1
|
Krumpholz L, Polak S, Wiśniowska B. Physiologically-based pharmacokinetic model of in vitro porcine ear skin permeation for drug delivery research. J Appl Toxicol 2024; 44:1936-1948. [PMID: 39134399 DOI: 10.1002/jat.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 11/09/2024]
Abstract
In silico techniques, such as physiologically based pharmacokinetic modeling (PBKP), are recently gaining importance. Computational methods in drug discovery and development and the generic drugs industry enhance research effectiveness by saving time and money and avoiding ethical issues. One key advantage is the ability to conduct toxicology studies without risking harm to living beings. This study aimed to repurpose the multi-phase multi-layer mechanistic dermal absorption (MPML MechDermA) PBPK model for simulation permeation through porcine ear skin under in vitro conditions. The work was divided into four steps: (1) the development of a pig ear skin model based on a previously collected dataset; (2) testing the model's ability to discriminate permeation between pig ear, human abdomen, and human back skin; (3) development of a caffeine permeation model; and (4) testing the caffeine model's performance against in vitro generated data sourced from the scientific literature. Data from 31 manuscripts were used for the development of the pig skin model. Based on these data, values specific to pig skin were found for 22 parameters of the MPML MechDermA model. The model was able to discriminate permeation between pig and human skin. A caffeine model was developed and used to simulate seven experiments identified in the literature. The model's performance was assessed by comparing simulated to observed results. Based on a visual check, all simulations were considered acceptable, whereas three out of seven experiments met the twofold difference criterion. The variability of the experimental data was considered the biggest challenge for reliable model assessment.
Collapse
Affiliation(s)
- Laura Krumpholz
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Sebastian Polak
- Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
- Certara UK Ltd. (Simcyp Division), Sheffield, UK
| | - Barbara Wiśniowska
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
2
|
Ong RR, Goh CF. Niacinamide: a review on dermal delivery strategies and clinical evidence. Drug Deliv Transl Res 2024; 14:3512-3548. [PMID: 38722460 DOI: 10.1007/s13346-024-01593-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2024] [Indexed: 10/24/2024]
Abstract
Niacinamide, an active form of vitamin B3, is recognised for its significant dermal benefits including skin brightening, anti-ageing properties and the protection of the skin barrier. Its widespread incorporation into cosmetic products, ranging from cleansers to serums, is attributed to its safety profile and proven efficacy. Recently, topical niacinamide has also been explored for other pharmaceutical applications, including skin cancers. Therefore, a fundamental understanding of the skin permeation behaviour of niacinamide becomes crucial for formulation design. Given the paucity of a comprehensive review on this aspect, we provide insights into the mechanisms of action of topically applied niacinamide and share the current strategies used to enhance its skin permeation. This review also consolidates clinical evidence of topical niacinamide for its cosmeceutical uses and as treatment for some skin disorders, including dermatitis, acne vulgaris and actinic keratosis. We also emphasise the current exploration and perspectives on the delivery designs of topical niacinamide, highlighting the potential development of formulations focused on enhancing skin permeation, particularly for clinical benefits.
Collapse
Affiliation(s)
- Rong Rong Ong
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia
| | - Choon Fu Goh
- Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, 11800, Malaysia.
| |
Collapse
|
3
|
Masri S, Fauzi MB, Rajab NF, Lee WH, Zainal Abidin DA, Siew EL. In vitro 3D skin culture and its sustainability in toxicology: a narrative review. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:476-499. [PMID: 39359233 DOI: 10.1080/21691401.2024.2407617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
In current toxicological research, 2D cell cultures and animal models are well- accepted and commonly employed methods. However, these approaches have many drawbacks and are distant from the actual environment in human. To embrace this, great efforts have been made to provide alternative methods for non-animal skin models in toxicology studies with the need for more mechanistically informative methods. This review focuses on the current state of knowledge regarding the in vitro 3D skin model methods, with different functional states that correspond to the sustainability in the field of toxicology testing. We discuss existing toxicology testing methods using in vitro 3D skin models which provide a better understanding of the testing requirements that are needed. The challenges and future landscape in using the in vitro 3D skin models in toxicology testing are also discussed. We are confident that the in vitro 3D skin models application may become an important tool in toxicology in the context of risk assessment.
Collapse
Affiliation(s)
- Syafira Masri
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mh Busra Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
- Advance Bioactive Materials-Cells (Adv-BioMaC) UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nor Fadilah Rajab
- Centre for Health Aging and Wellness, Faculty of Helath Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Wing-Hin Lee
- Royal College of Medicine Perak, Universiti Kuala Lumpur (UniKL RCMP), Perak, Malaysia
| | | | - Ee Ling Siew
- ASASIpintar Unit, Pusat PERMATA@Pintar Negara, Universiti Kebangsaan Malaysia, Bangi, Malaysia
- Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Ahn J, Nam YS. Assessing Barrier Function in Psoriasis and Cornification Models of Artificial Skin Using Non-Invasive Impedance Spectroscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400111. [PMID: 38995098 PMCID: PMC11575500 DOI: 10.1002/advs.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/16/2024] [Indexed: 07/13/2024]
Abstract
Reconstructed epidermal equivalents (REEs) consist of two distinct cell layers - the stratum corneum (SC) and the keratinocyte layer (KL). The interplay of these layers is particularly crucial in pruritic inflammatory disorders, like psoriasis, where a defective SC barrier is associated with immune dysregulation. However, independent evaluation of the skin barrier function of the SC and KL in REEs is highly challenging because of the lack of quantitative methodologies that do not disrupt the counter layer. Here, a non-invasive impedance spectroscopy technique is introduced for dissecting the distinct contributions of the SC and KL to overall skin barrier function without disrupting the structure. These findings, inferred from the impedance spectra, highlight the individual barrier resistances and maturation levels of each layer. Using an equivalent circuit model, a correlation between impedance parameters and specific skin layers, offering insights beyond traditional impedance methods that address full-thickness skin only is established. This approach successfully detects subtle changes, such as increased paracellular permeability due to mild irritants and the characterization of an immature SC in psoriatic models. This research has significant implications, paving the way for detailed mechanistic investigations and fostering the development of therapies for skin irritation and inflammatory disorders.
Collapse
Affiliation(s)
- Jaehwan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Mohammed YH, Namjoshi SN, Jung N, Windbergs M, Benson HAE, Grice JE, Raney SG, Roberts MS. Topical Semisolid Drug Product Critical Quality Attributes with Relevance to Cutaneous Bioavailability and Pharmacokinetics: Part I-Bioequivalence of Acyclovir Topical Creams. Pharm Res 2024; 41:1507-1520. [PMID: 38955999 PMCID: PMC11263457 DOI: 10.1007/s11095-024-03736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE To develop a toolkit of test methods for characterizing potentially critical quality attributes (CQAs) of topical semisolid products and to evaluate how CQAs influence the rate and extent of active ingredient bioavailability (BA) by monitoring cutaneous pharmacokinetics (PK) using an In Vitro Permeation Test (IVPT). METHODS Product attributes representing the physicochemical and structural (Q3) arrangement of matter, such as attributes of particles and globules, were assessed for a set of test acyclovir creams (Aciclostad® and Acyclovir 1A Pharma) and compared to a set of reference acyclovir creams (Zovirax® US, Zovirax® UK and Zovirax® Australia). IVPT studies were performed with all these creams using heat-separated human epidermis, evaluated with both, static Franz-type diffusion cells and a flow through diffusion cell system. RESULTS A toolkit developed to characterize quality and performance attributes of these acyclovir topical cream products identified certain differences in the Q3 attributes and the cutaneous PK of acyclovir between the test and reference sets of products. The cutaneous BA of acyclovir from the set of reference creams was substantially higher than from the set of test creams. CONCLUSIONS This research elucidates how differences in the composition or manufacturing of product formulations can alter Q3 attributes that modulate myriad aspects of topical product performance. The results demonstrate the importance of understanding the Q3 attributes of topical semisolid drug products, and of developing appropriate product characterization tests. The toolkit developed here can be utilized to guide topical product development, and to mitigate the risk of differences in product performance, thereby supporting a demonstration of bioequivalence (BE) for prospective topical generic products and reducing the reliance on comparative clinical endpoint BE studies.
Collapse
Affiliation(s)
- Y H Mohammed
- Therapeutics Research Centre, Frazer Institute, The University of Queensland, Brisbane, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| | - S N Namjoshi
- Therapeutics Research Centre, Frazer Institute, The University of Queensland, Brisbane, Australia
| | - N Jung
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - M Windbergs
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt, Germany
| | - H A E Benson
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - J E Grice
- Therapeutics Research Centre, Frazer Institute, The University of Queensland, Brisbane, Australia
| | - S G Raney
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, USA
| | - M S Roberts
- Therapeutics Research Centre, Frazer Institute, The University of Queensland, Brisbane, Australia
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
- Therapeutics Research Centre, Basil Hetzel Institute for Translational Medical Research, The Queen Elizabeth Hospital, Adelaide, Australia
| |
Collapse
|
6
|
Xiao M, Wang Z, An Y, Dai Y, Wang X, Zhu Z. Fabrication and mechanical modelling of dissolvable PVA/PVP composite microneedles with biocompatibility for efficient transdermal delivery of ibuprofen. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1439-1454. [PMID: 38590076 DOI: 10.1080/09205063.2024.2333627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 04/10/2024]
Abstract
Microneedles offer minimally invasive, user-friendly, and subcutaneously accessible transdermal drug delivery and have been widely investigated as an effective transdermal delivery system. Ibuprofen is a common anti-inflammatory drug to treat chronic inflammation. It is crucial to develop microneedle patches capable of efficiently delivering ibuprofen through the skin for the effective treatment of arthritis patients requiring repeated medication. In this study, the mechanical properties of a new type of polymer microneedle were studied by finite element analysis, and the experimental results showed that the microneedle could effectively deliver drugs through the skin. In addition, a high ibuprofen-loaded microneedle patch was successfully prepared by micromolding and subjected to evaluation of its infrared spectrum morphology and dissolve degree. The morphology of microneedles was characterized by scanning electron microscopy, and the mechanical properties were assessed using a built linear stretching system. In the in-vitro diffusion cell drug release test, the microneedle released 85.2 ± 1.52% (210 ± 3.7 μg) ibuprofen in the modified Franz diffusion within 4 h, exhibiting a higher drug release compared to other drug delivery methods. This study provides a portable, safe and efficient treatment approach for arthritis patients requiring daily repeated medication.
Collapse
Affiliation(s)
- Min Xiao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yanru An
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yingqi Dai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinghao Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Qian Y, Wei X, Wang Y, Yin S, Chen J, Dong J. Development of a novel human stratum corneum mimetic phospholipid -vesicle-based permeation assay models for in vitro permeation studies. Drug Dev Ind Pharm 2024; 50:410-419. [PMID: 38497274 DOI: 10.1080/03639045.2024.2331242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.
Collapse
Affiliation(s)
- Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
8
|
Mikimoto D, Mori M, Toyoda A, Yo K, Oda H, Takeuchi S. Culture insert device with perfusable microchannels enhances in vitroskin model development and barrier function assessment. Biofabrication 2024; 16:035006. [PMID: 38569494 DOI: 10.1088/1758-5090/ad3a15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/03/2024] [Indexed: 04/05/2024]
Abstract
The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.
Collapse
Affiliation(s)
| | - Masahito Mori
- Research Center for Beauty and Health Care Product Development Department, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Akemi Toyoda
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | - Kazuyuki Yo
- Frontier Research Center, POLA Chemical Industries, Inc., Kanagawa, Japan
| | | | | |
Collapse
|
9
|
Ling Z, Zheng Y, Li Z, Zhao P, Chang H. Self-Healing Porous Microneedles Fabricated Via Cryogenic Micromoulding and Phase Separation for Efficient Loading and Sustained Delivery of Diverse Therapeutics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307523. [PMID: 38018331 DOI: 10.1002/smll.202307523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Indexed: 11/30/2023]
Abstract
Sustained-release drug delivery formulations are preferable for treating various diseases as they enhance and prolong efficacy, minimize adverse effects, and avoid frequent dosing. However, these formulations are associated with poor patient compliance, require trained personnel for administration, and involve harsh manufacturing conditions that compromise drug stability. Here, a self-healing biodegradable porous microneedle (PMN) patch is reported for sustained drug delivery. The PMN patch is fabricated by a cryogenic micromoulding followed by phase separation, leading to formation of interconnected pores on the surface and internals of MNs. The pores with self-healing feature enable the PMNs to load hydrophilic drugs with different molecular weights in a mild and efficient manner. The healed PMNs can easily penetrate into the skin under press and detach from the supporting substrate under shear, thereby acting as implantable drug reservoirs for achieving sustained release of drugs for at least 40 days. One-time administration of desired therapeutics using the sustained-release healed PMNs resulted in stronger and longer-lasting efficacy in mitigating psoriasis and eliciting immunity compared to conventional methods with multiple administrations. The self-healing PMN patch for self-administrated and long-acting drug delivery can eventually improve medication adherence in prophylactic and therapeutic protocols that typically require frequent dosages.
Collapse
Affiliation(s)
- Zhixin Ling
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yanting Zheng
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zhiming Li
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Puxuan Zhao
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Hao Chang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
10
|
Nagano E, Odake K, Akiyoshi T, Shimma S. Development of a Mass Spectrometry Imaging Method to Evaluate the Penetration of Moisturizing Components Coated on Surgical Gloves into Artificial Membranes. Mass Spectrom (Tokyo) 2024; 13:A0145. [PMID: 38577169 PMCID: PMC10990723 DOI: 10.5702/massspectrometry.a0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Skin dryness and irritant contact dermatitis induced by the prolonged use of surgical gloves are issues faced by physicians. To address these concerns, manufacturers have introduced surgical gloves that incorporate a moisturizing component on their inner surface, resulting in documented results showing a reduction in hand dermatitis. However, the spatial distribution of moisturizers applied to surgical gloves within the integument remains unclear. Using matrix-assisted laser desorption/ionization (MALDI)-mass spectrometry imaging (MSI), we investigated the spatial distribution of moisturizers in surgical gloves within artificial membranes. Recently, dermal permeation assessments using three-dimensional models, silicone membranes, and Strat-M have gained attention as alternative approaches to animal testing. Therefore, in this study, we established an in vitro dermal permeation assessment of commercially available moisturizers in surgical gloves using artificial membranes. In this study, we offer a methodology to visualize the infiltration of moisturizers applied to surgical gloves into an artificial membrane using MALDI-MSI, while evaluating commercially available moisturizer-coated surgical gloves. Using our penetration evaluation method, we confirmed the infiltration of the moisturizers into the polyethersulfone 2 and polyolefin layers, which correspond to the epidermis and dermis of the skin, after the use of surgical gloves. The MSI-based method presented herein demonstrated the efficacy of evaluating the permeation of samples containing active ingredients.
Collapse
Affiliation(s)
- Erika Nagano
- Research and Development Department, Miruion Corporation, Ibaraki, Osaka 567–0085, Japan
| | - Kazuki Odake
- Research and Development Department, Miruion Corporation, Ibaraki, Osaka 567–0085, Japan
| | - Toru Akiyoshi
- Marketing Department, Cardinal Health K.K., Tokyo 163–1035, Japan
| | - Shuichi Shimma
- Research and Development Department, Miruion Corporation, Ibaraki, Osaka 567–0085, Japan
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565–0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565–0871, Japan
- Osaka University Shimadzu Omics Innovation Research Laboratory, Osaka University, Osaka 565–0871, Japan
| |
Collapse
|
11
|
Tang Q, Gross KY, Fakih HH, Jackson SO, Zain U.I. Abideen M, Monopoli KR, Blanchard C, Bouix-Peter C, Portal T, Harris JE, Khvorova A, Alterman JF. Multispecies-targeting siRNAs for the modulation of JAK1 in the skin. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102117. [PMID: 38304729 PMCID: PMC10831156 DOI: 10.1016/j.omtn.2024.102117] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Identifying therapeutic oligonucleotides that are cross-reactive to experimental animal species can dramatically accelerate the process of preclinical development and clinical translation. Here, we identify fully chemically-modified small interfering RNAs (siRNAs) that are cross-reactive to Janus kinase 1 (JAK1) in humans and a large variety of other species. We validated the identified siRNAs in silencing JAK1 in cell lines and skin tissues of multiple species. JAK1 is one of the four members of the JAK family of tyrosine kinases that mediate the signaling transduction of many inflammatory cytokine pathways. Dysregulation of these pathways is often involved in the pathogenesis of various immune disorders, and modulation of JAK family enzymes is an effective strategy in the clinic. Thus, this work may open up unprecedented opportunities for evaluating the modulation of JAK1 in many animal models of human inflammatory skin diseases. Further chemical engineering of the optimized JAK1 siRNAs may expand the utility of these compounds for treating immune disorders in additional tissues.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Katherine Y. Gross
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hassan H. Fakih
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samuel O. Jackson
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Kathryn R. Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | | - John E. Harris
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Julia F. Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
12
|
Alavi SE, Alavi SZ, Nisa MU, Koohi M, Raza A, Ebrahimi Shahmabadi H. Revolutionizing Wound Healing: Exploring Scarless Solutions through Drug Delivery Innovations. Mol Pharm 2024; 21:1056-1076. [PMID: 38288723 DOI: 10.1021/acs.molpharmaceut.3c01072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales. Therefore, there is a need for effective drug delivery systems (DDSs) to address these issues. The objective of this review is to provide a comprehensive exposition of the mechanisms underlying the skin healing process, the factors and materials used in engineering DDSs, and the different DDSs used in wound care. Furthermore, this investigation will delve into the examination of emergent technologies and potential avenues for enhancing the efficacy of wound care devices.
Collapse
Affiliation(s)
- Seyed Ebrahim Alavi
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Seyed Zeinab Alavi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Mehr Un Nisa
- Nishtar Medical University and Hospital, Multan 60000, Pakistan
| | - Maedeh Koohi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| | - Aun Raza
- School of Pharmacy, Jiangsu University, Zhenjiang 202013, PR China
| | - Hasan Ebrahimi Shahmabadi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan 7718175911, Iran
| |
Collapse
|
13
|
Shetty A, Dubey A, Chrystle J, M M, John A, N A, Das P, Hebbar S. Fabrication and in vitro characterization of curcumin film-forming topical spray: An integrated approach for enhanced patient comfort and efficacy. F1000Res 2024; 13:138. [PMID: 38779313 PMCID: PMC11109671 DOI: 10.12688/f1000research.142860.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 05/25/2024] Open
Abstract
Background Curcumin, known for its anti-inflammatory properties, was selected for the developing consumer friendly film forming spray that offers precise delivery of curcumin and and improves patient adherence. Methods An optimized film-forming solution was prepared by dissolving curcumin (1%), Eudragit RLPO (5%), propylene glycol (1%), and camphor (0.5%) in ethanol: acetone (20:80) as the solvent. The solution was filled in a spray container which contained 70% solutions and 30% petroleum gas. In-vitro characterization was performed. Results Potential anti-inflammatory phytoconstituents were extracted from the PubChem database and prepared as ligands, along with receptor molecules (nsp10-nsp16), for molecular docking using Autodock Vina. The docking study showed the lowest binding energy of -8.2 kcal/mol indicates better binding affinities. The optimized formulation consisted of ethanol:acetone (20:80) as the solvent, Eudragit RLPO (5%) as the polymer, propylene glycol (1%) as the plasticizer, and camphor oil (0.5%) as the penetration enhancer. The optimized formulation exhibited pH of 5.8 ± 0.01, low viscosity, low film formation time (19.54 ± 0.78 sec), high drug content (8.243 ± 0.43 mg/mL), and extended ex vivo drug permeation (85.08 ± 0.09%) for nine hours. Consequently, the formulation was incorporated into a container using 30% liquefied petroleum gas, delivering 0.293 ± 0.08 mL per actuation, containing 1.53 ± 0.07 mg of the drug. The film-forming spray exhibited higher cumulative drug permeation (83.94 ± 0.34%) than the marketed cream formulation and pure drug solution after 9 h, with an enhancement ratio of 14. Notably, the film-forming spray exhibited no skin irritation and remained stable for over three months. Conclusions The developed curcumin film-forming system is promising as a carrier for wound management because of its convenient administration and transport attributes. Further in vivo studies are required to validate its efficacy in wound management.
Collapse
Affiliation(s)
- Amitha Shetty
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Akhilesh Dubey
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Jeshma Chrystle
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Manohar M
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Anish John
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Amitha N
- Department of Pharmaceutics, Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Deralakatte, Mangalore, Karnataka, 575018, India
| | - Paramita Das
- Department of Pharma chemistry, Krupanidhi College of Pharmacy, Bangaluru, Karnataka, 560035, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| |
Collapse
|
14
|
Shin HJ, Lee BK, Kang HA. Transdermal Properties of Cell-Penetrating Peptides: Applications and Skin Penetration Mechanisms. ACS APPLIED BIO MATERIALS 2024; 7:1-16. [PMID: 38079575 DOI: 10.1021/acsabm.3c00659] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Cell-penetrating peptides (CPPs) consist of 5-30 amino acids with intracellular transduction abilities and diverse physicochemical properties, origins, and sequences. Although recent developments in bioinformatics have facilitated the prediction of CPP candidates with the potential for transduction into cells, the mechanisms by which CPPs penetrate cells and various tissues have not yet been elucidated at the molecular interaction level. Recently, the skin-penetrating ability of CPPs has gained wide attention and emerged as a simple and effective strategy for the delivery of macromolecules into the skin. Studies on the skin structure have suggested that the penetration potential of CPPs is based on the molecular interactions and characteristics of the lipid lamellar structure between corneocytes in the stratum corneum. This review provides a brief overview of the general properties, transduction mechanisms, applications, and safety issues of CPPs, focusing on CPPs with transdermal properties, that are currently being used to develop therapeutics and cosmetics.
Collapse
Affiliation(s)
- Hee Je Shin
- ProCell R&D Center, ProCell Therapeutics, Inc., #1009 Ace-Twin Tower II, 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
- Department of Life Science, College of Natural Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Byung Kyu Lee
- ProCell R&D Center, ProCell Therapeutics, Inc., #1009 Ace-Twin Tower II, 273, Digital-ro, Guro-gu, Seoul 08381, Republic of Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, 84, Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
15
|
Hölken JM, Friedrich K, Merkel M, Blasius N, Engels U, Buhl T, Mewes KR, Vierkotten L, Teusch NE. A human 3D immune competent full-thickness skin model mimicking dermal dendritic cell activation. Front Immunol 2023; 14:1276151. [PMID: 38022577 PMCID: PMC10657825 DOI: 10.3389/fimmu.2023.1276151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
We have integrated dermal dendritic cell surrogates originally generated from the cell line THP-1 as central mediators of the immune reaction in a human full-thickness skin model. Accordingly, sensitizer treatment of THP-1-derived CD14-, CD11c+ immature dendritic cells (iDCs) resulted in the phosphorylation of p38 MAPK in the presence of 1-chloro-2,4-dinitrobenzene (DNCB) (2.6-fold) as well as in degradation of the inhibitor protein kappa B alpha (IκBα) upon incubation with NiSO4 (1.6-fold). Furthermore, NiSO4 led to an increase in mRNA levels of IL-6 (2.4-fold), TNF-α (2-fold) and of IL-8 (15-fold). These results were confirmed on the protein level, with even stronger effects on cytokine release in the presence of NiSO4: Cytokine secretion was significantly increased for IL-8 (147-fold), IL-6 (11.8-fold) and IL-1β (28.8-fold). Notably, DNCB treatment revealed an increase for IL-8 (28.6-fold) and IL-1β (5.6-fold). Importantly, NiSO4 treatment of isolated iDCs as well as of iDCs integrated as dermal dendritic cell surrogates into our full-thickness skin model (SM) induced the upregulation of the adhesion molecule clusters of differentiation (CD)54 (iDCs: 1.2-fold; SM: 1.3-fold) and the co-stimulatory molecule and DC maturation marker CD86 (iDCs ~1.4-fold; SM:~1.5-fold) surface marker expression. Noteworthy, the expression of CD54 and CD86 could be suppressed by dexamethasone treatment on isolated iDCs (CD54: 1.3-fold; CD86: 2.1-fold) as well as on the tissue-integrated iDCs (CD54: 1.4-fold; CD86: 1.6-fold). In conclusion, we were able to integrate THP-1-derived iDCs as functional dermal dendritic cell surrogates allowing the qualitative identification of potential sensitizers on the one hand, and drug candidates that potentially suppress sensitization on the other hand in a 3D human skin model corresponding to the 3R principles ("replace", "reduce" and "refine").
Collapse
Affiliation(s)
- Johanna Maria Hölken
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katja Friedrich
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marion Merkel
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Nelli Blasius
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Ursula Engels
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Timo Buhl
- Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Göttingen, Germany
| | - Karsten Rüdiger Mewes
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Lars Vierkotten
- Alternative Methods and Tissue Engineering, Henkel AG & Co. KGaA, Düsseldorf, Germany
| | - Nicole Elisabeth Teusch
- Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
16
|
Czyz CM, Kunth PW, Gruber F, Kremslehner C, Hammers CM, Hundt JE. Requisite instruments for the establishment of three-dimensional epidermal human skin equivalents-A methods review. Exp Dermatol 2023; 32:1870-1883. [PMID: 37605856 DOI: 10.1111/exd.14911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Human skin equivalents (HSEs) are three-dimensional skin organ culture models raised in vitro. This review gives an overview of common techniques for setting up HSEs. The HSE consists of an artificial dermis and epidermis. 3T3-J2 murine fibroblasts, purchased human fibroblasts or freshly isolated and cultured fibroblasts, together with other components, for example, collagen type I, are used to build the scaffold. Freshly isolated and cultured keratinocytes are seeded on top. It is possible to add other cell types, for example, melanocytes, to the HSE-depending on the research question. After several days and further steps, the 3D skin can be harvested. Additionally, we show possible markers and techniques for evaluation of artificial skin. Furthermore, we provide a comparison of HSEs to human skin organ culture, a model which employs human donor skin. We outline advantages and limitations of both models and discuss future perspectives in using HSEs.
Collapse
Affiliation(s)
- Christianna Marie Czyz
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Paul Werner Kunth
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
| | - Florian Gruber
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christopher Kremslehner
- Christian Doppler Laboratory for Skin Multimodal Analytical Imaging of Aging and Senescence - SKINMAGINE, Medical University of Vienna, Vienna, Austria
| | - Christoph Matthias Hammers
- Lübeck Institute of Experimental Dermatology (LIED), University of Lübeck, Lübeck, Germany
- Department of Dermatology, Venereology and Allergology, University of Kiel, Kiel, Germany
| | | |
Collapse
|
17
|
Feucherolles M, Le W, Bour J, Jacques C, Duplan H, Frache G. A Comprehensive Comparison of Tissue Processing Methods for High-Quality MALDI Imaging of Lipids in Reconstructed Human Epidermis. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2469-2480. [PMID: 37843012 PMCID: PMC10623569 DOI: 10.1021/jasms.3c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has become an important tool for skin analysis, as it allows the simultaneous detection and localization of diverse molecular species within a sample. The use of in vivo and ex vivo human skin models is costly and presents ethical issues; therefore, reconstructed human epidermis (RHE) models, which mimic the upper part of native human skin, represent a suitable alternative to investigate adverse effects of chemicals applied to the skin. However, there are few publications investigating the feasibility of using MALDI MSI on RHE models. Therefore, the aim of this study was to investigate the effect of sample preparation techniques, i.e., substrate, sample thickness, washing, and matrix recrystallization, on the quality of MALDI MSI for lipids analysis of the SkinEthic RHE model. Images were generated using an atmospheric pressure MALDI source coupled to a high-resolution mass spectrometer with a pixel size of 5 μm. Masses detected in a defined region of interest were analyzed and annotated using the LipostarMSI platform. The results indicated that the combination of (1) coated metallic substrates, such as APTES-coated stainless-steel plates, (2) tissue sections of 6 μm thickness, and (3) aqueous washing before HCCA matrix spraying (without recrystallization), resulted in images with a significant signal intensity as well as numerous m/z values. This refined methodology using AP-MALDI coupled to a high-resolution mass spectrometer should improve the current sample preparation workflow to evaluate changes in skin composition after application of dermatocosmetics.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - William Le
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Jérôme Bour
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| | - Carine Jacques
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Hélène Duplan
- Pierre
Fabre Dermo-Cosmétique et Personal Care, Centre R&D Pierre Fabre, Avenue Hubert Curien, 31025 Toulouse Cedex 01, France
| | - Gilles Frache
- Luxembourg
Institute of Science and Technology (LIST), Molecular and Thermal Analysis, Materials Research
and Technology, L-4422 Belvaux, Luxembourg
| |
Collapse
|
18
|
Bouchard KV, Costin GE. Promoting New Approach Methodologies (NAMs) for research on skin color changes in response to environmental stress factors: tobacco and air pollution. FRONTIERS IN TOXICOLOGY 2023; 5:1256399. [PMID: 37886123 PMCID: PMC10598764 DOI: 10.3389/ftox.2023.1256399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/28/2023] Open
Abstract
Aging is one of the most dynamic biological processes in the human body and is known to carry significant impacts on individuals' self-esteem. Skin pigmentation is a highly heritable trait made possible by complex, strictly controlled cellular and molecular mechanisms. Genetic, environmental and endocrine factors contribute to the modulation of melanin's amount, type and distribution in the skin layers. One of the hallmarks of extrinsic skin aging induced by environmental stress factors is the alteration of the constitutive pigmentation pattern clinically defined as senile lentigines and/or melasma or other pigmentary dyschromias. The complexity of pollutants and tobacco smoke as environmental stress factors warrants a thorough understanding of the mechanisms by which they impact skin pigmentation through repeated and long-term exposure. Pre-clinical and clinical studies demonstrated that pollutants are known to induce reactive oxygen species (ROS) or inflammatory events that lead directly or indirectly to skin hyperpigmentation. Another mechanistic direction is provided by Aryl hydrocarbon Receptors (AhR) which were shown to mediate processes leading to skin hyperpigmentation in response to pollutants by regulation of melanogenic enzymes and transcription factors involved in melanin biosynthesis pathway. In this context, we will discuss a diverse range of New Approach Methodologies (NAMs) capable to provide mechanistic insights of the cellular and molecular pathways involved in the action of environmental stress factors on skin pigmentation and to support the design of raw ingredients and formulations intended to counter their impact and of any subsequently needed clinical studies.
Collapse
|
19
|
Kadowaki R, Ogata F, Fushiki A, Daimyo S, Deguchi S, Otake H, Nagata M, Sasaki H, Kawasaki N, Nagai N. Skin absorption of felbinac solid nanoparticles in gel formulation containing l-menthol and carboxypolymethylene. J Pharm Health Care Sci 2023; 9:20. [PMID: 37277876 DOI: 10.1186/s40780-023-00290-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/17/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND It is important to design an effective formulation to enhance the skin penetration, and nanotechnologies have been used in dermal and transdermal drug delivery. In this study, we prepared formulations (gels) containing l-menthol and felbinac (FEL) solid nanoparticles (FEL-NP gel) for topical application, and investigated the local and systemic absorption of the prepared FEL-NP gel. METHODS FEL solid nanoparticles were obtained by bead milling of FEL powder (microparticles), and a topical formulation (FEL-NP gel) consisting of 1.5% FEL solid nanoparticles), 2% carboxypolymethylene, 2% l-menthol, 0.5% methylcellulose, and 5% 2-hydroxypropyl-β-cyclodextrin (w/w %) were prepared. RESULTS The particle size of FEL nanoparticles was 20-200 nm. The released FEL concentration from FEL-NP gel was significantly higher than that from FEL gel without bead mill treatment (carboxypolymethylene gel in which FEL microparticles (MPs) instead of FEL nanoparticles were incorporated, FEL-MP gel), and FEL was released as nanoparticles from the gel. Moreover, both transdermal penetration and percutaneous absorption of FEL-NP gel were significantly increased compared with those of FEL-MP gel, and the area under the FEL concentration-time curve (AUC) of FEL-NP gels was 1.52- and 1.38-fold of commercially available FEL ointment and FEL-MP gel, respectively. In addition, after 24 h of treatment, the FEL content in rat skin treated with FEL-NP gels was 1.38- and 2.54-fold higher than that when treated with commercially available FEL ointment and FEL-MP gel, respectively. Moreover, the enhanced skin penetration of FEL-NP gels was significantly attenuated by inhibition of energy-dependent endocytosis, such as clathrin-mediated endocytosis. CONCLUSIONS We successfully prepared a topically applied carboxypolymethylene gel containing FEL nanoparticles. In addition, we observed that the endocytosis pathway was mainly related to the high skin penetration of FEL nanoparticles, and FEL-NP gel application resulted in high local tissue concentration and systemic absorption of FEL. These findings provide useful information for the design of topically applied nanoformulations against inflammation by providing local and systemic effects.
Collapse
Affiliation(s)
- Reita Kadowaki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Fumihiko Ogata
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Aoi Fushiki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Saki Daimyo
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Saori Deguchi
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Hiroko Otake
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Mayumi Nagata
- Department of Ophthalmology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, 321-0293, Tochigi, Japan
| | - Hiroshi Sasaki
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Naohito Kawasaki
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, 577-8502, Osaka, Japan.
| |
Collapse
|
20
|
Rao MR, Deshpande S, Deshpande P. Dapsone-Loaded Mixed Micellar Gel for Treatment OF Acne Vulgaris. AAPS PharmSciTech 2023; 24:109. [PMID: 37100968 DOI: 10.1208/s12249-023-02564-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/04/2023] [Indexed: 04/28/2023] Open
Abstract
Mixed polymeric micelles are potential nanocarriers for topical drug delivery. Dapsone (DAP) is an antibacterial used as anti-acne agent, but challenged by low water solubility and poor skin permeability. In the present study, DAP-loaded mixed micellar gel was developed comprising Pluronics F-68 and F-127. Micelles were prepared by solvent evaporation method and particle size, ex vivo permeation, drug loading, and entrapment efficiency were determined. Central Composite Design was used to optimize formulation. Independent variables were concentration of Pluronics at three levels while micelle size and drug loading capacities were dependent variables. Droplet size ranged from 400 to 500 nm. Transmission electron microscopy revealed spherical morphology of micelles. Optimized micelles were incorporated into gel base using HPMC K100M, Sodium CMC, and Carbopol 980 as gelling agents. Gels were evaluated for pH, drug content, spreadability, rheology, syneresis, ex vivo permeation, and subacute dermal toxicity. Compared with solubility of free DAP (0.24+0.056 µg/ml), solubility in mixed micelles was 18.42±3.4 µg/ml in water at room temperature. Order of spreadability of gels was Na CMC < HPMC < Carbopol 980. Carbopol gels displayed thixotropy with index of 3.17. Syneresis for all gels from day 0 to day 30 was found to be in range of 4.2 to 15.6% w/w. Subacute dermal toxicity studies showed no signs of erythema and edema on rat skin until 21 days. These results suggest that mixed micelles can significantly increase solubility and permeability and sustain release of DAP and are suitable carriers for topical DAP delivery in anti-acne therapies.
Collapse
Affiliation(s)
- Monica Rp Rao
- Department of Pharmaceutics, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Maharashtra, 411001, Pune, India.
| | - Sushant Deshpande
- Department of Pharmaceutical Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Pune, 411001, India
| | - Padmanabh Deshpande
- Department of Pharmaceutical Quality Assurance, AISSMS College of Pharmacy, Kennedy Road, Near R.T.O., Pune, 411001, India
| |
Collapse
|
21
|
Biondo NE, Argenta DF, Caon T. A Comparative Analysis of Biological and Synthetic Skin Models for Drug Transport Studies. Pharm Res 2023; 40:1209-1221. [PMID: 36959412 DOI: 10.1007/s11095-023-03499-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/04/2023] [Indexed: 03/25/2023]
Abstract
Ethical restrictions as well as practical or economic issues related to use of animal and human skin has been the main reason the growth in the number of investigations with alternative models. Reconstructed skin models, for example, have been useful to evaluate the in vitro toxicity of compounds; however, these models usually overestimate the amount of drug permeated due to impaired barrier properties. In this review, the performance of synthetic and biological skin models in transport studies was compared by considering two compounds with different physicochemical properties. The advantages and limitations of each skin model are discussed in detail. Although synthetic and reconstructed skin models have shown to be useful in the formulation optimization step, they present many limitations: (1) impaired barrier properties; (2) lack of follicular transport; (3) no metabolism in synthetic membranes; (4) differences in terms of lipid organization; (5) more affected by formulation constituents. Therefore, animal and human tissues should still be prioritized in drug transport studies until new advances in alternative models are achieved. Investigations of the impact of cell-culture conditions on skin formation, in turn, bring perspectives related to the development of unhealthy/injured skin models (an aspect that still deserves attention).
Collapse
Affiliation(s)
- Nicole Esposto Biondo
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Débora Fretes Argenta
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil
| | - Thiago Caon
- Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, S/N - Trindade, Florianópolis, SC, 88040-900, Brazil.
| |
Collapse
|
22
|
Zhang S, Cheng Z, Yang M, Guo Z, Zhao L, Baqar M, Lu Y, Wang L, Sun H. Percutaneous Penetration of Liquid Crystal Monomers (LCMs) by In Vitro Three-Dimensional Human Skin Equivalents: Possible Mechanisms and Implications for Human Dermal Exposure Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4454-4463. [PMID: 36867107 DOI: 10.1021/acs.est.2c07844] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liquid crystal monomers (LCMs) are indispensable materials in liquid crystal displays, which have been recognized as emerging persistent, bioaccumulative, and toxic organic pollutants. Occupational and nonoccupational exposure risk assessment suggested that dermal exposure is the primary exposure route for LCMs. However, the bioavailability and possible mechanisms of dermal exposure to LCMs via skin absorption and penetration remain unclear. Herein, we used EpiKutis 3D-Human Skin Equivalents (3D-HSE) to quantitatively assess the percutaneous penetration of nine LCMs, which were detected in e-waste dismantling workers' hand wipes with high detection frequencies. LCMs with higher log Kow and greater molecular weight (MW) were more difficult to penetrate through the skin. Molecular docking results showed that ABCG2 (an efflux transporter) may be responsible for percutaneous penetration of LCMs. These results suggest that passive diffusion and active efflux transport may be involved in the penetration of LCMs across the skin barrier. Furthermore, the occupational dermal exposure risks evaluated based on the dermal absorption factor suggested the underestimation of the continuous LCMs' health risks via dermal previously.
Collapse
Affiliation(s)
- Shaohan Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhipeng Cheng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ming Yang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zijin Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuan Lu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
23
|
Ho MJ, Park HJ, Kang MJ. Neutral Oil-Incorporated Liposomal Nanocarrier for Increased Skin Delivery of Ascorbic Acid. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2294. [PMID: 36984174 PMCID: PMC10051652 DOI: 10.3390/ma16062294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In this study, a neutral oil-incorporated liposomal system (lipo-oil-some, LOS) was designed to improve the skin absorption of ascorbic acid (Vit C), and the effects of an edge activator and neutral oil on the skin absorption of Vit C were evaluated. As components of the LOS system, sodium deoxycholate, polysorbate 80, and cholesterol were screened as edge activators, and camellia oil, tricaprylin, and grapeseed oil were employed as neutral oils. The LOS systems prepared by the ethanol injection method were spherical in shape, 130-350 nm in size, and had 4-27% Vit C loading efficiency (%). In a skin absorption study using a Franz diffusion cell mounted with porcine skin, the LOS system prepared with sodium deoxycholate (10 w/w% of phospholipid) exhibited 1.2-and 2.9-fold higher absorption than those prepared with polysorbate 80 and cholesterol, respectively. Moreover, the type of neutral oil had a marked effect on the absorption of Vit C; the liposomal system containing camellia oil provided 1.3 to 1.8 times higher flux (45.4 μg/cm2∙h) than vesicles with tricaprylin or grapeseed oil, respectively. The optimized lipid nanocarrier is expected to be a promising tool for promoting the skin absorption of Vit C and improving its dermatological functions.
Collapse
|
24
|
Sheikh M, Qassem M, Kyriacou PA. Optical determination of lithium therapeutic levels in micro-volumes of interstitial fluid. Bipolar Disord 2023; 25:136-147. [PMID: 36591648 DOI: 10.1111/bdi.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Long-term management of bipolar disorder (BD), characterized by mood fluctuating between episodes of mania and depression, involves the regular taking of lithium preparations as the most reliable mood stabilizer for bipolar patients. However, despite its effectiveness in preventing and reducing mood swings and suicidality, lithium has a very narrow therapeutic index and it is crucial to carefully monitor lithium plasma levels as concentrations >1.2 mmol/L are potentially toxic and can be fatal. Current methods of lithium therapeutic monitoring involve frequent blood tests, which have several drawbacks related to the invasiveness of the technique, comfort, cost and reliability. Dermal interstitial fluid (ISF) is an accessible and information-rich biofluid, and correlations have been found between blood and ISF levels of lithium medication. METHODS In the current study, we sought to investigate the optical determination of lithium therapeutic concentrations in samples of ISF extracted from porcine skin utilizing a microneedle-based approach. Monitoring of lithium levels in porcine ISF was achieved by employing a spectrophotometric method based on the reaction between the chromogenic agent Quinizarin and lithium. RESULTS The resulting spectra show spectral variations which relate to lithium concentrations of lithium in samples of porcine ISF with a coefficient of determination (R2 ) of 0.9. This study has demonstrated successfully that therapeutic levels of lithium in micro-volumes of porcine ISF can be measured with a high level of accuracy utilizing spectroscopic techniques. CONCLUSIONS The results support the future development of a miniaturized and minimally-invasive device for lithium monitoring in bipolar patients.
Collapse
Affiliation(s)
- Mahsa Sheikh
- Research Centre for Biomedical Engineering, City University of London, London, UK
| | - Meha Qassem
- Research Centre for Biomedical Engineering, City University of London, London, UK
| | | |
Collapse
|
25
|
Lechuga Y, Kandel G, Miguel JA, Martinez M. Development of an Automated Design Tool for FEM-Based Characterization of Solid and Hollow Microneedles. MICROMACHINES 2023; 14:133. [PMID: 36677194 PMCID: PMC9861112 DOI: 10.3390/mi14010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Microneedle design for biomedical applications, such as transdermal drug delivery, vaccination and transdermal biosensing, has lately become a rapidly growing research field. In this sense, finite element analysis has been extendedly used by microneedle designers to determine the most suitable structural parameters for their prototypes, and also to predict their mechanical response and efficiency during the insertion process. Although many proposals include computer-aided tools to build geometrical models for mechanical analysis, there is a lack of software utilities intended to automate the design process encompassing geometrical modeling, simulation setup and postprocessing of results. This work proposes a novel MATLAB-based design tool for microneedle arrays that permits personalized selection of the basic characteristics of a mechanical model. The tool automatically exports the selected options to an ANSYS batch file, including instructions to run a static and a linear buckling analysis. Later, the subsequent simulation results can be retrieved for on-screen display and potential postprocessing. In addition, this work reviews recent proposals (2018-2022) about finite element model characterization of microneedles to establish the minimum set of features that any tool intended for automating a design process should provide.
Collapse
Affiliation(s)
- Yolanda Lechuga
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
| | - Gregoire Kandel
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
- ENSEIRB-MATMECA, Bordeaux INP, CEDEX, 33402 Talence, France
| | - Jose Angel Miguel
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
| | - Mar Martinez
- Group of Microelectronics Engineering, Department of Electronics Technology, Systems Engineering and Automation, Universidad de Cantabria, 39005 Santander, Spain
| |
Collapse
|
26
|
Wenande E, Chandra Gundavarapu S, Tam J, Bhayana B, Thomas CN, Farinelli WA, Vakoc BJ, Rox Anderson R, Haedersdal M. Local vasoregulative interventions impact drug concentrations in the skin after topical laser-assisted delivery. Lasers Surg Med 2022; 54:1288-1297. [PMID: 35593006 PMCID: PMC9675883 DOI: 10.1002/lsm.23558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/30/2022]
Abstract
INTRODUCTION The ability of ablative fractional lasers (AFL) to enhance topical drug uptake is well established. After AFL delivery, however, drug clearance by local vasculature is poorly understood. Modifications in vascular clearance may enhance AFL-assisted drug concentrations and prolong drug dwell time in the skin. Aiming to assess the role and modifiability of vascular clearance after AFL-assisted delivery, this study examined the impact of vasoregulative interventions on AFL-assisted 5-fluorouracil (5-FU) concentrations in in vivo skin. METHODS 5-FU uptake was assessed in intact and AFL-exposed skin in a live pig model. After fractional CO2 laser exposure (15 mJ/microbeam, 5% density), vasoregulative intervention using topical brimonidine cream, epinephrine solution, or pulsed dye laser (PDL) was performed in designated treatment areas, followed by a single 5% 5-FU cream application. At 0, 1, 4, 48, and 72 h, 5-FU concentrations were measured in 500 and 1500 μm skin layers by mass spectrometry (n = 6). A supplemental assessment of blood flow following AFL ± vasoregulation was performed using optical coherence tomography (OCT) in a human volunteer. RESULTS Compared to intact skin, AFL facilitated a prompt peak in 5-FU delivery that remained elevated up to 4 hours (1500 μm: 1.5 vs. 31.8 ng/ml [1 hour, p = 0.002]; 5.3 vs. 14.5 ng/ml [4 hours, p = 0.039]). However, AFL's impact was transient, with 5-FU concentrations comparable to intact skin at later time points. Overall, vasoregulative intervention with brimonidine or PDL led to significantly higher peak 5-FU concentrations, prolonging the drug's dwell time in the skin versus AFL delivery alone. As such, brimonidine and PDL led to twofold higher 5-FU concentrations than AFL alone in both skin layers by 1 hour (e.g., 500 μm: 107 ng/ml [brimonidine]; 96.9 ng/ml [PDL], 46.6 ng/ml [AFL alone], p ≤ 0.024), and remained significantly elevated at 4 hours (p ≤ 0.024). A similar pattern was observed for epinephrine, although trends remained nonsignificant (p ≥ 0.09). Prolonged 5-FU delivery was provided by PDL, resulting in sustained drug deposition compared to AFL alone at both 48 and 72 hours in the superficial skin layer (p ≤ 0.024). Supporting drug delivery findings, OCT revealed that increases in local blood flow after AFL were mitigated in test areas also exposed to PDL, brimonidine, or epinephrine, with PDL providing the greatest, sustained reduction in flow over 48 hours. CONCLUSION Vasoregulative intervention in conjunction with AFL-assisted delivery enhances and prolongs 5-FU deposition in in vivo skin.
Collapse
Affiliation(s)
- Emily Wenande
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| | - Sarat Chandra Gundavarapu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brijesh Bhayana
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carina N. Thomas
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - William A. Farinelli
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin J. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - R. Rox Anderson
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Merete Haedersdal
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Dermatology, Bispebjerg Hospital, University of Copenhagen, Copenhagen NV, Denmark
| |
Collapse
|
27
|
Daryab M, Faizi M, Mahboubi A, Aboofazeli R. Preparation and Characterization of Lidocaine-Loaded, Microemulsion-Based Topical Gels. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e123787. [PMID: 35765506 PMCID: PMC9191217 DOI: 10.5812/ijpr.123787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 01/26/2023]
Abstract
Microemulsion-based gels (MBGs) were prepared for transdermal delivery of lidocaine and evaluated for their potential for local anesthesia. Lidocaine solubility was measured in various oils, and phase diagrams were constructed to map the concentration range of oil, surfactant, cosurfactant, and water for oil-in-water (o/w) microemulsion (ME) domains, employing the water titration method at different surfactant/cosurfactant weight ratios. Refractive index, electrical conductivity, droplet size, zeta potential, pH, viscosity, and stability of fluid o/w MEs were evaluated. Carbomer® 940 was incorporated into the fluid drug-loaded MEs as a gelling agent. Microemulsion-based gels were characterized for spreadability, pH, viscosity, and in-vitro drug release measurements, and based on the results obtained, the best MBGs were selected and subsequently subjected to ex-vivo rat skin permeation anesthetic effect and irritation studies. Data indicated the formation of nano-sized droplets of MEs ranging from 20 - 52 nm with a polydispersity of less than 0.5. In-vitro release and ex-vivo permeation studies on MBGs showed significantly higher drug release and permeation in comparison to the marketed topical gel. Developed MBG formulations demonstrated greater potential for transdermal delivery of lidocaine and advantage over the commercially available gel product, and therefore, they may be considered as potential vehicles for the topical delivery of lidocaine.
Collapse
Affiliation(s)
- Mahshid Daryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Faizi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Aboofazeli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Transdermal Delivery of 2-PAM as a Tool to Increase the Effectiveness of Traditional Treatment of Organophosphate Poisoning. Int J Mol Sci 2022; 23:ijms232314992. [PMID: 36499322 PMCID: PMC9735786 DOI: 10.3390/ijms232314992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
For the first time, the efficacy of post-exposure treatment of organophosphate (OP) poisoning was increased by transdermal delivery of acetylcholinesterase (AChE) reactivator pyridine-2-aldoxime methochloride (2-PAM) as a preventive countermeasure. By selecting the optimal ratio of components, classical transfersomes (based on soybean phosphatidylcholine and Tween 20) and modified transfersomes (based on soybean phosphatidylcholine, Tween 20 and pyrrolidinium cationic surfactants with different hydrocarbon tail lengths) were obtained for 2-PAM encapsulation. Transfersomes modified with tetradecylpyrrolidinium bromide showed the best results in encapsulation efficiency and sustained release of 2-PAM from vesicles. Using Franz cells, it was found that the incorporation of surfactants into PC liposomes results in a more prolonged release of 2-PAM through the rat skin. Transfersomes containing 2-PAM, after exhaustive physical and chemical characterization, were embedded in a gel based on Carbopol® 940. A significantly high degree of erythrocyte AChE reactivation (23 ± 7%) was shown for 2-PAM in unmodified transfersomes in vivo. Preliminary transdermal administration of 2-PAM 24 h before emergency post-exposure treatment of OP poisoning leads to an increase in the survival rate of rats from 55% to 90%.
Collapse
|
29
|
Carreño GF, Álvarez-Figueroa MJ, González-Aramundiz JV. Dextran Nanocapsules with ω-3 in Their Nucleus: An Innovative Nanosystem for Imiquimod Transdermal Delivery. Pharmaceutics 2022; 14:pharmaceutics14112445. [PMID: 36432637 PMCID: PMC9695725 DOI: 10.3390/pharmaceutics14112445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Transdermal administration of molecules across the skin has gained interest because it can be considered a non-invasive route compared with traditional ones. However, going through the skin is challenging due to the presence of the stratum corneum, the main barrier of substances. For this reason, the goal of this research was the combination of omega-3 (ω-3) and a dextran sulfate assembly in a nanostructure form, which allows passage through the skin and improves the bioavailability and the therapeutic profiles of active molecules, such as imiquimod. Here we report a new colloidal system, named dextran nanocapsules, with ω-3 in its nucleus and a coat made of dextran sulfate with a size ~150 nm, monomodal distribution, and negative zeta potential (~-33 mV). This nanosystem encapsulates imiquimod with high efficacy (~86%) and can release it in a controlled fashion following Korsmeyer-Peppas kinetics. This formulation is stable under storage and physiological conditions. Furthermore, a freeze-dried product could be produced with different cryoprotectants and presents a good security profile in the HaCaT cell line. Ex vivo assays with newborn pig skin showed that dextran nanocapsules promote transdermal delivery and retention 10 times higher than non-encapsulated imiquimod. These promising results make this nanosystem an efficient vehicle for imiquimod transdermal delivery.
Collapse
Affiliation(s)
- Gisela F. Carreño
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Correspondence: (M.J.Á.-F.); (J.V.G.-A.)
| |
Collapse
|
30
|
Alvarez-Figueroa MJ, Alarcón DA, González-Aramúndiz JV. Effect of zeta potential of innovative lipid nanocapsules on triamcinolone transdermal delivery. Drug Deliv Transl Res 2022; 12:2740-2750. [PMID: 35284985 DOI: 10.1007/s13346-022-01134-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Two pegylated lipid nanocapsules for triamcinolone transdermal delivery were designed. Both present a size close to 50 nm and a single monomodal distribution in particle size (PI < 0.2), with a zeta potential of - 20 ± 2 and + 18 ± 1, respectively. The triamcinolone encapsulation efficacy varied between 68 and 80%. They proved to be stable under storage conditions (4 °C) for at least 6 months and at a physiological temperature, using different media, for 48 h. Also, they were shown not to affect cell viability at the concentrations used. For ex vivo transdermal experiments, newborn pig skin was used. With respect to the triamcinolone transdermal penetration, the nanocapsules were demonstrated to have an absorption promoting effect, both when the drug nanocapsules were in solution or loaded into the hydrogel, quantifying between 2 and 15 times more absorbed drug than the control. In addition, regarding the triamcinolone retained in the skin, it is observed that lipid nanocapsules act as triamcinolone promoters when the nanosystems were in solution and when they were included in the hydrogel. This vehicle showed a greater triamcinolone reservoir effect in comparison to the nanocapsules, proving to be a good vehicle to formulate triamcinolone transdermal delivery.
Collapse
Affiliation(s)
- María Javiera Alvarez-Figueroa
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile.
| | - Diego A Alarcón
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile
| | - José Vicente González-Aramúndiz
- Departamento de Farmacia, Facultad de Química Y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackena 4860, 7820436, Macul, Santiago, CP, Chile. .,Centro de Investigación en Nanotecnología Y Materiales Avanzados "CIEN-UC", Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
31
|
Tan TY, Wee HN, Lee LS, Han HY, Ong CT, Neela M, Masilamani J, Phan TT, Ching J. Sensitive ex vivo human skin transdermal assay testing method with mass spectrometric analysis for cosmetics application. J Cosmet Dermatol 2022; 21:6124-6128. [PMID: 35678279 DOI: 10.1111/jocd.15154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/24/2022] [Accepted: 06/04/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Cosmetics manufacturers are focused on cosmetic delivery systems into the skin, but the level of diffusion of the systems in the skin tissues is not well understood. The current methods, such as Franz diffusion, assess analyte diffusion in the whole skin or artificial membranes, which has limitations for understanding skin delivery systems. AIMS Our study aimed to create a transdermal delivery method which is based on dermal-epidermal separation of human skin, allowing us to assess each layer of skin separately for its efficacy. MATERIALS AND METHODS During the experiment, resveratrol was used as the target analyte by applying it to the skin and then separating it into dermis and epidermis. Each layer is treated individually and subjected to a high-resolution mass spectrometry analysis to detect resveratrol levels. As a result, the efficiency of resveratrol diffusion in the dermal and epidermal layers of the skin can be evaluated. RESULTS We found that resveratrol was detected in both the dermal and epidermal layers using our method. CONCLUSIONS Hence, we developed a sensitive method for transdermal delivery testing that can be used to evaluate skin delivery systems for cosmetic or pharmaceutical purposes.
Collapse
Affiliation(s)
- Tsze Yin Tan
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Hai Ning Wee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Lye Siang Lee
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Hong Yu Han
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore
| | - Chee Tian Ong
- CellResearch Corporation Group of Companies, Singapore City, Singapore
| | - M Neela
- CellResearch Corporation Group of Companies, Singapore City, Singapore
| | | | - Thang T Phan
- CellResearch Corporation Group of Companies, Singapore City, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, Singapore City, Singapore
| | - Jianhong Ching
- Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, Singapore City, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore City, Singapore
| |
Collapse
|
32
|
Krumpholz L, Clarke JF, Polak S, Wiśniowska B. An open-access data set of pig skin anatomy and physiology for modelling purposes. Database (Oxford) 2022; 2022:6754191. [PMID: 36208224 PMCID: PMC9547536 DOI: 10.1093/database/baac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022]
Abstract
The use of animal as opposed to human skin for in vitro permeation testing (IVPT) is an alternative, which can reduce logistical and economic issues. However, this surrogate also has ethical considerations and may not provide an accurate estimation of dermal absorption in humans due to physiological differences. The current project aimed to provide a detailed repository for the anatomical and physiological parameters of porcine skin, with the aim of parametrizing the Multi-phase Multi-layer Mechanistic Dermal Absorption (MPML MechDermA) Model in the Simcyp Simulator. The MPML MechDermA Model is a physiologically based pharmacokinetic (PBPK) model that accounts for the physiology and geometry of skin in a mechanistic mathematical modelling framework. The database provided herein contains information on 14 parameters related to porcine skin anatomy and physiology, namely, skin surface pH, number of stratum corneum (SC) layers, SC thickness, corneocyte thickness, corneocyte dimensions (length and width), volume fraction of water in corneocyte (where SC is divided into four parts with different water contents), intercellular lipid thickness, viable epidermis thickness, dermis thickness, hair follicle and hair shaft diameter, hair follicle depth and hair follicle density. The collected parameters can be used to parameterize PBPK models, which could be further utilized to bridge the gap between animal and human studies with interspecies extrapolation or to predict dermatokinetic properties typically assessed in IVPT experiments. Database URL: https://data.mendeley.com/datasets/mwz9xv4cpd/1.
Collapse
Affiliation(s)
- Laura Krumpholz
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Doctoral School in Medical and Health Sciences, Jagiellonian University Medical College, Łazarza Str. 16, Kraków 31-530, Poland
| | - James F Clarke
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, UK
| | - Sebastian Polak
- Pharmacoepidemiology and Pharmacoeconomics Unit, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, str., Kraków 30-688, Poland,Certara UK Ltd. (Simcyp Division), 1 Concourse Way, Sheffield S1 2BJ, UK
| | | |
Collapse
|
33
|
Waters LJ, Quah XL. Predicting skin permeability using HuskinDB. Sci Data 2022; 9:584. [PMID: 36151144 PMCID: PMC9508232 DOI: 10.1038/s41597-022-01698-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
A freely accessible database has recently been released that provides measurements available in the literature on human skin permeation data, known as the ‘Human Skin Database – HuskinDB’. Although this database is extremely useful for sourcing permeation data to help with toxicity and efficacy determination, it cannot be beneficial when wishing to consider unlisted, or novel compounds. This study undertakes analysis of the data from within HuskinDB to create a model that predicts permeation for any compound (within the range of properties used to create the model). Using permeability coefficient (Kp) data from within this resource, several models were established for Kp values for compounds of interest by varying the experimental parameters chosen and using standard physicochemical data. Multiple regression analysis facilitated creation of one particularly successful model to predict Kp through human skin based only on three chemical properties. The model transforms the dataset from simply a resource of information to a more beneficial model that can be used to replace permeation testing for a wide range of compounds.
Collapse
Affiliation(s)
- Laura J Waters
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK.
| | - Xin Ling Quah
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK
| |
Collapse
|
34
|
Transdermal Drug Delivery: Determining Permeation Parameters Using Tape Stripping and Numerical Modeling. Pharmaceutics 2022; 14:pharmaceutics14091880. [PMID: 36145628 PMCID: PMC9505649 DOI: 10.3390/pharmaceutics14091880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 11/26/2022] Open
Abstract
The function of transdermal drug delivery (TDD) systems is complex due to the multiple layers necessary for controlling the rate of drug release and the interaction with the patient’s skin. In this work, we study a particular aspect of a TDD system, that is, the parameters that describe the drug permeation through the skin layers. Studies of the diffusion of two compounds were carried out and supported by tape stripping and numerical modeling. The experimental studies are carried out for porcine skin in a Franz diffusion cell and tape stripping is used to quantify the concentration of drug in the stratum corneum. A multi-layered numerical model, based on Fickian diffusion, is used to determine the unknown parameters that define the skin’s permeability, such as the partition between layers and the mass transfer coefficients due to the surface barrier. A significant correlation was found between the numerical modeling and experimental results, indicating that the partition and mass transfer effects at the interlayer boundary are accurately represented in the numerical model. We find that numerical modeling is essential to fully describe the diffusion characteristics.
Collapse
|
35
|
Argel S, Castaño M, Jimenez DE, Rodríguez S, Vallejo MJ, Castro CI, Osorio MA. Assessment of Bacterial Nanocellulose Loaded with Acetylsalicylic Acid or Povidone-Iodine as Bioactive Dressings for Skin and Soft Tissue Infections. Pharmaceutics 2022; 14:1661. [PMID: 36015286 PMCID: PMC9412879 DOI: 10.3390/pharmaceutics14081661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial nanocellulose (BNC) is a novel nanomaterial known for its large surface area, biocompatibility, and non-toxicity. BNC contributes to regenerative processes in the skin but lacks antimicrobial and anti-inflammatory properties. Herein, the development of bioactive wound dressings by loading antibacterial povidone-iodine (PVI) or anti-inflammatory acetylsalicylic acid (ASA) into bacterial cellulose is presented. BNC is produced using Hestrin-Schramm culture media and loaded via immersion in PVI and ASA. Through scanning electron microscopy, BNC reveals open porosity where the bioactive compounds are loaded; the mechanical tests show that the dressing prevents mechanical wear. The loading kinetic and release assays (using the Franz cell method) under simulated fluids present a maximum loading of 589.36 mg PVI/g BNC and 38.61 mg ASA/g BNC, and both systems present a slow release profile at 24 h. Through histology, the complete diffusion of the bioactive compounds is observed across the layers of porcine skin. Finally, in the antimicrobial experiment, BNC/PVI produced an inhibition halo for Gram-positive and Gram-negative bacteria, confirming the antibacterial activity. Meanwhile, the protein denaturation test shows effective anti-inflammatory activity in BNC/ASA dressings. Accordingly, BNC is a suitable platform for the development of bioactive wound dressings, particularly those with antibacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Shaydier Argel
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Melissa Castaño
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Daiver Estiven Jimenez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Sebastian Rodríguez
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Maria Jose Vallejo
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Cristina Isabel Castro
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
| | - Marlon Andres Osorio
- Nanotechnology Engineering Program, School of Engineering, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- New Materials Research Group, Universidad Pontificia Bolivariana, Circular 1 #70-01, Medellin 050031, Colombia
- Biology Systems Research Group, School of Health Science, Universidad Pontificia Bolivariana, Cl. 78b #72a-159, Medellin 050034, Colombia
| |
Collapse
|
36
|
Caloni F, De Angelis I, Hartung T. Replacement of animal testing by integrated approaches to testing and assessment (IATA): a call for in vivitrosi. Arch Toxicol 2022; 96:1935-1950. [PMID: 35503372 PMCID: PMC9151502 DOI: 10.1007/s00204-022-03299-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
Alternative methods to animal use in toxicology are evolving with new advanced tools and multilevel approaches, to answer from one side to 3Rs requirements, and on the other side offering relevant and valid tests for drugs and chemicals, considering also their combination in test strategies, for a proper risk assessment.While stand-alone methods, have demonstrated to be applicable for some specific toxicological predictions with some limitations, the new strategy for the application of New Approach Methods (NAM), to solve complex toxicological endpoints is addressed by Integrated Approaches for Testing and Assessment (IATA), aka Integrated Testing Strategies (ITS) or Defined Approaches for Testing and Assessment (DA). The central challenge of evidence integration is shared with the needs of risk assessment and systematic reviews of an evidence-based Toxicology. Increasingly, machine learning (aka Artificial Intelligence, AI) lends itself to integrate diverse evidence streams.In this article, we give an overview of the state of the art of alternative methods and IATA in toxicology for regulatory use for various hazards, outlining future orientation and perspectives. We call on leveraging the synergies of integrated approaches and evidence integration from in vivo, in vitro and in silico as true in vivitrosi.
Collapse
Affiliation(s)
- Francesca Caloni
- Department of Environmental Science and Policy (ESP), Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy.
| | - Isabella De Angelis
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Thomas Hartung
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
- CAAT Europe, University of Konstanz, 78464, Konstanz, Germany
| |
Collapse
|
37
|
Sheikh M, Qassem M, Kyriacou PA. Optical Detection of Lithium Therapeutic Levels in Porcine Interstitial Fluid Collected Using a Hollow Microneedle. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4257-4260. [PMID: 36086355 DOI: 10.1109/embc48229.2022.9871289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bipolar disorder (BD), a recurrent chronic disorder characterized by mood fluctuating between episodes of mood elevation and depression, is a leading cause of disability worldwide. Lithium is the most widely used medication for management of BD. However, despite its effectiveness in preventing and reducing mood swings and suicidality, it is a potentially hazardous drug. Lithium has a very narrow therapeutic range (0.4-1.2 mmol/L) with the upper limit being uncomfortably close to toxic levels, hence lithium levels should be monitored regularly. The current techniques of monitoring lithium levels require frequent blood tests and elaborate laboratory methods that cannot be translated into point of care devices for personal monitoring. Dermal interstitial fluid (ISF), an underutilized information-rich biofluid, can be accessed using non-invasive techniques and the lithium concentration in ISF has been found to be proportional to concentration in serum. In the current study a microneedle-based sampling method to extract ISF from porcine skin, as it is similar in anatomy to human skin, was employed. Optical determination of lithium therapeutic concentrations in porcine ISF using a colorimetric method based on the reaction between chromogenic agent Quinizarin and Li+ ion was then performed. The resulting spectra show spectral variations which are related to lithium concentrations in spiked samples of porcine ISF, hence suggesting the feasibility of utilizing ISF for real-time and minimally-invasive lithium drug monitoring.
Collapse
|
38
|
Holzknecht J, Dubrac S, Hedtrich S, Galgóczy L, Marx F. Small, Cationic Antifungal Proteins from Filamentous Fungi Inhibit Candida albicans Growth in 3D Skin Infection Models. Microbiol Spectr 2022; 10:e0029922. [PMID: 35499318 PMCID: PMC9241769 DOI: 10.1128/spectrum.00299-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
The emerging resistance of human-pathogenic fungi to antifungal drugs urges the development of alternative therapeutic strategies. The small, cationic antifungal proteins (AFPs) from filamentous ascomycetes represent promising candidates for next-generation antifungals. These bio-molecules need to be tested for tolerance in the host and efficacy against fungal pathogens before they can be safely applied in humans. Testing of the efficacy and possible adverse effects of new drug candidates in three-dimensional (3D) human-cell based models represents an advantageous alternative to animal experiments. In, this study, as a proof-of-principle, we demonstrate the usefulness of 3D skin infection models for screening new antifungal drug candidates for topical application. We established a cutaneous infection with the opportunistic human-pathogenic yeast Candida albicans in a commercially available 3D full-thickness (FT) skin model to test the curative potential of distinct AFPs from Penicillium chrysogenum (PAFopt, PAFB, and PAFC) and Neosartorya (Aspergillus) fischeri (NFAP2) in vitro. All tested AFPs were comparably well tolerated by the skin models. The infected 3D models exhibited reduced epidermal permeability barriers, allowing C. albicans to colonize the epidermal and dermal layers, and showed increased secretion of the pro-inflammatory cytokine IL-6 and the chemokine IL-8. AFP treatment diminished the fungal burden and penetration depth of C. albicans in the infected models. The epidermal permeability barrier was restored and the secretion of IL-8 was decreased following AFP treatment. In summary, our study proves that the tested AFPs exhibit antifungal potential against cutaneous C. albicans infection in a 3D FT skin model. IMPORTANCE Candida albicans represents one of the most prevalent opportunistic fungal pathogens, causing superficial skin and mucosal infections in humans with certain predisposing health conditions and life-threatening systemic infections in immunosuppressed patients. The emerging drug resistance of this human-pathogenic yeast and the limited number of antifungal drugs for prevention and treatment of infections urgently demands the identification of new antifungal compounds with novel mechanisms of action. Small, cationic antifungal proteins (AFPs) from filamentous fungi represent promising candidates for next-generation antifungals for topical application. These bio-molecules need to be tested for tolerance by the host and efficacy in pathogen clearance prior to being involved in clinical trials. In a proof-of-principle study, we provide evidence for the suitability of 3D human-cell based models as advantageous alternatives to animal experiments. We document the tolerance of specific AFPs and their curative efficacy against cutaneous C. albicans infection in a 3D skin model.
Collapse
Affiliation(s)
- Jeanett Holzknecht
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, Biological Research Centre, Eötvös Loránd Research Network, Szeged, Hungary
| | - Florentine Marx
- Biocenter, Institute of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
39
|
Gaviria Agudelo C, Restrepo LM. Human Skin Cancer: an Overview Of Animal, Ex Vivo, and In Vitro Models. CURRENT DERMATOLOGY REPORTS 2022. [DOI: 10.1007/s13671-022-00361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Quantin P, Stricher M, Catoire S, Ficheux H, Egles C. Dermatokinetics: Advances and Experimental Models, Focus on Skin Metabolism. Curr Drug Metab 2022; 23:340-354. [PMID: 35585827 DOI: 10.2174/1389200223666220517114004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 11/22/2022]
Abstract
Numerous dermal contact products, such as drugs or cosmetics, are applied on the skin, the first protective barrier to their entrance into the organism. These products contain various xenobiotic molecules that can penetrate the viable epidermis. Many studies have shown that keratinocyte metabolism could affect their behavior by biotransformation. While aiming for detoxification, toxic metabolites can be produced. These metabolites may react with biological macromolecules often leading to sensitization reactions. After passing through the epidermis, xenobiotics can reach the vascularized dermis and therefore be bioavailable and distributed into the entire organism. To highlight these mechanisms, dermatokinetics, based on the concept of pharmacokinetics, has been developed recently. It provides information on the action of xenobiotics that penetrate the organism through the dermal route. The purpose of this review is first to describe and synthesize the dermatokinetics mechanisms to consider when assessing the absorption of a xenobiotic through the skin. We focus on skin absorption and specifically on skin metabolism, the two main processes involved in dermatokinetics. In addition, experimental models and methods to assess dermatokinetics are described and discussed to select the most relevant method when evaluating, in a specific context, dermatokinetics parameters of a xenobiotic. We also discuss the limits of this approach as it is notably used for risk assessment in the industry where scenario studies generally focus only on one xenobiotic and do not consider interactions with the rest of the exposome. The hypothesis of adverse effects due to the combination of chemical substances in contact with individuals and not to a single molecule are being increasingly studied and embraced in the scientific community.
Collapse
Affiliation(s)
- Paul Quantin
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| | - Mathilde Stricher
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | | | - Hervé Ficheux
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France Biological Engineering
| | - Christophe Egles
- UMR 7338 UTC-CNRS, BioMécanique et BioIngénierie, Université de Technologie de Compiègne, France
| |
Collapse
|
41
|
Kumari D, Bhatia E, Awasthi L, Banerjee R. Phospholipid and menthol based nanovesicle impregnated transdermal patch for nutraceutical delivery to diminish folate and iron deficiency. Biomed Mater 2022; 17. [PMID: 35168221 DOI: 10.1088/1748-605x/ac5571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
Adequate micronutrient availability is particularly important in women, children and infants. Micronutrient deficiencies are the major cause of maternal and neonatal morbidity. To overcome this, WHO recommends the use of folic acid and iron supplements for reducing anaemia and improving the health of the mother and infants. Oral intake of supplements for nutritional deficiencies are associated with gastric irritation, nausea, constipation and non-patient compliance due to associated taste. In case of absorption deficiency nutrients administered orally pass-through digestive tract unabsorbed. In the present study, we propose transdermal delivery of nutraceuticals to avoid the limitations associated with oral intake. Transdermal delivery has limited use because of the closely packed barrier of the stratum corneum that limits the permeability of molecules across skin. Here, we have used biomimetic nanovesicles impregnated in transdermal patches for delivery of folic acid and iron. Nanovesicles are prepared using an abundant component of cell membrane, phosphatidyl choline and a permeation enhancer. Further these nanovesicles are impregnated onto polyacrylate based transdermal patch.In vitrostudies have shown the ability of nanovesicles to fluidise skin lipids and penetrate into deeper skin.In vivoapplication of transdermal patches gradually increased the systemic concentration of nutraceuticals. Post application of the patch, five-fold increase in plasma folic acid concentration and 1.5-fold increase in plasma iron concertation was achieved in 6 h. Developed nanovesicles were compatible with keratinocytes and fibroblasts as testedin vitroand have the potential to enhance the cellular uptake of molecules. Skin irritation studies on human volunteers have confirmed the safety of nutraceutical loaded nanovesicles. Thus, the developed nutraceutical loaded transdermal patches provide a potential, easy to use platform for micronutrient delivery in infants and mothers.
Collapse
Affiliation(s)
- Durga Kumari
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Eshant Bhatia
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Lisha Awasthi
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
42
|
Yılmaz YZ, Tüten A, Çakan D, Kara E, Akşahin E, Gülmez ZD, Batıoğlu-Karaaltın A. The Relationship Between the Presence of Severe Acute Respiratory Syndrome-Coronavirus-2 during Pregnancy and Neonatal Hearing Loss. ISTANBUL MEDICAL JOURNAL 2022. [DOI: 10.4274/imj.galenos.2022.83707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
43
|
Wu YW, Ta GH, Lung YC, Weng CF, Leong MK. In Silico Prediction of Skin Permeability Using a Two-QSAR Approach. Pharmaceutics 2022; 14:961. [PMID: 35631545 PMCID: PMC9143389 DOI: 10.3390/pharmaceutics14050961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Topical and transdermal drug delivery is an effective, safe, and preferred route of drug administration. As such, skin permeability is one of the critical parameters that should be taken into consideration in the process of drug discovery and development. The ex vivo human skin model is considered as the best surrogate to evaluate in vivo skin permeability. This investigation adopted a novel two-QSAR scheme by collectively incorporating machine learning-based hierarchical support vector regression (HSVR) and classical partial least square (PLS) to predict the skin permeability coefficient and to uncover the intrinsic permeation mechanism, respectively, based on ex vivo excised human skin permeability data compiled from the literature. The derived HSVR model functioned better than PLS as represented by the predictive performance in the training set, test set, and outlier set in addition to various statistical estimations. HSVR also delivered consistent performance upon the application of a mock test, which purposely mimicked the real challenges. PLS, contrarily, uncovered the interpretable relevance between selected descriptors and skin permeability. Thus, the synergy between interpretable PLS and predictive HSVR models can be of great use for facilitating drug discovery and development by predicting skin permeability.
Collapse
Affiliation(s)
- Yu-Wen Wu
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| | - Giang Huong Ta
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| | - Yi-Chieh Lung
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| | - Ching-Feng Weng
- Institute of Respiratory Disease and Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China;
| | - Max K. Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 974301, Taiwan; (Y.-W.W.); (G.H.T.); (Y.-C.L.)
| |
Collapse
|
44
|
Mosquera Narvaez LE, Ferreira LMDMC, Sanches S, Alesa Gyles D, Silva-Júnior JOC, Ribeiro Costa RM. A Review of Potential Use of Amazonian Oils in the Synthesis of Organogels for Cosmetic Application. Molecules 2022; 27:molecules27092733. [PMID: 35566084 PMCID: PMC9100349 DOI: 10.3390/molecules27092733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/01/2023] Open
Abstract
New strategies for the delivery of bioactives in the deeper layers of the skin have been studied in recent years, using mainly natural ingredients. Among the strategies are organogels as a promising tool to load bioactives with different physicochemical characteristics, using vegetable oils. Studies have shown satisfactory skin permeation, good physicochemical stability mainly due to its three-dimensional structure, and controlled release using vegetable oils and low-molecular-weight organogelators. Within the universe of natural ingredients, vegetable oils, especially those from the Amazon, have a series of benefits and characteristics that make them unique compared to conventional oils. Several studies have shown that the use of Amazonian oils brings a series of benefits to the skin, among which are an emollient, moisturizing, and nourishing effect. This work shows a compilation of the main Amazonian oils and their nutraceutical and physicochemical characteristics together with the minority polar components, related to health benefits, and their possible effects on the synthesis of organogels for cosmetic purposes.
Collapse
Affiliation(s)
- Luis Eduardo Mosquera Narvaez
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | | | - Suellen Sanches
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
| | - Desireé Alesa Gyles
- Jamaica College of Health Sciences, School of Pharmacy, University of Technology, 237 Old Hope Road, Kinston 6, Jamaica;
| | | | - Roseane Maria Ribeiro Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.E.M.N.); (L.M.d.M.C.F.); (S.S.)
- Correspondence: ; Tel.: +55-91-3201-7203
| |
Collapse
|
45
|
Yang Y, Ako-Adounvo AM, Wang J, Coelho SG, Adah SA, Matta MK, Strauss D, Michele TM, Wang J, Faustino PJ, O’Connor T, Ashraf M. In Vitro Testing of Sunscreens for Dermal Absorption: Method Comparison and Rank Order Correlation with In Vivo Absorption. AAPS PharmSciTech 2022; 23:121. [PMID: 35459978 DOI: 10.1208/s12249-022-02275-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Evaluating the dermal absorption of sunscreen UV filters requires the development of a bio-predictable in vitro permeation test (IVPT). This work describes the comparison of two IVPT methods and rank order correlations of in vitro absorption (skin permeation and retention) with the in vivo absorption (AUC and skin retention) of sunscreens. The IVPT was compared regarding the following elements: (1) application of a single finite dose vs. an infinite dose and (2) the use of heat-separated human epidermis vs. dermatomed skin models. The IVPT was used to evaluate dermal absorption of six UV filters (avobenzone, homosalate, octinoxate, octisalate, octocrylene, and oxybenzone) in commercial sunscreens. Both the in vivo and in vitro permeation studies demonstrated that all UV filters were absorbed following a single-dose application. Sunscreens were rank ordered by the amount of the UV filters absorbed. Data obtained from the IVPT method using a single finite dose and heat-separated human epidermis was found to correlate with the clinical data. Rank orders of the cumulative in vitro skin permeation and the in vivo AUC were found comparable for oxybenzone, homosalate, octisalate, and octinoxate. Rank orders of the in vitro and in vivo skin retention of oxybenzone and octinoxate were also comparable. Additional IVPT parameters may be optimized to enhance the discriminatory power for UV filters with low skin permeation potential (e.g., avobenzone and octocrylene).
Collapse
|
46
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
47
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
48
|
Al-Zuhairy SAS, Kadhum WR, Alhijjaj M, Kadhim MM, Al-Janabi AS, Salman AW, Al-Sharifi HKR, Khadom AA. Development and Evaluation of Biocompatible Topical Petrolatum-liquid Crystal Formulations with Enhanced Skin Permeation Properties. J Oleo Sci 2022; 71:459-468. [PMID: 35173089 DOI: 10.5650/jos.ess21344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Transdermal administration represents a major advancement over traditional pharmaceutical dosing methods. However, a frequent issue is inadequate penetration of the active medicinal component through the skin. As a result, in the current research, we assessed the utility of newly developed petrolatum-liquid crystal (LC) ointment formulations and characterized their biocompatibility and function in the transdermal drug delivery system. To begin, we made petrolatum-LC formulations using p-aminobenzoic acid (PABA) as a hydrophilic model molecule. The viscosity, small-angle X-ray scattering (SAXS), particle diameters, and z-potential were measured to assess the physicochemical properties of the formulations. A dialysis release technique was used to evaluate medication release from petrolatum-LC formulations. In vitro testing was performed to determine the potential to enhance skin penetration. The biocompatibility of the produced formulations was further tested using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and single-cell gel electrophoresis. According to the results, the novel petrolatum-LC formulations are biocompatible and effective in forming hexosomes. PABA skin penetration was significantly enhanced by the new petrolatum-LC formulations. According to this study, petroleum-LC formulations are more efficient than commercial petrolatum in terms of skin permeability improvement and PABA skin concentration.
Collapse
Affiliation(s)
| | | | - Muqdad Alhijjaj
- Department of Pharmaceutics, College of Pharmacy, University of Basrah
| | | | - Ahmed S Al-Janabi
- Department of Biochemistry, College of Veterinary Medicine, Tikrit University
| | | | - Haitham K R Al-Sharifi
- Department of Food Science and Technology, College of Food Science, AL-Qasim Green University, Ministry of Higher Education and Scientific Research
| | - Anees A Khadom
- Department of Chemical Engineering, College of Engineering, University of Diyala
| |
Collapse
|
49
|
Yun YE, Calderon-Nieva D, Hamadeh A, Edginton AN. Development and Evaluation of an In Silico Dermal Absorption Model Relevant for Children. Pharmaceutics 2022; 14:pharmaceutics14010172. [PMID: 35057066 PMCID: PMC8780349 DOI: 10.3390/pharmaceutics14010172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
The higher skin surface area to body weight ratio in children and the prematurity of skin in neonates may lead to higher chemical exposure as compared to adults. The objectives of this study were: (i) to provide a comprehensive review of the age-dependent anatomical and physiological changes in pediatric skin, and (ii) to construct and evaluate an age-dependent pediatric dermal absorption model. A comprehensive review was conducted to gather data quantifying the differences in the anatomy and physiology of child and adult skin. Maturation functions were developed for model parameters that were found to be age-dependent. A pediatric dermal absorption model was constructed by updating a MoBi implementation of the Dancik et al. 2013 skin permeation model with these maturation functions. Using a workflow for adult-to-child model extrapolation, the predictive performance of the model was evaluated by comparing its predicted rates of flux of diamorphine, phenobarbital and buprenorphine against experimental observations using neonatal skin. For diamorphine and phenobarbital, the model provided reasonable predictions. The ratios of predicted:observed flux in neonates for diamorphine ranged from 0.55 to 1.40. For phenobarbital, the ratios ranged from 0.93 to 1.26. For buprenorphine, the model showed acceptable predictive performance. Overall, the physiologically based pediatric dermal absorption model demonstrated satisfactory prediction accuracy. The prediction of dermal absorption in neonates using a model-based approach will be useful for both drug development and human health risk assessment.
Collapse
|
50
|
Mohd Zaid NA, Sekar M, Bonam SR, Gan SH, Lum PT, Begum MY, Mat Rani NNI, Vaijanathappa J, Wu YS, Subramaniyan V, Fuloria NK, Fuloria S. Promising Natural Products in New Drug Design, Development, and Therapy for Skin Disorders: An Overview of Scientific Evidence and Understanding Their Mechanism of Action. Drug Des Devel Ther 2022; 16:23-66. [PMID: 35027818 PMCID: PMC8749048 DOI: 10.2147/dddt.s326332] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
The skin is the largest organ in the human body, composed of the epidermis and the dermis. It provides protection and acts as a barrier against external menaces like allergens, chemicals, systemic toxicity, and infectious organisms. Skin disorders like cancer, dermatitis, psoriasis, wounds, skin aging, acne, and skin infection occur frequently and can impact human life. According to a growing body of evidence, several studies have reported that natural products have the potential for treating skin disorders. Building on this information, this review provides brief information about the action of the most important in vitro and in vivo research on the use of ten selected natural products in inflammatory, neoplastic, and infectious skin disorders and their mechanisms that have been reported to date. The related studies and articles were searched from several databases, including PubMed, Google, Google Scholar, and ScienceDirect. Ten natural products that have been reported widely on skin disorders were reviewed in this study, with most showing anti-inflammatory, antioxidant, anti-microbial, and anti-cancer effects as the main therapeutic actions. Overall, most of the natural products reported in this review can reduce and suppress inflammatory markers, like tumor necrosis factor-alpha (TNF-α), scavenge reactive oxygen species (ROS), induce cancer cell death through apoptosis, and prevent bacteria, fungal, and virus infections indicating their potentials. This review also highlighted the challenges and opportunities of natural products in transdermal/topical delivery systems and their safety considerations for skin disorders. Our findings indicated that natural products might be a low-cost, well-tolerated, and safe treatment for skin diseases. However, a larger number of clinical trials are required to validate these findings. Natural products in combination with modern drugs, as well as the development of novel delivery mechanisms, represent a very promising area for future drug discovery of these natural leads against skin disorders.
Collapse
Affiliation(s)
- Nurul Amirah Mohd Zaid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale; Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, Paris, France
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan, 47500, Malaysia
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Royal College of Medicine Perak, Universiti Kuala Lumpur, Ipoh, 30450, Malaysia
| | - Jaishree Vaijanathappa
- Faculty of Life Sciences, JSS Academy of Higher Education and Research Mauritius, Vacoas-Phoenix, Mauritius
| | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | | | | | | |
Collapse
|