1
|
Doerfler P, Schoefmann N, Cabral G, Bauer W, Berli MC, Binder B, Borst C, Botter S, French LE, Goerge T, Hafner J, Hartmann D, Høgh A, Hoetzenecker W, Holzer-Geissler JCJ, Kamolz LP, Kofler K, Luger T, Nischwitz SP, Popovits M, Rappersberger K, Restivo G, Schlager JG, Schmuth M, Stingl G, Stockinger T, Stroelin A, Stuetz A, Umlauft J, Weninger WP, Wolff-Winiski B. Development of a Cellular Assay as a Personalized Model for Testing Chronic Wound Therapeutics. J Invest Dermatol 2024:S0022-202X(24)01866-9. [PMID: 38960086 DOI: 10.1016/j.jid.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 07/05/2024]
Abstract
Exudates of nonhealing wounds contain drivers of pathogenicity. We utilized >800 exudates from nonhealing and healing wounds of diverse etiologies, collected by 3 different methods, to develop a wound-specific, cell-based functional biomarker assay. Human dermal fibroblast proliferation served as readout to (i) differentiate between healing and nonhealing wounds, (ii) follow the healing process of individual patients, and (iii) assess the effects of therapeutics for chronic wounds ex vivo. We observed a strong correlation between wound chronicity and inhibitory effects of individual exudates on fibroblast proliferation, with good diagnostic sensitivity (76-90%, depending on the sample collection method). Transition of a clinically nonhealing to a healing phenotype restored fibroblast proliferation and extracellular matrix formation while reducing inflammatory cytokine production. Transcriptional analysis of fibroblasts exposed to ex vivo nonhealing wound exudates revealed an induction of inflammatory cytokine and chemokine pathways and the unfolded protein response, indicating that these changes may contribute to the pathology of nonhealing wounds. Testing the wound therapeutics, PDGF and silver sulfadiazine, yielded responses in line with clinical experience and indicates the usefulness of the assay to search for and profile new therapeutics.
Collapse
Affiliation(s)
| | | | | | - Wolfgang Bauer
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Martin C Berli
- Balgrist University Hospital, Zurich, Switzerland; Technical Orthopedics, Diabetic Foot Consultation, Wound Outpatient Clinic, Spital Limmattal, Schlieren, Switzerland
| | - Barbara Binder
- Department of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Carina Borst
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sander Botter
- Swiss Center for Musculoskeletal Biobanking, Balgrist Campus AG, Zurich, Switzerland
| | - Lars E French
- Department of Dermatology and Allergology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tobias Goerge
- Department of Dermatology, University of Münster, Muenster, Germany
| | - Juerg Hafner
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniela Hartmann
- Department of Dermatology and Allergology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Annette Høgh
- Department of Vascular Surgery, Regionshospitalet Viborg, Viborg, Denmark
| | | | - Judith C J Holzer-Geissler
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Lars P Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Katrin Kofler
- Department of Dermatology, Medical University of Tübingen, Tuebingen, Germany
| | - Thomas Luger
- Department of Dermatology, University of Münster, Muenster, Germany
| | - Sebastian P Nischwitz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Michael Popovits
- Department of Surgery, Barmherzige Brueder Hospital Graz, Graz, Austria; Privatklinik Graz Ragnitz, Graz, Austria
| | | | - Gaetana Restivo
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Justin G Schlager
- Department of Dermatology and Allergology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Schmuth
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Stingl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | | | - Anke Stroelin
- Department of Dermatology, Medical University of Tübingen, Tuebingen, Germany
| | | | - Julian Umlauft
- Department of Dermatology, Venerology and Allergology, Medical University of Innsbruck, Innsbruck, Austria; Dermatology, Zellmed Medalp, Zell am Ziller, Austria
| | | | | |
Collapse
|
2
|
Chen Q, Xu N, Zhao C, He Y, Kam SHT, Wu X, Huang P, Yang M, Wong CTT, Radis-Baptista G, Tang B, Fan G, Gong G, Lee SMY. A new invertebrate NPY-like polypeptide, ZoaNPY, from the Zoanthus sociatus, as a novel ligand of human NPY Y2 receptor rescues vascular insufficiency via PLC/PKC and Src- FAK-dependent signaling pathways. Pharmacol Res 2024; 203:107173. [PMID: 38580186 DOI: 10.1016/j.phrs.2024.107173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/23/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Our recent multi-omics studies have revealed rich sources of novel bioactive proteins and polypeptides from marine organisms including cnidarians. In the present study, we initially conducted a transcriptomic analysis to review the composition profile of polypeptides from Zoanthus sociatus. Then, a newly discovered NPY-like polypeptide-ZoaNPY was selected for further in silico structural, binding and virtually pharmacological studies. To evaluate the pro-angiogenic effects of ZoaNPY, we employed an in vitro HUVECs model and an in vivo zebrafish model. Our results indicate that ZoaNPY, at 1-100 pmol, enhances cell survival, migration and tube formation in the endothelial cells. Besides, treatment with ZoaNPY could restore a chemically-induced vascular insufficiency in zebrafish embryos. Western blot results demonstrated the application of ZoaNPY could increase the phosphorylation of proteins related to angiogenesis signaling including PKC, PLC, FAK, Src, Akt, mTOR, MEK, and ERK1/2. Furthermore, through molecular docking and surface plasmon resonance (SPR) verification, ZoaNPY was shown to directly and physically interact with NPY Y2 receptor. In view of this, all evidence showed that the pro-angiogenic effects of ZoaNPY involve the activation of NPY Y2 receptor, thereby activating the Akt/mTOR, PLC/PKC, ERK/MEK and Src- FAK-dependent signaling pathways. Furthermore, in an excision wound model, the treatment with ZoaNPY was shown to accelerate the wound healing process in mice. Our findings provide new insights into the discovery and development of novel pro-angiogenic drugs derived from NPY-like polypeptides in the future.
Collapse
Affiliation(s)
- Qian Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Nan Xu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Chen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Yulin He
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China
| | - Sandy Hio Tong Kam
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Xue Wu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao
| | - Pan Huang
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Min Yang
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Clarence Tsun Ting Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong, SAR China
| | | | - Benqin Tang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Guiyi Gong
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China.
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, 999078, Macao; Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China; Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hung Hom 999077, Hong Kong, SAR China.
| |
Collapse
|
3
|
Mullin JA, Rahmani E, Kiick KL, Sullivan MO. Growth factors and growth factor gene therapies for treating chronic wounds. Bioeng Transl Med 2024; 9:e10642. [PMID: 38818118 PMCID: PMC11135157 DOI: 10.1002/btm2.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 06/01/2024] Open
Abstract
Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.
Collapse
Affiliation(s)
- James A. Mullin
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Erfan Rahmani
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Kristi L. Kiick
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Materials Science and EngineeringUniversity of DelawareNewarkDelawareUSA
| | - Millicent O. Sullivan
- Department of Chemical and Biomolecular EngineeringUniversity of DelawareNewarkDelawareUSA
- Department of Biomedical EngineeringUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
4
|
Richards SM, Gubser Keller C, Kreutzer R, Greiner G, Ley S, Doelemeyer A, Dubost V, Flandre T, Kirkland S, Carbone W, Pandya R, Knehr J, Roma G, Schuierer S, Bouchez L, Seuwen K, Aebi A, Westhead D, Hintzen G, Jurisic G, Hossain I, Neri M, Manevski N, Balavenkatraman KK, Moulin P, Begrich A, Bertschi B, Huber R, Bouwmeester T, Driver VR, von Schwabedissen M, Schaefer D, Wettstein B, Wettstein R, Ruffner H. Molecular characterization of chronic cutaneous wounds reveals subregion- and wound type-specific differential gene expression. Int Wound J 2024; 21:e14447. [PMID: 38149752 PMCID: PMC10958103 DOI: 10.1111/iwj.14447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 12/28/2023] Open
Abstract
A limited understanding of the pathology underlying chronic wounds has hindered the development of effective diagnostic markers and pharmaceutical interventions. This study aimed to elucidate the molecular composition of various common chronic ulcer types to facilitate drug discovery strategies. We conducted a comprehensive analysis of leg ulcers (LUs), encompassing venous and arterial ulcers, foot ulcers (FUs), pressure ulcers (PUs), and compared them with surgical wound healing complications (WHCs). To explore the pathophysiological mechanisms and identify similarities or differences within wounds, we dissected wounds into distinct subregions, including the wound bed, border, and peri-wound areas, and compared them against intact skin. By correlating histopathology, RNA sequencing (RNA-Seq), and immunohistochemistry (IHC), we identified unique genes, pathways, and cell type abundance patterns in each wound type and subregion. These correlations aim to aid clinicians in selecting targeted treatment options and informing the design of future preclinical and clinical studies in wound healing. Notably, specific genes, such as PITX1 and UPP1, exhibited exclusive upregulation in LUs and FUs, potentially offering significant benefits to specialists in limb preservation and clinical treatment decisions. In contrast, comparisons between different wound subregions, regardless of wound type, revealed distinct expression profiles. The pleiotropic chemokine-like ligand GPR15L (C10orf99) and transmembrane serine proteases TMPRSS11A/D were significantly upregulated in wound border subregions. Interestingly, WHCs exhibited a nearly identical transcriptome to PUs, indicating clinical relevance. Histological examination revealed blood vessel occlusions with impaired angiogenesis in chronic wounds, alongside elevated expression of genes and immunoreactive markers related to blood vessel and lymphatic epithelial cells in wound bed subregions. Additionally, inflammatory and epithelial markers indicated heightened inflammatory responses in wound bed and border subregions and reduced wound bed epithelialization. In summary, chronic wounds from diverse anatomical sites share common aspects of wound pathophysiology but also exhibit distinct molecular differences. These unique molecular characteristics present promising opportunities for drug discovery and treatment, particularly for patients suffering from chronic wounds. The identified diagnostic markers hold the potential to enhance preclinical and clinical trials in the field of wound healing.
Collapse
Affiliation(s)
| | | | - Robert Kreutzer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Department of PathologyAnaPath Services GmbHLiestalSwitzerland
| | | | - Svenja Ley
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Arno Doelemeyer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Valerie Dubost
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Thierry Flandre
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Susan Kirkland
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Harvantis Pharma Consulting LtdLondonUK
| | - Walter Carbone
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Research and Development CoordinatorELI TechGroup Corso SvizzeraTorinoItaly
| | - Rishika Pandya
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Judith Knehr
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Guglielmo Roma
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Discovery Data ScienceGSK VaccinesSienaItaly
| | - Sven Schuierer
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Laure Bouchez
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Therapeutics Department, Executive in ResidenceGeneral InceptionBaselSwitzerland
| | - Klaus Seuwen
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Alexandra Aebi
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - David Westhead
- Leeds Institute of Data AnalyticsUniversity of LeedsLeedsUK
| | - Gabriele Hintzen
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Translational ScienceAffimed GmbHMannheimGermany
| | - Giorgia Jurisic
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Imtiaz Hossain
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Marilisa Neri
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Nenad Manevski
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- Translational PKPD and Clinical Pharmacology, Pharmaceutical Sciences, pREDF. Hoffmann‐La Roche AGBaselSwitzerland
| | | | - Pierre Moulin
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | - Annette Begrich
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | | | - Roland Huber
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| | | | - Vickie R. Driver
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
- INOVA HealthcareWound Healing and Hyperbaric CentersFalls ChurchVirginiaUSA
| | | | - Dirk Schaefer
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Barbara Wettstein
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Reto Wettstein
- Plastic, Reconstructive, Aesthetic and Hand SurgeryUniversity Hospital BaselBaselSwitzerland
| | - Heinz Ruffner
- Novartis Biomedical ResearchNovartis Pharma AGBaselSwitzerland
| |
Collapse
|
5
|
Ganesh GV, Ramkumar KM. Pterostilbene accelerates wound healing response in diabetic mice through Nrf2 regulation. Mol Immunol 2023; 164:17-27. [PMID: 37926050 DOI: 10.1016/j.molimm.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
Pterostilbene (PTS), known for its diverse beneficial effects via Nuclear factor erythroid-2 related factor (Nrf2) activation, holds potential for Diabetic Foot Ulcer (DFU) treatment. However, PTS-mediated Nrf2 regulation in diabetic wounds has yet to be elucidated. We used IC21 macrophage-conditioned media to simulate complex events that can influence the fibroblast phenotype using L929 cells during the wound healing process under a hyperglycemic microenvironment. We found that PTS attenuated fibroblast migration and alpha-smooth muscle actin (α-SMA) levels and hypoxia-inducible factor- 1 alpha (HIF1α). Furthermore, we demonstrated that wounds in diabetic mice characterized by impaired wound closure in a heightened inflammatory milieu, such as the NOD-like receptor P3 (NLRP3) and intercellular adhesion molecule 1 (ICAM1), and deficient Nrf2 response accompanying lowered Akt signaling and heme oxygenase1 (HO1) expression along with the impaired macrophage M2 marker CD206 expression, was rescued by administration of PTS. Such an elicited response was also compared favorably with the standard treatment using Regranex, a commercially available topical formulation for treating DFUs. Our findings suggest that PTS regulates Nrf2 in diabetic wounds, triggering a pro-wound healing response mediated by macrophages. This insight holds the potential for developing targeted therapies to heal chronic wounds, including DFUs.
Collapse
Affiliation(s)
- Goutham V Ganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Kunka Mohanram Ramkumar
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
6
|
Wang H, Duan C, Keate RL, Ameer GA. Panthenol Citrate Biomaterials Accelerate Wound Healing and Restore Tissue Integrity. Adv Healthc Mater 2023; 12:e2301683. [PMID: 37327023 PMCID: PMC11468745 DOI: 10.1002/adhm.202301683] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Indexed: 06/17/2023]
Abstract
Impaired wound healing is a common complication for diabetic patients and effective diabetic wound management remains a clinical challenge. Furthermore, a significant problem that contributes to patient morbidity is the suboptimal quality of healed skin, which often leads to reoccurring chronic skin wounds. Herein, a novel compound and biomaterial building block, panthenol citrate (PC), is developed. It has interesting fluorescence and absorbance properties, and it is shown that PC can be used in soluble form as a wash solution and as a hydrogel dressing to address impaired wound healing in diabetes. PC exhibits antioxidant, antibacterial, anti-inflammatory, and pro-angiogenic properties, and promotes keratinocyte and dermal fibroblast migration and proliferation. When applied in a splinted excisional wound diabetic rodent model, PC improves re-epithelialization, granulation tissue formation, and neovascularization. It also reduces inflammation and oxidative stress in the wound environment. Most importantly, it improves the regenerated tissue quality with enhanced mechanical strength and electrical properties. Therefore, PC could potentially improve wound care management for diabetic patients and play a beneficial role in other tissue regeneration applications.
Collapse
Affiliation(s)
- Huifeng Wang
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Chongwen Duan
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Rebecca L. Keate
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Guillermo A. Ameer
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIL60208USA
- Center for Advanced Regenerative EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of SurgeryFeinberg School of MedicineNorthwestern UniversityChicagoIL60611USA
- Chemistry of Life Processes InstituteNorthwestern UniversityEvanstonIL60208USA
- Simpson Querrey InstituteNorthwestern UniversityChicagoIL60611USA
- International Institute for NanotechnologyNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
7
|
Gamradt P, Thierry K, Masmoudi M, Wu Z, Hernandez-Vargas H, Bachy S, Antonio T, Savas B, Hussain Z, Tomasini R, Milani P, Bertolino P, Hennino A. Stiffness-induced cancer-associated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner. PNAS NEXUS 2023; 2:pgad405. [PMID: 38111825 PMCID: PMC10727001 DOI: 10.1093/pnasnexus/pgad405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with a vast stromal reaction that arises mainly from cancer-associated fibroblasts (CAFs) and promotes both immune escape and tumor growth. Here, we used a mouse model with deletion of the activin A receptor ALK4 in the context of the KrasG12D mutation, which strongly drives collagen deposition that leads to tissue stiffness. By ligand-receptor analysis of single-cell RNA-sequencing data, we identified that, in stiff conditions, neoplastic ductal cells instructed CAFs through sustained platelet-derived growth factor (PDGF) signaling. Tumor-associated tissue rigidity resulted in the emergence of stiffness-induced CAFs (siCAFs) in vitro and in vivo. Similar results were confirmed in human data. siCAFs were able to strongly inhibit CD8+ T-cell responses in vitro and in vivo, promoting local immunosuppression. More importantly, targeting PDGF signaling led to diminished siCAF and reduced tumor growth. Our data show for the first time that early paracrine signaling leads to profound changes in tissue mechanics, impacting immune responses and tumor progression. Our study highlights that PDGF ligand neutralization can normalize the tissue architecture independent of the genetic background, indicating that finely tuned stromal therapy may open new therapeutic avenues in pancreatic cancer.
Collapse
Affiliation(s)
- Pia Gamradt
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Kevin Thierry
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Melissa Masmoudi
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Zhichong Wu
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hector Hernandez-Vargas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Sophie Bachy
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| | - Tiffanie Antonio
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Berkan Savas
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | | | | | | | - Philippe Bertolino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
| | - Ana Hennino
- Tumor Escape, Resistance and Immunity, Cancer Research Center of Lyon, UMR INSERM 1052, CNRS 5286, Lyon F-69373, France
- Université Lyon 1, Lyon F-69000, France
- Centre Léon Bérard, Lyon F-69008, France
- StromaCare, Lyon F-69008, France
| |
Collapse
|
8
|
Zhu Y, Lu J, Wang S, Xu D, Wu M, Xian S, Zhang W, Tong X, Liu Y, Huang J, Jiang L, Guo X, Xie S, Gu M, Jin S, Ma Y, Huang R, Xiao S, Ji S. Mapping intellectual structure and research hotspots in the field of fibroblast-associated DFUs: a bibliometric analysis. Front Endocrinol (Lausanne) 2023; 14:1109456. [PMID: 37124747 PMCID: PMC10140415 DOI: 10.3389/fendo.2023.1109456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background Diabetic foot ulcers (DFUs) are one of the most popular and severe complications of diabetes. The persistent non-healing of DFUs may eventually contribute to severe complications such as amputation, which presents patients with significant physical and psychological challenges. Fibroblasts are critical cells in wound healing and perform essential roles in all phases of wound healing. In diabetic foot patients, the disruption of fibroblast function exacerbates the non-healing of the wound. This study aimed to summarize the hotspots and evaluate the global research trends on fibroblast-related DFUs through bibliometric analysis. Methods Scientific publications on the study of fibroblast-related DFUs from January 1, 2000 to April 27, 2022 were retrieved from the Web of Science Core Collection (WoSCC). Biblioshiny software was primarily performed for the visual analysis of the literature, CiteSpace software and VOSviewer software were used to validate the results. Results A total of 479 articles on fibroblast-related DFUs were retrieved. The most published countries, institutions, journals, and authors in this field were the USA, The Chinese University of Hong Kong, Wound Repair and Regeneration, and Seung-Kyu Han. In addition, keyword co-occurrence networks, historical direct citation networks, thematic map, and the trend topics map summarize the research hotspots and trends in this field. Conclusion Current studies indicated that research on fibroblast-related DFUs is attracting increasing concern and have clinical implications. The cellular and molecular mechanisms of the DFU pathophysiological process, the molecular mechanisms and therapeutic targets associated with DFUs angiogenesis, and the measures to promote DFUs wound healing are three worthy research hotspots in this field.
Collapse
Affiliation(s)
- Yushu Zhu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Siqiao Wang
- School of Medicine, Tongji University, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minjuan Wu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yifan Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Luofeng Jiang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xinya Guo
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Sujie Xie
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Minyi Gu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuxin Jin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yicheng Ma
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| | - Shichu Xiao
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| | - Shizhao Ji
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Research Unit of Critical Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, China
- *Correspondence: Runzhi Huang, ; Shizhao Ji, ; Shichu Xiao,
| |
Collapse
|
9
|
Worsley AL, Lui DH, Ntow-Boahene W, Song W, Good L, Tsui J. The importance of inflammation control for the treatment of chronic diabetic wounds. Int Wound J 2022. [PMID: 36564054 DOI: 10.1111/iwj.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetic chronic wounds cause massive levels of patient suffering and economic problems worldwide. The state of chronic inflammation arises in response to a complex combination of diabetes mellitus-related pathophysiologies. Advanced treatment options are available; however, many wounds still fail to heal, exacerbating morbidity and mortality. This review describes the chronic inflammation pathophysiologies in diabetic ulcers and treatment options that may help address this dysfunction either directly or indirectly. We suggest that treatments to reduce inflammation within these complex wounds may help trigger healing.
Collapse
Affiliation(s)
- Anna L Worsley
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Dennis H Lui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Winnie Ntow-Boahene
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK.,UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| | - Liam Good
- Royal Veterinary College, Department of Pathobiology and Population Sciences, London, UK
| | - Janice Tsui
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, UCL Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
10
|
Yang JY, Chen CC, Chang SC, Yeh JT, Huang HF, Lin HC, Lin SH, Lin YH, Wei LG, Liu TJ, Hung SY, Yang HM, Chang HH, Wang CH, Tzeng YS, Huang CH, Chou CY, Lin YS, Yang SY, Chen HM, Lin JT, Cheng YF, Young GH, Huang CF, Kuo YC, Dai NT. ENERGI-F703 gel, as a new topical treatment for diabetic foot and leg ulcers: A multicenter, randomized, double-blind, phase II trial. EClinicalMedicine 2022; 51:101497. [PMID: 35844773 PMCID: PMC9284381 DOI: 10.1016/j.eclinm.2022.101497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diabetic foot and leg ulcers are a major cause of disability among patients with diabetes mellitus. A topical gel called ENERGI-F703, applied twice daily and with adenine as its active pharmaceutical ingredient, accelerated wound healing in diabetic mice. The current study evaluated the safety and efficacy of ENERGI-F703 for patients with diabetic foot and leg ulcers. METHODS This randomized, double-blind, multicenter, phase II trial recruited patients from eight medical centers in Taiwan. Patients with intractable diabetic foot and leg ulcers (Wagner Grade 1-3 without active osteomyelitis) were randomly assigned (2:1) to receive topical ENERGI-F703 gel or vehicle gel twice daily for 12 weeks or until complete ulcer closure. The investigator, enrolled patients and site personnel were masked to treatment allocation. Intention to treat (ITT) population and safety population were patient to primary analyses and safety analyses, respectively. Primary outcome was complete ulcer closure rate at the end of treatment. This trial is registered with ClinicalTrials.gov, number NCT02672436. FINDINGS Starting from March 15th, 2017 to December 26th, 2019, 141 patients were enrolled as safety population and randomized into ENERGI-F703 gel (n = 95) group or vehicle gel (n = 46) group. In ITT population, ENERGI-F703 (n = 90) and vehicle group showed ulcer closure rates of 36.7% (95% CI = 26.75% - 47.49%) and 26.2% (95% CI = 13.86% - 42.04%) with difference of 9.74 % (95 % CI = -6.74% - 26.23%) and 25% quartiles of the time to complete ulcer closure of 69 days and 84 days, respectively. There were 25 (26.3%) patients in ENERGI-F703 group and 11 (23.9%) patients in vehicle group experiencing serious adverse events and five deaths occurred during the study period, none of them related to the treatment. INTERPRETATION Our study suggests that ENERGI-F703 gel is a safe and well-tolerated treatment for chronic diabetic foot and leg ulcers. Further studies are needed to corroborate our findings in light of limitations. FUNDING Energenesis Biomedical Co., Ltd.
Collapse
Affiliation(s)
- Jui-Yung Yang
- Division of General Plastic Surgery, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Cha-Chun Chen
- Division of Plastic Surgery, Shin Kong Memorial Wu Ho-Su Hospital, Taipei, Taiwan
| | - Shun-Cheng Chang
- Division of Plastic Surgery, Shuang Ho Hospital, New Taipei, Taiwan
| | - Jiun-Ting Yeh
- Division of Trauma Plastic Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Fu Huang
- Division of Plastic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwang-Chi Lin
- Division of Plastic Surgery, Shin Kong Memorial Wu Ho-Su Hospital, Taipei, Taiwan
| | - Shang-Hsi Lin
- Division of Plastic Surgery, Shin Kong Memorial Wu Ho-Su Hospital, Taipei, Taiwan
| | - Yu-Hsien Lin
- Division of Plastic Surgery, Shin Kong Memorial Wu Ho-Su Hospital, Taipei, Taiwan
| | - Lin-Gwei Wei
- Division of Plastic Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Tom J. Liu
- Division of Plastic Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Shih-Yuan Hung
- Division of Endocrinology and Metabolism, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Mei Yang
- Division of Endocrinology and Metabolism, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Hui-Hsiu Chang
- Division of Plastic Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Chih-Hsin Wang
- Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Yuan-Sheng Tzeng
- Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Chieh-Huei Huang
- Division of Plastic Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chang-Yi Chou
- Division of Plastic Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan
| | - Ying-Sheng Lin
- Division of Plastic Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan
| | - Shih-Yi Yang
- Division of General Plastic Surgery, Taipei Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | - Ya-Chun Kuo
- Energenesis Biomedical Co. Ltd, Taipei, Taiwan
| | - Niann-Tzyy Dai
- Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, Taipei, Taiwan
- Correspondence author at: No.325, Sec.2, Chenggong Rd., Neihu District, Taipei City 11490, Taiwan.
| |
Collapse
|
11
|
Neutralizing Staphylococcus aureus Virulence with AZD6389, a Three mAb Combination, Accelerates Closure of a Diabetic Polymicrobial Wound. mSphere 2022; 7:e0013022. [PMID: 35642538 PMCID: PMC9241520 DOI: 10.1128/msphere.00130-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nonhealing diabetic foot ulcers (DFU), a major complication of diabetes, are associated with high morbidity and mortality despite current standard of care. Since Staphylococcus aureus is the most common pathogen isolated from nonhealing and infected DFU, we hypothesized that S. aureus virulence factors would damage tissue, promote immune evasion and alter the microbiome, leading to bacterial persistence and delayed wound healing. In a diabetic mouse polymicrobial wound model with S. aureus, Pseudomonas aeruginosa, and Streptococcus pyogenes, we report a rapid bacterial proliferation, prolonged pro-inflammatory response and large necrotic lesions unclosed for up to 40 days. Treatment with AZD6389, a three-monoclonal antibody combination targeting S. aureus alpha toxin, 4 secreted leukotoxins, and fibrinogen binding cell-surface adhesin clumping factor A resulted in full skin re-epithelization 21 days after inoculation. By neutralizing multiple virulence factors, AZD6389 effectively blocked bacterial agglutination and S. aureus-mediated cell killing, abrogated S. aureus-mediated immune evasion and targeted the bacteria for opsonophagocytic killing. Neutralizing S. aureus virulence not only facilitated S. aureus clearance in lesions, but also reduced S. pyogenes and P. aeruginosa numbers, damaging inflammatory mediators and markers for neutrophil extracellular trap formation 14 days post initiation. Collectively, our data suggest that AZD6389 holds promise as an immunotherapeutic approach against DFU complications. IMPORTANCE Diabetic foot ulcers (DFU) represent a major complication of diabetes and are associated with poor quality of life and increased morbidity and mortality despite standard of care. They have a complex pathogenesis starting with superficial skin lesions, which often progress to deeper tissue structures up to the bone and ultimately require limb amputation. The skin microbiome of diabetic patients has emerged as having an impact on DFU occurrence and chronicity. DFU are mostly polymicrobial, and the Gram-positive bacterium Staphylococcus aureus detected in more than 95% of cases. S. aureus possess a collection of virulence factors which participate in disease progression and may facilitate growth of other pathogens. Here we show in a diabetic mouse wound model that targeting some specific S. aureus virulence factors with a multimechanistic antibody combination accelerated wound closure and promoted full skin re-epithelization. This work opens promising new avenues for the treatment of DFU.
Collapse
|
12
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Ning S, Zang J, Zhang B, Feng X, Qiu F. Botanical Drugs in Traditional Chinese Medicine With Wound Healing Properties. Front Pharmacol 2022; 13:885484. [PMID: 35645789 PMCID: PMC9133888 DOI: 10.3389/fphar.2022.885484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/01/2022] Open
Abstract
Chronic and unhealed wound is a serious public problem, which brings severe economic burdens and psychological pressure to patients. Various botanical drugs in traditional Chinese medicine have been used for the treatment of wounds since ancient time. Nowadays, multiple wound healing therapeutics derived from botanical drugs are commercially available worldwide. An increasing number of investigations have been conducted to elucidate the wound healing activities and the potential mechanisms of botanical drugs in recent years. The aim of this review is to summarize the botanical drugs in traditional Chinese medicine with wound healing properties and the underlying mechanisms of them, which can contribute to the research of wound healing and drug development. Taken together, five botanical drugs that have been developed into commercially available products, and 24 botanical drugs with excellent wound healing activities and several multiherbal preparations are reviewed in this article.
Collapse
Affiliation(s)
| | | | | | | | - Feng Qiu
- *Correspondence: Feng Qiu, ; Xinchi Feng,
| |
Collapse
|
14
|
Ru Y, Zhang Y, Xiang YW, Luo Y, Luo Y, Jiang JS, Song JK, Fei XY, Yang D, Zhang Z, Zhang HP, Liu TY, Yin SY, Li B, Kuai L. Gene set enrichment analysis and ingenuity pathway analysis to identify biomarkers in Sheng-ji Hua-yu formula treated diabetic ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114845. [PMID: 34800645 DOI: 10.1016/j.jep.2021.114845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/02/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-ji Hua-yu (SJHY) formula is a Chinese herbal prescription for diabetic ulcers (DUs) treatment, which can accelerate wound reconstruction and shorten the healing time. However, its mechanism role maintains unclear. AIM OF THE STUDY To elucidate the molecular mechanisms of SJHY application on DUs. MATERIALS AND METHODS To begin with, transcriptome sequencing was adopted to identified differentially expression mRNAs among normal ulcers, DUs, and DUs + SJHY treatment in vivo. Liquid chromatography-tandem mass spectrometry was applied for the quality control of SJHY formula. GO and KEGG enrichment analysis were used to identify the mechanisms underlying the therapeutic effect of SJHY formula, and then gene set enrichment analysis and ingenuity pathway analysis were conducted for functional analysis. Further, qPCR detection was performed in vivo for validation. RESULTS SJHY administration could regulate the glucose metabolic process, AMPK and HIF-1 pathway to accelerate healing processes of DUs. Besides, CRHR1, SHH, and GAL were identified as the critical targets, and SLC6A3, GRP, FGF23, and CYP27B1 were considered as the upstream genes of SJHY treatment. Combined with animal experiments, the prediction results were validated in DUs mice model. CONCLUSIONS This study used modular pharmacology analysis to identify the biomarkers of SJHY formula and provide the potential therapeutic targets for DUs treatment as well.
Collapse
Affiliation(s)
- Yi Ru
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yan-Wei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Ying Luo
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yue Luo
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Jing-Si Jiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Xiao-Ya Fei
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Dan Yang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Zhan Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hui-Ping Zhang
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Tai-Yi Liu
- Shanghai Applied Protein Technology Co.Ltd., 58 Yuanmei Road, Shanghai, 200233, China.
| | - Shuang-Yi Yin
- Center for Translational Medicine, Huaihe Hospital of Henan University, Kaifeng, 475001, Henan, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, 200443, China.
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
15
|
Bardill JR, Laughter MR, Stager M, Liechty KW, Krebs MD, Zgheib C. Topical gel-based biomaterials for the treatment of diabetic foot ulcers. Acta Biomater 2022; 138:73-91. [PMID: 34728428 PMCID: PMC8738150 DOI: 10.1016/j.actbio.2021.10.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 01/17/2023]
Abstract
Diabetic foot ulcers (DFUs) are a devastating ailment for many diabetic patients with increasing prevalence and morbidity. The complex pathophysiology of DFU wound environments has made finding effective treatments difficult. Standard wound care treatments have limited efficacy in healing these types of chronic wounds. Topical biomaterial gels have been developed to implement novel treatment approaches to improve therapeutic effects and are advantageous due to their ease of application, tunability, and ability to improve therapeutic release characteristics. Here, we provide an updated, comprehensive review of novel topical biomaterial gels developed for treating chronic DFUs. This review will examine preclinical data for topical gel treatments in diabetic animal models and clinical applications, focusing on gels with protein/peptides, drug, cellular, herbal/antioxidant, and nano/microparticle approaches. STATEMENT OF SIGNIFICANCE: By 2050, 1 in 3 Americans will develop diabetes, and up to 34% of diabetic patients will develop a diabetic foot ulcer (DFU) in their lifetime. Current treatments for DFUs include debridement, infection control, maintaining a moist wound environment, and pressure offloading. Despite these interventions, a large number of DFUs fail to heal and are associated with a cost that exceeds $31 billion annually. Topical biomaterials have been developed to help target specific impairments associated with DFU with the goal to improve healing. A summary of these approaches is needed to help better understand the current state of the research. This review summarizes recent research and advances in topical biomaterials treatments for DFUs.
Collapse
Affiliation(s)
- James R Bardill
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | | | - Michael Stager
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Melissa D Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | - Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
16
|
D'Amico R, Malucelli C, Uccelli A, Grosso A, Di Maggio N, Briquez PS, Hubbell JA, Wolff T, Gürke L, Mujagic E, Gianni-Barrera R, Banfi A. Therapeutic arteriogenesis by factor-decorated fibrin matrices promotes wound healing in diabetic mice. J Tissue Eng 2022; 13:20417314221119615. [PMID: 36093431 PMCID: PMC9452813 DOI: 10.1177/20417314221119615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic wounds in type-2 diabetic patients present areas of severe local skin ischemia despite mostly normal blood flow in deeper large arteries. Therefore, restoration of blood perfusion requires the opening of arterial connections from the deep vessels to the superficial skin layer, that is, arteriogenesis. Arteriogenesis is regulated differently from microvascular angiogenesis and is optimally stimulated by high doses of Vascular Endothelial Growth Factor-A (VEGF) together with Platelet-Derived Growth Factor-BB (PDGF-BB). Here we found that fibrin hydrogels decorated with engineered versions of VEGF and PDGF-BB proteins, to ensure protection from degradation and controlled delivery, efficiently accelerated wound closure in diabetic and obese db/db mice, promoting robust microvascular growth and a marked increase in feeding arterioles. Notably, targeting the arteriogenic factors to the intact arterio-venous networks in the dermis around the wound was more effective than the routine treatment of the inflamed wound bed. This approach is readily translatable to a clinical setting.
Collapse
Affiliation(s)
- Rosalinda D'Amico
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Camilla Malucelli
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Uccelli
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Grosso
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Nunzia Di Maggio
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Priscilla S Briquez
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Thomas Wolff
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Lorenz Gürke
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Edin Mujagic
- Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Roberto Gianni-Barrera
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland
| | - Andrea Banfi
- Cell and Gene Therapy, Department of Biomedicine, Basel University Hospital and University of Basel, Basel, Switzerland.,Vascular Surgery, Department of Surgery, Basel University Hospital and University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Schönborn M, Łączak P, Pasieka P, Borys S, Płotek A, Maga P. Pro- and Anti-Angiogenic Factors: Their Relevance in Diabetic Foot Syndrome-A Review. Angiology 2021; 73:299-311. [PMID: 34541892 DOI: 10.1177/00033197211042684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peripheral arterial disease can involve tissue loss in up to 50% of patients with diabetic foot syndrome (DFS). Consequently, revascularization of narrowed or occluded arteries is one of the most common forms of comprehensive treatment. However, technically successful angioplasty does not always result in the healing of ulcers. The pathomechanism of this phenomenon is still not fully understood, but inadequate angiogenesis in tissue repair may play an essential role. Changes in pro- and anti-angiogenic factors among patients with DFS are not always clear and conclusive. In particular, some studies underline the role of decreased concentration of pro-angiogenic factors and higher levels of anti-angiogenic mediators. Nevertheless, there are still controversial issues, including the paradox of impaired wound healing despite high concentrations of some pro-angiogenic factors, dynamics of their expression during the healing process, and their mutual relationships. Exploring this process among diabetic patients may provide new insight into well-known methods of treatment and show their real benefits and chances for improving outcomes.
Collapse
Affiliation(s)
- Martyna Schönborn
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland.,Doctoral School of Medical and Health Sciences, 162261Jagiellonian University, Krakow, Poland
| | - Patrycja Łączak
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Pasieka
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Sebastian Borys
- Department of Metabolic Diseases, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Anna Płotek
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| | - Paweł Maga
- Department of Angiology, Faculty of Medicine, 162261Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
18
|
Barakat M, DiPietro LA, Chen L. Limited Treatment Options for Diabetic Wounds: Barriers to Clinical Translation Despite Therapeutic Success in Murine Models. Adv Wound Care (New Rochelle) 2021; 10:436-460. [PMID: 33050829 PMCID: PMC8236303 DOI: 10.1089/wound.2020.1254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/12/2020] [Indexed: 12/15/2022] Open
Abstract
Significance: Millions of people worldwide suffer from diabetes mellitus and its complications, including chronic diabetic wounds. To date, there are few widely successful clinical therapies specific to diabetic wounds beyond general wound care, despite the vast number of scientific discoveries in the pathogenesis of defective healing in diabetes. Recent Advances: In recent years, murine animal models of diabetes have enabled the investigation of many possible therapeutics for diabetic wound care. These include specific cell types, growth factors, cytokines, peptides, small molecules, plant extracts, microRNAs, extracellular vesicles, novel wound dressings, mechanical interventions, bioengineered materials, and more. Critical Issues: Despite many research discoveries, few have been translated from their success in murine models to clinical use in humans. This massive gap between bench discovery and bedside application begs the simple and critical question: what is still missing? The complexity and multiplicity of the diabetic wound makes it an immensely challenging therapeutic target, and this lopsided progress highlights the need for new methods to overcome the bench-to-bedside barrier. How can laboratory discoveries in animal models be effectively translated to novel clinical therapies for human patients? Future Directions: As research continues to decipher deficient healing in diabetes, new approaches and considerations are required to ensure that these discoveries can become translational, clinically usable therapies. Clinical progress requires the development of new, more accurate models of the human disease state, multifaceted investigations that address multiple critical components in wound repair, and more innovative research strategies that harness both the existing knowledge and the potential of new advances across disciplines.
Collapse
Affiliation(s)
- May Barakat
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Luisa A. DiPietro
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Lin Chen
- Center for Wound Repair and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
19
|
Nanocarrier-Mediated Topical Insulin Delivery for Wound Healing. MATERIALS 2021; 14:ma14154257. [PMID: 34361451 PMCID: PMC8348788 DOI: 10.3390/ma14154257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/12/2022]
Abstract
Wound care has been clinically demanding due to inefficacious treatment that represents an economic burden for healthcare systems. In Europe, approximately 7 million people are diagnosed with untreated wounds, leading to a cost between 6.000€ and 10.000€ per patient/year. In the United States of America, 1.5 million people over 65 years old suffer from chronic wounds. A promising therapeutic strategy is the use of exogenous growth factors because they are decreased at the wound site, limiting the recovery of the skin. Insulin is one of the cheapest growth factors in the market able to accelerate the re-epithelialization and stimulate angiogenesis and cell migration. However, the effectiveness of topical insulin in wound healing is hampered by the proteases in the wound bed. The encapsulation into nanoparticles improves its stability in the wound, providing adhesion to the mucosal surface and allowing its sustained release. The aim of this review is to perform a standing point about a promising strategy to treat different types of wounds by the topical delivery of insulin-loaded nanocarriers.
Collapse
|
20
|
Xiang Y, Kuai L, Ru Y, Jiang J, Li X, Li F, Chen Q, Li B. Transcriptional profiling and circRNA-miRNA-mRNA network analysis identify the biomarkers in Sheng-ji Hua-yu formula treated diabetic wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113643. [PMID: 33271241 DOI: 10.1016/j.jep.2020.113643] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sheng-ji Hua-yu (SJHY) formula is a traditional Chinese herbal which is effective in treating diabetic ulcers. It has been indicated to accelerate re-epithelialization and healing time of cutaneous wounds in a Streptozotocin (STZ)-induced diabetic mouse model. However, its mechanisms remain undetermined. AIM OF THE STUDY To reveal the molecular mechanisms of SJHY formula in treating diabetic wounds through transcriptional profiling and circRNA-miRNA-mRNA network analysis clues. MATERIALS AND METHODS Protein expressions of tumor necrosis factor (TNF-α), interleukin (IL)-6, IL-1β in skin tissues of wounds from SJHY formula-treated and untreated mice were analyzed by Bio-Plex assay. Differentially expressed (DE) genes were detected by whole transcriptome sequencing (RNA-seq). Using predicted miRNA targets, circRNA-miRNA-mRNA networks were constructed. Furthermore, quantitative real-time PCR (qRT-PCR) was utilized to validate the circRNA-miRNA-mRNA networks. RESULTS Bio-Plex assay illustrated that the protein expressions of TNF-α, IL-1β, IL-6 were downregulated in SJHY formula-treated diabetic wounds compared with untreated wounds. RNA-seq identified 11 DE circRNAs and 476 DE mRNAs between SJHY formula-treated and diabetic mice, including 4 upregulated and 7 downregulated circRNAs, 311 upregulated and 165 downregulated mRNAs. CircRNA-Krt13/miR-665-3p/Itga3 and circRNA-Krt14/miR-706/Mylk4 pathways were built, which may contribute to the healing of SJHY formula-treated diabetic wounds. CONCLUSIONS Overall, this study suggests that these 2 circRNA-miRNA-mRNA networks are potential biomarkers for evaluation of SJHY formula efficacy in diabetic wound healing, which provides evidence to support its clinical applications.
Collapse
Affiliation(s)
- Yanwei Xiang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yi Ru
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jingsi Jiang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fulun Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qilong Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
21
|
Abstract
In the past decade, the frequency of chronic wounds in older population has increased, and their impact on quality of life is substantial. Chronic wounds are a public health problem associated with very high economic and psychosocial costs. These wounds result from various pathologies and comorbidities, such arterial and venous insufficiency, diabetes mellitus and continuous skin pressure. Recently, the role of infection and biofilms in the healing of chronic wounds has been the subject of considerable research. This paper presents an overview of various methods and products used to manage chronic wounds and discusses recent advances in wound care. To decide on the best treatment for any wound, it is crucial to holistically assess the patient and the wound. Additionally, multiple strategies could be used to prevent or treat chronic wounds.
Collapse
Affiliation(s)
- Maria Azevedo
- Researcher, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Carmen Lisboa
- Lecturer and Researcher in Medical Microbiology, Center for Research in Health Technologies and Information Systems and Department of Microbiology, Faculty of Medicine, University of Porto, Portugal
| | - Acácio Rodrigues
- Lecturer and Researcher in Medical Microbiology, Faculty of Medicine, Porto; Burn Unit, Department of Plastic and Reconstructive Surgery, Hospital São João, Portugal
| |
Collapse
|
22
|
Eleftheriadou I, Samakidou G, Tentolouris A, Papanas N, Tentolouris N. Nonpharmacological Management of Diabetic Foot Ulcers: An Update. INT J LOW EXTR WOUND 2020; 20:188-197. [PMID: 33073653 DOI: 10.1177/1534734620963561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcers (DFUs) are a common and serious complication of diabetes mellitus that is associated with increased morbidity and mortality, as well as substantial economic burden for the health care system. The standard of care for DFUs includes pressure off-loading, sharp debridement, and wound moisture balance, along with infection control and management of peripheral arterial disease. A variety of advanced modalities that target distinct pathophysiological aspects of impaired wound healing in diabetes are being studied as possible adjunct therapies for difficult to heal ulcers. These modalities include growth factors, stem cells, cultured fibroblasts and keratinocytes, bioengineered skin substitutes, acellular bioproducts, human amniotic membranes, oxygen therapy, negative pressure wound therapy, and energy therapies. Additionally, the use of advanced biomaterials and gene delivery systems is being investigated as a method of effective delivery of substances to the wound bed. In the present narrative review, we outline the latest advances in the nonpharmacological management of DFUs and summarize the efficacy of various standard and advanced treatment modalities.
Collapse
Affiliation(s)
- Ioanna Eleftheriadou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital
| | - Georgia Samakidou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital
| | - Anastasios Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital
| | | | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital
| |
Collapse
|
23
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
24
|
Veith AP, Henderson K, Spencer A, Sligar AD, Baker AB. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv Drug Deliv Rev 2019; 146:97-125. [PMID: 30267742 DOI: 10.1016/j.addr.2018.09.010] [Citation(s) in RCA: 449] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
The enhancement of wound healing has been a goal of medical practitioners for thousands of years. The development of chronic, non-healing wounds is a persistent medical problem that drives patient morbidity and increases healthcare costs. A key aspect of many non-healing wounds is the reduced presence of vessel growth through the process of angiogenesis. This review surveys the creation of new treatments for healing cutaneous wounds through therapeutic angiogenesis. In particular, we discuss the challenges and advancement that have been made in delivering biologic, pharmaceutical and cell-based therapies as enhancers of wound vascularity and healing.
Collapse
|
25
|
Eleftheriadou I, Tentolouris A, Tentolouris N, Papanas N. Advancing pharmacotherapy for diabetic foot ulcers. Expert Opin Pharmacother 2019; 20:1153-1160. [PMID: 30958725 DOI: 10.1080/14656566.2019.1598378] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Standard treatment for diabetic foot ulcers (DFUs) includes off-loading, debridement, moisture balance, management of infection and peripheral arterial disease (PAD) as well as adequate glycemic control. The outcomes so far are unsatisfactory. AREAS COVERED Herein, the authors provide an outline of newer pharmacological agents for the management of DFUs and give their expert perspectives on future treatment strategies. EXPERT OPINION Evidence-based healthcare calls for high quality evidence from large RCTs before the implementation of new guidelines for the management of DFUs. Empagliflozin and liraglutide can be recommended for glucose control in patients with DFUs and PAD, while intensive lipid lowering therapy with evolocumab when primary cholesterol goals are not met could be offered to patients with DFUs. Further clinical studies are warranted to develop a structured algorithm for the treatment of DFUs that fail to heal after four weeks of current standard of care. Sucrose octasulfate dressings, becaplermin gel, and platelet-rich plasma (PRP) could also be considered as advanced treatment options for the management of hard to heal DFUs.
Collapse
Affiliation(s)
- Ioanna Eleftheriadou
- a Diabetes Centre, First Department of Propaedeutic Internal Medicine , Medical School, National and Kapodistrian University of Athens, Laiko General Hospital , Athens , Greece
| | - Anastasios Tentolouris
- a Diabetes Centre, First Department of Propaedeutic Internal Medicine , Medical School, National and Kapodistrian University of Athens, Laiko General Hospital , Athens , Greece
| | - Nikolaos Tentolouris
- a Diabetes Centre, First Department of Propaedeutic Internal Medicine , Medical School, National and Kapodistrian University of Athens, Laiko General Hospital , Athens , Greece
| | - Nikolaos Papanas
- b Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine , Democritus University of Thrace , Alexandroupolis , Greece
| |
Collapse
|
26
|
Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov 2019; 14:485-497. [PMID: 30870037 DOI: 10.1080/17460441.2019.1588879] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Chronic, nonhealing skin wounds claim >3% of the health-care budget in industrialized countries, and the incidence is rising. Currently, two parallel trends influence innovations within the field of wound healing: the need to reduce spread of antibiotic resistance and the emerging use of health economy and value-based models. Areas covered: This review focuses on the discovery of drug candidates and development of treatments aiming to enhance wound healing in the heterogeneous group of patients with nonhealing wounds. Expert opinion: Nonhealing wounds are multifaceted and recognized as difficult indications. The majority of products currently in use are medical device dressings, or concepts of negative pressure or hyperbaric oxygen treatment. Global best practice guidelines for the treatment of diabetic foot ulcers recommend debridement, redressing, as well as infection control, and are critical to the lack of coherent clinical evidence for many approved products in active wound care. To accelerate wound healing, there is an emerging trend toward biologics, gene therapy, and novel concepts for drug delivery in research and in the pipeline for clinical trials. Scientific delineation of the therapeutic mechanism of action is, in our opinion, vital for clinical trial success and for an increased fraction of medical products in the pharmaceutical pipeline.
Collapse
Affiliation(s)
- E Öhnstedt
- a Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.,b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| | - H Lofton Tomenius
- a Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.,b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| | - E Vågesjö
- b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| | - M Phillipson
- a Department of Medical Cell Biology , Uppsala University , Uppsala , Sweden.,b Ilya Pharma AB , Dag Hammarskiölds väg, Uppsala , Sweden
| |
Collapse
|
27
|
Iyer K, Chen Z, Ganapa T, Wu BM, Tawil B, Linsley CS. Keratinocyte Migration in a Three-Dimensional In Vitro Wound Healing Model Co-Cultured with Fibroblasts. Tissue Eng Regen Med 2018; 15:721-733. [PMID: 30603591 DOI: 10.1007/s13770-018-0145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/09/2018] [Accepted: 07/12/2018] [Indexed: 10/28/2022] Open
Abstract
Background Because three-dimensional (3D) models more closely mimic native tissues, one of the goals of 3D in vitro tissue models is to aid in the development and toxicity screening of new drug therapies. In this study, a 3D skin wound healing model comprising of a collagen type I construct with fibrin-filled defects was developed. Methods Optical imaging was used to measure keratinocyte migration in the presence of fibroblasts over 7 days onto the fibrin-filled defects. Additionally, cell viability and growth of fibroblasts and keratinocytes was measured using the alamarBlue® assay and changes in the mechanical stiffness of the 3D construct was monitored using compressive indentation testing. Results Keratinocyte migration rate was significantly increased in the presence of fibroblasts with the cells reaching the center of the defect as early as day 3 in the co-culture constructs compared to day 7 for the control keratinocyte monoculture constructs. Additionally, constructs with the greatest rate of keratinocyte migration had reduced cell growth. When fibroblasts were cultured alone in the wound healing construct, there was a 1.3 to 3.4-fold increase in cell growth and a 1.2 to 1.4-fold increase in cell growth for keratinocyte monocultures. However, co-culture constructs exhibited no significant growth over 7 days. Finally, mechanical testing showed that fibroblasts and keratinocytes had varying effects on matrix stiffness with fibroblasts degrading the constructs while keratinocytes increased the construct's stiffness. Conclusion This 3D in vitro wound healing model is a step towards developing a mimetic construct that recapitulates the complex microenvironment of healing wounds and could aid in the early studies of novel therapeutics that promote migration and proliferation of epithelial cells.
Collapse
Affiliation(s)
- Kritika Iyer
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Zhuo Chen
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Teja Ganapa
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Benjamin M Wu
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA.,2Division of Advanced Prosthodontics and the Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095 USA
| | - Bill Tawil
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| | - Chase S Linsley
- 1Department of Bioengineering, University of California, Los Angeles, 420 Westwood Plaza, Room 5121, Engineering V, P.O. Box 951600, Los Angeles, CA 90095-1600 USA
| |
Collapse
|
28
|
Cinnamaldehyde accelerates wound healing by promoting angiogenesis via up-regulation of PI3K and MAPK signaling pathways. J Transl Med 2018; 98:783-798. [PMID: 29463877 DOI: 10.1038/s41374-018-0025-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022] Open
Abstract
The bark of Cinnamomum cassia (C. cassia) has been used for the management of coronary heart disease (CHD) and diabetes mellitus. C. cassia may target the vasculature, as it stimulates angiogenesis, promotes blood circulation and wound healing. However, the active components and working mechanisms of C. cassia are not fully elucidated. The Shexiang Baoxin pill (SBP), which consists of seven medicinal materials, including C. cassia etc., is widely used as a traditional Chinese patent medicine for the treatment of CHD. Here, 22 single effective components of SBP were evaluated against the human umbilical vein endothelial cells (HUVECs). We demonstrated that in HUVECs, cinnamaldehyde (CA) stimulated proliferation, migration, and tube formation. CA also activated the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways. Furthermore, the secretion of vascular endothelial growth factor (VEGF) from HUVECs was increased by CA. In vivo, CA partially restored intersegmental vessels in zebrafish pretreated with PTK787, which is a selective inhibitor for vascular endothelial growth factor receptor (VEGFR). CA also showed pro-angiogenic efficacy in the Matrigel plug assay. Additionally, CA attenuated wound sizes in a cutaneous wound model, and elevated VEGF protein and CD31-positive vascular density at the margin of these wounds. These results illustrate that CA accelerates wound healing by inducing angiogenesis in the wound area. The potential mechanism involves activation of the PI3K/AKT and MAPK signaling pathways. Such a small non-peptide molecule may have clinical applications for promoting therapeutic angiogenesis in chronic diabetic wounds and myocardial infarction.
Collapse
|
29
|
Bang JYR, Ting C, Wang P, Kim T, Wang KK, Kee T, Miya D, Ho D, Lee DK. Synthesis and Characterization of Nanodiamond–Growth Factor Complexes Toward Applications in Oral Implantation and Regenerative Medicine. J ORAL IMPLANTOL 2018; 44:207-211. [DOI: 10.1563/aaid-joi-d-17-00120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Julie Ye Rin Bang
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Caleb Ting
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Peter Wang
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Ted Kim
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Kenneth Kezhi Wang
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Theodore Kee
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Darron Miya
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| | - Dean Ho
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
- Department of Bioengineering, School of Engineering and Applied Science, UCLA, Los Angeles, Calif
| | - Dong-Keun Lee
- Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, Calif
| |
Collapse
|
30
|
Laiva AL, O'Brien FJ, Keogh MB. Innovations in gene and growth factor delivery systems for diabetic wound healing. J Tissue Eng Regen Med 2018; 12:e296-e312. [PMID: 28482114 PMCID: PMC5813216 DOI: 10.1002/term.2443] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/22/2022]
Abstract
The rise in lower extremity amputations due to nonhealing of foot ulcers in diabetic patients calls for rapid improvement in effective treatment regimens. Administration of growth factors (GFs) are thought to offer an off-the-shelf treatment; however, the dose- and time-dependent efficacy of the GFs together with the hostile environment of diabetic wound beds impose a major hindrance in the selection of an ideal route for GF delivery. As an alternative, the delivery of therapeutic genes using viral and nonviral vectors, capable of transiently expressing the genes until the recovery of the wounded tissue offers promise. The development of implantable biomaterial dressings capable of modulating the release of either single or combinatorial GFs/genes may offer solutions to this overgrowing problem. This article reviews the state of the art on gene and protein delivery and the strategic optimization of clinically adopted delivery strategies for the healing of diabetic wounds.
Collapse
Affiliation(s)
- Ashang Luwang Laiva
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Fergal J. O'Brien
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Trinity Centre for BioengineeringTrinity Biomedical Sciences Institute, Trinity College DublinIreland
- Advanced Materials and Bioengineering Research CentreRoyal College of Surgeons in Ireland and Trinity College DublinIreland
| | - Michael B. Keogh
- Tissue Engineering Research Group, Department of AnatomyRoyal College of Surgeons in IrelandDublinIreland
- Medical University of BahrainAdliyaKingdom of Bahrain
| |
Collapse
|
31
|
Long DW, Johnson NR, Jeffries EM, Hara H, Wang Y. Controlled delivery of platelet-derived proteins enhances porcine wound healing. J Control Release 2017; 253:73-81. [PMID: 28315407 PMCID: PMC5482498 DOI: 10.1016/j.jconrel.2017.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Platelet-rich plasma (PRP) is widely used for many clinical indications including wound healing due to the high concentrations of growth factors. However, the short half-life of these therapeutic proteins requires multiple large doses, and their efficacy is highly debated among clinicians. Here we report a method of protecting these proteins and releasing them in a controlled manner via a heparin-based coacervate delivery vehicle to improve wound healing in a porcine model. Platelet-derived proteins incorporated into the coacervate were protected and slowly released over 3weeks in vitro. In a porcine model, PRP coacervate significantly accelerated the healing response over 10days, in part by increasing the rate of wound reepithelialization by 35% compared to control. Additionally, PRP coacervate doubled the rate of wound contraction compared to all other treatments, including that of free PRP proteins. Wounds treated with PRP coacervate exhibited increased collagen alignment and an advanced state of vascularity compared to control treatments. These results suggest that this preparation of PRP accelerates healing of cutaneous wounds only as a controlled release formulation. The coacervate delivery vehicle is a simple and effective tool to improve the therapeutic efficacy of platelet-derived proteins for wound healing.
Collapse
Affiliation(s)
- Daniel W. Long
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Noah R. Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric M. Jeffries
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
32
|
Pandit AP, Patel SA, Bhanushali VP, Kulkarni VS, Kakad VD. Nebivolol-Loaded Microsponge Gel for Healing of Diabetic Wound. AAPS PharmSciTech 2017; 18:846-854. [PMID: 27357423 DOI: 10.1208/s12249-016-0574-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/13/2016] [Indexed: 01/07/2023] Open
Abstract
An attempt was made to formulate nebivolol-loaded microsponge gel to access drug at wound area, incorporated into gel that possess optimum moist wound management environment during later stages of wound closure. Nebivolol, antihypertensive drug, exhibits vasodilating effects via nitric oxide pathway, slows diabetic neuropathy, and restores endothelial function in diabetic wounds. Microsponges were prepared by optimizing independent variables; drug to polymer ratio and internal phase volume and their effects on production yield, entrapment efficiency, and particle size. Formulations of microsponges were evaluated for drug content. Differential scanning calorimetry indicated reduction in crystallinity of NB during the formation of microsponges. In vitro study (drug to polymer 1:4 and 10 ml internal phase volume acetone) showed 80% drug released within 8 h. Spherical and porous microsponges confirmed by scanning electron microscopy were incorporated in the carbopol 934 (2%) gel base. Gel was characterized for pH, viscosity, and drug content. Less spreadability determined by texture analyzer demonstrated viscous nature of gel. In vitro diffusion study revealed entrapped drug in porous microsponges with slow release to heal wound. In vivo study performed using streptozotocin-induced diabetic rats and excision wound model showed wound healing and closure activity within day 10. Histology revealed inflammatory cell infiltrations and neovascularization in granulation tissues, ultimately healing wound. Microsponge gel prolonged drug release due to entrapped form in porous structure of microsponges with significant and fast wound healing and closure in diabetic rats. Microsponges with loaded drug fulfilled accessibility at wound area, while gel provided optimum moist wound management environment during later stages of wound closure.
Collapse
|
33
|
Das S, Baker AB. Biomaterials and Nanotherapeutics for Enhancing Skin Wound Healing. Front Bioeng Biotechnol 2016; 4:82. [PMID: 27843895 PMCID: PMC5087310 DOI: 10.3389/fbioe.2016.00082] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
Wound healing is an intricate process that requires complex coordination between many cell types and an appropriate extracellular microenvironment. Chronic wounds often suffer from high protease activity, persistent infection, excess inflammation, and hypoxia. While there has been intense investigation to find new methods to improve cutaneous wound care, the management of chronic wounds, burns, and skin wound infection remain challenging clinical problems. Ideally, advanced wound dressings can provide enhanced healing and bridge the gaps in the healing processes that prevent chronic wounds from healing. These technologies have great potential for improving outcomes in patients with poorly healing wounds but face significant barriers in addressing the heterogeneity and clinical complexity of chronic or severe wounds. Active wound dressings aim to enhance the natural healing process and work to counter many aspects that plague poorly healing wounds, including excessive inflammation, ischemia, scarring, and wound infection. This review paper discusses recent advances in the development of biomaterials and nanoparticle therapeutics to enhance wound healing. In particular, this review focuses on the novel cutaneous wound treatments that have undergone significant preclinical development or are currently used in clinical practice.
Collapse
Affiliation(s)
- Subhamoy Das
- Department of Biomedical Engineering, University of Texas at Austin , Austin, TX , USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA; Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
34
|
Waycaster CR, Gilligan AM, Motley TA. Cost-Effectiveness of Becaplermin Gel on Diabetic Foot Ulcer HealingChanges in Wound Surface Area. J Am Podiatr Med Assoc 2016; 106:273-82. [PMID: 27049838 DOI: 10.7547/15-004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND A comparison of the cost-effectiveness of becaplermin plus good wound care (BGWC) versus good wound care (GWC) alone in treating patients with diabetic foot ulcers (DFUs) may enable physicians and health-care decision makers in the United States to make better-informed choices about treating DFUs, which currently contribute to a substantial portion of the economic burden of diabetes. METHODS Data from three phase III trials were used to predict expected 1-year costs and outcomes, including the average percentage reduction from baseline in wound surface area (WSA), the direct costs of DFU therapy, and the cost per cm(2) of WSA reduction. RESULTS At 20 weeks, the BGWC group had a statistically greater probability of complete wound closure than the GWC group (50% versus 35%; P = .015). Based on reported WSA reduction rates, DFUs in the BGWC group were predicted to close by 100% at 27 weeks, and those in the GWC group were predicted to close by 88% at 52 weeks. The GWC group had higher total estimated 1-year direct cost of DFU care ($6,809 versus $4,414) and higher cost per cm(2) of wound closure ($3,501 versus $2,006). CONCLUSIONS Becaplermin plus good wound care demonstrated economic dominance compared with GWC by providing better clinical outcomes via faster reduction in WSA and higher rates of closure at a lower direct cost.
Collapse
Affiliation(s)
- Curtis R. Waycaster
- Smith & Nephew Inc, Fort Worth, TX
- Department of Pharmacotherapy, University of North Texas Health Sciences Center, Fort Worth, TX
| | - Adrienne M. Gilligan
- Smith & Nephew Inc, Fort Worth, TX
- Department of Pharmacotherapy, University of North Texas Health Sciences Center, Fort Worth, TX
| | - Travis A. Motley
- University of North Texas Health Sciences Center, Bone and Joint Institute, Fort Worth, TX
| |
Collapse
|
35
|
Linger RJ, Belikoff EJ, Yan Y, Li F, Wantuch HA, Fitzsimons HL, Scott MJ. Towards next generation maggot debridement therapy: transgenic Lucilia sericata larvae that produce and secrete a human growth factor. BMC Biotechnol 2016; 16:30. [PMID: 27006073 PMCID: PMC4804476 DOI: 10.1186/s12896-016-0263-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetes and its concurrent complications impact a significant proportion of the population of the US and create a large financial burden on the American health care system. FDA-approved maggot debridement therapy (MDT), the application of sterile laboratory-reared Lucilia sericata (green bottle fly) larvae to wounds, is a cost-effective and successful treatment for diabetic foot ulcers and other medical conditions. Human platelet derived growth factor-BB (PDGF-BB) is a secreted dimeric peptide growth factor that binds the PDGF receptor. PDGF-BB stimulates cell proliferation and survival, promotes wound healing, and has been investigated as a possible topical treatment for non-healing wounds. Genetic engineering has allowed for expression and secretion of human growth factors and other proteins in transgenic insects. Here, we present a novel concept in MDT technology that combines the established benefits of MDT with the power of genetic engineering to promote healing. The focus of this study is to create and characterize strains of transgenic L. sericata that express and secrete PDGF-BB at detectable levels in adult hemolymph, whole larval lysate, and maggot excretions/ secretions (ES), with potential for clinical utility in wound healing. RESULTS We have engineered and confirmed transgene insertion in several strains of L. sericata that express human PDGF-BB. Using a heat-inducible promoter to control the pdgf-b gene, pdgf-b mRNA was detected via semi-quantitative PCR upon heat shock. PDGF-BB protein was also detectable in larval lysates and adult hemolymph but not larval ES. An alternative, tetracycline-repressible pdgf-b system mediated expression of pdgf-b mRNA when maggots were raised on diet that lacked tetracycline. Further, PDGF-BB protein was readily detected in whole larval lysate as well as larval ES. CONCLUSIONS Here we show robust, inducible expression and production of human PDGF-BB protein from two conditional expression systems in transgenic L. sericata larvae. The tetracycline-repressible system appears to be the most promising as PDGF-BB protein was detectable in larval ES following induction. Our system could potentially be used to deliver a variety of growth factors and anti-microbial peptides to the wound environment with the aim of enhancing wound healing, thereby improving patient outcome in a cost-effective manner.
Collapse
Affiliation(s)
- Rebecca J Linger
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Esther J Belikoff
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Ying Yan
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Fang Li
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Holly A Wantuch
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Helen L Fitzsimons
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Maxwell J Scott
- Department of Entomology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA.
| |
Collapse
|
36
|
Abstract
Organ and tissue loss through disease and injury motivate the development of therapies that can regenerate tissues and decrease reliance on transplantations. Regenerative medicine, an interdisciplinary field that applies engineering and life science principles to promote regeneration, can potentially restore diseased and injured tissues and whole organs. Since the inception of the field several decades ago, a number of regenerative medicine therapies, including those designed for wound healing and orthopedics applications, have received Food and Drug Administration (FDA) approval and are now commercially available. These therapies and other regenerative medicine approaches currently being studied in preclinical and clinical settings will be covered in this review. Specifically, developments in fabricating sophisticated grafts and tissue mimics and technologies for integrating grafts with host vasculature will be discussed. Enhancing the intrinsic regenerative capacity of the host by altering its environment, whether with cell injections or immune modulation, will be addressed, as well as methods for exploiting recently developed cell sources. Finally, we propose directions for current and future regenerative medicine therapies.
Collapse
Affiliation(s)
- Angelo S Mao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA 02138
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; Wyss Institute for Biologically Inspired Engineering at Harvard University, Cambridge, MA 02138
| |
Collapse
|
37
|
Martí‐Carvajal AJ, Gluud C, Nicola S, Simancas‐Racines D, Reveiz L, Oliva P, Cedeño‐Taborda J. Growth factors for treating diabetic foot ulcers. Cochrane Database Syst Rev 2015; 2015:CD008548. [PMID: 26509249 PMCID: PMC8665376 DOI: 10.1002/14651858.cd008548.pub2] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Foot ulcers are a major complication of diabetes mellitus, often leading to amputation. Growth factors derived from blood platelets, endothelium, or macrophages could potentially be an important treatment for these wounds but they may also confer risks. OBJECTIVES To assess the benefits and harms of growth factors for foot ulcers in patients with type 1 or type 2 diabetes mellitus. SEARCH METHODS In March 2015 we searched the Cochrane Wounds Group Specialised Register, The Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library), Ovid MEDLINE, Ovid MEDLINE (In-Process & Other Non-Indexed Citations, Ovid EMBASE and EBSCO CINAHL. There were no restrictions with respect to language, date of publication or study setting. SELECTION CRITERIA Randomised clinical trials in any setting, recruiting people with type 1 or type 2 diabetes mellitus diagnosed with a foot ulcer. Trials were eligible for inclusion if they compared a growth factor plus standard care (e.g., antibiotic therapy, debridement, wound dressings) versus placebo or no growth factor plus standard care, or compared different growth factors against each other. We considered lower limb amputation (minimum of one toe), complete healing of the foot ulcer, and time to complete healing of the diabetic foot ulcer as the primary outcomes. DATA COLLECTION AND ANALYSIS Independently, we selected randomised clinical trials, assessed risk of bias, and extracted data in duplicate. We estimated risk ratios (RR) for dichotomous outcomes. We measured statistical heterogeneity using the I(2) statistic. We subjected our analyses to both fixed-effect and random-effects model analyses. MAIN RESULTS We identified 28 randomised clinical trials involving 2365 participants. The cause of foot ulcer (neurologic, vascular, or combined) was poorly defined in all trials. The trials were conducted in ten countries. The trials assessed 11 growth factors in 30 comparisons: platelet-derived wound healing formula, autologous growth factor, allogeneic platelet-derived growth factor, transforming growth factor β2, arginine-glycine-aspartic acid peptide matrix, recombinant human platelet-derived growth factor (becaplermin), recombinant human epidermal growth factor, recombinant human basic fibroblast growth factor, recombinant human vascular endothelial growth factor, recombinant human lactoferrin, and recombinant human acidic fibroblast growth factor. Topical intervention was the most frequent route of administration. All the trials were underpowered and had a high risk of bias. Pharmaceutical industry sponsored 50% of the trials.Any growth factor compared with placebo or no growth factor increased the number of participants with complete wound healing (345/657 (52.51%) versus 167/482 (34.64%); RR 1.51, 95% CI 1.31 to 1.73; I(2) = 51%, 12 trials; low quality evidence). The result is mainly based on platelet-derived wound healing formula (36/56 (64.28%) versus 7/27 (25.92%); RR 2.45, 95% 1.27 to 4.74; I(2) = 0%, two trials), and recombinant human platelet-derived growth factor (becaplermin) (205/428 (47.89%) versus 109/335 (32.53%); RR 1.47, 95% CI 1.23 to 1.76, I(2)= 74%, five trials).In terms of lower limb amputation (minimum of one toe), there was no clear evidence of a difference between any growth factor and placebo or no growth factor (19/150 (12.66%) versus 12/69 (17.39%); RR 0.74, 95% CI 0.39 to 1.39; I(2) = 0%, two trials; very low quality evidence). One trial involving 55 participants showed no clear evidence of a difference between recombinant human vascular endothelial growth factor and placebo in terms of ulcer-free days following treatment for diabetic foot ulcers (RR 0.64, 95% CI 0.14 to 2.94; P value 0.56, low quality of evidence)Although 11 trials reported time to complete healing of the foot ulcers in people with diabetes , meta-analysis was not possible for this outcome due to the unique comparisons within each trial, failure to report data, and high number of withdrawals. Data on quality of life were not reported. Growth factors showed an increasing risk of overall adverse event rate compared with compared with placebo or no growth factor (255/498 (51.20%) versus 169/332 (50.90%); RR 0.83; 95% CI 0.72 to 0.96; I(2) = 48%; eight trials; low quality evidence). Overall, safety data were poorly reported and adverse events may have been underestimated. AUTHORS' CONCLUSIONS This Cochrane systematic review analysed a heterogeneous group of trials that assessed 11 different growth factors for diabetic foot ulcers. We found evidence suggesting that growth factors may increase the likelihood that people will have complete healing of foot ulcers in people with diabetes. However, this conclusion is based on randomised clinical trials with high risk of systematic errors (bias). Assessment of the quality of the available evidence (GRADE) showed that further trials investigating the effect of growth factors are needed before firm conclusions can be drawn. The safety profiles of the growth factors are unclear. Future trials should be conducted according to SPIRIT statement and reported according to the CONSORT statement by independent investigators and using the Foundation of Patient-Centered Outcomes Research recommendations.
Collapse
Affiliation(s)
| | - Christian Gluud
- Copenhagen Trial Unit, Centre for Clinical Intervention Research, Department 7812, Rigshospitalet, Copenhagen University HospitalThe Cochrane Hepato‐Biliary GroupBlegdamsvej 9CopenhagenDenmarkDK‐2100
| | - Susana Nicola
- Universidad Tecnológica EquinoccialFacultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
| | - Daniel Simancas‐Racines
- Universidad Tecnológica EquinoccialFacultad de Ciencias de la Salud Eugenio EspejoQuitoEcuador
| | | | - Patricio Oliva
- Universidad del DesarrolloFaculty of DentistryBarros Arana 1735ConcepciónChileCP. 4070553
| | - Jorge Cedeño‐Taborda
- Centro de Investigación UNILIME / Universidad de CaraboboCoordinador de la Sección de EndocrinologíaAltos de Colinas de BárbulaValenciaEstado CaraboboVenezuela2001
| | | |
Collapse
|
38
|
Bowling FL, Rashid ST, Boulton AJM. Preventing and treating foot complications associated with diabetes mellitus. Nat Rev Endocrinol 2015; 11:606-16. [PMID: 26284447 DOI: 10.1038/nrendo.2015.130] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus is associated with a series of macrovascular and microvascular changes that can manifest as a wide range of complications. Foot ulcerations affect ∼2-4% of patients with diabetes mellitus. Risk factors for foot lesions include peripheral and autonomic neuropathy, vascular disease and previous foot ulceration, as well as other microvascular complications, such as retinopathy and end-stage renal disease. Ulceration is the result of a combination of components that together lead to tissue breakdown. The most frequently occurring causal pathways to the development of foot ulcers include peripheral neuropathy and vascular disease, foot deformity or trauma. Peripheral vascular disease is often not diagnosed in patients with diabetes mellitus until tissue loss is evident, usually in the form of a nonhealing ulcer. Identification of patients with diabetes mellitus who are at high risk of ulceration is important and can be achieved via annual foot screening with subsequent multidisciplinary foot-care interventions. Understanding the factors that place patients with diabetes mellitus at high risk of ulceration, together with an appreciation of the links between different aspects of the disease process, is essential to the prevention and management of diabetic foot complications.
Collapse
Affiliation(s)
- Frank L Bowling
- Manchester Royal Infirmary, University of Manchester, 193 Hathersage Road, Manchester M13 0JE, UK
| | - S Tawqeer Rashid
- Manchester Royal Infirmary, University of Manchester, 193 Hathersage Road, Manchester M13 0JE, UK
| | - Andrew J M Boulton
- Manchester Royal Infirmary, University of Manchester, 193 Hathersage Road, Manchester M13 0JE, UK
| |
Collapse
|
39
|
Johnson NR, Wang Y. Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds. Wound Repair Regen 2015; 23:591-600. [PMID: 26032846 PMCID: PMC5957479 DOI: 10.1111/wrr.12319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.
Collapse
Affiliation(s)
- Noah R. Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Gilligan AM, Waycaster CR, Motley TA. Cost-effectiveness of becaplermin gel on wound healing of diabetic foot ulcers. Wound Repair Regen 2015; 23:353-60. [PMID: 25810233 DOI: 10.1111/wrr.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/11/2015] [Indexed: 01/30/2023]
Abstract
We sought to determine the long-term cost effectiveness (payer's perspective) of becaplermin gel plus good wound care (BGWC) vs. good wound care (GWC) alone in terms of wound healing and risk of amputation in patients with diabetic foot ulcers (DFUs). Outcomes data were derived from a propensity score-matched cohort from the Curative Health Services database between 1998 and 2004, which was followed for 20 weeks. A four-state Markov model was used to predict costs and outcomes of wound healing and risk of amputation for BGWC vs. GWC alone over 1 year in patients with DFU. The primary outcome was closed-wound weeks. Transition probabilities for healing and amputation were derived from the aforementioned propensity score-matched cohorts. Ulcer recurrence was estimated from the medical literature. Utilization for becaplermin was calculated using the dosing algorithm in the product labeling. Of 24,898 eligible patients, 9.6% received BGWC. Based on the model, patients treated with BGWC had substantially more closed-wound weeks compared with GWC (16.1 vs. 12.5 weeks, respectively). More patients receiving BGWC had healed wounds at 1 year compared with those receiving GWC (48.1% vs. 38.3%). Risk of amputation was lower in the BGWC cohort (6.8% vs. 9.8%). Expected annual direct costs for DFU were $21,920 for BGWC and $24,640 for GWC. BGWC was economically dominant over GWC, providing better outcomes at a lower cost in patients with DFU. Compared with GWC alone, BGWC is more effective in healing wounds and lowering amputation risk, thereby decreasing long-term costs for DFU.
Collapse
Affiliation(s)
- Adrienne M Gilligan
- Smith & Nephew, Inc., Fort Worth, Texas.,Department of Pharmacotherapy, University of North Texas Health Sciences Center
| | - Curtis R Waycaster
- Smith & Nephew, Inc., Fort Worth, Texas.,Department of Pharmacotherapy, University of North Texas Health Sciences Center
| | - Travis A Motley
- University of North Texas Health Sciences Center, Bone and Joint Institute, Fort Worth, Texas
| |
Collapse
|
41
|
Löndahl M, Tarnow L, Karlsmark T, Lundquist R, Nielsen A, Michelsen M, Nilsson A, Zakrzewski M, Jörgensen B. Use of an autologous leucocyte and platelet-rich fibrin patch on hard-to-heal DFUs: a pilot study. J Wound Care 2015; 24:172-4, 176-8. [DOI: 10.12968/jowc.2015.24.4.172] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- M. Löndahl
- Department of Endocrinology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - L. Tarnow
- Steno Diabetes Center A/S, Gentofte, Denmark
- Nordsjaellands Hospital, Hilleroed
- Health, Aarhus University, Aarhus
| | - T. Karlsmark
- Wound Healing Centre, Bispebjerg University Hospital, Copenhagen, Denmark
| | | | | | | | | | | | - B. Jörgensen
- Wound Healing Centre, Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
42
|
Goutos I, Nicholas RS, Pandya AA, Ghosh SJ. Diabetes mellitus and burns. Part II-outcomes from burn injuries and future directions. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2015; 5:13-21. [PMID: 26064798 PMCID: PMC4448084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
Diabetes mellitus is an increasingly prevalent comorbidity in patients presenting to burn facilities. Diabetic patients tend to be older and present in a delayed manner with deeper injuries predominantly affecting the lower limb. Morbidity from burns is higher in this cohort including a longer length of hospital stay, greater need for surgical interventions and increased rate of infective complications. Nevertheless, there seems to be little effect of diabetes on associated mortality. The second part of this review article concentrates on the epidemiological profile of diabetic burn patients and the effect of the disease on morbidity and mortality. In addition, we present a review of therapeutic adjuncts, which may hold promise for the future management of this cohort of burn patients.
Collapse
Affiliation(s)
- Ioannis Goutos
- Department of Plastic and Reconstructive Surgery, Stoke Mandeville HospitalBucks, UK
| | | | | | - Sudip J Ghosh
- Department of Plastic and Reconstructive Surgery, Stoke Mandeville HospitalBucks, UK
| |
Collapse
|
43
|
Angiogenic Effect of Bioactive Borate Glass Microfibers and Beads in the Hairless Mouse. BIOMEDICAL GLASSES 2015. [DOI: 10.1515/bglass-2015-0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe purpose of this project was to investigate the angiogenic mechanism of bioactive borate glass for soft tissue repair in a ‘hairless’ SKH1 mouse model. Subcutaneous microvascular responses to bioactive glass microfibers (45S5, 13-93B3, and 13-93B3Cu) and bioactive glass beads (13-93, 13-93B3, and 13-93B3Cu) were assessed via: noninvasive imaging of skin microvasculature; histomorphometry of microvascular densities; and quantitative PCR measurements of mRNA expression of VEGF and FGF-2 cytokines. Live imaging via dorsal skin windows showed the formation at twoweeks of a halo-like structure infused with microvessels surrounding implanted boratebased 13-93B3 and 13-93B3Cu glass beads, a response not observed with silicate-based 13-93 glass beads. Quantitative histomorphometry of tissues implanted with plugs of 45S5, 13-93B3, and 13-93B3Cu glass microfibers revealed microvascular densities that were 1.6-, 2.3-, and 2.7-times higher, respectively, than the sham control valueswhereas 13-93, 13-93B3, and 13-93B3Cu glass beads caused the microvascular density to increase 1.3-, 1.6-, and 2.5-fold, respectively, relative to sham controls. Quantitative PCR measurements indicate a marginally significant increased expression of VEGF mRNA in tissues with 13-93B3Cu glass beads, an outcome that supported the hypothesis that copper-doped borate glass could promote VEGF expression followed by angiogenesis for enhanced wound healing.
Collapse
|
44
|
Zhao XH, Gu HF, Xu ZR, Zhang Q, Lv XY, Zheng XJ, Yang YM. Efficacy of topical recombinant human platelet-derived growth factor for treatment of diabetic lower-extremity ulcers: Systematic review and meta-analysis. Metabolism 2014; 63:1304-13. [PMID: 25060693 DOI: 10.1016/j.metabol.2014.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/21/2014] [Accepted: 06/09/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Recombinant human platelet-derived growth factor (rhPDGF) is used topically in the treatment of diabetic lower-extremity ulcers. There have been few meta-analyses of the efficacy of rhPDGF in this treatment context. The aim of this study was to perform an updated systematic review and meta-analysis to assess the clinical efficacy of rhPDGF in the treatment of diabetic lower-extremity ulcers. METHODS We searched the MEDLINE, Cochrane Library, EMBASE and Web of Knowledge databases up to April 30, 2014. Studies were identified and selected, and data were extracted by two independent reviewers. The primary efficacy outcome was complete healing rate. Adverse events were also assessed. The studies were evaluated for quality and publication bias. RESULTS A total of 6 randomized controlled trials including 992 patients were selected from 173 identified studies. The studies compared rhPDGF treatment in the context of standard of care (SOC) to placebo or SOC alone. In the absence of study heterogeneity, a fixed-effects model was performed, and the combined odds ratio (OR) indicated a significantly greater complete healing rate in patients treated with rhPDGF compared to placebo or SOC alone. The ORs ranged from 0.58 to 2.77, with a combined OR of 1.53 (95% CI = 1.14 to 2.04, p = 0.004). A sensitivity analysis (leave-one-out method) indicated good study reliability, and a funnel plot with Egger test showed no publication bias. CONCLUSION These results indicate that rhPDGF is efficacious in the treatment of diabetic lower-extremity ulcers.
Collapse
Affiliation(s)
- Xiao-hong Zhao
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Hai-feng Gu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe-rong Xu
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Qin Zhang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xue-ying Lv
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Xiao-jun Zheng
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Yun-mei Yang
- Department of Geriatrics, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China.
| |
Collapse
|
45
|
Demoulin JB, Essaghir A. PDGF receptor signaling networks in normal and cancer cells. Cytokine Growth Factor Rev 2014; 25:273-83. [DOI: 10.1016/j.cytogfr.2014.03.003] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/10/2014] [Indexed: 01/05/2023]
|
46
|
Futrega K, King M, Lott WB, Doran MR. Treating the whole not the hole: necessary coupling of technologies for diabetic foot ulcer treatment. Trends Mol Med 2014; 20:137-42. [PMID: 24485902 DOI: 10.1016/j.molmed.2013.12.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/21/2013] [Accepted: 12/23/2013] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes is the epidemic of our generation, and diabetic foot ulcers (DFUs) are a major complication. Although DFU formation itself can indicate disease progression, the failure to effectively treat ulcers contributes further to a decay in patient quality of life and increased mortality. Herein we discuss the development of next-generation DFU therapies including: (i) topical growth factors, (ii) scaffolds, and (iii) cellular therapies. Individually these therapies have yielded measurable but modest improvements in DFU repair. Because DFUs arise as a result of multiple biochemical deficiencies, a singular treatment modality is unlikely to be effective. Next-generation DFU technologies must be combined to address effectively the complex underlying pathology and enable reliable DFU repair.
Collapse
Affiliation(s)
- Kathryn Futrega
- Stem Cell Therapies Laboratory, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology at the Translational Research Institute, Brisbane, Australia
| | - Myfanwy King
- Stem Cell Therapies Laboratory, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology at the Translational Research Institute, Brisbane, Australia
| | - William B Lott
- Stem Cell Therapies Laboratory, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology at the Translational Research Institute, Brisbane, Australia
| | - Michael R Doran
- Stem Cell Therapies Laboratory, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology at the Translational Research Institute, Brisbane, Australia; Australian Prostate Cancer Research Centre-Queensland, Princess Alexandra Hospital, Brisbane, Australia; Mater Medical Research Institute at the Translational Research Institute, Brisbane, Australia.
| |
Collapse
|
47
|
Zykova SN, Balandina KA, Vorokhobina NV, Kuznetsova AV, Engstad R, Zykova TA. Macrophage stimulating agent soluble yeast β-1,3/1,6-glucan as a topical treatment of diabetic foot and leg ulcers: A randomized, double blind, placebo-controlled phase II study. J Diabetes Investig 2013; 5:392-9. [PMID: 25411598 PMCID: PMC4210076 DOI: 10.1111/jdi.12165] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/26/2022] Open
Abstract
AIMS/INTRODUCTION Dysregulated inflammatory response is believed to be an important factor in the pathogenesis of several late complications of diabetes mellitus. β-Glucans are potent inducers of immune function. The present randomized, double blind, two-center, placebo-controlled study was undertaken to explore safety, tolerability and efficacy of soluble β-1,3/1,6-glucan (SBG) as a local treatment of diabetic foot ulcers. MATERIALS AND METHODS A total of 60 patients with type 1 or 2 diabetes and lower extremity ulcers (Wagner grade 1-2, Ankle/Brachial Index ≥0.7) received SBG or a comparator product (methylcellulose) locally three times weekly up to 12 weeks in addition to conventional management scheme. A total of 54 patients completed the study. RESULTS A tendency for shorter median time to complete healing in the SBG group was observed (36 vs 63 days, P = 0.130). Weekly percentage reduction in ulcer size was significantly higher in the SBG group than in the methylcellulose group between weeks 1-2, 3-4 and 5-6 (P < 0.05). The proportion of ulcers healed by week 12 was also in favor of SBG (59% vs 37%, P = 0.09), with a significantly higher healing incidence in the SBG group at week 8 (44% vs 17%, P = 0.03). SBG was safe and well tolerated. There was a clinically significant difference regarding the incidence of serious adverse events in favor of the SBG treatment. CONCLUSIONS Local treatment of diabetic lower extremity ulcers with β-1,3/1,6-polyglucose shows good safety results. This β-glucan preparation shows promising potential as a treatment accelerating cutaneous healing. Further studies are required to confirm this effect. This trial was registered with ClinicalTrials.gov (no. NCT00288392).
Collapse
Affiliation(s)
| | | | - Natalia V Vorokhobina
- North-Western State Medical University named after I.I. Mechnikov Saint-Petersburg Russia
| | - Alla V Kuznetsova
- North-Western State Medical University named after I.I. Mechnikov Saint-Petersburg Russia
| | | | | |
Collapse
|
48
|
Schmidt C, Bezuidenhout D, Zilla P, Davies NH. A slow-release fibrin matrix increases adeno-associated virus transduction of wound repair cells in vivo. J Biomater Appl 2013; 28:1408-18. [PMID: 24163331 DOI: 10.1177/0885328213510331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Virus-mediated gene therapy is a promising strategy for numerous tissue engineering applications. Fibrin-based scaffolds have been previously used as vehicles for localised delivery of adenovirus to wound sites. However, their utility in the delivery of adeno-associated viruses to wound repair cells has not yet been determined. The influence of fibrin concentration on efficacy of delivery of AAV-2 to wound tissue was assessed in this study. Fibrin scaffolds containing recombinant AAV-2 encoding for β-galactosidase were polymerised in porous polyurethane discs and implanted subcutaneously in rats. A fibrin scaffold with a concentration of 50 mg/ml showed significantly elevated levels of β-galactosidase activity within explanted discs at 10 days compared to 10 mg/ml and 25 mg/ml fibrin. These findings inform efforts to optimise biodegradable scaffolds for the localised delivery of AAV in tissue engineering.
Collapse
Affiliation(s)
- Christian Schmidt
- 1Cardiovascular Research Unit, University of Cape Town, South Africa
| | | | | | | |
Collapse
|
49
|
Shan GQ, Zhang YN, Ma J, Li YH, Zuo DM, Qiu JL, Cheng B, Chen ZL. Evaluation of the effects of homologous platelet gel on healing lower extremity wounds in patients with diabetes. INT J LOW EXTR WOUND 2013; 12:22-9. [PMID: 23509083 DOI: 10.1177/1534734613477113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The treatment of chronic diabetic wounds remains complicated, despite new insight into the cellular and molecular basis of wound healing and cutaneous regeneration. A growing body of clinical trials has shown that platelet release has a notable effectiveness on refractory ulcer healing. However, patients with chronic diabetic ulcers usually have poor general health, and the large-volume blood absence required to produce autologous platelet-rich plasma often causes adverse effects. To overcome the limitation, the homologous platelet gel (PG) from healthy donor was used for the treatment of chronic diabetic lower extremity wound in the study. We show here that homologous derived platelets significantly enhanced EVC304 cell and HaCaT cell proliferation and homologous PG was capable of prompting cell migration. Twenty-one patients with refractory diabetic lower extremity ulcers, who had no response to conventional treatments, were treated in this study. Our data indicated that homologous PG was effective for the enhancement and acceleration of diabetic lower extremity wounds healing. We propose that homologous PG appeared to enhance vascularization and epithelialization, which might induce a quicker healing process and and encourage controlled studies in future.
Collapse
|
50
|
Abstract
Chronic DFUs are a growing global health concern due to the implied high rates of morbidity and mortality. Standard-of-care modalities sometimes are not sufficient for some recalcitrant ulcers. The use of adjuvant topical therapies including advanced dressings and biologic therapies should be considered in patients whose DFU did not reduce in size after receiving standard care for a period of 4 weeks. These advanced treatments must be used in combination with standard care measures, including debridement, moist wound healing, offloading, and infection control.
Collapse
Affiliation(s)
- Nicholas A Richmond
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|