multifaceted anticancer activity of BH3 mimetics: Current evidence and future prospects. Biochem Pharmacol 2017; 136:12-23. [PMID: 28288819 DOI: 10.1016/j.bcp.2017.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/19/2022]
Abstract
BH3 mimetics are a novel class of anticancer agents designed to specifically target pro-survival proteins of the Bcl-2 family. Like endogenous BH3-only proteins, BH3 mimetics competitively bind to surface hydrophobic grooves of pro-survival Bcl-2 family members, counteracting their protective effects and thus facilitating apoptosis in cancer cells. Among the small-molecule BH3 mimetics identified, ABT-737 and its analogs, obatoclax as well as gossypol derivatives are the best characterized. The anticancer potential of these compounds applied as a single agent or in combination with chemotherapeutic drugs is currently being evaluated in preclinical studies and in clinical trials. In spite of promising results, the actual mechanisms of their anticancer action remain to be identified. Findings from preclinical studies point to additional activities of BH3 mimetics in cancer cells that are not connected with apoptosis induction. These off-target effects involve induction of autophagy and necrotic cell death as well as modulation of the cell cycle and multiple cell signaling pathways. For the optimization and clinical implementation of BH3 mimetics, a detailed understanding of their role as inhibitors of the pro-survival Bcl-2 proteins, but also of their possible additional effects is required. This review summarizes the most representative BH3 mimetic compounds with emphasis on their off-target effects. Based on the present knowledge on the multifaceted effects of BH3 mimetics on cancer cells, the commentary outlines the potential pitfalls and highlights the considerable promise for cancer treatment with BH3 mimetics.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Institute of Zoology, Jagiellonian University in Kraków, Poland.
| | - Oscar Gonzalo
- Department of Biochemistry, Molecular and Cell Biology, IIS, University of Zaragoza, Spain
| | - Isabel Marzo
- Department of Biochemistry, Molecular and Cell Biology, IIS, University of Zaragoza, Spain
| |
Collapse
|
32
|
Obatoclax Inhibits Alphavirus Membrane Fusion by Neutralizing the Acidic Environment of Endocytic Compartments. Antimicrob Agents Chemother 2017; 61:AAC.02227-16. [PMID: 27993855 DOI: 10.1128/aac.02227-16] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 12/14/2016] [Indexed: 12/11/2022] Open
Abstract
As new pathogenic viruses continue to emerge, it is paramount to have intervention strategies that target a common denominator in these pathogens. The fusion of viral and cellular membranes during viral entry is one such process that is used by many pathogenic viruses, including chikungunya virus, West Nile virus, and influenza virus. Obatoclax, a small-molecule antagonist of the Bcl-2 family of proteins, was previously determined to have activity against influenza A virus and also Sindbis virus. Here, we report it to be active against alphaviruses, like chikungunya virus (50% effective concentration [EC50] = 0.03 μM) and Semliki Forest virus (SFV; EC50 = 0.11 μM). Obatoclax inhibited viral entry processes in an SFV temperature-sensitive mutant entry assay. A neutral red retention assay revealed that obatoclax induces the rapid neutralization of the acidic environment of endolysosomal vesicles and thereby most likely inhibits viral fusion. Characterization of escape mutants revealed that the L369I mutation in the SFV E1 fusion protein was sufficient to confer partial resistance against obatoclax. Other inhibitors that target the Bcl-2 family of antiapoptotic proteins inhibited neither viral entry nor endolysosomal acidification, suggesting that the antiviral mechanism of obatoclax does not depend on its anticancer targets. Obatoclax inhibited the growth of flaviviruses, like Zika virus, West Nile virus, and yellow fever virus, which require low pH for fusion, but not that of pH-independent picornaviruses, like coxsackievirus A9, echovirus 6, and echovirus 7. In conclusion, obatoclax is a novel inhibitor of endosomal acidification that prevents viral fusion and that could be pursued as a potential broad-spectrum antiviral candidate.
Collapse
|
33
|
Lund KLAR, Figliola C, Kajetanowicz AK, Thompson A. Synthesis and anticancer activity of prodigiosenes bearing C-ring esters and amides. RSC Adv 2017. [DOI: 10.1039/c7ra01628j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ten novel prodigiosenes with anticancer activity.
Collapse
|
34
|
Obatoclax, a Pan-BCL-2 Inhibitor, Targets Cyclin D1 for Degradation to Induce Antiproliferation in Human Colorectal Carcinoma Cells. Int J Mol Sci 2016; 18:ijms18010044. [PMID: 28035994 PMCID: PMC5297679 DOI: 10.3390/ijms18010044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Aberrant overexpression of antiapoptotic BCL-2 (B-cell lymphoma 2) family proteins is closely linked to tumorigenesis and poor prognosis in colorectal cancer. Obatoclax is an inhibitor targeting all antiapoptotic BCL-2 proteins. A previous study has described the antiproliferative action of obatoclax in one human colorectal cancer cell line without elucidating the underlying mechanisms. We herein reported that, in a panel of human colorectal cancer cell lines, obatoclax inhibits cell proliferation, suppresses clonogenicity, and induces G1-phase cell cycle arrest, along with cyclin D1 downregulation. Notably, ectopic cyclin D1 overexpression abrogated clonogenicity suppression but also G1-phase arrest elicited by obatoclax. Mechanistically, pre-treatment with the proteasome inhibitor MG-132 restored cyclin D1 levels in all obatoclax-treated cell lines. Cycloheximide chase analyses further revealed an evident reduction in the half-life of cyclin D1 protein by obatoclax, confirming that obatoclax downregulates cyclin D1 through induction of cyclin D1 proteasomal degradation. Lastly, threonine 286 phosphorylation of cyclin D1, which is essential for initiating cyclin D1 proteasomal degradation, was induced by obatoclax in one cell line but not others. Collectively, we reveal a novel anticancer mechanism of obatoclax by validating that obatoclax targets cyclin D1 for proteasomal degradation to downregulate cyclin D1 for inducing antiproliferation.
Collapse
|
35
|
Opydo-Chanek M, Mazur L. Comparison of in vitro antileukemic activity of obatoclax and ABT-737. Tumour Biol 2016; 37:10839-49. [PMID: 26880588 PMCID: PMC4999481 DOI: 10.1007/s13277-016-4943-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/29/2016] [Indexed: 01/10/2023] Open
Abstract
Obatoclax and ABT-737 belong to a new class of anticancer agents known as BH3-mimetics. These agents antagonize the anti-apoptotic members of Bcl-2 family. The Bcl-2 proteins modulate sensitivity of many types of cancer cells to chemotherapy. Therefore, the objective of the present study was to examine and compare the antileukemic activity of obatoclax and ABT-737 applied alone, and in combination with anticancer agent, mafosfamide and daunorubicin. The in vitro cytotoxic effects of the tested agents on human leukemia cells were determined using the spectrophotometric MTT test, Coulter electrical impedance method, flow cytometry annexin V-fluorescein/propidium iodide assay, and light microscopy technique. The combination index analysis was used to quantify the extent of agent interactions. BH3 mimetics significantly decreased the leukemia cell viability and synergistically enhanced the cytotoxic effects induced by mafosfamide and daunorubicin. Obatoclax affected the cell viability to a greater degree than did ABT-737. In addition, various patterns of temporary changes in the cell volume and count, and in the frequency of leukemia cells undergoing apoptosis, were found 24 and 48 h after the tested agent application. ABT-737 combined with anticancer agents induced apoptosis more effectively than obatoclax when given in the same combination regimen. The results of the present study point to the different antileukemic activities of obatoclax and ABT-737, when applied alone, and in combination with anticancer agents. A better understanding of the exact mechanisms of BH3 mimetic action is of key importance for their optional use in cancer therapy.
Collapse
Affiliation(s)
- Małgorzata Opydo-Chanek
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| | - Lidia Mazur
- Department of Experimental Hematology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
36
|
Drink E, Dugourd P, Dumont E, Aronssohn N, Antoine R, Loison C. Optical properties of prodigiosin and obatoclax: action spectroscopy and theoretical calculations. Phys Chem Chem Phys 2016; 17:25946-55. [PMID: 26120608 DOI: 10.1039/c5cp01498k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Prodiginine molecules (prodigiosin and obatoclax) are well-known pH-chromic dyes with promising anti-tumor properties. They present multiple tautomeric and rotameric forms. The protonation state and the structure of such flexible ligands in interaction with a protein are crucial to understand and to model the protein's biological activities. The determination of the protonation state via UV/vis absorption is possible if the ligand spectra of the neutral and protonated states are sufficiently different, and also if we can eliminate other factors potentially impacting the spectrum. Upon measuring the absorption spectra of the ligand in solution, varying solvents and pH values, we have determined that the optical properties of prodigiosin and obatoclax depend on the protonation state and not on the solvent permittivity constant. In parallel, action spectroscopy (using tunable lasers coupled to ion traps) in the gas phase of protonated and sodiated prodigiosin and obatoclax molecules has been performed to evaluate the sensitivity of the charge and the conformational state to their optical properties free of solvent. The spectra are interpreted using computational simulations of molecular structures and electronic excitations. The excitation energies are only slightly sensitive to various isomerizations, and may be used to distinguish between protonated and deprotonated states, even in the presence of a sodium counter-ion.
Collapse
Affiliation(s)
- Evangeline Drink
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France.
| | | | | | | | | | | |
Collapse
|
37
|
Ebrahim AS, Sabbagh H, Liddane A, Raufi A, Kandouz M, Al-Katib A. Hematologic malignancies: newer strategies to counter the BCL-2 protein. J Cancer Res Clin Oncol 2016; 142:2013-22. [PMID: 27043233 DOI: 10.1007/s00432-016-2144-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/09/2016] [Indexed: 12/23/2022]
Abstract
INTRODUCTION BCL-2 is the founding member of the BCL-2 family of apoptosis regulatory proteins that either induce (pro-apoptotic) or inhibit (anti-apoptotic) apoptosis. The anti-apoptotic BCL-2 is classified as an oncogene, as damage to the BCL-2 gene has been shown to cause a number of cancers, including lymphoma. Ongoing research has demonstrated that disruption of BCL-2 leads to cell death. BCL-2 is also known to be involved in the development of resistance to chemotherapeutic agents, further underscoring the importance of targeting the BCL-2 gene in cancer therapeutics. Thus, numerous approaches have been developed to block or modulate the production of BCL-2 at the RNA level using antisense oligonucleotides or at the protein level with BCL-2 inhibitors, such as the novel ABT737. METHODS In this article, we briefly review previous strategies to target the BCL-2 gene and focus on a new approach to silence DNA, DNA interference (DNAi). RESULTS AND CONCLUSION DNA interference is aimed at blocking BCL-2 gene transcription. Evaluations of this technology in preclinical and early clinical studies are very encouraging and strongly support further development of DNAi as cancer therapeutics. A pilot phase II clinical trial in patients with relapsed or refractory non-Hodgkin lymphoma, PNT2258 demonstrated clinical benefit in 11 of 13 patients with notable responses in diffuse large B cell lymphoma and follicular lymphoma. By targeting the DNA directly, the DNAi technology promises to be more effective compared with other gene-interference strategies that target the RNA or protein but leaves the dysregulated DNA functional.
Collapse
Affiliation(s)
- Abdul Shukkur Ebrahim
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Hussam Sabbagh
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Allison Liddane
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Ali Raufi
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA
| | - Mustapha Kandouz
- Department of Pathology, Wayne State University, Detroit, MI, 48201, USA
| | - Ayad Al-Katib
- Department of Internal Medicine-Lymphoma Research Lab, Wayne State University and School of Medicine, 8229 Scott Hall, 540 E. Canfield, Detroit, MI, 48201, USA.
| |
Collapse
|
38
|
Farrugia MK, Vanderbilt DB, Salkeni MA, Ruppert JM. Kruppel-like Pluripotency Factors as Modulators of Cancer Cell Therapeutic Responses. Cancer Res 2016; 76:1677-82. [PMID: 26964625 PMCID: PMC4873413 DOI: 10.1158/0008-5472.can-15-1806] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/25/2015] [Indexed: 12/30/2022]
Abstract
Tumor cells inherit from their normal precursors an extensive stress response machinery that is critical for survival in response to challenges including oxidative stress, wounding, and shear stress. Kruppel-like transcription factors, including KLF4 and KLF5, are rarely affected by genetic alteration during tumorigenesis, but compose key components of the stress response machinery in normal and tumor cells and interact with critical survival pathways, including RAS, p53, survivin, and the BCL2 family of cell death regulators. Within tumor cells, KLF4 and KLF5 play key roles in tumor cell fate, regulating cell proliferation, cell survival, and the tumor-initiating properties of cancer stem-like cells. These factors can be preferentially expressed in embryonic stem cells or cancer stem-like cells. Indeed, specific KLFs represent key components of a cross-regulating pluripotency network in embryonic stem cells and induce pluripotency when coexpressed in adult cells with other Yamanaka factors. Suggesting analogies between this pluripotency network and the cancer cell adaptive reprogramming that occurs in response to targeted therapy, recent studies link KLF4 and KLF5 to adaptive prosurvival signaling responses induced by HER2-targeted therapy. We review literature supporting KLFs as shared mechanisms in stress adaptation and cellular reprogramming and address the therapeutic implications. Cancer Res; 76(7); 1677-82. ©2016 AACR.
Collapse
Affiliation(s)
- Mark K Farrugia
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Daniel B Vanderbilt
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia
| | - Mohamad A Salkeni
- The West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia. Department of Medicine, West Virginia University, Morgantown, West Virginia
| | - J Michael Ruppert
- Department of Biochemistry, West Virginia University, Morgantown, West Virginia. Program in Cancer Cell Biology, West Virginia University, Morgantown, West Virginia. The West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia.
| |
Collapse
|
39
|
The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization. PLoS One 2016; 11:e0150696. [PMID: 26950068 PMCID: PMC4780728 DOI: 10.1371/journal.pone.0150696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Abstract
Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal alkalinization contributes to the cytotoxic activity of obatoclax.
Collapse
|
40
|
Nhu D, Lessene G, Huang DCS, Burns CJ. Small molecules targeting Mcl-1: the search for a silver bullet in cancer therapy. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00582e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progress towards the development of potent and selective inhibitors of the pro-survival protein Mcl-1 is reviewed.
Collapse
Affiliation(s)
- Duong Nhu
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - David C. S. Huang
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| | - Christopher J. Burns
- The Walter and Eliza Hall Institute of Medical Research
- Australia
- Department of Medical Biology
- The University of Melbourne
- Australia
| |
Collapse
|
41
|
Cierpicki T, Grembecka J. Targeting protein-protein interactions in hematologic malignancies: still a challenge or a great opportunity for future therapies? Immunol Rev 2015; 263:279-301. [PMID: 25510283 DOI: 10.1111/imr.12244] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past several years, there has been an increasing research effort focused on inhibition of protein-protein interactions (PPIs) to develop novel therapeutic approaches for cancer, including hematologic malignancies. These efforts have led to development of small molecule inhibitors of PPIs, some of which already advanced to the stage of clinical trials while others are at different stages of preclinical optimization, emphasizing PPIs as an emerging and attractive class of drug targets. Here, we review several examples of recently developed inhibitors of PPIs highly relevant to hematologic cancers. We address the existing skepticism about feasibility of targeting PPIs and emphasize potential therapeutic benefit from blocking PPIs in hematologic malignancies. We then use these examples to discuss the approaches for successful identification of PPI inhibitors and provide analysis of the protein-protein interfaces, with the goal to address 'druggability' of new PPIs relevant to hematology. We discuss lessons learned to improve the success of targeting new PPIs and evaluate prospects and limits of the research in this field. We conclude that not all PPIs are equally tractable for blocking by small molecules, and detailed analysis of PPI interfaces is critical for selection of those with the highest chance of success. Together, our analysis uncovers patterns that should help to advance drug discovery in hematologic malignancies by successful targeting of new PPIs.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
42
|
Rational combination therapies targeting survival signaling in aggressive B-cell leukemia/lymphoma. Curr Opin Hematol 2015; 21:297-308. [PMID: 24811162 DOI: 10.1097/moh.0000000000000045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW The identification of oncogenic 'driver' mutations and activated survival pathways in selected aggressive B-cell malignancies directs the development of novel adjunctive therapies using targeted small molecule inhibitors. With a focus on diffuse large B-cell lymphoma 'not otherwise specified', Hodgkin lymphoma and childhood B-cell precursor acute lymphoblastic leukemia, this review will provide an up-to-date account of the current literature on the development of new molecularly targeted treatment modalities for aggressive B-cell malignancies. RECENT FINDINGS Subclassification of B-cell malignancies depending on their particular genetic 'driver' lesions and transcriptional and/or signaling signatures has led to the development of targeted therapeutic approaches using small molecule inhibitors to amend current combination chemotherapy. SUMMARY Treatment outcome with current combination chemotherapy is still poor for subsets of aggressive B-cell malignancies, and demands development of targeted therapeutic approaches. Advanced gene expression profiling and genomic sequencing have revealed a more detailed landscape of recurrent alterations, allowing a better subclassification of B-cell lymphomas and leukemias. Many alterations directly or indirectly lead to activation of survival signaling pathways and expression of key oncoproteins and prosurvival molecules, including Janus kinase-signal transducer and activator of transcription (JAK-STAT), phosphatidylinositol-3 kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), avian myelocytomatosis viral oncogene homolog (MYC) and B-cell lymphoma 2 (BCLl-2). Small molecule inhibitors targeting these proteins and pathways are currently being tested in clinical trials and preclinically to improve chemotherapeutic regimes and treatment outcomes.
Collapse
|
43
|
Theile D, Allendorf D, Köhler BC, Jassowicz A, Weiss J. Obatoclax as a perpetrator in drug-drug interactions and its efficacy in multidrug resistance cell lines. ACTA ACUST UNITED AC 2015; 67:1575-84. [PMID: 26255619 DOI: 10.1111/jphp.12455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 05/17/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Obatoclax is a pan-Bcl-2 inhibitor with promising efficacy, especially when combined with other antineoplastic agents. Pharmacokinetic drug-drug interactions can occur systemically and at the level of the tumour cell. Thus, this study scrutinised the interaction potential of obatoclax in vitro. METHODS Obatoclax was screened for P-gp inhibition by calcein assay, for breast cancer resistance protein (BCRP) inhibition by pheophorbide A assay and for inhibition of cytochrome P450 isoenzymes (CYPs) by commercial kits. Induction of mRNA of drug-metabolising enzymes and drug transporters was quantified in LS180 cells via real-time polymerase chain reaction and involvement of nuclear receptors was assessed by reporter gene assays. Proliferation assays were used to assess whether obatoclax retains its efficacy in cell lines overexpressing BCRP, P-glycoprotein (P-gp) or multidrug resistance-associated protein 2 (MRP2). KEY FINDINGS Obatoclax induced the mRNA expression of several genes (e.g. CYP1A1, CYP1A2 and ABCG2 (five to seven-fold) through activation of the aryl hydrocarbon receptor in the nanomolar range. Obatoclax inhibits P-gp, BCRP and some CYPs at concentrations exceeding plasma levels. P-gp, MPR2 or BCRP overexpression did not influence the efficacy of obatoclax. CONCLUSIONS Obatoclax retains its efficacy in cells overexpressing P-gp, MRP2 or BCRP and might act as a perpetrator drug in interactions with drugs, for example being substrates of CYP1A2 or BCRP.
Collapse
Affiliation(s)
- Dirk Theile
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - David Allendorf
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Bruno Christian Köhler
- National Centre for Tumour Diseases, Department of Medical Oncology, Internal Medicine VI, University of Heidelberg, Heidelberg, Germany
| | - Adam Jassowicz
- National Centre for Tumour Diseases, Department of Medical Oncology, Internal Medicine VI, University of Heidelberg, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Brown JR, Tesar B, Yu L, Werner L, Takebe N, Mikler E, Reynolds HM, Thompson C, Fisher DC, Neuberg D, Freedman AS. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia. Leuk Lymphoma 2015; 56:3336-42. [PMID: 25971907 DOI: 10.3109/10428194.2015.1048441] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obatoclax is a small molecule mimetic of the BH3 domain of BCL-2 family proteins. This phase 1 study combining obatoclax with FR was undertaken in chronic lymphocytic leukemia (CLL) patients relapsed after at least one prior therapy. Obatoclax was given as a 3-h infusion on days 1 and 3 and escalated through three dose levels, with standard dose FR days 1-5. Thirteen patients were enrolled, with a median of two prior therapies. One dose-limiting toxicity (DLT) of a 2-week treatment delay for persistent grade 2-3 neutropenia was observed at the highest obatoclax dose (20 mg/m2), but no maximum tolerated dose (MTD) was reached. The overall response rate (ORR) was 85%, with 15% complete responses (CRs) by NCI-96 criteria and 54% by IWCLL 2008 criteria. Median time to progression was 20 months. It is concluded that obatoclax can be safely administered to relapsed CLL patients in combination with FR and shows promising clinical activity.
Collapse
Affiliation(s)
- Jennifer R Brown
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Bethany Tesar
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Lijian Yu
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Lillian Werner
- b Department of Biostatistics and Computational Biology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - Naoko Takebe
- d Investigational Drug Branch, National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Evgeny Mikler
- a Department of Medical Oncology , Boston , MA , USA
| | | | | | - David C Fisher
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | - Donna Neuberg
- b Department of Biostatistics and Computational Biology , Dana-Farber Cancer Institute , Boston , MA , USA
| | - A S Freedman
- a Department of Medical Oncology , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| |
Collapse
|
45
|
Busschaert N, Caltagirone C, Van Rossom W, Gale PA. Applications of Supramolecular Anion Recognition. Chem Rev 2015; 115:8038-155. [PMID: 25996028 DOI: 10.1021/acs.chemrev.5b00099] [Citation(s) in RCA: 876] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Claudia Caltagirone
- ‡Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042 Monserrato, Cagliari, Italy
| | - Wim Van Rossom
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip A Gale
- †Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
46
|
Huang J, Fairbrother W, Reed JC. Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Expert Rev Hematol 2015; 8:283-97. [PMID: 25912824 DOI: 10.1586/17474086.2015.1026321] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The BCL2 gene was discovered nearly 30 years ago, launching a field of scientific inquiry and medical research with the potential for delivering transformational therapeutics. Revealed by its involvement in chromosomal translocations of B-cell lymphomas, BCL2 is the founding member of a family of cell survival genes that endow cells with long life spans and provide protection from a myriad of cellular stresses, including chemotherapy. Anti-apoptotic Bcl-2 family members are commonly overexpressed in a variety of human malignancies through a diversity of genetic and epigenetic mechanisms. Here, we review therapeutic strategies for targeting Bcl-2 family members with an emphasis on B-cell malignancies, providing insights into their current promise and remaining challenges.
Collapse
Affiliation(s)
- Jane Huang
- Early Discovery Biochemistry Department, Genentech, South San Francisco, CA, USA
| | | | | |
Collapse
|
47
|
Berghauser Pont LME, Spoor JKH, Venkatesan S, Swagemakers S, Kloezeman JJ, Dirven CMF, van der Spek PJ, Lamfers MLM, Leenstra S. The Bcl-2 inhibitor Obatoclax overcomes resistance to histone deacetylase inhibitors SAHA and LBH589 as radiosensitizers in patient-derived glioblastoma stem-like cells. Genes Cancer 2015; 5:445-59. [PMID: 25568669 PMCID: PMC4279441 DOI: 10.18632/genesandcancer.42] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/22/2014] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma has shown resistance to histone deacetylase inhibitors (HDACi) as radiosensitizers in cultures with Bcl-XL over-expression. We study the efficacy of SAHA/RTx and LBH589/RTx when manipulating Bcl-2 family proteins using the Bcl-2 inhibitor Obatoclax in patient-derived glioblastoma stem-like cell (GSC) cultures. GSC cultures in general have a deletion in phosphatase and tensin homolog (PTEN). Synergy was determined by the Chou Talalay method. The effects on apoptosis and autophagy were studied by measuring caspase-3/7, Bcl-XL, Mcl-1 and LC3BI/II proteins. The relation between treatment response and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status, recurrence and gene expression levels of the tumors were studied. Obatoclax synergized with SAHA and LBH589 and sensitized cells to HDACi/RTx. Over 50% of GSC cultures were responsive to Obatoclax with either single agent. Combined with HDACi/RTx treatment, Obatoclax increased caspase-3/7 and inhibited Bcl-2 family proteins Bcl-XL and Mcl-1 more effectively than other treatments. Genes predictive for treatment response were identified, including the F-box/WD repeat-containing protein-7, which was previously related to Bcl-2 inhibition and HDACi sensitivity. We emphasize the functional relation between Bcl-2 proteins and radiosensitization by HDACi and provide a target for increasing responsiveness in glioblastoma by using the Bcl-2 inhibitor Obatoclax.
Collapse
Affiliation(s)
| | - Jochem K H Spoor
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Jenneke J Kloezeman
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | | | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, The Netherlands ; Department of Neurosurgery, Elisabeth Medical Hospital, Tilburg, The Netherlands
| |
Collapse
|
48
|
Desrat S, Remeur C, Roussi F. Development of an efficient route toward meiogynin A-inspired dual inhibitors of Bcl-xL and Mcl-1 anti-apoptotic proteins. Org Biomol Chem 2015; 13:5520-31. [DOI: 10.1039/c5ob00354g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, on a large scale, with very good yield and er via an efficient strategy, of a chiral 4-substituted 2-cyclohexenone intermediate, was a milestone in the synthesis of seven analogues of meiogynin A, a natural sesquiterpenoid dimer.
Collapse
Affiliation(s)
- Sandy Desrat
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles (ICSN)
- CNRS UPR 2301
- Université Paris Sud Labex CEBA
- 91 198 Gif-sur-Yvette Cedex
| | - Camille Remeur
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles (ICSN)
- CNRS UPR 2301
- Université Paris Sud Labex CEBA
- 91 198 Gif-sur-Yvette Cedex
| | - Fanny Roussi
- Centre de Recherche de Gif
- Institut de Chimie des Substances Naturelles (ICSN)
- CNRS UPR 2301
- Université Paris Sud Labex CEBA
- 91 198 Gif-sur-Yvette Cedex
| |
Collapse
|
49
|
Pro-apoptotic meiogynin A derivatives that target Bcl-xL and Mcl-1. Bioorg Med Chem Lett 2014; 24:5086-8. [DOI: 10.1016/j.bmcl.2014.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 01/28/2023]
|
50
|
Xie C, Edwards H, Caldwell JT, Wang G, Taub JW, Ge Y. Obatoclax potentiates the cytotoxic effect of cytarabine on acute myeloid leukemia cells by enhancing DNA damage. Mol Oncol 2014; 9:409-21. [PMID: 25308513 DOI: 10.1016/j.molonc.2014.09.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022] Open
Abstract
Resistance to cytarabine and anthracycline-based chemotherapy is a major cause of treatment failure for acute myeloid leukemia (AML) patients. Overexpression of Bcl-2, Bcl-xL, and/or Mcl-1 has been associated with chemoresistance in AML cell lines and with poor clinical outcome of AML patients. Thus, inhibitors of anti-apoptotic Bcl-2 family proteins could be novel therapeutic agents. In this study, we investigated how clinically achievable concentrations of obatoclax, a pan-Bcl-2 inhibitor, potentiate the antileukemic activity of cytarabine in AML cells. MTT assays in AML cell lines and diagnostic blasts, as well as flow cytometry analyses in AML cell lines revealed synergistic antileukemic activity between cytarabine and obatoclax. Bax activation was detected in the combined, but not the individual, drug treatments. This was accompanied by significantly increased loss of mitochondrial membrane potential. Most importantly, in AML cells treated with the combination, enhanced early induction of DNA double-strand breaks (DSBs) preceded a decrease of Mcl-1 levels, nuclear translocation of Bcl-2, Bcl-xL, and Mcl-1, and apoptosis. These results indicate that obatoclax enhances cytarabine-induced apoptosis by enhancing DNA DSBs. This novel mechanism provides compelling evidence for the clinical use of BH3 mimetics in combination with DNA-damaging agents in AML and possibly a broader range of malignancies.
Collapse
Affiliation(s)
- Chengzhi Xie
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Timothy Caldwell
- MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA; Cancer Biology Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Guan Wang
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA; Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA; National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, PR China.
| |
Collapse
|