1
|
Bogaczyk A, Potocka N, Paszek S, Skrzypa M, Zuchowska A, Kośny M, Kluz-Barłowska M, Wróbel A, Wróbel J, Zawlik I, Kluz T. MiR-205-5p and MiR-222-3p as Potential Biomarkers of Endometrial Cancer. Int J Mol Sci 2025; 26:2615. [PMID: 40141259 PMCID: PMC11941963 DOI: 10.3390/ijms26062615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Endometrial cancer is the fourth most common cancer in women in Europe. Its carcinogenesis is a complex process and requires further research. In our study, we focus on finding new and easy-to-diagnose markers for detecting endometrial cancer. For this purpose, we compared the levels of miR-21-5p, miR-205-5p, and miR-222-3p in endometrial cancer tissues with the levels of these miRs in the serum of patients using the dPCR method. Our study is preliminary and consists of comparing the changes in miRNA expression in serum to the changes in miRNA in tissue of patients with endometrial cancer. The study included 18 patients with EC and 19 patients undergoing surgery for pelvic organ prolapse or uterine fibroids as a control group without neoplastic lesions. Endometrial tissue and serum were collected from all patients. The analyses showed an increased expression of miR-205-5p in endometrial cancer tissue and decreased expression of miR-222-3p in tissue and serum samples. These results suggest that miR-205-5p and miR-222-3p may be potential endometrial cancer biomarkers. Only miR-222-3p confirmed its decreased expression in serum, making it a potential and easily accessible marker in the diagnosis of endometrial cancer. This pilot study requires further investigation in a larger group of patients. Its advantages include the possibility of a comparison between miRNA expression in tissue and serum, as well as conducting the study using dPCR.
Collapse
Affiliation(s)
- Anna Bogaczyk
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland; (A.B.); (T.K.)
| | - Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (M.S.)
| | - Sylwia Paszek
- Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (S.P.); (A.Z.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (M.S.)
| | - Alina Zuchowska
- Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (S.P.); (A.Z.)
| | - Michał Kośny
- Department of Hematology, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Marta Kluz-Barłowska
- Department of Pathology, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland;
| | - Andrzej Wróbel
- Second Department of Gynecology, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Jan Wróbel
- Medical Faculty, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (N.P.); (M.S.)
- Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (S.P.); (A.Z.)
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Fryderyk Chopin University Hospital, 35-055 Rzeszow, Poland; (A.B.); (T.K.)
- Faculty of Medicine, Collegium Medicum, University of Rzeszow, 35-959 Rzeszow, Poland; (S.P.); (A.Z.)
| |
Collapse
|
2
|
Dong X, Lin Y, Li K, Liang G, Huang X, Pan J, Wang L, Zhang D, Liu T, Wang T, Yan X, Zhang L, Li X, Qu X, Jia D, Li Y, Zhang H. Consensus statement on extracellular vesicles in liquid biopsy for advancing laboratory medicine. Clin Chem Lab Med 2025; 63:465-482. [PMID: 38896030 DOI: 10.1515/cclm-2024-0188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
Extracellular vesicles (EVs) represent a diverse class of nanoscale membrane vesicles actively released by cells. These EVs can be further subdivided into categories like exosomes and microvesicles, based on their origins, sizes, and physical attributes. Significantly, disease-derived EVs have been detected in virtually all types of body fluids, providing a comprehensive molecular profile of their cellular origins. As a result, EVs are emerging as a valuable addition to liquid biopsy techniques. In this collective statement, the authors share their current perspectives on EV-related research and product development, with a shared commitment to translating this newfound knowledge into clinical applications for cancer and other diseases, particularly as disease biomarkers. The consensus within this document revolves around the overarching recognition of the merits, unresolved questions, and existing challenges surrounding EVs. This consensus manuscript is a collaborative effort led by the Committee of Exosomes, Society of Tumor Markers, Chinese anti-Cancer Association, aimed at expediting the cultivation of robust scientific and clinically applicable breakthroughs and propelling the field forward with greater swiftness and efficacy.
Collapse
Affiliation(s)
- Xingli Dong
- 558113 Central Laboratory, Department of Hematology and Oncology, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen Clinical Research Center for hematologic disease, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Yusheng Lin
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Thoracic Surgery, 47885 The First Affiliated Hospital of Jinan University , Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Kai Li
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Gaofeng Liang
- 74623 School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology , Luoyang, China
| | - Xiaoyi Huang
- Biotherapy Center, Harbin Medical University Cancer Hospital, Heilongjiang Province, Harbin, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Heilongjiang Province, Harbin, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lu Wang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, and College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| | - Tingjiao Liu
- Department of Oral Pathology, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Tong Wang
- 47885 MOE Key Laboratory of Tumor Molecular Biology, College of Life Science and Technology, Jinan University , Guangzhou, China
| | - Xiaomei Yan
- Department of Chemical Biology, 534787 MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen, China
| | - Long Zhang
- 12377 MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University , Hangzhou, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, 558113 Shenzhen Key Laboratory, Shenzhen University General Hospital , Shenzhen, Guangdong, China
| | - Xiujuan Qu
- Department of Medical Oncology, 159407 The First Hospital of China Medical University , Shenyang, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, UNSW Sydney, Kensington, NSW, Australia
| | - Hao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, and MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
- Institute of Precision Cancer Medicine and Pathology, and Department of Pathology, School of Medicine, Jinan University, Guangzhou, P.R. China
| |
Collapse
|
3
|
Tong Z, Xu X, Shen C, Yang D, Li Y, Li Q, Yang W, Xu F, Wu Z, Zhou L, Zhan C, Mao H. All-in-one multiple extracellular vesicle miRNA detection on a miniaturized digital microfluidic workstation. Biosens Bioelectron 2025; 270:116976. [PMID: 39591923 DOI: 10.1016/j.bios.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Extracellular vesicles (EVs) and EV-derived microRNAs (EV-miRNAs) are emerging as promising circulating biomarkers for early detection of malignant tumors such as non-small cell lung cancer (NSCLC). However, utilization of the gold standard method of RNA detection, the reverse transcription - quantitative polymerase chain reaction (RT-qPCR), on EV-miRNAs is hindered by laborious sample purification requirements and time-consuming multi-step procedures. Herein, we propose and demonstrate a miniaturized digital microfluidic (DMF) workstation for all-in-one EV-miRNA detection based on RT-qPCR. In comparison with the previously reported DMF platform for EV isolation, the system further integrates parallel on-chip real-time PCR capability with a comparable detection sensitivity with in-vitro RT-qPCR (limit of detection = 2 copies/μL), realizing automated, miniaturized, and facile EV-miRNA detection. Meanwhile, major methodological improvements were made, including one-step stem-looped RT-qPCR for miRNAs with both high sensitivity and specificity, and a simplified DMF substrate rework strategy for cost-effectiveness. As a demonstration, the detection of NSCLC-related EV-miRNAs within 20 μL of plasma samples was implemented, indicating the potential applicability of the DMF workstation and its automated protocol on point-of-care diagnosis of a wide range of diseases.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Weidong Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangliang Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Chee TM, Zahra CJ, Fong KM, Yang IA, Bowman RV. Potential utility of miRNAs derived from pleural fluid extracellular vesicles to differentiate between benign and malignant pleural effusions. Transl Lung Cancer Res 2025; 14:124-138. [PMID: 39958230 PMCID: PMC11826272 DOI: 10.21037/tlcr-24-945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/19/2024] [Indexed: 02/18/2025]
Abstract
Background Cytological examination is of suboptimal sensitivity but high specificity for the diagnosis of malignant pleural effusions (MPEs). Pleural fluid extracellular vesicles (PFEVs) are enriched with disease-specific microRNAs (miRNAs) which may improve the diagnostic yield for MPE. Our previous study demonstrated the feasibility of isolating miRNAs from PFEVs and profiling PFEV miRNAs by Nanostring nCounter® Human v3 miRNA expression assay. Here, we interrogated in a small cohort to evaluate the diagnostic potential of PFEV miRNAs to differentiate between benign pleural effusion and MPE. Methods Extracellular vesicles (EVs) from pleural fluids were isolated by two sequential ultracentrifugation steps. PFEVs were extracted and characterised by western blotting analysis, particle analysis by tunable resistive pulse sensing (TRPS) technology, and transmission electron microscopy (TEM). Total RNAs (including miRNAs) were extracted from PFEVs and profiled by the Nanostring nCounter® 827 probe miRNA expression assay. Differential expression analysis of the miRNA expression assays on PFEV samples was performed using the Bioconductor DESeq2 package. Results EVs from pleural fluids were evident by staining of positive EV-associated protein markers, particle size distribution within the expected parameters, and the cup-shaped morphology by TEM. Employing Nanostring nCounter® Human v3 miRNA expression assay, this proof-of-principle study demonstrated PFEV miRNAs were differentially expressed between benign effusions and malignant effusions [malignant pleural mesothelioma (MPM) or lung adenocarcinoma metastatic to pleura (metLUAD)]. The expression of six miRNAs (hsa-miR-1246, hsa-miR-136-5p, hsa-miR-141-3p, hsa-miR-145-5p, hsa-miR-200c-3p, and hsa-miR-9-5p) significantly differed between benign and malignant effusions, or between MPM and metLUAD, at adjusted P<0.05 and log2fold change ≥1.0. Conclusions The miRNAs identified from this study could be interrogated further for their utility as a single biomarker candidate or to be tested simultaneously in a panel to complement pleural effusion diagnostics. PFEV miRNAs represent a novel bioresource with potential to aid in the diagnosis of pleural effusions. Larger prospective studies are needed to confirm their diagnostic utility.
Collapse
Affiliation(s)
- Tian Mun Chee
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Caeli J. Zahra
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
| | - Kwun M. Fong
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Ian A. Yang
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| | - Rayleen V. Bowman
- The University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Brisbane, Australia
- Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, Australia
| |
Collapse
|
5
|
Sadique Hussain M, Gupta G, Ghaboura N, Moglad E, Hassan Almalki W, Alzarea SI, Kazmi I, Ali H, MacLoughlin R, Loebenberg R, Davies NM, Kumar Singh S, Dua K. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin Chim Acta 2025; 565:119983. [PMID: 39368685 DOI: 10.1016/j.cca.2024.119983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs) have become essential contributors to advancing and treating lung cancers (LCs). The development of liquid biopsies that utilize exosomal ncRNAs (exo-ncRNAs) offers an encouraging method for diagnosing, predicting, and treating LC. This thorough overview examines the dual function of exo-ncRNAs as both indicators for early diagnosis and avenues for LC treatment. Exosomes are tiny vesicles secreted by various cells, including cancerous cells, enabling connection between cells by delivering ncRNAs. These ncRNAs, which encompass circular RNAs, long ncRNAs, and microRNAs, participate in the modulation of gene expression and cellular functions. In LC, certain exo-ncRNAs are linked to tumour advancement, spread, and treatment resistance, positioning them as promising non-invasive indicators in liquid biopsies. Additionally, targeting these ncRNAs offers potential for innovative treatment approaches, whether by suppressing harmful ncRNAs or reinstating the activity of tumour-suppressing ones. This review emphasizes recent developments in the extraction and analysis of exo-ncRNAs, their practical applications in LC treatment, and the challenges and prospects for translating these discoveries into clinical usage. Through this detailed examination of the current state of the art, we aim to highlight the significant potential of exo-ncRNAs for LC diagnostics and treatments.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Nehmat Ghaboura
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Alkharj 11942, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Haider Ali
- Division of Translational Health Research, Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Limited, H91HE94, Galway, Ireland
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Neal M Davies
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton, AB, T6G2N8, Canada
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, P.O. Box: 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
6
|
Yang B, Xin X, Cao X, Nasifu L, Nie Z, He B. The diagnostic and prognostic value of exosomal microRNAs in lung cancer: a systematic review. Clin Transl Oncol 2024; 26:1921-1933. [PMID: 38485857 DOI: 10.1007/s12094-024-03414-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Studies have shown that many exosomal microRNAs (miRNAs) can be used as non-invasive biomarkers of lung cancer, but their diagnostic and prognostic values need to be further clarified. METHODS We conducted a systematic literature search in Web of Science, PubMed, and ScienceDirect databases, obtained relevant articles and extracted data, and used statistical methods and statistical software to comprehensively evaluate the diagnostic and prognostic value of exosomal miRNAs in lung cancer. REGISTRATION NUMBER PROSPERO CRD42023447398. RESULTS In terms of diagnosis, two exosomal miRNAs (miR-486-5p and miR-451a) were reported with the highest frequency in lung cancer patients, both of which had good diagnostic value. Compared with the control group, the pooled sensitivities of miR-486-5p and miR-451a were 0.80 (95% CI: 0.73-0.86) and 0.76 (95% CI: 0.60-0.87), specificities: 0.93 (95% CI: 0.63-0.99) and 0.85 (95% CI: 0.72-0.92), and AUCs: 0.85 (95% CI: 0.81-0.88) and 0.88 (95% CI: 0.84-0.90), for the respective miRNAs. For prognosis, in lung cancer patients with abnormally expressed exosomal miRNAs, miR-1290 was associated with PFS outcome; miR-382, miR-1246, miR-23b-3p, miR-21-5p, and miR-10b-5p were associated with OS outcome; miR-21 and miR-4257 were associated with DFS outcome; miR-125a-3p and miR-625-5p were associated with PFS and OS outcomes; miR-216b and miR-451a were associated with OS and DFS outcomes. CONCLUSIONS Exosomal miRNAs are valuable biomarkers in lung cancer patients. Exosomal miR-486-5p and miR-451a can be used as new diagnostic biomarkers for lung cancer. Dysregulated exosomal miRNAs could serve as indicators of survival outcomes in lung cancer patients.
Collapse
Affiliation(s)
- Bingbing Yang
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqi Xin
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoqing Cao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Lubanga Nasifu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
- Department of Biology, Muni University, Arua, Uganda
| | - Zhenlin Nie
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, China Pharmaceutical University, Nanjing, 210006, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
7
|
Guerreiro T, Aguiar P, Araújo A. Current Evidence for a Lung Cancer Screening Program. PORTUGUESE JOURNAL OF PUBLIC HEALTH 2024; 42:133-158. [PMID: 39469231 PMCID: PMC11498919 DOI: 10.1159/000538434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/01/2024] [Indexed: 10/30/2024] Open
Abstract
Background Lung cancer screening is still in an early phase compared to other cancer screening programs, despite its high lethality particularly when diagnosed late. Achieving early diagnosis is crucial to obtain optimal outcomes. Summary In this review, we will address the current evidence on lung cancer screening through low-dose computed tomography (LDCT) and its impact on mortality reduction, existing screening recommendations, patient eligibility criteria, screening frequency and duration, benefits and harms, cost-effectiveness and some insights on lung cancer screening implementation and adoption. Additionally, new non-imaging, noninvasive biomarkers with high diagnostic potential are also briefly highlighted. Key Messages LDCT screening in a prespecified population based on age and smoking history proved to reduce lung cancer mortality. Optimization of the target population and management of LDCT pitfalls can further improve lung cancer screening efficiency and cost-effectiveness. Novel screening technologies and biomarkers being studied can potentially be game-changers in lung cancer screening and diagnosis.
Collapse
Affiliation(s)
- Teresa Guerreiro
- NOVA National School of Public Health, NOVA University of Lisbon, Lisbon, Portugal
| | - Pedro Aguiar
- NOVA National School of Public Health, NOVA University of Lisbon, Lisbon, Portugal
- Public Health Research Center, NOVA University of Lisbon, Lisbon, Portugal
| | - António Araújo
- CHUPorto - University Hospitalar Center of Porto, Porto, Portugal
- UMIB - Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
8
|
Barbagallo D, Ponti D, Bassani B, Bruno A, Pulze L, Akkihal SA, George-William JN, Gundamaraju R, Campomenosi P. MiR-223-3p in Cancer Development and Cancer Drug Resistance: Same Coin, Different Faces. Int J Mol Sci 2024; 25:8191. [PMID: 39125761 PMCID: PMC11311375 DOI: 10.3390/ijms25158191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
MicroRNAs (miRNAs) are mighty post-transcriptional regulators in cell physiology and pathophysiology. In this review, we focus on the role of miR-223-3p (henceforth miR-223) in various cancer types. MiR-223 has established roles in hematopoiesis, inflammation, and most cancers, where it can act as either an oncogenic or oncosuppressive miRNA, depending on specific molecular landscapes. MiR-223 has also been linked to either the sensitivity or resistance of cancer cells to treatments in a context-dependent way. Through this detailed review, we highlight that for some cancers (i.e., breast, non-small cell lung carcinoma, and glioblastoma), the oncosuppressive role of miR-223 is consistently reported in the literature, while for others (i.e., colorectal, ovarian, and pancreatic cancers, and acute lymphocytic leukemia), an oncogenic role prevails. In prostate cancer and other hematological malignancies, although an oncosuppressive role is frequently described, there is less of a consensus. Intriguingly, NLRP3 and FBXW7 are consistently identified as miR-223 targets when the miRNA acts as an oncosuppressor or an oncogene, respectively, in different cancers. Our review also describes that miR-223 was increased in biological fluids or their extracellular vesicles in most of the cancers analyzed, as compared to healthy or lower-risk conditions, confirming the potential application of this miRNA as a diagnostic and prognostic biomarker in the clinic.
Collapse
Affiliation(s)
- Davide Barbagallo
- Department of Biomedical and Biotechnological Sciences, Section of Biology and Genetics “Giovanni Sichel”, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
- Interdisciplinary Research Centre on the Diagnosis and Therapy of Brain Tumors, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy
| | - Donatella Ponti
- Department of Medical-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100 Latina, Italy;
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, Via Fantoli 16/15, 20138 Milano, Italy; (B.B.); (A.B.)
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Laura Pulze
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| | - Shreya A. Akkihal
- Independent Researcher, 35004 SE Swenson St, Snoqualmie, WA 98065, USA;
| | - Jonahunnatha N. George-William
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Fratelli Cervi, 93, 20054 Segrate, Italy;
| | - Rohit Gundamaraju
- Department of Laboratory Medicine, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA;
- ER Stress and Mucosal Immunology Team, School of Health Sciences, University of Tasmania, Launceston, TAS 7248, Australia
| | - Paola Campomenosi
- Department of Biotechnology and Life Sciences, DBSV, University of Insubria, Via J.H. Dunant 3, 21100 Varese, Italy;
| |
Collapse
|
9
|
Wang R, Xu Y, Tong L, Zhang X, Zhang S. Recent progress of exosomal lncRNA/circRNA-miRNA-mRNA axis in lung cancer: implication for clinical application. Front Mol Biosci 2024; 11:1417306. [PMID: 39021878 PMCID: PMC11251945 DOI: 10.3389/fmolb.2024.1417306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Lung cancer is the leading cause of death among malignant tumors in the world. High lung cancer mortality rate is due to most of patients diagnosed at advanced stage. The Liquid biopsy of lung cancer have received recent interest for early diagnosis. One of the components of liquid biopsy is the exosome. The exosome cargos non-coding-RNAs, especially long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The lung cancer derived exosomal non-coding RNAs play the pivotal roles of lung cancer in carcinogenesis, diagnosis, therapy, drug resistance and prognosis of lung cancer. Given ceRNA (competitive endogenous RNA) mechanism, lncRNA or circRNA can act as ceRNA to compete to bind miRNAs and alter the expression of the targeted mRNA, contributing to the development and progression of lung cancer. The current research progress of the roles of the exosomal non-coding-RNAs and the interplay of ceRNAs and miRNAs in mediated lung cancer is illustrated in this article. Hence, we presented an experimentally validated lung cancer derived exosomal non-coding RNAs-regulated target gene axis from already existed evidence in lung cancer. Then LncRNA/circRNA-miRNA-mRNA axis may be a potential target for lung cancer treatment and has great potential in the diagnosis and prognosis of lung cancer.
Collapse
Affiliation(s)
- Ren Wang
- Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiwei Xu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Liangjing Tong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao Zhang
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Sheng Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Tu C, Wu Q, Wang J, Chen P, Deng Y, Yu L, Xu X, Fang X, Li W. miR-486-5p-rich extracellular vesicles derived from patients with olanzapine-induced insulin resistance negatively affect glucose-regulating function. Biochem Pharmacol 2024; 225:116308. [PMID: 38788961 DOI: 10.1016/j.bcp.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
A high risk of glucometabolic disorder severely disturbs compliance and limits the clinical application of olanzapine. MicroRNAs (miRNAs) in extracellular vesicles (EVs) have been reported as emerging biomarkers in glucolipid metabolic disorders. A total of 81 individuals with continuous olanzapine treatment over 3 months were recruited in this study, and plasma EVs from these individuals were isolated and injected into rats via the tail vein to investigate the glucose-regulating function in vivo. Moreover, we performed a miRNA profiling assay by high through-put sequencing to clarify the differentiated miRNA profiles between two groups of patients who were either susceptible or not susceptible to olanzapine-induced insulin resistance (IR). Finally, we administered antagomir and cocultured them with adipocytes to explore the mechanism in vitro. The results showed that individual insulin sensitivity varied in those patients and in olanzapine-administered rats. Furthermore, treatment with circulating EVs from patients with olanzapine-induced IR led to the development of metabolic abnormalities in rats and adipocytes in vitro through the AKT-GLUT4 pathway. Deep sequencing illustrated that the miRNAs of plasma EVs from patients showed a clear difference based on susceptibility to olanzapine-induced IR, and miR-486-5p was identified as a notable gene. The adipocyte data indicated that miR-486-5p silencing partially reversed the impaired cellular insulin sensitivity. Collectively, this study confirmed the function of plasma EVs in the interindividual differences in olanzapine-induced insulin sensitivity.
Collapse
Affiliation(s)
- Chuyue Tu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiru Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Deng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixiu Yu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojin Xu
- Affiliated Wuhan Mental Health Center, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xiangming Fang
- Department of Psychiatry, Wuhan Youfu Hospital, Wuhan, China
| | - Weiyong Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Ling Z, Yang L. Diagnostic value of miR-200 family in non-small cell lung cancer: a meta-analysis. Biomark Med 2024; 18:419-431. [PMID: 39041844 DOI: 10.2217/bmm-2024-0087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To investigate the diagnostic potential of the miR-200 family for early detection in non-small cell lung cancer (NSCLC). Materials & methods: A systematic search was conducted of PubMed, Embase and Web of Science databases to identify studies of the miR-200 family in NSCLC. Sixteen studies meeting the inclusion criteria were included in the analysis with a total of 20 cohorts. Results: The combined sensitivity and specificity reached 73% and 85%, with an area under the curve of 0.83. Notably, miR-200b introduced heterogeneity. Subgroup analysis highlighted miR-200a and miR-141 as more sensitive, while blood-derived miRNAs showed slightly lower accuracy. Conclusion: The miR-200 family, predominantly assessed in blood, exhibits significant diagnostic potential for NSCLC, especially in distinguishing it from benign diseases.
Collapse
Affiliation(s)
- Zhen Ling
- Graduate School, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Lichang Yang
- Graduate School, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
12
|
Cao Y, Liu X, Liu J, Su Z, Liu W, Yang L, Zhang L. Diagnostic value of exosomal noncoding RNA in lung cancer: a meta-analysis. Front Oncol 2024; 14:1357248. [PMID: 38694786 PMCID: PMC11061461 DOI: 10.3389/fonc.2024.1357248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Background Lung cancer is one of the most dangerous cancers in the world. Most lung cancer patients are diagnosed in the middle and later stages, which can lead to poor survival rates. The development of lung cancer is often accompanied by abnormal expression of exosomal non-coding RNAs, which means that they have the potential to serve as noninvasive novel molecular markers for lung cancer diagnosis. Methods For this study, we conducted a comprehensive literature search in PubMed, Web of science, Science direct, Embase, Cochrane, and Medline databases, and by reviewing published literature, The diagnostic capacity of exosomal microRNAs (miRNAs), long-chain non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) for lung cancer was evaluated. Functional enrichment analysis of miRNA target genes was performed. Results The study included 41 papers, a total of 68 studies. More than 60 miRNAs, 9 lncRNAs and 14 circRNAs were involved. The combined sensitivity and specificity were 0.83(95%CI, 0.80~0.86) and 0.83(95% CI,0.79~0.87); 0.71(95% CI,0.68~0.74) and 0.79(95%CI, 0.75~0.82); 0.79(95%CI,0.67~0.87) and 0.81(95%CI,0.74~0.86), and constructed overall subject operating characteristic curves with the summarized area under the curve values of 0.90, 0.82, and 0.86. Conclusion Our study shows that exosomes miRNAs, lncRNAs and circRNAs are effective in the diagnosis of lung cancer, providing evidence for studies related to novel lung cancer diagnostic markers. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023457087.
Collapse
Affiliation(s)
- Yuxuan Cao
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Xinbo Liu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiayi Liu
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ziyi Su
- Undergraduate of College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenxuan Liu
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Liwen Zhang
- Department of Epidemiology and Statistics, Hebei Key Laboratory of Environment and Human Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Tong Z, Yang D, Shen C, Li C, Xu X, Li Q, Wu Z, Ma H, Chen F, Mao H. Rapid automated extracellular vesicle isolation and miRNA preparation on a cost-effective digital microfluidic platform. Anal Chim Acta 2024; 1296:342337. [PMID: 38401929 DOI: 10.1016/j.aca.2024.342337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/26/2024]
Abstract
As a prerequisite for extracellular vesicle (EV) -based studies and diagnosis, effective isolation, enrichment and retrieval of EV biomarkers are crucial to subsequent analyses, such as miRNA-based liquid biopsy for non-small-cell lung cancer (NSCLC). However, most conventional approaches for EV isolation suffer from lengthy procedure, high cost, and intense labor. Herein, we introduce the digital microfluidic (DMF) technology to EV pretreatment protocols and demonstrate a rapid and fully automated sample preparation platform for clinical tumor liquid biopsy. Combining a reusable DMF chip technique with a low-cost EV isolation and miRNA preparation protocol, the platform completes automated sample processing in 20-30 min, supporting immediate RT-qPCR analyses on EV-derived miRNAs (EV-miRNAs). The utility and reliability of the platform was validated via clinical sample processing for EV-miRNA detection. With 23 tumor and 20 non-tumor clinical plasma samples, we concluded that EV-miR-486-5p and miR-21-5p are effective biomarkers for NSCLC with a small sample volumn (20-40 μL). The result was consistent to that of a commercial exosome miRNA extraction kit. These results demonstrate the effectiveness of DMF in EV pretreatment for miRNA detection, providing a facile solution to EV isolation for liquid biopsy.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Ma
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Fuxiang Chen
- Department of Clinical Immunology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Jeung S, Kim S, Ah J, Seo S, Jan U, Lee H, Lee JI. Exploring the Tumor-Associated Risk of Mesenchymal Stem Cell Therapy in Veterinary Medicine. Animals (Basel) 2024; 14:994. [PMID: 38612233 PMCID: PMC11010833 DOI: 10.3390/ani14070994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Mesenchymal stem cell (MSC) therapy has been actively applied in veterinary regenerative medicine to treat various canine and feline diseases. With increasing emphasis on safe cell-based therapies, evaluations of their tumorigenic potential are in great demand. However, a direct confirmation of whether tumors originate from stem cells or host cells is not easily achievable. Additionally, previous studies evaluating injections of high doses of MSCs into nude mice did not demonstrate tumor formation. Recent research focused on optimizing MSC-based therapies for veterinary patients, such as MSC-derived extracellular vesicles in treating different diseases. This progress also signifies a broader shift towards personalized veterinary medicine, where treatments can be tailored to individual pets based on their unique genetic profiles. These findings related to different treatments using MSCs emphasize their future potential for veterinary clinical applications. In summary, because of lower tumor-associated risk of MSCs as compared to embryonic and induced pluripotent stem cells, MSCs are considered a suitable source for treating various canine and feline diseases.
Collapse
Affiliation(s)
- Soyoung Jeung
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungsoo Kim
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jaegon Ah
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
| | - Sanghyuk Seo
- VIP Animal Medical Center, 73, Dongsomun-ro, Seongbuk-gu, Seoul 02830, Republic of Korea; (S.J.); (S.K.); (J.A.); (S.S.)
| | - Umair Jan
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea;
| | - Hyejin Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| | - Jeong Ik Lee
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul 05029, Republic of Korea;
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea;
| |
Collapse
|
15
|
Mohamed E, García Martínez DJ, Hosseini MS, Yoong SQ, Fletcher D, Hart S, Guinn BA. Identification of biomarkers for the early detection of non-small cell lung cancer: a systematic review and meta-analysis. Carcinogenesis 2024; 45:1-22. [PMID: 38066655 DOI: 10.1093/carcin/bgad091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/27/2023] [Accepted: 12/05/2023] [Indexed: 02/13/2024] Open
Abstract
Lung cancer (LC) causes few symptoms in the earliest stages, leading to one of the highest mortality rates among cancers. Low-dose computerised tomography (LDCT) is used to screen high-risk individuals, reducing the mortality rate by 20%. However, LDCT results in a high number of false positives and is associated with unnecessary follow-up and cost. Biomarkers with high sensitivities and specificities could assist in the early detection of LC, especially in patients with high-risk features. Carcinoembryonic antigen (CEA), cytokeratin 19 fragments and cancer antigen 125 have been found to be highly expressed during the later stages of LC but have low sensitivity in the earliest stages. We determined the best biomarkers for the early diagnosis of LC, using a systematic review of eight databases. We identified 98 articles that focussed on the identification and assessment of diagnostic biomarkers and achieved a pooled area under curve of 0.85 (95% CI 0.82-0.088), indicating that the diagnostic performance of these biomarkers when combined was excellent. Of the studies, 30 focussed on single/antigen panels, 22 on autoantibodies, 31 on miRNA and RNA panels, and 15 suggested the use of circulating DNA combined with CEA or neuron-specific enolase (NSE) for early LC detection. Verification of blood biomarkers with high sensitivities (Ciz1, exoGCC2, ITGA2B), high specificities (CYFR21-1, antiHE4, OPNV) or both (HSP90α, CEA) along with miR-15b and miR-27b/miR-21 from sputum may improve early LC detection. Further assessment is needed using appropriate sample sizes, control groups that include patients with non-malignant conditions, and standardised cut-off levels for each biomarker.
Collapse
Affiliation(s)
- Eithar Mohamed
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Daniel J García Martínez
- Department of Biotechnology, Pozuelo de Alarcón, University Francisco De Vitoria, Madrid, 28223, Spain
| | - Mohammad-Salar Hosseini
- Research Centre for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Si Qi Yoong
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Daniel Fletcher
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Simon Hart
- Respiratory Medicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| | - Barbara-Ann Guinn
- Centre for Biomedicine, Hull York Medical School, University of Hull, Kingston-upon-Hull, HU6 7RX, UK
| |
Collapse
|
16
|
Mlika M, Zorgati MM, Abdennadher M, Bouassida I, Mezni F, Mrabet A. The diagnostic performance of micro-RNA and metabolites in lung cancer: A meta-analysis. Asian Cardiovasc Thorac Ann 2024; 32:45-65. [PMID: 38009802 DOI: 10.1177/02184923231215538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
BACKGROUND The diagnosis of lung cancer is based on the microscopic exam of tissue or liquid. During the recent decade, many biomarkers have been pointed to have a potential diagnostic role. These biomarkers may be assessed in blood, pleural effusion or sputum and they could avoid biopsies or other risky procedures. The authors aimed to assess the diagnostic performances of biomarkers focusing on micro-RNA and metabolites. METHODS This meta-analysis was conducted under the PRISMA guidelines during a nine-year-period (2013-2022). the Meta-Disc software 5.4 (free version) was used. Q test and I2 statistics were carried out to explore the heterogeneity among studies. Meta-regression was performed in case of significant heterogeneity. Publication bias was assessed using the funnel plot test and the Egger's test (free version JASP). RESULTS According to our inclusion criteria, 165 studies from 79 articles were included. The pooled SEN, SPE and dOR accounted, respectively, for 0.76, 0.79 and 13.927. The AUC was estimated to 0.859 suggesting a good diagnostic accuracy. The heterogeneity in the pooled SEN and SPE was statistically significant. The meta-regression analysis focusing on the technique used, the sample, the number of biomarkers, the biomarker subtype, the tumor stage and the ethnicity revealed the biomarker number (p = 0.009) and the tumor stage (p = 0.0241) as potential sources of heterogeneity. CONCLUSION Even if this meta-analysis highlighted the potential diagnostic utility of biomarkers, more prospective studies should be performed, especially to assess the biomarkers' diagnostic potential in early-stage lung cancers.
Collapse
Affiliation(s)
- Mona Mlika
- Department of Pathology, Center of Traumatology and Major Burns, Ben Arous, Tunis, Tunisia
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | | | - Mehdi Abdennadher
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Imen Bouassida
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Department of Thoracic Surgery, Abderrahman Mami Hospital, Tunis, Tunisia
| | - Faouzi Mezni
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
| | - Ali Mrabet
- University Tunis El Manar, Faculty of Medicine of Tunis, Tunisia
- Ministry of Health, Tunis, Tunisia
| |
Collapse
|
17
|
Gohlke L, Alahdab A, Oberhofer A, Worf K, Holdenrieder S, Michaelis M, Cinatl J, Ritter CA. Loss of Key EMT-Regulating miRNAs Highlight the Role of ZEB1 in EGFR Tyrosine Kinase Inhibitor-Resistant NSCLC. Int J Mol Sci 2023; 24:14742. [PMID: 37834189 PMCID: PMC10573279 DOI: 10.3390/ijms241914742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Despite recent advances in the treatment of non-small cell lung cancer (NSCLC), acquired drug resistance to targeted therapy remains a major obstacle. Epithelial-mesenchymal transition (EMT) has been identified as a key resistance mechanism in NSCLC. Here, we investigated the mechanistic role of key EMT-regulating small non-coding microRNAs (miRNAs) in sublines of the NSCLC cell line HCC4006 adapted to afatinib, erlotinib, gefitinib, or osimertinib. The most differentially expressed miRNAs derived from extracellular vesicles were associated with EMT, and their predicted target ZEB1 was significantly overexpressed in all resistant cell lines. Transfection of a miR-205-5p mimic partially reversed EMT by inhibiting ZEB1, restoring CDH1 expression, and inhibiting migration in erlotinib-resistant cells. Gene expression of EMT-markers, transcription factors, and miRNAs were correlated during stepwise osimertinib adaptation of HCC4006 cells. Temporally relieving cells of osimertinib reversed transition trends, suggesting that the implementation of treatment pauses could provide prolonged benefits for patients. Our results provide new insights into the contribution of miRNAs to drug-resistant NSCLC harboring EGFR-activating mutations and highlight their role as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Linus Gohlke
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Ahmad Alahdab
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| | - Angela Oberhofer
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Karolina Worf
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Stefan Holdenrieder
- Munich Biomarker Research Center, Institute of Laboratory Medicine, German Heart Center, Technical University Munich, 80636 Munich, Germany; (A.O.); (K.W.); (S.H.)
| | - Martin Michaelis
- School of Biosciences, Division of Natural Sciences, University of Kent, Canterbury, Kent CT2 7NJ, UK;
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, Goethe University, 60596 Frankfurt am Main, Germany;
| | - Christoph A Ritter
- Institute of Pharmacy, Clinical Pharmacy, University Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany;
| |
Collapse
|
18
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Raczkowska J, Bielska A, Krętowski A, Niemira M. Extracellular circulating miRNAs as potential non-invasive biomarkers in non-small cell lung cancer patients. Front Oncol 2023; 13:1209299. [PMID: 37546401 PMCID: PMC10401434 DOI: 10.3389/fonc.2023.1209299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) comprises 85% of all lung cancers and is a malignant condition resistant to advanced-stage treatment. Despite the advancement in detection and treatment techniques, the disease is taking a deadly toll worldwide, being the leading cause of cancer death every year. Current diagnostic methods do not ensure the detection of the disease at an early stage, nor can they predict the risk of its development. There is an urgent need to identify biomarkers that can help predict an individual's risk of developing NSCLC, distinguish NSCLC subtype, allow monitor disease and treatment progression which can improve patient survival. Micro RNAs (miRNAs) represent the class of small and non-coding RNAs involved in gene expression regulation, influencing many biological processes such as proliferation, differentiation, and carcinogenesis. Research reports significant differences in miRNA profiles between healthy and neoplastic tissues in NSCLC. Its abundant presence in biofluids, such as serum, blood, urine, and saliva, makes them easily detectable and does not require invasive collection techniques. Many studies support miRNAs' importance in detecting, predicting, and prognosis of NSCLC, indicating their utility as a promising biomarker. In this work, we reviewed up-to-date research focusing on biofluid miRNAs' role as a diagnostic tool in NSCLC cases. We also discussed the limitations of applying miRNAs as biomarkers and highlighted future areas of interest.
Collapse
Affiliation(s)
- Justyna Raczkowska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| | - Adam Krętowski
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Białystok, Białystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
20
|
Mishra A, Bharti PS, Rani N, Nikolajeff F, Kumar S. A tale of exosomes and their implication in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188908. [PMID: 37172650 DOI: 10.1016/j.bbcan.2023.188908] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Cancer is a cause of high deaths worldwide and also a huge burden for the health system. Cancer cells have unique properties such as a high rate of proliferation, self-renewal, metastasis, and treatment resistance, therefore, the development of novel diagnoses of cancers is a tedious task. Exosomes are secreted by virtually all cell types and have the ability to carry a multitude of biomolecules crucial for intercellular communication, hence, contributing a crucial part in the onset and spread of cancer. These exosomal components can be utilized in the development of markers for diagnostic and prognostic purposes for various cancers. This review emphasized primarily the following topics: exosomes structure and functions, isolation and characterization strategies of exosomes, the role of exosomal contents in cancer with a focus in particular on noncoding RNA and protein, exosomes, and the cancer microenvironment interactions, cancer stem cells, and tumor diagnosis and prognosis based on exosomes.
Collapse
Affiliation(s)
- Abhay Mishra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Prahalad Singh Bharti
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Fredrik Nikolajeff
- Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden
| | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India; Department of Health, Education, and Technology, Lulea University of Technology, 97187, Sweden.
| |
Collapse
|
21
|
Zhai B, Wu J, Li T. Fibroblast Growth Factor 11 Enables Tumor Cell Immune Escape by Promoting T Cell Exhaustion and Predicts Poor Prognosis in Patients with Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2023; 2023:9303632. [PMID: 37250453 PMCID: PMC10219772 DOI: 10.1155/2023/9303632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/17/2022] [Accepted: 01/23/2023] [Indexed: 05/31/2023]
Abstract
Fibroblast growth factor 11 (FGF11) accelerates tumor proliferation in a variety of cancer types. This study aimed to examine the link between FGF11 and the prognosis of lung adenocarcinoma. FGF11 was searched in the Tumor Cancer Genome Atlas (TCGA) and ImmProt databases. The link between FGF11 and lung cancer clinical data was investigated using TCGA and Kaplan-Meier (KM)-plotter databases, and we developed a prediction model. Putative mechanisms of action were investigated using Gene Ontology (GO) and KEGG enrichment analyses. The GeneMANIA and STRING databases were used to search for genes that interact with FGF11, and the Tumor Immune Estimation Resource (TIMER) database was used to discover connections between FGF11 and immune cells, as well as any correlations with immune-related genes. We found that FGF11 expression was higher in the lung adenocarcinoma tissue than in the paracancerous tissue, and patients with high FGF11 expression had a lower overall survival, progression-free survival, and disease specific survival rate than those with low FGF11 expression. The expression of FGF11 was inversely linked to six types of infiltrating immune cells in the TIMER database and was associated with EGFR, VEGFA, BRAF, and MET expressions. The FGF11 gene is negatively correlated with the expression of most immune cells, mainly with various functional T cells including Th1, Th1-like, Treg, and Resting Treg characterization genes. These results indicate that FGF11 has the potential to be a new lung adenocarcinoma biomarker. It increases tumor cell immune escape by boosting T cell exhaustion in the tumor microenvironment, contributing to the poor prognosis of the patients with lung adenocarcinoma. These results provide incentive to further research FGF11 as a possible biomarker and drug target for patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Baoqian Zhai
- Department of Radiotherapy Oncology, Yancheng City No. 1 People's Hospital, The Fourth Affiliated Hospital of Nantong University, Yancheng 224005, China
| | - Jiacheng Wu
- Department of Urology, Affiliated Tumor Hospital of Nantong University & Nantong Tumor Hospital, No. 30, Tongyang bei Road, Tongzhou District, Nantong 226361, China
| | - Tao Li
- Department of Medical Oncology, Affiliated Tumor Hospital of Nantong University &Nantong Tumor Hospital, No. 30, Tongyang bei Road, Tongzhou District, Nantong 226361, China
| |
Collapse
|
22
|
Yalimaimaiti S, Liang X, Zhao H, Dou H, Liu W, Yang Y, Ning L. Establishment of a prognostic signature for lung adenocarcinoma using cuproptosis-related lncRNAs. BMC Bioinformatics 2023; 24:81. [PMID: 36879187 PMCID: PMC9990240 DOI: 10.1186/s12859-023-05192-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
OBJECTIVE To establish a prognostic signature for lung adenocarcinoma (LUAD) based on cuproptosis-related long non-coding RNAs (lncRNAs), and to study the immune-related functions of LUAD. METHODS First, transcriptome data and clinical data related to LUAD were downloaded from the Cancer Genome Atlas (TCGA), and cuproptosis-related genes were analyzed to identify cuproptosis-related lncRNAs. Univariate COX analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate COX analysis were performed to analyze the cuproptosis-related lncRNAs, and a prognostic signature was established. Second, univariate COX analysis and multivariate COX analysis were performed for independent prognostic analyses. Receiver operating characteristic (ROC) curves, C index, survival curve, nomogram, and principal component analysis (PCA) were performed to evaluate the results of the independent prognostic analyses. Finally, gene enrichment analyses and immune-related function analyses were also carried out. RESULTS (1) A total of 1,297 cuproptosis-related lncRNAs were screened. (2) A LUAD prognostic signature containing 13 cuproptosis-related lncRNAs was constructed (NIFK-AS1, AC026355.2, SEPSECS-AS1, AL360270.1, AC010999.2, ABCA9-AS1, AC032011.1, AL162632.3, LINC02518, LINC0059, AL031600.2, AP000346.1, AC012409.4). (3) The area under the multi-indicator ROC curves at 1, 3, and 5 years were AUC1 = 0.742, AUC2 = 0.708, and AUC3 = 0.762, respectively. The risk score of the prognostic signature could be used as an independent prognostic factor that was independent of other clinical indicators. (4) The results of gene enrichment analyses showed that 13 biomarkers were primarily related to amoebiasis, the wnt signaling pathway, hematopoietic cell lineage. The ssGSEA volcano map showed significant differences between high- and low-risk groups in immune-related functions, such as human leukocyte antigen (HLA), Type_II_IFN_Reponse, MHC_class_I, and Parainflammation (P < 0.001). CONCLUSIONS Thirteen cuproptosis-related lncRNAs may be clinical molecular biomarkers for the prognosis of LUAD.
Collapse
Affiliation(s)
- Saiyidan Yalimaimaiti
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Xiaoqiao Liang
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Haili Zhao
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Hong Dou
- Xinjiang Uygur Autonomous Region Occupational Disease Hospital, Urumqi, 830011, Xinjiang, China
| | - Wei Liu
- Xinjiang Uygur Autonomous Region Occupational Disease Hospital, Urumqi, 830011, Xinjiang, China
| | - Ying Yang
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Li Ning
- School of Public Health, Xinjiang Medical University, Urumqi, 830011, Xinjiang, China.
| |
Collapse
|
23
|
Alfieri M, Meo L, Ragno P. Posttranscriptional Regulation of the Plasminogen Activation System by Non-Coding RNA in Cancer. Int J Mol Sci 2023; 24:ijms24020962. [PMID: 36674481 PMCID: PMC9860977 DOI: 10.3390/ijms24020962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/07/2023] Open
Abstract
Various species of non-coding RNAs (ncRNAs) may act as functional molecules regulating diverse biological processes. In cancer cell biology, ncRNAs include RNAs that regulate the expression of oncogenes and tumor suppressor genes through various mechanisms. The urokinase (uPA)-mediated plasminogen activation system (PAS) includes uPA, its inhibitors PAI-1 and PAI-2 and its specific cellular receptor uPAR; their increased expression represents a negative prognostic factor in several cancers. Here, we will briefly describe the main uPA-mediated PAS components and ncRNA species; then, we will review more recent evidence of the roles that ncRNAs may play in regulating the expression and functions of uPA-mediated PAS components in cancer.
Collapse
Affiliation(s)
- Mariaevelina Alfieri
- Clinical Pathology, Pausilipon Hospital, A.O.R.N Santobono-Pausilipon, 80123 Naples, Italy
| | - Luigia Meo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Pia Ragno
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
- Correspondence: ; Tel.: +39-089-969456
| |
Collapse
|
24
|
Jafari A, Karimabadi K, Rahimi A, Rostaminasab G, Khazaei M, Rezakhani L, Ahmadi jouybari T. The Emerging Role of Exosomal miRNAs as Biomarkers for Early Cancer Detection: A Comprehensive Literature Review. Technol Cancer Res Treat 2023; 22:15330338231205999. [PMID: 37817634 PMCID: PMC10566290 DOI: 10.1177/15330338231205999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
A significant number of cancer-related deaths are recorded globally each year, despite attempts to cure this illness. Medical science is working to develop new medication therapies as well as to find ways to identify this illness as early as possible, even using noninvasive techniques. Early detection of cancer can greatly aid its treatment. Studies into cancer diagnosis and therapy have recently shifted their focus to exosome (EXO) biomarkers, which comprise numerous RNA and proteins. EXOs are minuscule goblet vesicles that have a width of 30 to 140 nm and are released by a variety of cells, including immune, stem, and tumor cells, as well as bodily fluids. According to a growing body of research, EXOs, and cancer appear to be related. EXOs from tumors play a role in the genetic information transfer between tumor and basal cells, which controls angiogenesis and fosters tumor development and spread. To identify malignant activities early on, microRNAs (miRNAs) from cancers can be extracted from circulatory system EXOs. Specific markers can be used to identify cancer-derived EXOs containing miRNAs, which may be more reliable and precise for early detection. Conventional solid biopsy has become increasingly limited as precision and personalized medicine has advanced, while liquid biopsy offers a viable platform for noninvasive diagnosis and prognosis. Therefore, the use of body fluids such as serum, plasma, urine, and salivary secretions can help find cancer biomarkers using technologies related to EXOs.
Collapse
Affiliation(s)
- Ali Jafari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Karimabadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aso Rahimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Ahmadi jouybari
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
25
|
Yan Z, Wen JX, Cao XS, Zhao W, Han YL, Wen XH, Yan L, Zhang M, Wang YF, Hai L, Wang YJ, Zheng WQ, Hu ZD. Tumor cell-derived exosomal microRNA-146a promotes non-small cell lung cancer cell invasion and proliferation by inhibiting M1 macrophage polarization. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1307. [PMID: 36660623 PMCID: PMC9843328 DOI: 10.21037/atm-22-5565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 01/01/2023]
Abstract
Background Tumor-associated macrophages (TAMs) affects the outcomes of non-small cell lung cancer (NSCLC). NSCLC cells released exosomes to suppress the antitumor activity of TAMs. MiR-146a is a critical regulator in TAM polarization. We hypothesized that NSCLC cells released exosomal miR-146a to regulate TAM polarization and thus affected its antitumor activity. Methods We used H1299 cells-derived exosomes to stimulate THP-1 cells that was pretreated with phorbol 12-myristate 13-acetate (M0 macrophage). Flow cytometry and reverse transcription-quantitative polymerase chain reaction (PCR) were used to determine the polarization of macrophages. The conditioned medium of exosome-treated M0 cells was used to culture H1299 cells, and the Cell Counting Kit-8, Ki67, transwell and scratch wound assays were used to determine the biological behavior of H1299 cells. To investigate whether exosomal miR-146a regulates TAM macrophages through targeting tumor necrosis factor receptor-associated factor 6 (TRAF-6) and interleukin-1 receptor-associated kinase 1 (IRAK-1), we used small interfering RNA to knockdown the expressions of them. Results Upregulation of miR-146a inhibited M1 polarization and thus impaired the antitumor activity of TAMs. Exosomes released by H1299 cells can be taken by M0 macrophage, and they upregulated the expression of miR-146a in M0 macrophage. The exosome suppresses M1 polarization by exosomal miR-146a. TRAF-6 and IRAK-1 mediated the inhibitive effects of exosomal miR-146a on M1 polarization. Conclusions NSCLC cells released exosomal miR-146a to inhibit the expressions of TRAF-6 and IRAK-1 in TAMs, resulting in the impaired antitumor activity of TAMs. NSCLC cell-derived exosomal miR-146a represents a novel therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Zhi Yan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Jian-Xun Wen
- Department of Medical Experiment Center, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xi-Shan Cao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen Zhao
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yu-Ling Han
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Xu-Hui Wen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Li Yan
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Man Zhang
- Department of Thoracic Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ya-Fei Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ling Hai
- Department of Pathology, the College of Basic Medical, Inner Mongolia Medical University, Hohhot, China;,Department of Pathology, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ying-Jun Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wen-Qi Zheng
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China;,Department of Parasitology, the Basic Medical Sciences College of Inner Mongolia Medical University, Hohhot, China
| | - Zhi-De Hu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
26
|
Tenchov R, Sasso JM, Wang X, Liaw WS, Chen CA, Zhou QA. Exosomes─Nature's Lipid Nanoparticles, a Rising Star in Drug Delivery and Diagnostics. ACS NANO 2022; 16:17802-17846. [PMID: 36354238 PMCID: PMC9706680 DOI: 10.1021/acsnano.2c08774] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/21/2022] [Indexed: 05/03/2023]
Abstract
Exosomes are a subgroup of nanosized extracellular vesicles enclosed by a lipid bilayer membrane and secreted by most eukaryotic cells. They represent a route of intercellular communication and participate in a wide variety of physiological and pathological processes. The biological roles of exosomes rely on their bioactive cargos, including proteins, nucleic acids, and lipids, which are delivered to target cells. Their distinctive properties─innate stability, low immunogenicity, biocompatibility, and good biomembrane penetration capacity─allow them to function as superior natural nanocarriers for efficient drug delivery. Another notably favorable clinical application of exosomes is in diagnostics. They hold various biomolecules from host cells, which are indicative of pathophysiological conditions; therefore, they are considered vital for biomarker discovery in clinical diagnostics. Here, we use data from the CAS Content Collection and provide a landscape overview of the current state and delineate trends in research advancement on exosome applications in therapeutics and diagnostics across time, geography, composition, cargo loading, and development pipelines. We discuss exosome composition and pathway, from their biogenesis and secretion from host cells to recipient cell uptake. We assess methods for exosome isolation and purification, their clinical applications in therapy and diagnostics, their development pipelines, the exploration goals of the companies, the assortment of diseases they aim to treat, development stages of their research, and publication trends. We hope this review will be useful for understanding the current knowledge in the field of medical applications of exosomes, in an effort to further solve the remaining challenges in fulfilling their potential.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Janet M. Sasso
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Xinmei Wang
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Wen-Shing Liaw
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Chun-An Chen
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| | - Qiongqiong Angela Zhou
- CAS, a Division of the American Chemical
Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United
States
| |
Collapse
|
27
|
Tu P, Li X, Cao L, Zhong M, Xie Z, Wu Z. Machine learning and BP neural network revealed abnormal B cell infiltration predicts the survival of lung cancer patients. Front Oncol 2022; 12:882018. [PMID: 36303835 PMCID: PMC9592816 DOI: 10.3389/fonc.2022.882018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
FAM83A gene is related to the invasion and metastasis of various tumors. However, the abnormal immune cell infiltration associated with the gene is poorly understood in the pathogenesis and prognosis of NSCLC. Based on the TCGA and GEO databases, we used COX regression and machine learning algorithms (CIBERSORT, random forest, and back propagation neural network) to study the prognostic value of FAM83A and immune infiltration characteristics in NSCLC. High FAM83A expression was significantly associated with poor prognosis of NSCLC patients (p = 0.00016), and had excellent prognostic independence. At the same time, the expression level of FAM83A is significantly related to the T, N, and Stage. Subsequently, based on machine learing strategies, we found that the infiltration level of naive B cells was negatively correlated with the expression of FAM83A. The low infiltration of naive B cells was significantly related to the poor overall survival rate of NSCLC (p = 0.0072). In addition, Cox regression confirmed that FAM83A and naive B cells are risk factors for the prognosis of NSCLC patients. The nomogram combining FAM83A and naive B cells (C-index = 0.748) has a more accurate prognostic ability than the Stage (C-index = 0.651) system. Our analysis shows that abnormal infiltration of naive B cells associated with FAM83A is a key factor in the prognostic prediction of NSCLC patients.
Collapse
Affiliation(s)
- Pinghua Tu
- *Correspondence: Pinghua Tu, ; Zhanling Wu,
| | | | | | | | | | | |
Collapse
|
28
|
Chen X, Yu L, Hao K, Yin X, Tu M, Cai L, Zhang L, Pan X, Gao Q, Huang Y. Fucosylated exosomal miRNAs as promising biomarkers for the diagnosis of early lung adenocarcinoma. Front Oncol 2022; 12:935184. [PMID: 36033494 PMCID: PMC9414872 DOI: 10.3389/fonc.2022.935184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
Background Considering the absence of apparent symptoms at the early stage, most patients with lung adenocarcinoma (LUAD) present at an advanced stage, leading to a dismal 5-year survival rate of <20%. Thus, finding perspective non-invasive biomarkers for early LUAD is very essential. Methods We developed a fucose-captured strategy based on lentil lectin-magnetic beads to isolate fucosylated exosomes from serum. Then, a prospective study was conducted to define the diagnostic value of serum exosomal miRNAs for early LUAD. A total of 310 participants were enrolled, including 146 LUAD, 98 benign pulmonary nodules (BPNs), and 66 healthy controls (HCs). Firstly, exosome miRNAs in the discovery cohort (n = 24) were profiled by small RNA sequencing. Secondly, 12 differentially expressed miRNAs (DEmiRs) were selected for further screening in a screening cohort (n = 64) by qRT-PCR. Finally, four candidate miRNAs were selected for further validation in a validating cohort (n = 222). Results This study demonstrated the feasibility of a fucose-captured strategy for the isolation of fucosylated exosomes from serum, evidenced with exosomal characteristics identified by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting, as well as rapid and convenient operation of <10 min. Furthermore, a miRNA panel for early LUAD composed of miR4732-5p, miR451a, miR486-5p, and miR139-3p was defined with an AUC of 0.8554 at 91.07% sensitivity and 66.36% specificity. Conclusions The fucose-captured strategy provides a reliable, as well as rapid and convenient, approach for the isolation of tumor-derived exosomes from serum. A four-fucosylated exosomal miRNA panel presents good performance for early LUAD diagnosis.
Collapse
Affiliation(s)
- Xiongfeng Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Scientific Research, Fujian Provincial Hospital, Fuzhou, China
| | - Lili Yu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Kun Hao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
| | - Xiaoqing Yin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Integrated Chinese and Western Medicine College, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Mingshu Tu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liqing Cai
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Liangming Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
| | - Xiaojie Pan
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Thoracic Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Qi Gao
- Research and Development Center, Beijing Glyexo Gene Technology Co., Ltd, Beijing, China
- *Correspondence: Yi Huang, ; Qi Gao,
| | - Yi Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou, China
- Central laboratory, Fujian Provincial Hospital, Fuzhou, China
- Center for Experimental Research in Clinical Medicine, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Yi Huang, ; Qi Gao,
| |
Collapse
|
29
|
Shen X, Li L, Zhang L, Liu W, Wu Y, Ma R. Diagnostic and prognostic value of microRNA-486 in patients with lung cancer: A systematic review and meta-analysis. Int J Biol Markers 2022; 37:377-385. [PMID: 35902998 DOI: 10.1177/03936155221115750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There are conflicting opinions on whether miR-486 could be used for cancer diagnosis and prognosis. Therefore, this present study investigated the potential effect of miR-486 on lung cancer diagnosis and prognosis. METHODS We researched PubMed, Embase, Wanfang and Chinese National Knowledge Infrastructure databases to select relevant publications. Specificity and sensitivity were obtained for the pooled and subgroup diagnostic meta-analysis while the hazard ratio was for prognostic meta-analysis. Publication analyses and sensitivity analyses were conducted to investigate possible sources of heterogeneity. RESULTS The overall sensitivity and specificity with 95% confidence intervals were 0.8 (0.8-0.9) and 0.9 (0.9-0.9). Results of subgroup analysis showed that high diagnostic efficacy might be obtained by miR-486 combined with other microRNAs (area under the curve (AUC): 0.9 (0.9-1.0)) to distinguish lung cancer patients from healthy controls (AUC: 1.0 (0.9-1.0)), especially for lung adenocarcinoma (AUC: 1.0 (1.0-1.0)) in the Asian population (AUC: 0.9 (0.9-1.0)). For prognosis prediction of miR-486 in overall non-small cell lung cancer, the overall hazard ratio with 95% confidence interval was 1.15 (0.85-1.54) for high versus low expression of miR-486, which indicated that a high miR-486 level was not related to the high risk of poor outcome. However, for the subgroup of progression-free survival and patients with chemotherapy, the hazard ratio was 0.41 (0.21-0.77), indicating that the higher miR-486 level would decrease the risk of poor progression-free survival for lung cancer patients with chemotherapy. CONCLUSION This study suggested circulating miR-486 combined with other microRNAs could be used as ideal biomarkers in early diagnosis and prognosis prediction for lung cancer, especially for lung adenocarcinoma in the Asian population.
Collapse
Affiliation(s)
- Xiaoyu Shen
- Medical Oncology Department of Thoracic Cancer (2), 74665Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| | - Linlin Li
- Medical Oncology Department of Thoracic Cancer (2), 74665Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| | - Linlin Zhang
- Medical Oncology Department of Thoracic Cancer (2), 74665Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), 74665Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| | - Yang Wu
- Medical Oncology Department of Thoracic Cancer (2), 74665Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| | - Rui Ma
- Medical Oncology Department of Thoracic Cancer (2), 74665Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
30
|
The Role of the Selected miRNAs as Diagnostic, Predictive and Prognostic Markers in Non-Small-Cell Lung Cancer. J Pers Med 2022; 12:jpm12081227. [PMID: 36013176 PMCID: PMC9410235 DOI: 10.3390/jpm12081227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related deaths worldwide, overtaking colon, breast, and prostate cancer-related deaths. Due to the limited diagnostic possibilities, it is often diagnosed after it has reached an advanced stage. The delayed diagnosis significantly worsens the patient’s prognosis. In recent years, we have observed an increased interest in the use of microRNAs (miRNAs) as diagnostic, predictive, and prognostic markers in non-small-cell lung cancer (NSCLC). The abnormal expression levels of the miRNAs could be used to detect NSCLC in its early stages while it is still asymptomatic. This could drastically improve the clinical outcome. Furthermore, some miRNAs could serve as promising predictive and prognostic factors for NSCLC. Some of the currently available studies have shown a correlation between the miRNAs’ levels and the sensitivity of tumour cells to different treatment regimens. Analysing and modulating the miRNAs’ expression could be a way to predict and improve the treatment’s outcome.
Collapse
|
31
|
Sarhadi VK, Armengol G. Molecular Biomarkers in Cancer. Biomolecules 2022; 12:1021. [PMID: 35892331 PMCID: PMC9331210 DOI: 10.3390/biom12081021] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Molecular cancer biomarkers are any measurable molecular indicator of risk of cancer, occurrence of cancer, or patient outcome. They may include germline or somatic genetic variants, epigenetic signatures, transcriptional changes, and proteomic signatures. These indicators are based on biomolecules, such as nucleic acids and proteins, that can be detected in samples obtained from tissues through tumor biopsy or, more easily and non-invasively, from blood (or serum or plasma), saliva, buccal swabs, stool, urine, etc. Detection technologies have advanced tremendously over the last decades, including techniques such as next-generation sequencing, nanotechnology, or methods to study circulating tumor DNA/RNA or exosomes. Clinical applications of biomarkers are extensive. They can be used as tools for cancer risk assessment, screening and early detection of cancer, accurate diagnosis, patient prognosis, prediction of response to therapy, and cancer surveillance and monitoring response. Therefore, they can help to optimize making decisions in clinical practice. Moreover, precision oncology is needed for newly developed targeted therapies, as they are functional only in patients with specific cancer genetic mutations, and biomarkers are the tools used for the identification of these subsets of patients. Improvement in the field of cancer biomarkers is, however, needed to overcome the scientific challenge of developing new biomarkers with greater sensitivity, specificity, and positive predictive value.
Collapse
Affiliation(s)
- Virinder Kaur Sarhadi
- Department of Oral and Maxillofacial Diseases, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland;
| | - Gemma Armengol
- Department of Animal Biology, Plant Biology, and Ecology, Faculty of Biosciences, Universitat Autònoma de Barcelona, 08193 Barcelona, Catalonia, Spain
| |
Collapse
|
32
|
Douvris A, Viñas J, Burns KD. miRNA-486-5p: signaling targets and role in non-malignant disease. Cell Mol Life Sci 2022; 79:376. [PMID: 35731367 PMCID: PMC9217846 DOI: 10.1007/s00018-022-04406-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 11/30/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs, highly conserved between species, that are powerful regulators of gene expression. Aberrant expression of miRNAs alters biological processes and pathways linked to human disease. miR-486-5p is a muscle-enriched miRNA localized to the cytoplasm and nucleus, and is highly abundant in human plasma and enriched in small extracellular vesicles. Studies of malignant and non-malignant diseases, including kidney diseases, have found correlations with circulating miR-486-5p levels, supporting its role as a potential biomarker. Pre-clinical studies of non-malignant diseases have identified miR-486-5p targets that regulate major signaling pathways involved in cellular proliferation, migration, angiogenesis, and apoptosis. Validated miR-486-5p targets include phosphatase and tensin homolog (PTEN) and FoXO1, whose suppression activates phosphatidyl inositol-3-kinase (PI3K)/Akt signaling. Targeting of Smad1/2/4 and IGF-1 by miR-486-5p inhibits transforming growth factor (TGF)-β and insulin-like growth factor-1 (IGF-1) signaling, respectively. Other miR-486-5p targets include matrix metalloproteinase-19 (MMP-19), Sp5, histone acetyltransferase 1 (HAT1), and nuclear factor of activated T cells-5 (NFAT5). In this review, we examine the biogenesis, regulation, validated gene targets and biological effects of miR-486-5p in non-malignant diseases.
Collapse
Affiliation(s)
- Adrianna Douvris
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jose Viñas
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine and Kidney Research Centre, The Ottawa Hospital Research Institute, University of Ottawa, 1967 Riverside Dr., Rm. 535, Ottawa, ON, K1H 7W9, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
33
|
Kang Y, You J, Gan Y, Chen Q, Huang C, Chen F, Xu X, Chen L. Serum and Serum Exosomal CircRNAs hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 as Diagnostic Biomarkers for Lung Adenocarcinoma. Front Oncol 2022; 12:912246. [PMID: 35747792 PMCID: PMC9209657 DOI: 10.3389/fonc.2022.912246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/16/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundCircular RNAs (circRNAs) play an important role in tumorigenesis and several circulating circRNA signatures are closely associated with tumor diagnosis. However, the expression and clinical significance of the two forms of circulating circRNAs, serum and serum exosomal, in patients with lung adenocarcinoma (LUAD), have not been characterized.MethodsThree differentially expressed exosomal circRNAs, hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896, were selected based on previous exosomal circRNA sequencing data analyses of LUAD patients. The expression of these circRNAs in serum and serum-derived exosomes of LUAD patients was assessed using quantitative real-time PCR (qRT-PCR), and correlations between circRNA expression and clinicopathological characteristics were analyzed. The reliability of serum and serum exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 to diagnose LUAD was evaluated using receiver operating characteristic (ROC) analysis.ResultsExpression of serum and serum exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 were significantly higher in LUAD patients than in healthy donors, and significantly lower after surgery. These three serum exosomal circRNAs were also associated with a higher cancer stage. Exosomal hsa_circ_0001492 expression was positively correlated with carcinoembryonic antigen (CEA) and neuron-specific enolase (NSE) levels. An association between the expression of the three serum circRNAs and clinical characteristics was not observed. In addition, the three serum exosomal circRNAs had higher diagnostic sensitivity and specificity than the serum circRNAs, and the area under the curve (AUC) of all three serum exosomal circRNAs was >0.75. The combination of exosomal hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896 had better diagnostic sensitivity and specificity than that of a single marker, with an AUC value of 0.805.ConclusionsThe serum and serum exosomal circRNAs, hsa_circ_0001492, hsa_circ_0001439, and hsa_circ_0000896, were upregulated in LUAD patients. Serum exosomal circRNAs may serve as more effective biomarkers than serum circRNAs for LUAD diagnosis and may further aid the detection of this disease.
Collapse
Affiliation(s)
- Yanli Kang
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jianbin You
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yuhan Gan
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Qianshun Chen
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chen Huang
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Falin Chen
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Xunyu Xu
- Department of Thoracic Surgery, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| | - Liangyuan Chen
- Department of Clinical Laboratory, Fujian Provincial hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
- *Correspondence: Falin Chen, ; Xunyu Xu, ; Liangyuan Chen,
| |
Collapse
|
34
|
Functional mechanism and clinical implications of miR-141 in human cancers. Cell Signal 2022; 95:110354. [PMID: 35550172 DOI: 10.1016/j.cellsig.2022.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Cancer is caused by the abnormal proliferation of local tissue cells under the control of many oncogenic factors. MicroRNAs (miRNAs) are a class of evolutionarily conserved, approximately 22-nucleotide noncoding small RNAs that influence transcriptional regulationby binding to the 3'-untranslated region of target messenger RNA. As a member of the miRNA family, miR-141 acts as a suppressor or an oncomiR in various cancers and regulates cancer cell proliferation, apoptosis, invasion, and metastasis through a variety of signaling pathways, such as phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) and constitutive activation of nuclear factor-κB (NF-κB). Target gene validation and pathway analysis have provided mechanistic insight into the role of this miRNA in different tissues. This review also outlines novel findings that suggest miR-141 may be useful as a noninvasive biomarker and as a therapeutic target in several cancers.
Collapse
|
35
|
Preethi KA, Selvakumar SC, Ross K, Jayaraman S, Tusubira D, Sekar D. Liquid biopsy: Exosomal microRNAs as novel diagnostic and prognostic biomarkers in cancer. Mol Cancer 2022; 21:54. [PMID: 35172817 PMCID: PMC8848669 DOI: 10.1186/s12943-022-01525-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Detecting cancer at an early stage before clinical manifestation could be an effective strategy to decrease cancer mortality. Thus, identifying liquid biopsy biomarkers with high efficacy could be a promising approach for non-invasive diagnosis of cancer. MAIN TEXT Liquid biopsies are increasingly used as a supplement to biopsy, as it enables disease progression to be detected months before clinical and radiographic confirmation. Many bodily fluids contain exosomal microRNAs (miRNAs) which could provide a new class of biomarkers for early and minimally invasive cancer diagnosis due to the stability of miRNAs in exosomes. In this review, we mainly focused on the exosomal miRNAs (liquid biopsy) as biomarkers in the diagnosis and prognosis of various cancers. CONCLUSION Exosomal miRNAs can be used as diagnostic and prognosis biomarkers that provide unique insights and a more dynamic perspective of the progression and therapeutic responses in various malignancies. Therefore, the development of novel and more sensitive technologies that exploit exosomal miRNAs should be a priority for cancer management.
Collapse
Affiliation(s)
- K Auxzilia Preethi
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Sushmaa Chandralekha Selvakumar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, India
| | - Deusdedit Tusubira
- Biochemistry Department, Mbarara University of Science and Technology, Mbarara, Uganda.
| | - Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India.
| |
Collapse
|
36
|
Li C, Zhou T, Chen J, Li R, Chen H, Luo S, Chen D, Cai C, Li W. The role of Exosomal miRNAs in cancer. J Transl Med 2022; 20:6. [PMID: 34980158 PMCID: PMC8722109 DOI: 10.1186/s12967-021-03215-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.
Collapse
Affiliation(s)
- Chuanyun Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Tong Zhou
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jing Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Rong Li
- Chengde Medical University, Chengde, China
| | - Huan Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China
| | - Shumin Luo
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Dexi Chen
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.,Beijing Institute of Hepatology, Beijing, China
| | - Cao Cai
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China.
| | - Weihua Li
- Fengtai District, YouAn Hospital, Capital Medical University, NO. 8, Xitoutiao, Youanmen wai, Beijing, China. .,Beijing Institute of Hepatology, Beijing, China.
| |
Collapse
|
37
|
Capriglione F, Verrienti A, Celano M, Maggisano V, Sponziello M, Pecce V, Gagliardi A, Giacomelli L, Aceti V, Durante C, Bulotta S, Russo D. Analysis of serum microRNA in exosomal vehicles of papillary thyroid cancer. Endocrine 2022; 75:185-193. [PMID: 34378123 DOI: 10.1007/s12020-021-02847-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE In this study, we investigated the profile of microRNAs (miRNAs) contained in exosomes secreted in the serum of patients with papillary thyroid cancer (PTC). METHODS Exosome were isolated by adding ExoQuick Exosome Precipitation Solution. Dynamic light scattering (DLS) and western blotting analysis were used to ensure the quality of exosomes. The expression levels of miRNAs were investigated using custom-designed TaqMan Advanced miRNA Array Cards in the screening cohort and using specific TaqMan Advanced MicroRNA Assays in the validation cohort. RESULTS We identified miR24-3p, miR146a-5p, miR181a-5p and miR382-5p with different expression levels in two different series of 56 and 58 PTC patients as compared with healthy controls. Significant differences in the expression of three PTC exosomal miRNAs, depending on the presence of lymph node metastasis, were detected in only one PTC series. When comparing the expression levels of some PTC-specific exosomal miRNAs with those of the same miRNAs circulating free of any encapsulation, we found a significant correlation for only miR24-3p, suggesting that only select miRNAs are secreted in exosomes. CONCLUSIONS Our findings demonstrate that four miRNAs are differently secreted in the exosomes of PTC patients, whereas no conclusive results were found to characterize PTCs with lymph node metastasis, suggesting caution in the use of circulating exosomal miRNA expression levels as lymph node metastasis biomarkers. Further investigation into the mechanisms governing miRNA secretion in tumor cells are required.
Collapse
Affiliation(s)
- Francesca Capriglione
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Antonella Verrienti
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Marilena Celano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Valentina Maggisano
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Marialuisa Sponziello
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valeria Pecce
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Agnese Gagliardi
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Laura Giacomelli
- Department of Surgical Sciences, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Valerio Aceti
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Cosimo Durante
- Department of translational and precision medicine, "Sapienza" University of Rome, 00161, Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy
| | - Diego Russo
- Department of Health Sciences, University "Magna Graecia" of Catanzaro, 88100, Catanzaro, Italy.
| |
Collapse
|
38
|
Yi M, Liao Z, Deng L, Xu L, Tan Y, Liu K, Chen Z, Zhang Y. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med 2021; 53:2178-2193. [PMID: 34913774 PMCID: PMC8740622 DOI: 10.1080/07853890.2021.2000634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/26/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are good candidates as biomarkers for Lung cancer (LC). The aim of this article is to figure out the diagnostic value of both single and combined miRNAs in LC. METHODS Normative meta-analysis was conducted based on PRISMA. We assessed the diagnostic value by calculating the combined sensitivity (Sen), specificity (Spe), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratio (DOR) and the area under the curve (AUC) of single and combined miRNAs for LC and specific subgroups. RESULTS A total of 80 qualified studies with a total of 8971 patients and 10758 controls were included. In non-small cell lung carcinoma (NSCLC), we involved 20 single-miRNAs and found their Sen, Spe and AUC ranged from 0.52-0.81, 0.66-0.88, and 0.68-0.90, respectively, specially, miR-19 with the maximum Sen, miR-20 and miR-10 with the highest Spe as well as miR-17 with the maximum AUC. Additionally, we detected miR-21 with the maximum Sen of 0.74 [95%CI: 0.62-0.83], miR-146 with the maximum Spe and AUC of 0.93 [95%CI: 0.79-0.98] and 0.89 [95%CI: 0.86-0.92] for early-stage NSCLC. We also identified the diagnostic power of available panel (miR-210, miR-31 and miR-21) for NSCLC with satisfying Sen, Spe and AUC of 0.82 [95%CI: 0.78-0.84], 0.87 [95%CI: 0.84-0.89] and 0.91 [95%CI: 0.88-0.93], and furtherly constructed 2 models for better diagnosis. CONCLUSIONS We identified several single miRNAs and combined groups with high diagnostic power for NSCLC through pooled quantitative analysis, which shows that specific miRNAs are good biomarker candidates for NSCLC and further researches needed.
Collapse
Affiliation(s)
- Minhan Yi
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zexi Liao
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Xiangya Medical School, Central South University, Changsha, Hunan, China
| | - Langmei Deng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Emergency, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kun Liu
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Ziliang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
39
|
Dezfuli NK, Alipoor SD, Dalil Roofchayee N, Seyfi S, Salimi B, Adcock IM, Mortaz E. Evaluation Expression of miR-146a and miR-155 in Non-Small-Cell Lung Cancer Patients. Front Oncol 2021; 11:715677. [PMID: 34790566 PMCID: PMC8591170 DOI: 10.3389/fonc.2021.715677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/04/2021] [Indexed: 12/04/2022] Open
Abstract
Background Non−small-cell lung cancer (NSCLC) is the major type of lung cancer. MicroRNAs (miRNAs) are novel markers and targets in cancer therapy and can act as both tumor suppressors and oncogenes and affect immune function. The aim of this study was to investigate the expression of miR146a and miR155 in linked to blood immune cell phenotypes and serum cytokines in NSCLC patients. Methods Thirty-three NSCLC patients and 30 healthy subjects were enrolled in this study. The allele frequencies of potential DNA polymorphisms were studied using polymerase chain reaction (PCR)–restriction fragment length polymorphism (PCR-RFLP) analysis in peripheral blood samples. Quantitative reverse transcription PCR (qRT-PCR) was used to measure the expression of miR-146a and miR-155 in peripheral blood mononuclear cells (PBMCs). Serum cytokine (IL-1β, IL-6, TNF-α, TGF-β, IL-4, IFN-γ) levels were determined by ELISA. The frequency of circulating CD3+CTLA-4+ and CD4+CD25+FOXP3+ (T regulatory cells/Treg) expression was measured by flow cytometry. Results miR-146a was significantly downregulated in PBMC of NSCLC patients (P ≤ 0.001). Moreover, IL-6 and TGF-β levels were elevated in NSCLC patients (P ≤ 0.001, P ≤ 0.018, respectively). CD3+ CTLA-4+ and Treg cells frequencies were higher in patients than in control subjects (P ≤ 0.0001, P ≤ 0.0001, respectively). There was a positive correlation between miR-155 and IL-1β levels (r=0.567, p ≤ 0.001) and a negative correlation between miR-146a and TGF-β levels (r=-0.376, P ≤ 0.031) in NSCLC patients. No significant differences were found in the relative expression of miR-146a and miR-155, cytokine levels or immune cell numbers according to miR-146a and miR-155 (GG/GC/CC, TT/AT/AA) genotypes. However, there was a positive correlation between miR-146a and IL-1β levels (r=0.74, P ≤ 0.009) in GG subjects and a positive correlation between miR-146a expression and CD3+CTLA4+ cell frequency (r=0.79, P ≤ 0.01) in CC genotyped subjects. Conversely, a negative correlation between miR-146a expression and Treg cell frequency (r=−0.87, P ≤ 0.05) was observed with the GG genotype. A positive correlation between miR-155 and IL-1β expression (r=0.58, p ≤ 0.009) in the TT genotype and between miR-155 expression and CD3+CTLA-4 cell frequency (r=0.75, P ≤ 0.01) was observed in the AT genotype. Conclusions The current data suggest that the miR-146a expression in PBMC and serum TGF-β and IL-1β levels may act as blood markers in NSCLC patients. Further study is needed to elucidate the link between immune cells and serum miR146 at early disease stages.
Collapse
Affiliation(s)
- Neda K Dezfuli
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology and Laboratory Sciences, School of Allied Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Shamila D Alipoor
- Molecular Medicine Department, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Neda Dalil Roofchayee
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sharareh Seyfi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Babak Salimi
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Padda J, Khalid K, Khedr A, Patel V, Al-Ewaidat OA, Tasnim F, Padda S, Cooper AC, Jean-Charles G. Exosome-Derived microRNA: Efficacy in Cancer. Cureus 2021; 13:e17441. [PMID: 34589347 PMCID: PMC8460558 DOI: 10.7759/cureus.17441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Exosome-derived microRNA (miRNA) has been the focus of attention in recent years. Mainly, their role in the pathogenesis of different types of cancer has been extensively studied. The different types of exosomal miRNAs (exomiRs) act as either oncogenes or oncosupressors. They have potential prognostic and diagnostic efficacy in different types of cancer due to their high stability and easy detection in bodily fluids. This is especially true in lung cancer, colorectal cancer, ovarian cancer, and breast cancer. However, their efficacy as potential therapies has not been widely investigated. This review will discuss the structure and functions of exosomes and miRNA, as well as the role of exomiRs in the pathogenesis of different types of cancer through boosting growth, promoting progression, chemotherapy resistance, angiogenesis, metastasis, and immune system evasion. We will also discuss the application of exomiRs in diagnosing different types of cancer and their role in prognosis. Furthermore, we shed light on the challenges of developing therapeutic agents using miRNAs and how the carriage of therapeutic miRNA by exosomes can help solve these challenges. Finally, we examine recent studies exploring the potential of exomiRs in treating cancers such as neuroblastoma, glioblastoma, and melanoma.
Collapse
Affiliation(s)
| | | | - Anwar Khedr
- Internal Medicine, JC Medical Center, Orlando, USA
| | - Vinay Patel
- Internal Medicine, JC Medical Center, Orlando, USA
| | | | | | | | | | - Gutteridge Jean-Charles
- Internal Medicine, JC Medical Center, Orlando, USA.,Internal Medicine, Advent Health & Orlando Health Hospital, Orlando, USA
| |
Collapse
|
41
|
Circulating exosomal miRNAs and cancer early diagnosis. Clin Transl Oncol 2021; 24:393-406. [PMID: 34524618 DOI: 10.1007/s12094-021-02706-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022]
Abstract
Microribonucleic acids (miRNAs) are small non-coding ribonucleic acids (ncRNAs), which can affect recognition of homologous sequences and interfere with transcription. It plays key roles in the initiation, development, resistance, metastasis or recurrence of cancers. Identifying circulatory indicators will positively improve the prognosis and quality of life of patients with early cancer. Previous studies have shown that miRNA is highly involved in cancer. In addition, miRNA derived from cancers can be encapsulated as exosomes and further extracted into circulatory systems to realize malignant functions. It indicates that circulating exosome-derived miRNAs have the potential to replace conventional biomarkers as cancer derived exosomes carrying miRNAs can be identified by specific markers and might be more stable and accurate for early diagnosis.
Collapse
|
42
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
43
|
Huang H, Zhu J, Lin Y, Zhang Z, Liu J, Wang C, Wu H, Zou T. The potential diagnostic value of extracellular vesicle miRNA for human non-small cell lung cancer: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 21:823-836. [PMID: 34043929 DOI: 10.1080/14737159.2021.1935883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Background: This meta-analysis aimed to evaluate the diagnostic accuracy of extracellular vesicles (EV) miRNAs for non-small cell lung cancer (NSCLC).Methods: All eligible studies were searched in an online database. Stata 15.0, Meta-disc 14.0 and Review Manager 5.2 software packages were used to perform all statistical analysis.Results: The analysis included 16 articles and 70 studies. Pooled sensitivity (SEN) and specificity (SPE), positive predictive value and negative predictive value were 0.77 (95% CI: 0.72-0.80), 0.83 (95% CI: 0.78-0.86), 0.88 (95% CI: 0.86-0.90) and 0.63 (95% CI: 0.58-0.68), respectively. The overall diagnostic odds ratio (DOR) was 16 (95% CI: 11-21) and the area under the curve (AUC) was 0.86 (95% CI: 0.83-0.89). 3 EV miRNAs could identify metastatic NSCLC from healthy, and 10 distinguish early-stage NSCLC. The respective targets of EV miR-21, miR-210, and miR-1290 could activate PI3K/AKT-related pathway.Conclusion: EV miRNAs had high diagnostic accuracy (AUC = 0.86) for NSCLC, especially metastatic NSCLC (AUC = 0.90), and early-stage NSCLC (AUC = 0.88). Besides, multitudinous EV miRNAs combined showed higher diagnostic value than alone. EV miR-21, miR-210, and miR-1290 might be associated with PI3K/AKT-related pathway and the valuable diagnostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Hairong Huang
- Department of Child Health, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan, China.,Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinyuan Zhu
- Department of Child Health, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan, China
| | - Yong Lin
- Department of Surgery, The Third Affiliated Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Zhexiao Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jie Liu
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Chenfei Wang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hongfu Wu
- Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Guangdong Medical University, Dongguan, China
| | - Tangbin Zou
- Department of Child Health, Shunde Women and Children's Hospital of Guangdong Medical University (Maternity & Child Healthcare Hospital of Shunde Foshan), Foshan, China.,Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
44
|
El Founini Y, Chaoui I, Dehbi H, El Mzibri M, Abounader R, Guessous F. MicroRNAs: Key Regulators in Lung Cancer. Microrna 2021; 10:109-122. [PMID: 34047262 DOI: 10.2174/2211536610666210527102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs have emerged as key regulators of the genome upon gene expression profiling and genome-wide sequencing. Among these noncoding RNAs, microRNAs are short noncoding RNAs that regulate a plethora of functions, biological processes and human diseases by targeting the messenger RNA stability through 3'UTR binding, leading to either mRNA cleavage or translation repression, depending on microRNA-mRNA complementarity degree. Additionally, strong evidence has suggested that dysregulation of miRNAs contribute to the etiology and progression of human cancers, such as lung cancer, the most common and deadliest cancer worldwide. Indeed, by acting as oncogenes or tumor suppressors, microRNAs control all aspects of lung cancer malignancy, including cell proliferation, survival, migration, invasion, angiogenesis, cancer stem cells, immune-surveillance escape, and therapy resistance; and their expressions are often associated with clinical parameters. Moreover, several deregulated microRNAs in lung cancer are carried by exosomes, microvesicles and secreted in body fluids, mainly the circulation where they conserve their stable forms. Subsequently, seminal efforts have been focused on extracellular microRNAs levels as noninvasive diagnostic and prognostic biomarkers in lung cancer. In this review, focusing on recent literature, we summarize the deregulation, mechanisms of action, functions and highlight clinical applications of miRNAs for better management and design of future lung cancer targeted therapies.
Collapse
Affiliation(s)
- Younes El Founini
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco.,Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Imane Chaoui
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Hind Dehbi
- Laboratory of Genetics and Molecular Pathology, Medical School, University Hassan II, Casablanca, Morocco
| | - Mohammed El Mzibri
- Unit of Biology and Medical Research, National Center of Energy, Sciences and Nuclear Techniques, Rabat, Morocco
| | - Roger Abounader
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States
| | - Fadila Guessous
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States.,Department of Biological Sciences, Faculty of Medicine, Mohammed VI University of Health Sciences, Casablanca, Morocco
| |
Collapse
|
45
|
Small Extracellular Vesicles in Pre-Therapy Plasma Predict Clinical Outcome in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092041. [PMID: 33922569 PMCID: PMC8122966 DOI: 10.3390/cancers13092041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of plasma-derived small extracellular vesicles (sEV) as predictors of response to therapy and clinical outcome in chemotherapy-naïve patients with non-small-cell lung cancer (NSCLC) was explored. sEV were isolated by size-exclusion chromatography from the plasma of 79 chemotherapy-naïve NSCLC patients and 12 healthy donors (HD). sEV were characterized with regard to protein content, particle size, counts by qNano, morphology by transmission electron microscopy, and molecular profiles by Western blots. PD-1 and PD-L1 expression on circulating immune cells was analysed by flow cytometry. Pre-treatment levels of total sEV protein (TEP) were correlated with overall (OS) and progression-free survival (PFS). The sEV numbers and protein levels were significantly elevated in the plasma of NSCLC patients compared to HD (p = 0.009 and 0.0001, respectively). Baseline TEP levels were higher in patients who developed progressive disease compared to patients with stable disease (p = 0.007 and 0.001, stage III and IV, respectively). Patient-derived sEV were enriched in immunosuppressive proteins as compared to proteins carried by sEV from HD. TEP levels were positively correlated with CD8+PD-1+ and CD8+PD-L1+ circulating T cell percentages and were independently associated with poorer PFS (p < 0.00001) and OS (p < 0.00001). Pre-therapy sEV could be useful as non-invasive biomarkers of response to therapy and clinical outcome in NSCLC.
Collapse
|
46
|
Smolarz M, Widlak P. Serum Exosomes and Their miRNA Load-A Potential Biomarker of Lung Cancer. Cancers (Basel) 2021; 13:cancers13061373. [PMID: 33803617 PMCID: PMC8002857 DOI: 10.3390/cancers13061373] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Early detection of lung cancer in screening programs is a rational way to reduce mortality associated with this malignancy. Low-dose computed tomography, a diagnostic tool used in lung cancer screening, generates a relatively large number of false-positive results, and its complementation with molecular biomarkers would greatly improve the effectiveness of such programs. Several biomarkers of lung cancer based on different components of blood, including miRNA signatures, were proposed. However, only a few of them have been positively validated in the context of early cancer detection yet, which imposes a constant need for new biomarker candidates. An emerging source of cancer biomarkers are exosomes and other types of extracellular vesicles circulating in body fluids. Hence, different molecular components of serum/plasma-derived exosomes were tested and showed different levels in lung cancer patients and healthy individuals. Several studies focused on the miRNA component of these vesicles. Proposed signatures of exosome miRNA had promising diagnostic value, though none of them have yet been clinically validated. These signatures involved a few dozen miRNA species overall, including a few species that recurred in different signatures. It is worth noting that all these miRNA species have cancer-related functions and have been associated with lung cancer progression. Moreover, a few of them, including known oncomirs miR-17, miR-19, miR-21, and miR-221, appeared in multiple miRNA signatures of lung cancer based on both the whole serum/plasma and serum/plasma-derived exosomes.
Collapse
|
47
|
He X, Park S, Chen Y, Lee H. Extracellular Vesicle-Associated miRNAs as a Biomarker for Lung Cancer in Liquid Biopsy. Front Mol Biosci 2021; 8:630718. [PMID: 33718435 PMCID: PMC7943919 DOI: 10.3389/fmolb.2021.630718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are cell-derived membranous vesicles that are secreted into biofluids. Emerging evidence suggests that EVs play an essential role in the pathogenesis of many diseases by transferring proteins, genetic material, and small signaling molecules between cells. Among these molecules, microRNAs (miRNAs), a type of small noncoding RNA, are one of the most important signals and are involved in various biological processes. Lung cancer is one of the leading causes of cancer-related deaths worldwide. Early diagnosis of lung cancer may help to reduce mortality and increase the 5 years survival rate and thereby reduce the associated socioeconomic burden. In the past, EV-miRNAs have been recognized as biomarkers of several cancers to assist in diagnosis or prognosis. In this review, we discuss recent findings and clinical practice for EV-miRNAs of lung cancer in several biofluids, including blood, bronchoalveolar lavage fluid (BALF), and pleural lavage.
Collapse
Affiliation(s)
- Xue He
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sujeong Park
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
48
|
Li MY, Liu LZ, Dong M. Progress on pivotal role and application of exosome in lung cancer carcinogenesis, diagnosis, therapy and prognosis. Mol Cancer 2021; 20:22. [PMID: 33504342 PMCID: PMC7839206 DOI: 10.1186/s12943-021-01312-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is often diagnosed at an advanced stage and has a poor prognosis. Conventional treatments are not effective for metastatic lung cancer therapy. Although some of molecular targets have been identified with favorable response, those targets cannot be exploited due to the lack of suitable drug carriers. Lung cancer cell-derived exosomes (LCCDEs) receive recent interest in its role in carcinogenesis, diagnosis, therapy, and prognosis of lung cancer due to its biological functions and natural ability to carry donor cell biomolecules. LCCDEs can promote cell proliferation and metastasis, affect angiogenesis, modulate antitumor immune responses during lung cancer carcinogenesis, regulate drug resistance in lung cancer therapy, and be now considered an important component in liquid biopsy assessments for detecting lung cancer. Therapeutic deliverable exosomes are emerging as promising drug delivery agents specifically to tumor high precision medicine because of their natural intercellular communication role, excellent biocompatibility, low immunogenicity, low toxicity, long blood circulation ability, biodegradable characteristics, and their ability to cross various biological barriers. Several studies are currently underway to develop novel diagnostic and prognostic modalities using LCCDEs, and to develop methods of exploiting exosomes for use as efficient drug delivery vehicles. Current status of lung cancer and extensive applicability of LCCDEs are illustrated in this review. The promising data and technologies indicate that the approach on LCCDEs implies the potential application of LCCDEs to clinical management of lung cancer patients.
Collapse
Affiliation(s)
- Ming-Yue Li
- Biomedical Equipment Department, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Building 3, No.188, KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China
| | - Li-Zhong Liu
- Department of Physiology, School of Medicine, Shenzhen University Health Science Center, Shenzhen University, A7-304, Shenzhen University Xili Campus, Nanshan District, Shenzhen, 518055, China.
| | - Ming Dong
- Biomedical Equipment Department, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Building 3, No.188, KaiYuan Road, Huangpu District, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Chen Q, Chen S, Zhao J, Zhou Y, Xu L. MicroRNA-126: A new and promising player in lung cancer. Oncol Lett 2020; 21:35. [PMID: 33262827 PMCID: PMC7693477 DOI: 10.3892/ol.2020.12296] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common malignant tumors associated with cancer death; however, the mechanisms involved in lung tumor development have not been completely elucidated, which impedes the advancement of clinical diagnosis and therapy. MicroRNA-126 (miR-126) is an important member of the microRNA family and is encoded by intron 7 of epidermal growth factor-like domain-containing gene 7. Increasing evidence has demonstrated that miR-126, as a distinct endothelial-enriched miRNA and new tumor suppressor gene, serves a promising role in the occurrence, development and metastasis of various types of cancer, including liver cancer, colorectal cancer, melanoma and lung cancer. In the present review, the current knowledge of the role of miR-126 in lung cancer growth, metastasis, diagnosis and prognosis as well as therapy was summarized, which may provide new insights on the biological roles of miRNAsin lung cancer and facilitate the ultimate development of miRNA-based therapies in clinical patients with non-small cell lung cancer.
Collapse
Affiliation(s)
- Qijun Chen
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Shuanghua Chen
- Department of General Medicine, The Third Hospital Affiliated to Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Juanjuan Zhao
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ya Zhou
- Department of Medical Physics, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Lin Xu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
50
|
Daveri E, Vergani E, Shahaj E, Bergamaschi L, La Magra S, Dosi M, Castelli C, Rodolfo M, Rivoltini L, Vallacchi V, Huber V. microRNAs Shape Myeloid Cell-Mediated Resistance to Cancer Immunotherapy. Front Immunol 2020; 11:1214. [PMID: 32793185 PMCID: PMC7387687 DOI: 10.3389/fimmu.2020.01214] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy with immune checkpoint inhibitors can achieve long-term tumor control in subsets of patients. However, its effect can be blunted by myeloid-induced resistance mechanisms. Myeloid cells are highly plastic and physiologically devoted to wound healing and to immune homeostasis maintenance. In cancer, their physiological activities can be modulated, leading to an expansion of pro-inflammatory and immunosuppressive cells, the myeloid-derived suppressor cells (MDSCs), with detrimental consequences. The involvement of MDSCs in tumor development and progression has been widely investigated and MDSC-induced immunosuppression is acknowledged as a mechanism hindering effective immune checkpoint blockade. Small non-coding RNA molecules, the microRNAs (miRs), contribute to myeloid cell regulation at different levels, comprising metabolism and function, as well as their skewing to a MDSC phenotype. miR expression can be indirectly induced by cancer-derived factors or through direct miR import via extracellular vesicles. Due to their structural stability and their presence in body fluids miRs represent promising predictive biomarkers of resistance, as we recently found by investigating plasma samples of melanoma patients undergoing immune checkpoint blockade. Dissection of the miR-driven involved mechanisms would pave the way for the identification of new druggable targets. Here, we discuss the role of these miRs in shaping myeloid resistance to immunotherapy with a special focus on immunosuppression and immune escape.
Collapse
Affiliation(s)
- Elena Daveri
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elisabetta Vergani
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Eriomina Shahaj
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Bergamaschi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano La Magra
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Dosi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Castelli
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Monica Rodolfo
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Viviana Vallacchi
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|