1
|
Berrou I. Prescribing metformin for patients with non-diabetic hyperglycaemia or type 2 diabetes. Nurs Stand 2025:e12437. [PMID: 40159768 DOI: 10.7748/ns.2025.e12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 04/02/2025]
Abstract
Metformin hydrochloride is a prescription-only oral medicine that is frequently encountered in clinical practice. It is recommended in most diabetes mellitus guidelines as a first-line treatment option for some people with non-diabetic hyperglycaemia and most people with type 2 diabetes. Metformin is usually well-tolerated and safe if prescribed appropriately. However, despite its common use, there are several important factors that healthcare practitioners need to consider when intending to prescribe metformin and once it has been initiated. This article discusses the use of metformin in non-diabetic hyperglycaemia and type 2 diabetes, and explores how healthcare practitioners can ensure safe prescribing of this medicine.
Collapse
Affiliation(s)
- Ilhem Berrou
- University of the West of England, Bristol, England
| |
Collapse
|
2
|
Del Valle JS, Van Helden RW, Moustakas I, Wei F, Asseler JD, Metzemaekers J, Pilgram GSK, Mummery CL, van der Westerlaken LAJ, van Mello NM, Chuva de Sousa Lopes SM. Ex vivo removal of pro-fibrotic collagen and rescue of metabolic function in human ovarian fibrosis. iScience 2025; 28:112020. [PMID: 40104066 PMCID: PMC11914289 DOI: 10.1016/j.isci.2025.112020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/21/2024] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Tissue fibrosis, with the excessive accumulation of extracellular matrix, leads to organ dysfunction. The ovary shows signs of fibrosis from an early age, creating a permissive environment for ovarian cancer. A robust culture-platform to study human ovarian fibrosis would enable screens for antifibrotic drugs to prevent or even reverse this process. Based on previous results showing that androgen therapy can induce ovarian fibrosis, we characterized the fibrotic state of ovaries from transmasculine donors of reproductive age. Anti-inflammatory and antioxidant drugs, such as Pirfenidone, Metformin, and Mitoquinone, could reduce and revert the excess collagen content of the ovarian cortical tissue during culture. We demonstrated that Metformin exerts an antioxidant role and prevents a glycolytic metabolic shift in non-immune ovarian stromal cells in the human ovary, while promoting early folliculogenesis during culture. These results may contribute to develop strategies to manage pro-tumorigenic fibrotic ovarian stroma in advanced age and metabolic disorders.
Collapse
Affiliation(s)
- Julieta S Del Valle
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ruben W Van Helden
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Ioannis Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Sequencing Analysis Support Core, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Fu Wei
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | - Joyce D Asseler
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Jeroen Metzemaekers
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Gonneke S K Pilgram
- Department of Gynecology, Leiden University Medical Center, Leiden 2333 ZA, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
| | | | - Norah M van Mello
- Department of Obstetrics and Gynecology, Amsterdam University Medical Center, Amsterdam 1105 AZ, the Netherlands
- Amsterdam UMC, Centre of Expertise on Gender Dysphoria, Amsterdam 1081 HV, the Netherlands
- Amsterdam Reproduction and Development Research Institute, Amsterdam 1081 HV, the Netherlands
| | - Susana M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden 2333 ZC, the Netherlands
- Ghent-Fertility and Stem Cell Team (G-FAST), Department of Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Bao A, Bordone LA, Aguh C. A Review of Metabolic Dysregulation in Lymphocytic Cicatricial Alopecia: Exploring the Connections and Therapeutic Implications. J Invest Dermatol 2025:S0022-202X(25)00293-3. [PMID: 40100177 DOI: 10.1016/j.jid.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
Lymphocytic primary cicatricial alopecia (LPCA) is an inflammatory disorder characterized by permanent hair follicle destruction and fibrosis. Recent evidence suggests a significant link between LPCA and metabolic dysregulation, particularly diabetes and dyslipidemia. This review examines the emerging role of metabolism in LPCA pathogenesis and its implications for novel therapeutic approaches. Epidemiologic studies demonstrate increased prevalence of metabolic disorders among patients with LPCA, whereas molecular investigations reveal altered metabolic pathways in affected hair follicles, including disruptions in peroxisome proliferator-activated receptor γ signaling and adenosine monophosphate-activated protein kinase activation, mechanisms that parallel those observed in other fibrotic diseases. These pathways appear to precede inflammatory changes, suggesting metabolic dysfunction as a primary trigger rather than a secondary effect. Preliminary treatments targeting these pathways, such as pioglitazone and metformin, have shown promising results in normalizing lipid metabolism and reducing inflammation, although their clinical efficacy across LPCA subtypes requires further investigation. The review also explores emerging therapeutic possibilities, including glucagon-like peptide-1 agonists. Understanding the interplay between metabolic disturbances, fibrosis, and inflammation in the pathogenesis of LPCA offers new avenues for both research and treatment. This paradigm shift suggests the need for metabolic screening in patients with LPCA and highlights the potential for developing more comprehensive, metabolism-targeted therapies to improve outcomes in these challenging hair disorders.
Collapse
Affiliation(s)
- Aaron Bao
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lindsey A Bordone
- Columbia University Irving Medical Center of Medicine, New York, New York, USA
| | - Crystal Aguh
- Department of Dermatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Lee D, Liew MS, Fourlanos S, Choi J. Metformin use and pancreatic ductal adenocarcinoma outcomes: a narrative review. ANZ J Surg 2025; 95:313-320. [PMID: 39840695 DOI: 10.1111/ans.19405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Metformin is a diabetes medication with anti-mitotic properties. A narrative review was performed to investigate people using metformin and the risk of developing pancreatic ductal adenocarcinoma (PDAC) as well as survival outcomes in established PDAC. METHODS Relevant studies on metformin use and PDAC were retrieved from PubMed including observational studies on metformin and the risk of developing PDAC and survival outcomes in PDAC, and randomized controlled trials of metformin as a treatment in PDAC. RESULTS Of the 367 studies searched, 26 studies fulfilled the criteria for this review. Metformin was not consistently associated with a reduced risk of developing PDAC. However, metformin use, especially higher cumulative doses, in some studies was associated with longer survival in patients with established PDAC, especially in the subgroup with resectable PDAC. Metformin use was not associated with longer survival in more advanced (non-resectable metastatic) PDAC. CONCLUSION Metformin was not consistently associated with a reduced risk of developing PDAC. Metformin may be associated with overall survival benefits in patients with PDAC including the resectable PDAC subgroup but not in the metastatic PDAC subgroup. The evidence to date does not support the routine use of metformin as an adjuvant therapy for advanced PDAC.
Collapse
Affiliation(s)
- Dooyeon Lee
- Department of Surgery, Western Health, St. Albans, Victoria, Australia
| | - Mun Sem Liew
- Victorian Oncology Care, St John of God Specialist Centre, Berwick, Victoria, Australia
| | - Spiros Fourlanos
- Department of Diabetes & Endocrinology, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Julian Choi
- Department of Surgery, Western Health, St. Albans, Victoria, Australia
- Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
- Clinical Institute General Surgery and Gastroenterology, Epworth Healthcare, Richmond, Victoria, Australia
| |
Collapse
|
5
|
Mohammadi M, Salehi S, Habibzadeh A, Mohammadi A, Mirzaasgari Z. Neuroprotective Effects of Metformin in Stroke Patients: A Systematic Review and Meta-analysis of Cohort Studies. Clin Neuropharmacol 2025; 48:51-59. [PMID: 40072880 DOI: 10.1097/wnf.0000000000000625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
OBJECTIVES People with diabetes are 1.5 times more likely to experience stroke than those without diabetes, underlining the urgent need to address this issue. Metformin is often the initial medication chosen to manage diabetes mellitus (DM). The purpose of our systematic review and meta-analysis is to explore the potential neuroprotective effects of metformin in individuals who have received it prior to stroke. METHOD Our study encompassed cohort studies that drew a comparison between the severity and diverse outcomes of stroke among individuals with DM who were administered metformin prior to the stroke event and those with DM who did not receive the treatment. RESULTS Ten studies met the eligibility criteria. Prestroke metformin use was associated with a significantly lower National Institutes of Health Stroke Scale score (mean difference = -1.29, 95% confidence interval: -2.11 to -0.47) in ischemic stroke. Metformin pretreatment in ischemic stroke was associated with increased odds of favorable outcome (mRS < 2) at 90 days (odds ratio [OR] = 1.45, 95% confidence interval [CI]: 1.06 to 1.99), but it was not significant at discharge. Metformin was found to be associated with reduced mortality (OR = 0.52, 95% CI: 0.42 to 0.64) in ischemic stroke. In hemorrhagic stroke, the results showed a significantly lower intracranial hemorrhage volume in prestroke metformin use (mean difference = -4.77, 95% CI: -6.56 to -2.98). CONCLUSIONS We found that prestroke metformin use in diabetic patients yielded neuroprotective effects. In ischemic strokes, metformin reduces stroke severity and 90-day mortality; it also improves 90-day functional outcomes. In hemorrhagic strokes, prestroke metformin use can also cause less intracranial hemorrhage volume. Further clinical trials are needed to confirm its efficacy and verify its benefits in stroke management.
Collapse
Affiliation(s)
| | - Sadaf Salehi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Aynaz Mohammadi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirzaasgari
- Department of Neurology, Firoozgar Hospital, School of Medicine, Iran University of Medical Science, Fasa, Iran
| |
Collapse
|
6
|
Zhang S, Guo L, Tao R, Liu S. Ferroptosis-targeting drugs in breast cancer. J Drug Target 2025; 33:42-59. [PMID: 39225187 DOI: 10.1080/1061186x.2024.2399181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In 2020, breast cancer surpassed lung cancer as the most common cancer in the world for the first time. Due to the resistance of some breast cancer cell lines to apoptosis, the therapeutic effect of anti-breast cancer drugs is limited. According to recent report, the susceptibility of breast cancer cells to ferroptosis affects the progress, prognosis and drug resistance of breast cancer. For instance, roblitinib induces ferroptosis of trastuzumab-resistant human epidermal growth factor receptor 2 (HER2)-positive breast cancer cells by diminishing fibroblast growth factor receptor 4 (FGFR4) expression, thereby augmenting the susceptibility of these cells to HER2-targeted therapies. In tamoxifen-resistant breast cancer cells, Fascin exacerbates their resistance by repressing solute carrier family 7 member 11 (SLC7A11) expression, which in turn heightens their responsiveness to tamoxifen. In recent years, Chinese herbs extracts and therapeutic drugs have been demonstrated to elicit ferroptosis in breast cancer cells by modulating a spectrum of regulatory factors pertinent to ferroptosis, including SLC7A11, glutathione peroxidase 4 (GPX4), acyl-CoA synthetase long chain family member 4 (ACSL4), and haem oxygenase 1 (HO-1). Here, we review the roles and mechanisms of Chinese herbal extracts and therapeutic drugs in regulating ferroptosis in breast cancer, providing potential therapeutic options for anti-breast cancer.
Collapse
Affiliation(s)
- Shuxian Zhang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Lijuan Guo
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ran Tao
- Department of Anatomy, Medical College, Dalian University, Dalian, China
| | - Shuangping Liu
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| |
Collapse
|
7
|
Shikama Y, Otsuka K, Shikama Y, Furukawa M, Ishimaru N, Matsushita K. Involvement of metformin and aging in salivary expression of ACE2 and TMPRSS2. Biofactors 2025; 51:e2154. [PMID: 39865553 PMCID: PMC11771682 DOI: 10.1002/biof.2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/29/2024] [Indexed: 01/28/2025]
Abstract
SARS-CoV-2-related proteins, ACE2 and TMPRSS2, are determinants of SARS-CoV-2 infection. Although these proteins are expressed in oral-related tissues, their expression patterns and modulatory mechanisms in the salivary glands remain unknown. We herein showed that full-length ACE2, which has both a fully functional enzyme catalytic site and high-affinity SARS-CoV-2 spike S1-binding sites, was more highly expressed in salivary glands than in oral mucosal epithelial cells and the lungs. Regarding TMPRSS2, zymogen and the cleaved form were both expressed in the salivary glands, whereas only zymogen was expressed in murine lacrimal glands and the lungs. Metformin, an AMPK activator, increased stimulated saliva secretion and full-length ACE2 expression and decreased cleaved TMPRSS2 expression in the salivary glands, and exerted the same effects on soluble ACE2 (sACE2) and sTMPRSS2 in saliva. Moreover, metformin decreased the expression of beta-galactosidase, a senescence marker, and ADAM17, a sheddase of ACE2 to sACE2, in the salivary glands. In aged mice, the expression of ACE2 was decreased in the salivary glands, whereas that of sACE2 was increased in saliva, presumably by the up-regulated expression of ADAM17. The expression of TMPRSS2 in the salivary glands and sTMPRSS2 in saliva were both increased. Collectively, these results suggest that the protein expression patterns of ACE2 and TMPRSS2 in the salivary glands differ from those in other oral-related cells and tissues, and also that metformin and aging affect the salivary expression of ACE2 and TMPRSS2, which have the potential as targets for preventing the transmission of SARS-CoV-2.
Collapse
Affiliation(s)
- Yosuke Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| | - Kunihiro Otsuka
- Department of Oral Molecular PathologyTokushima University Graduate School of Biomedical SciencesTokushimaJapan
| | - Yuka Shikama
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Masae Furukawa
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
| | - Naozumi Ishimaru
- Department of Oral PathologyGraduate School of Medical and Dental Sciences, Institute of Science TokyoTokyoJapan
| | - Kenji Matsushita
- Department of Oral Disease ResearchNational Center for Geriatrics and GerontologyObuJapan
- Department of Geriatric Oral Science, Graduate School of DentistryTohoku UniversitySendaiJapan
| |
Collapse
|
8
|
Li Z, Lin C, Cai X, Lv F, Yang W, Ji L. Anti-diabetic agents and the risks of dementia in patients with type 2 diabetes: a systematic review and network meta-analysis of observational studies and randomized controlled trials. Alzheimers Res Ther 2024; 16:272. [PMID: 39716328 DOI: 10.1186/s13195-024-01645-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/11/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVE To evaluate the association between anti-diabetic agents and the risks of dementia in patients with type 2 diabetes (T2D). METHODS Literature retrieval was conducted in PubMed, Embase, the Cochrane Central Register of Controlled Trials and Clinicaltrial.gov between January 1995 and October 2024. Observational studies and randomized controlled trials (RCTs) in patients with T2D, which intercompared anti-diabetic agents or compared them with placebo, and reported the incidence of dementia were included. Conventional and network meta-analyses of these studies were implemented. Results were exhibited as the odds ratio (OR) or risk ratio (RR) with 95% confidence interval (CI). RESULTS A total of 41 observational studies (3,307,483 participants) and 23 RCTs (155,443 participants) were included. In the network meta-analysis of observational studies, compared with non-users, sodium glucose cotransporter-2 inhibitor (SGLT-2i) (OR = 0.56, 95%CI, 0.45 to 0.69), glucagon-like peptide-1 receptor agonist (GLP-1RA) (OR = 0.58, 95%CI, 0.46 to 0.73), thiazolidinedione (TZD) (OR = 0.68, 95%CI, 0.57 to 0.81) and metformin (OR = 0.89, 95%CI, 0.80 to 0.99) treatments were all associated with reduced risk of dementia in patients with T2D. The surface under the cumulative ranking curve (SUCRA) evaluation conferred a rank order as SGLT-2i > GLP-1RA > TZD > dipeptidyl peptidase-4 inhibitor (DPP-4i) > metformin > α-glucosidase inhibitor (AGI) > glucokinase activator (GKA) > sulfonylureas > glinides > insulin in terms of the cognitive benefits. Meanwhile, compared with non-users, SGLT-2i (OR = 0.43, 95%CI, 0.30 to 0.62), GLP-1RA (OR = 0.54, 95%CI, 0.30 to 0.96) and DPP-4i (OR = 0.73, 95%CI, 0.57 to 0.93) were associated with a reduced risk of Alzheimer's disease while a lower risk of vascular dementia was observed in patients receiving SGLT-2i (OR = 0.42, 95%CI, 0.22 to 0.80) and TZD (OR = 0.52, 95%CI, 0.36 to 0.75) treatment. In the network meta-analysis of RCTs, the risks of dementia were comparable among anti-diabetic agents and placebo. CONCLUSION Compared with non-users, SGLT-2i, GLP-1RA, TZD and metformin were associated with the reduced risk of dementia in patients with T2D. SGLT-2i, and GLP-1RA may serve as the optimal choice to improve the cognitive prognosis in patients with T2D.
Collapse
Affiliation(s)
- Zonglin Li
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Chu Lin
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China.
| | - Fang Lv
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, 100044 No.11 Xizhimen South Street, Xicheng District, Beijing China, 100044, People's Republic of China.
| |
Collapse
|
9
|
Rescher L, Singh S, Zahn I, Paulsen F, Schicht M. Effect of Metformin on Meibomian Gland Epithelial Cells: Implications in Aging and Diabetic Dry Eye Disease. Life (Basel) 2024; 14:1682. [PMID: 39768389 PMCID: PMC11679316 DOI: 10.3390/life14121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Metformin, a commonly prescribed medication for managing diabetes, has garnered increasing interest as a potential therapeutic option for combating cancer and aging. METHODS The current study investigated the effects of metformin treatment on human meibomian gland epithelial cells (hMGECs) at morphological, molecular, and electron microscopy levels. HMGECs were stimulated in vitro with 1 mM, 5 mM, and 10 mM metformin for 24, 48, and 72 h. The assessed outcomes were cell proliferation assays, lipid production, ultrastructural changes, levels of IGF-1, Nrf2, HO-1, apoptosis-inducing factor 1 (AIF1) at the protein level, and the expression of oxidative stress factors (matrix metallopeptidase 9, activating transcription factor 3, CYBB, or NADPH oxidase 2, xanthine dehydrogenase). RESULTS Morphological studies showed increased lipid production, the differentiation of hMGECs after stimulation with metformin, and the differentiation effects of undifferentiated hMGECs. Proliferation tests showed a reduction in cell proliferation with increasing concentrations over time. AIF1 apoptosis levels were not significantly regulated, but morphologically, the dying cells at a higher concentration of 5-10 mM showed a rupture and permeabilization of the plasma membrane, a swelling of the cytoplasm, and vacuolization after more than 48 h. The IGF-1 ELISA showed an irregular expression, which mostly decreased over time. Only at 72 h and 10 mM did we have a significant increase. Mitochondrial metabolic markers such as Nrf2 significantly increased over time, while HO-1 decreased partially. The RT-PCR showed a significant increase in MMP9, CYBB, XDH, and ATF with increasing time and metformin concentrations, indicating cell stress. CONCLUSIONS Our results using a cell line suggest that metformin affects the cellular physiology of meibomian gland epithelial cells and induces cell stress in a dose- and duration-dependent manner, causing changes in their morphology and ultrastructure.
Collapse
Affiliation(s)
- Leon Rescher
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
- Centre for Ocular Regeneration, L.V. Prasad Eye Institute, Hyderabad 500034, India
| | - Ingrid Zahn
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| | - Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (L.R.); (S.S.); (I.Z.); (F.P.)
| |
Collapse
|
10
|
Nangia A, Saravanan JS, Hazra S, Priya V, Sudesh R, Rana SS, Ahmad F. Exploring the clinical connections between epilepsy and diabetes mellitus: Promising therapeutic strategies utilizing agmatine and metformin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9617-9632. [PMID: 39066910 DOI: 10.1007/s00210-024-03295-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Diabetes mellitus (DM) and epilepsy and the psychological and socio-economic implications that are associated with their treatments can be quite perplexing. Metformin is an antihyperglycemic medication that is used to treat type 2 DM. In addition, metformin elicits protective actions against multiple diseases, including neurodegeneration and epilepsy. Recent studies indicate that metformin alters the resident gut microbiota in favor of species producing agmatine, an arginine metabolite which, in addition to beneficially altering metabolic pathways, is a potent neuroprotectant and neuromodulant. METHODS We first examine the literature for epidemiological and clinical evidences linking DM and epilepsy. Next, basing our analyses on published literature, we propose the possible complementarity of agmatine and metformin in the treatment of DM and epilepsy. RESULTS Our analyses of the clinical data suggest a significant association between pathogeneses of epilepsy and DM. Further, both agmatine and metformin appear to be multimodal therapeutic agents and have robust antiepileptogenic and antidiabetic properties. Data from animal and clinical studies largely support the use of metformin/agmatine as a double-edged pharmacotherapeutic agent against DM and epilepsy, particularly in their concurrent pathological occurrences. CONCLUSION The present review explores the evidences and available data on possible uses of metformin/agmatine as pertinent antidiabetic and antiepileptic agents. Our hope is that this will stimulate further research on the therapeutic actions of these multimodal agents, particularly for subject-specific clinical outcomes.
Collapse
Affiliation(s)
- Aayushi Nangia
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Janani Srividya Saravanan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Shruti Hazra
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Vijayan Priya
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Sandeep Singh Rana
- Department of Biosciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
11
|
Ko M, Kim J, Lazim R, Lee JY, Kim JY, Gosu V, Lee Y, Choi S, Kwon HJ. The anticancer effect of metformin targets VDAC1 via ER-mitochondria interactions-mediated autophagy in HCC. Exp Mol Med 2024; 56:2714-2725. [PMID: 39627451 DOI: 10.1038/s12276-024-01357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 12/28/2024] Open
Abstract
Metformin (MetF) is used worldwide as a first-line therapy for type 2 diabetes. Recently, interest in the pleiotropic effects of MetF, such as its anticancer and antiaging properties, has increased. However, the molecular target of MetF and the detailed mechanism underlying its ability to inhibit cell growth through autophagy induction remain incompletely understood. In this study, using an innovative label-free drug affinity responsive target stability (DARTS)-LC-MS/MS method, we discovered that mitochondrial voltage-dependent anion channel 1 (VDAC1) is a novel binding protein involved in the induction of autophagy-related cell death by high-dose MetF in hepatocellular carcinoma (HCC). Computational alanine scanning mutagenesis revealed that MetF and VDAC1 (D9, E203) interact electrostatically. MetF disrupts the IP3R-GRP75-VDAC1 complex, which plays a key role in stabilizing mitochondria-associated ER membranes (MAMs), by binding to VDAC1. This disruption leads to increased cytosolic calcium levels, thereby contributing to autophagy induction. MetF also decreased the AMP/ATP ratio and activated the AMPK pathway. Cells with genetic knockdown of VDAC1 mimicked the activity of MetF. In conclusion, this study provides new insights into the involvement of MetF in ionic interactions with VDAC1, contributing to its anticancer effects in HCC. These findings help elucidate the diverse biological and pharmacological effects of MetF, particularly its influence on autophagy, as well as the potential of MetF as a therapeutic agent for diseases characterized by VDAC1 overexpression.
Collapse
Affiliation(s)
- Minjeong Ko
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jiho Kim
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Raudah Lazim
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Ju Yeon Lee
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin Young Kim
- Research Center of Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Vijayakumar Gosu
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yoonji Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea.
| | - Ho Jeong Kwon
- Chemical Genomics Leader Research Laboratory, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Xu X, Senior AM, Le Couteur DG, Cogger VC, Raubenheimer D, James DE, Parker B, Simpson SJ, Muller S, Yang JYH. eNODAL: an experimentally guided nutriomics data clustering method to unravel complex drug-diet interactions. Brief Bioinform 2024; 26:bbaf036. [PMID: 39982203 PMCID: PMC11843446 DOI: 10.1093/bib/bbaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 02/22/2025] Open
Abstract
Unraveling the complex interplay between nutrients and drugs via their effects on "omics" features could revolutionize our fundamental understanding of nutritional physiology, personalized nutrition, and, ultimately, human health span. Experimental studies in nutrition are starting to use large-scale "omics" experiments to pick apart the effects of such interacting factors. However, the high dimensionality of the omics features, coupled with complex fully factorial experimental designs, poses a challenge to the analysis. Current strategies for analyzing such types of data are based on between-feature correlations. However, these techniques risk overlooking important signals that arise from the experimental design and produce clusters that are hard to interpret. We present a novel approach for analyzing high-dimensional outcomes in nutriomics experiments, termed experiment-guided NutriOmics DatA cLustering ('eNODAL'). This three-step hybrid framework takes advantage of both Analysis of Variance (ANOVA)-type analyses and unsupervised learning methods to extract maximum information from experimental nutriomics studies. First, eNODAL categorizes the omics features into interpretable groups based on the significance of response to the different experimental variables using an ANOVA-like test. Such groups may include the main effects of a nutritional intervention and drug exposure or their interaction. Second, consensus clustering is performed within each interpretable group to further identify subclusters of features with similar response profiles to these experimental factors. Third, eNODAL annotates these subclusters based on their experimental responses and biological pathways enriched within the subcluster. We validate eNODAL using data from a mouse experiment to test for the interaction effects of macronutrient intake and drugs that target aging mechanisms in mice.
Collapse
Affiliation(s)
- Xiangnan Xu
- Chair of Statistics, Humboldt-Universität zu Berlin, Unter den Linden 6, Berlin 10178, Germany
| | - Alistair M Senior
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- Sydney Precision Data Science Centre, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
- Laboratory of Data Discovery for Health Limited (D24H), 19 Science Park W Avenue, Hong Kong SAR 999077, China
| | - David G Le Couteur
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- Centre for Education and Research on Ageing, Concord RG Hospital, Hospital Road, NSW 2138, Australia
- ANZAC Research Institute, Concord RG Hospital, Hospital Road, NSW 2138, Australia
| | - Victoria C Cogger
- Centre for Education and Research on Ageing, Concord RG Hospital, Hospital Road, NSW 2138, Australia
- ANZAC Research Institute, Concord RG Hospital, Hospital Road, NSW 2138, Australia
| | - David Raubenheimer
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- School of Life and Environmental Science, University of Sydney, F22 Eastern Avenue, NSW 2050, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- ANZAC Research Institute, Concord RG Hospital, Hospital Road, NSW 2138, Australia
| | - Benjamin Parker
- Department of Anatomy and Physiology, University of Melbourne, 30 Royal Parade, VIC 3052, Australia
| | - Stephen J Simpson
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- School of Life and Environmental Science, University of Sydney, F22 Eastern Avenue, NSW 2050, Australia
| | - Samuel Muller
- Sydney Precision Data Science Centre, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
- School of Mathematical and Physical Sciences, Macquarie University, 18 Wally's Walk, NSW 2109, Australia
- School of Mathematics and Statistics, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
| | - Jean Y H Yang
- Charles Perkins Centre, University of Sydney, Johns Hopkins Drive, NSW 2050, Australia
- Sydney Precision Data Science Centre, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
- Laboratory of Data Discovery for Health Limited (D24H), 19 Science Park W Avenue, Hong Kong SAR 999077, China
- School of Mathematics and Statistics, University of Sydney, F07 Eastern Avenue, NSW 2050, Australia
| |
Collapse
|
13
|
Azócar-Gallardo J, Ojeda-Aravena A, Báez-San Martín E, Herrera-Valenzuela T, Tuesta M, González-Rojas L, Calvo-Rico B, García-García JM. Effect of a Concurrent Training Program with and Without Metformin Treatment on Metabolic Markers and Cardiorespiratory Fitness in Individuals with Insulin Resistance: A Retrospective Analysis. Biomolecules 2024; 14:1470. [PMID: 39595646 PMCID: PMC11592327 DOI: 10.3390/biom14111470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus is a metabolic disorder characterized by insulin resistance (IR), which is prevalent worldwide and has significant adverse health effects. Metformin is commonly prescribed as a pharmacological treatment. Physical exercise is also recognized as an effective regulator of glycemia, independent of metformin. However, the effects of inter-day concurrent training (CT)-which includes both endurance and resistance exercises-combined with metformin treatment on metabolic markers and cardiorespiratory fitness in individuals with IR remain controversial. OBJECTIVE This study aimed to analyze the effects of a 12-week inter-day CT program on metabolic markers and cardiorespiratory fitness in overweight/obese individuals with IR, both with and without metformin treatment. Additionally, inter-individual responses to CT were examined. MATERIALS AND METHODS Data from the 2022-2023 Obesity Center database were retrospectively analyzed. According to the eligibility criteria, 20 overweight/obese individuals diagnosed with IR participated in a 12-week CT program (three weekly sessions: two endurance and one resistance exercise session). Participants were divided into three groups: the exercise group (E-G: n = 7, 32.86 ± 8.32 years, 85.2 ± 19.67 kg), the exercise-metformin group (E-MG: n = 6, 34.83 ± 12.91 years, 88.13 ± 12.66 kg), and the metformin-only control group (M-G: n = 7, 34.43 ± 13.96 years, 94.23 ± 13.93 kg). The M-G did not perform physical exercise during the 12 weeks but continued pharmacological treatment. Body composition, metabolic markers, and cardiorespiratory fitness were assessed before and after the 12-week CT program. RESULTS A group-by-time interaction was observed for fasting insulin (F2,17 = 34.059, p < 0.001, η2p = 0.88), the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) (F2,17 = 35.597, p < 0.001, η2p = 0.80), and maximal fat oxidation (MFO) (F2,17 = 4.541, p = 0.026, η2p = 0.348) following the CT program. The maximal oxygen uptake (VO2max) showed significant improvements in the E-G (F = 4.888, p = 0.041, ∆+13.3%). Additionally, the percentage of fat mass (%FM) and body mass (BM) were significantly reduced across all groups (F = 125.244, p < 0.001 and F = 91.130, p < 0.001, respectively). The BM decreased by ∆-9.43% in the E-G (five responders, Rs), ∆+9.21% in the EM-G (5 Rs), and ∆+5.15% in the M-G (3 Rs). The %FM was reduced in the E-G by ∆-22.52% (seven Rs). Fasting insulin and the HOMA-IR significantly improved in both the E-G and EM-G, with fasting insulin showing a ∆-82.1% reduction in the E-G (five Rs) and a ∆-85% reduction in the EM-G (six Rs). Similarly, the HOMA-IR improved by ∆+82.6% in the E-G (three Rs) and by ∆+84.6% in the EM-G (six Rs). CONCLUSIONS The 12-week inter-day concurrent training program, whether combined with metformin or not, was similarly effective in improving metabolic markers in patients with insulin resistance as metformin treatment alone. Both exercise groups demonstrated a significant reduction in insulin sensitivity and an increase in maximal fat oxidation. Meanwhile, exclusive pharmacological treatment with metformin markedly decreased cardiorespiratory fitness, and consequently, fat oxidation.
Collapse
Affiliation(s)
- Jairo Azócar-Gallardo
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
- Programa de Investigación en Deporte, Sociedad y Buen Vivir (DSBv), Universidad de Los Lagos, Osorno 5290000, Chile
- Departamento de Ciencias de la Actividad Física, Universidad de Los Lagos, Osorno 5290000, Chile
| | | | - Eduardo Báez-San Martín
- Carrera de Entrenador Deportivo, Escuela de Educación, Universidad Viña del Mar, Viña del Mar 2580022, Chile;
- Laboratorio de Evaluación y Prescripción de Ejercicio, Facultad de Ciencias de la Actividad Física y del Deporte, Universidad de Playa Ancha, Valparaíso 2340000, Chile
| | - Tomás Herrera-Valenzuela
- School of Physical Activity, Sports and Health Sciences, Faculty of Medical Sciences, Universidad de Santiago, Santiago 7591538, Chile;
| | - Marcelo Tuesta
- Exercise and Rehabilitation Sciences Institute, School of Physical Therapy, Faculty of Rehabilitation Sciences, Universidad Andres Bello, Santiago 7591538, Chile;
- Laboratory of Sports Sciences, Sports Medicine Centre Sports MD, Viña del Mar 2580022, Chile
| | - Luis González-Rojas
- Centro Tratamiento de la Obesidad, Pontificia Universidad Católica de Chile, Santiago 8320165, Chile;
| | - Bibiana Calvo-Rico
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
| | - José Manuel García-García
- Facultad de Ciencias del Deporte, Universidad de Castilla-La Mancha (UCLM), 45071 Toledo, Spain; (B.C.-R.); (J.M.G.-G.)
| |
Collapse
|
14
|
Mohamed S. Metformin: Diverse molecular mechanisms, gastrointestinal effects and overcoming intolerance in type 2 Diabetes Mellitus: A review. Medicine (Baltimore) 2024; 103:e40221. [PMID: 39470509 PMCID: PMC11521032 DOI: 10.1097/md.0000000000040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024] Open
Abstract
Metformin, the first line treatment for patients with type 2 diabetes mellitus, has alternative novel roles, including cancer and diabetes prevention. This narrative review aims to explore its diverse mechanisms, effects and intolerance, using sources obtained by searching Scopus, PubMed and Web of Science databases, and following Scale for the Assessment of Narrative Review Articles reporting guidelines. Metformin exerts it actions through duration influenced, and organ specific, diverse mechanisms. Its use is associated with inhibition of hepatic gluconeogenesis targeted by mitochondria and lysosomes, reduction of cholesterol levels involving brown adipose tissue, weight reduction influenced by growth differentiation factor 15 and novel commensal bacteria, in addition to counteraction of meta-inflammation alongside immuno-modulation. Interactions with the gastrointestinal tract include alteration of gut microbiota, enhancement of glucose uptake and glucagon like peptide 1 and reduction of bile acid absorption. Though beneficial, they may be linked to intolerance. Metformin related gastrointestinal adverse effects are associated with dose escalation, immediate release formulations, gut microbiota alteration, epigenetic predisposition, inhibition of organic cation transporters in addition to interactions with serotonin, histamine and the enterohepatic circulation. Potentially effective measures to overcome intolerance encompasses carefully objective targeted dose escalation, prescription of fixed dose combination, microbiome modulators and prebiotics, in addition to use of extended release formulations.
Collapse
Affiliation(s)
- Sami Mohamed
- Department of Clinical Sciences, Dubai Medical University, Dubai, United Arab Emirates
| |
Collapse
|
15
|
Guo X, Zhang B, Chen Y, Jia Z, Yuan X, Zhang L, Liu J, Liu Y. Multifunctional mesoporous nanoselenium delivery of metformin breaks the vicious cycle of neuroinflammation and ROS, promotes microglia regulation and alleviates Alzheimer's disease. Colloids Surf B Biointerfaces 2024; 245:114300. [PMID: 39447310 DOI: 10.1016/j.colsurfb.2024.114300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Clinical trials based on a single molecular target continue to fail, and the adverse effects of Aβ protein aggregation and neuroinflammation need to be solved and treatment of Alzheimer's disease. Herein, by designed a nano-sized flower mesoporous selenium transport carrier (Met@MSe@Tf) with high enzyme-like activity, metformin (Met) was loaded, and transferrin (Tf) was modified to bind to transferrin receptor to promote receptor-mediated transport across the BBB. In the AD lesion environment, with the acidic environment response dissociation, promote the release of metformin by nanoflower to achieve therapeutic effect in the brain lesion site. Metformin, a major anti-diabetic drug in diabetic metabolism, has been found to be a promising new therapeutic target in neurodegenerative diseases. Further studies showed that the metformin drug release from the designed and synthesized transport nanoparticles showed high intrinsic activity and the ability to degrade the substrate involved, especially the degradation of Aβ deposition in the cortex and hippocampus, increased the phagocytosis of microglia, thus relieving neuroinflammation simultaneously. Collectively, in vivo experiments demonstrated that Met@MSe@Tf significantly increased the number of NeuN-positive neurons in the hippocampus of AD mice, promoted neurovascular normalization in the brain, and improved cognitive dysfunction in AD transgenic AD mice. Thus, it provides a preclinical proof of concept for the construction of a highly modular accurate drug delivery platform for Alzheimer's disease.
Collapse
Affiliation(s)
- Xian Guo
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Borui Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yutong Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Zhi Jia
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyu Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Li Zhang
- Key Laboratory of Central CNS Regeneration (Ministry of Education), Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China.
| | - Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen 518110, China.
| |
Collapse
|
16
|
Hsu CY, A Abbood M, Kadhim Abbood N, Hemid Al-Athari AJ, Shather AH, Talib Kareem A, Hassan Ahmed H, Yadav A. Mechanical quantum analysis on the role of transition metals on the delivery of metformin anticancer drug by the boron phosphide nanotube. Comput Methods Biomech Biomed Engin 2024; 27:1920-1930. [PMID: 37847195 DOI: 10.1080/10255842.2023.2267718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/12/2023] [Accepted: 09/30/2023] [Indexed: 10/18/2023]
Abstract
We scrutinized the impact of doping of X atoms (X = Fe, Co, Ni, Cu, and Zn) on the metformin (MF) drug delivery performance of a BP nanotube (BPNT) using density functional B3LYP calculations. The pristine BPNT was not ideal for the drug delivery of MF because of a weak interaction between the drug and nanotube. Doping of the Zn, Cu, Ni, Co, and Fe into the BPNT surface raised the adsorption energy of MF from -5.3 to -29.1, -28.7, -29.8, -32.1, and -26.9 kcal/mol, respectively, demonstrating that the sensitiveness of the metal-doped BPNT increased after increasing the radius atomic of metals. Ultimately, there was an increase in the adhesion performance and capacity of the MF after X (especially Co atom) doping, making the nanotube suitable for MF drug delivery. The mechanism of MF reaction with the BPNT changed from covalent bonding in the natural environment to hydrogen bonding in the cancerous cells with high acidity.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Manal A Abbood
- Division of Medical and Industrial Materials Science, Department of Applied Sciences, University of Technology, Iraq
| | - Nabeel Kadhim Abbood
- Chemical Engineering and Oil Refining Department, Basrah University for Oil and Gas, Oil and Gas Engineering College, Iraq
| | | | - A H Shather
- Department of Computer Engineering Technology, Al Kitab University, Altun Kopru, Kirkuk, Iraq
| | - Ashwaq Talib Kareem
- Collage of Pharmacy, National University of Science and Technology, Dhi Qa, Iraq
| | | | - Anupam Yadav
- Department of CEA, GLA University, Mathura, India
| |
Collapse
|
17
|
Jinadasa AGRG, Akalanka HMK, Wageesha NDA, Ekanayake S. Metformin as a Potential In Vitro Anticancer Modulator of Adenosine Monophosphate Kinase: A Review. Int J Breast Cancer 2024; 2024:1094274. [PMID: 39246697 PMCID: PMC11380709 DOI: 10.1155/2024/1094274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/21/2024] [Accepted: 07/03/2024] [Indexed: 09/10/2024] Open
Abstract
Metformin (MET) is the commonly prescribed hypoglycemic agent used in the treatment of type 2 diabetes mellitus (DM). Pleiotropic effects of MET are emerging as a medication for other diseases including breast cancer (BC). Therefore, a literature review was conducted to investigate whether the anticancer effects of MET are mediated through adenosine monophosphate kinase (AMPK). This review assessed published data focusing on studies where BC cell lines were treated with MET to explore its potential anticancer effects via AMPK on BC cells. The published data reveals that activated AMPK induces anticancer effects primarily by suppressing cell proliferation, induction of apoptosis, and cell cycle arrest, inhibition of metastasis and invasion, alteration of tumor microenvironment, and downregulation of tumorigenesis. In addition, MET was observed to induce AMPK-mediated effects when combined with other drugs. Further studies on assessing the potential use of MET alone or in combination with other drugs would pave the way to design new treatment strategies for BC.
Collapse
Affiliation(s)
- A G R Greshamali Jinadasa
- Department of Basic Sciences Faculty of Allied Health Sciences University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - H M Kasuni Akalanka
- Rural Health Research Institute Charles Sturt University Orange, Orange, NSW 2800, Australia
| | - N D Amal Wageesha
- Department of Biochemistry Faculty of Medicine Sabaragamuwa University of Sri Lanka, PO Box 01, Hidellana, Ratnapura, Sri Lanka
| | - Sagarika Ekanayake
- Department of Biochemistry Faculty of Medical Science University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| |
Collapse
|
18
|
Hurtado-Carneiro V, LeBaut-Ayuso Y, Velázquez E, Flores-Lamas C, Fernández-de la Rosa R, García-García L, Gómez-Oliver F, Ruiz-Albusac JM, Pozo MÁ. Effects of chronic treatment with metformin on brain glucose hypometabolism and central insulin actions in transgenic mice with tauopathy. Heliyon 2024; 10:e35752. [PMID: 39170185 PMCID: PMC11337050 DOI: 10.1016/j.heliyon.2024.e35752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Brain glucose hypometabolism and insulin alterations are common features of many neurological diseases. Herein we sought to corroborate the brain glucose hypometabolism that develops with ageing in 12-months old Tau-VLW transgenic mice, a model of tauopathy, as well as to determine whether this model showed signs of altered peripheral glucose metabolism. Our results demonstrated that 12-old months Tau mice exhibited brain glucose hypometabolism as well as basal hyperglycemia, impaired glucose tolerance, hyperinsulinemia, and signs of insulin resistance. Then, we further studied the effect of chronic metformin treatment (9 months) in Tau-VLW mice from 9 to 18 months of age. Longitudinal PET neuroimaging studies revealed that chronic metformin altered the temporal profile in the progression of brain glucose hypometabolism associated with ageing. Besides, metformin altered the content and/or phosphorylation of key components of the insulin signal transduction pathway in the frontal cortex leading to significant changes in the content of the active forms. Thus, metformin increased the expression of pAKT-Y474 while reducing pmTOR-S2448 and pGSK3β. These changes might be related, at least partially, to a slow progression of ageing, neurological damage, and cognitive decline. Metformin also improved the peripheral glucose tolerance and the ability of the Tau-VLW mice to maintain their body weight through ageing. Altogether our study shows that the tau-VLW mice could be a useful model to study the potential interrelationship between tauopathy and central and peripheral glucose metabolism alterations. More importantly our results suggest that chronic metformin treatment may have direct beneficial central effects by post-transcriptional modulation of key components of the insulin signal transduction pathway.
Collapse
Affiliation(s)
| | - Yannick LeBaut-Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Cinthya Flores-Lamas
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Luis García-García
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Francisca Gómez-Oliver
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Miguel Ángel Pozo
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
- Pluridisciplinary Institute, Complutense University, IdISSC, Madrid, Spain
| |
Collapse
|
19
|
Wang D, Wang J, Cui Y. Tandem mass tag-based quantitative proteomic analysis of metformin's inhibitory effects on ovarian cancer cells. J Cancer Res Ther 2024; 20:1293-1299. [PMID: 39206991 DOI: 10.4103/jcrt.jcrt_2449_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 06/03/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Metformin (MET), a type 2 diabetes treatment, has attracted increased attention for its potential antitumor properties; however, the precise mechanism underlying this activity remains unclear. Our previous in vivo and in vitro studies revealed MET's inhibitory effect on ovarian cancer, with the synergistic effects of MET and the MDM2 inhibitor RG7388 contributing to ovarian cancer treatment. This study further explores the mechanism underlying MET's inhibition of ovarian cancer. MATERIALS AND METHODS Following MET treatment, we analyzed the differentially expressed proteins in ovarian cancer cells using a tandem mass tag (TMT)-based proteomic approach coupled with bioinformatics. RESULTS Using A2780 and SKOV3 ovarian cancer cells, we identified six upregulated and two downregulated proteins after MET treatment. Bioinformatics analysis revealed that these proteins predominately affect ovarian cancer cells by regulating iron ion transport, iron ion homeostasis, and mitochondrial and ribosomal functions. Validation via western blot confirmed MET-induced elevation of hydroxybutyrate dehydrogenase type 2 (BDH2) protein expression levels in A2780 and SKOV3 cells. CONCLUSIONS Overall, our findings suggest that combining MET with other metabolic drugs, such as iron-chelating agents and mitochondrial inhibitors, may result in synergistic antitumor effects, thereby offering novel avenues for ovarian cancer treatment development.
Collapse
Affiliation(s)
- Dongyue Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jingchen Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Key Laboratory of Laparoscopic Technology, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
20
|
Chanika Rangani LA, Mendis BILM, Rajapakse H, Dissanayake A. Impact of Socio-Demographics and Knowledge, Attitudes, and Practices (KAP) on Misconceptions of Metformin Use in Diabetes: A Potential Myth and Disbelief in South Asia. Cureus 2024; 16:e67509. [PMID: 39310418 PMCID: PMC11416206 DOI: 10.7759/cureus.67509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND The influence of misconceptions and related socio-demographics on metformin use could hamper adherence to medications. This study aimed to assess the rates and causes of metformin non-adherence and to investigate knowledge, attitudes, and practices (KAP) on misconceptions of metformin use including the association with socio-demographic variables. METHODS An observational analytical cross-sectional study was conducted at the diabetes clinic of Karapitiya Teaching Hospital in Galle, Sri Lanka. Causes of metformin non-adherence, associations with socio-demographics, and KAP on misconceptions on metformin use were assessed using the chi-squared test, t-tests, and ANOVA using IBM SPSS Statistics for Windows, Version 26.0 (Released 2019; IBM Corp., Armonk, New York, United States) (p<0.05). RESULTS Metformin non-adherence was reported as 55%. Use of complementary and alternative therapies was 14.7%. Fear of major organ failure was the commonest (20.5%) reason quoted within the non-adherence group (N=223). Socio-demographic factors like ethnicity, lower education, unemployment, use of complementary and alternative therapies, and obtaining medications for other diabetes-related diseases significantly influenced adherence to the metformin-prescribed doses (p<0.05). Among all participants (N=400), the most common misconception was that long-term use of metformin caused organ damage (kidney 72.5%, liver 64.3%, and heart 34.8%), while 44% believed higher doses (two tablets or more for a day) caused organ damage. The KAP scores were reported as 24.5% with low, 52.7% moderate, and 22.7% satisfactory levels. Significantly lower KAP scores were associated with lower education levels and patients obtaining complementary and alternative therapies (p<0.05). CONCLUSION Misconceptions are not merely kept in mind but lead to non-adherence with metformin doses prescribed and warrant evidence-based educational interventions with the high-risk groups.
Collapse
|
21
|
Cartes-Velásquez R, Vera A, Antilef B, Sanhueza S, Lamperti L, González-Ortiz M, Nova-Lamperti E. Metformin Restrains the Proliferation of CD4+ T Lymphocytes by Inducing Cell Cycle Arrest in Normo- and Hyperglycemic Conditions. Biomolecules 2024; 14:846. [PMID: 39062560 PMCID: PMC11274706 DOI: 10.3390/biom14070846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 07/28/2024] Open
Abstract
CD4+ T lymphocytes play a key role in the modulation of the immune response by orchestrating both effector and regulatory functions. The effect of metformin on the immunometabolism of CD4+ T lymphocytes has been scarcely studied, and its impact under high glucose conditions, particularly concerning effector responses and glucose metabolism, remains unknown. This study aims to evaluate the effect of metformin on the modulation of the effector functions and glucose metabolism of CD4+ T lymphocytes under normo- and hyperglycemic conditions. CD4+ T lymphocytes, obtained from peripheral blood from healthy volunteers, were anti-CD3/CD28-activated and cultured for 4 days with three concentrations of metformin (0.1 mM, 1 mM, and 5 mM) under normoglycemic (5.5 mM) and hyperglycemic (25 mM) conditions. Effector functions such as proliferation, cell count, cell cycle analysis, activation markers and cytokine secretion were analyzed by flow cytometry. Glucose uptake was determined using the 2-NBDG assay, and levels of glucose, lactate, and phosphofructokinase (PFK) activity were assessed by colorimetric assays. Metformin at 5 mM restrained the cell counts and proliferation of CD4+ T lymphocytes by arresting the cell cycle in the S/G2 phase at the beginning of the cell culture, without affecting cell activation, cytokine production, and glucose metabolism. In fact, CD69 expression and IL4 secretion by CD4+ T lymphocytes was higher in the presence of 5 mM than the untreated cells in both glucose conditions. Overall, metformin inhibited proliferation through mechanisms associated with cell cycle arrest, leading to an increase in the S/G2 phases at the expense of G1 in activated CD4+ T lymphocytes in normo- and hyperglycemic conditions. Despite the cell cycle arrest, activated CD4+ T lymphocytes remained metabolically, functionally, and phenotypically activated.
Collapse
Affiliation(s)
- Ricardo Cartes-Velásquez
- School of Medicine, University of Concepcion, Concepcion 4070409, Chile
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Agustín Vera
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Bárbara Antilef
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Sergio Sanhueza
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Liliana Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| | - Marcelo González-Ortiz
- Laboratorio de Investigación Materno-Fetal (LIMaF), Departamento de Obstetricia y Ginecología, Universidad de Concepción, Concepción 4070409, Chile
| | - Estefanía Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Pharmacy Faculty, University of Concepcion, Concepcion 4070409, Chile; (A.V.)
| |
Collapse
|
22
|
Farouji A, Haddad AW, Kloub M, Paige A, Miller R. A Case of Metformin-Associated Lactic Acidosis Complicated by Acute Liver Failure, Acute Renal Failure, and Shock. Cureus 2024; 16:e61911. [PMID: 38975471 PMCID: PMC11227902 DOI: 10.7759/cureus.61911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Metformin is an oral antihyperglycemic agent used for type 2 diabetes mellitus (T2DM) management and is considered to be the first-line treatment for diabetic patients. It works by improving insulin sensitivity, reducing intestinal absorption, and decreasing glucose production in the liver, leading to decreased blood glucose levels. It is generally considered a safe drug; however, it is associated with an uncommon but serious side effect known as metformin-associated lactic acidosis (MALA), a potentially life-threatening condition. Patients with renal failure and liver disease are at high risk of developing MALA; therefore, the medication should be used cautiously in these patients. The diagnosis of MALA requires high suspicion from the physician of this specific entity; otherwise, it may be easily missed. Herein, we report a case of a 63-year-old female with alcoholic liver disease on metformin who was found to have MALA complicated by acute decompensated liver failure, renal failure, and shock.
Collapse
Affiliation(s)
- Abdelhadi Farouji
- Department of Internal Medicine, Saint Michael's Medical Center, New York Medical College, Newark, USA
| | - Ahmad W Haddad
- Department of Internal Medicine, Saint Michael's Medical Center, New York Medical College, Newark, USA
| | - Mohammad Kloub
- Department of Internal Medicine, Saint Michael's Medical Center, New York Medical College, Newark, USA
| | - Amy Paige
- Department of Pulmonary and Critical Care Medicine, Saint Michael's Medical Center, New York Medical College, Newark, USA
| | - Richard Miller
- Department of Pulmonary and Critical Care Medicine, Saint Michael's Medical Center, New York Medical College, Newark, USA
| |
Collapse
|
23
|
Alberghina C, Torrisi F, D'Aprile S, Longhitano L, Giallongo S, Scandura G, Mannino G, Mele S, Sabini MG, Cammarata FP, Russo G, Abdelhameed AS, Zappalà A, Lo Furno D, Giuffrida R, Li Volti G, Tibullo D, Vicario N, Parenti R. Microglia and glioblastoma heterocellular interplay sustains tumour growth and proliferation as an off-target effect of radiotherapy. Cell Prolif 2024; 57:e13606. [PMID: 38454614 DOI: 10.1111/cpr.13606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 03/09/2024] Open
Abstract
Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.
Collapse
Affiliation(s)
- Cristiana Alberghina
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Torrisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Simona D'Aprile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giuliana Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Stefania Mele
- Medical Physics Unit, Cannizzaro Hospital, Catania, Italy
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
| | - Maria Gabriella Sabini
- Medical Physics Unit, Cannizzaro Hospital, Catania, Italy
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
| | - Francesco P Cammarata
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Giorgio Russo
- Laboratori Nazionali del Sud, INFN-LNS, National Institute for Nuclear Physics, Catania, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council, IBFM-CNR, Cefalù, Italy
| | - Ali S Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Agata Zappalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Debora Lo Furno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Giuffrida
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosalba Parenti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
24
|
Sanz P, Rubio T, Garcia-Gimeno MA. Neuroinflammation and Epilepsy: From Pathophysiology to Therapies Based on Repurposing Drugs. Int J Mol Sci 2024; 25:4161. [PMID: 38673747 PMCID: PMC11049926 DOI: 10.3390/ijms25084161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroinflammation and epilepsy are different pathologies, but, in some cases, they are so closely related that the activation of one of the pathologies leads to the development of the other. In this work, we discuss the three main cell types involved in neuroinflammation, namely (i) reactive astrocytes, (ii) activated microglia, and infiltration of (iii) peripheral immune cells in the central nervous system. Then, we discuss how neuroinflammation and epilepsy are interconnected and describe the use of different repurposing drugs with anti-inflammatory properties that have been shown to have a beneficial effect in different epilepsy models. This review reinforces the idea that compounds designed to alleviate seizures need to target not only the neuroinflammation caused by reactive astrocytes and microglia but also the interaction of these cells with infiltrated peripheral immune cells.
Collapse
Affiliation(s)
- Pascual Sanz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
| | - Teresa Rubio
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Jaime Roig 11, 46010 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain
- Faculty of Health Science, Universidad Europea de Valencia, 46010 Valencia, Spain
| | - Maria Adelaida Garcia-Gimeno
- Department of Biotechnology, Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural, Universitat Politécnica de València, 46022 Valencia, Spain;
| |
Collapse
|
25
|
Dong J, Tong X, Xu J, Pan M, Wang L, Xu F, Wang Y, Li L, Wang T. Metformin improves obesity-related oligoasthenospermia via regulating the expression of HSL in testis in mice. Eur J Pharmacol 2024; 968:176388. [PMID: 38367685 DOI: 10.1016/j.ejphar.2024.176388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Researches have proposed that obesity might contribute to development of oligoasthenospermia. This study was performed to confirm whether obesity contributes to oligoasthenospermia as well as the underlying mechanisms in mice fed with a high fat diet (HFD). Meanwhile, the actions of metformin, a drug of well-known weight-lowering effect, on sperm quality in obese mice were investigated. Our results showed that HFD feeding reduced sperm quality and steroid hormone levels in mice, associated with disruptions in testicular histomorphology and spermatogenesis. Moreover, obesity increased sperm apoptosis. These effects could be prevented by metformin treatment in HFD-fed mice. Mechanistically, an increasement in lipid contents associated with decreased hormone-sensitive lipase (HSL) protein expression in testes in HFD-fed mice was observed, which could be improved by metformin treatment. Then, the model of TM4 mouse Sertoli cells stimulated with palmitic acid (PA) was used to investigate the potential effect of lipid retention on testicular apoptosis and sperm quality reduction. In consistent, PA exposure elevated lipid contents as well as apoptosis in TM4 cells, which could also be improved by metformin treatment. Of note, the protein expression of HSL was reduced stimulated by PA in TM4 cells, also rescued by metformin. Then, anti-apoptosis effect of metformin would be lost with the deficiency of HSL. In summary, our study propose that obesity contributes to oligoasthenospermia by increasing sperm apoptosis induced by impaired lipid hydrolysis due to HSL down-regulation, which could be prevented with metformin treatment via regulating the expression of HSL in testis in mice.
Collapse
Affiliation(s)
- Jinhui Dong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaohui Tong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Xu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Lei Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fei Xu
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yajuan Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Li Li
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
26
|
Kelleni MT. Repurposing metformin to manage idiopathic or long COVID Tinnitus: self-report adopting a pathophysiological and pharmacological approach. Inflammopharmacology 2024; 32:945-948. [PMID: 38294616 PMCID: PMC11006725 DOI: 10.1007/s10787-023-01421-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/24/2023] [Indexed: 02/01/2024]
Abstract
Chronic tinnitus is a common neurological disorder that affects millions of patients globally with no available successful pharmacotherapy. It can be extremely bothersome to some patients to the extent that it occasionally qualifies as a disability that can hinder them from leading a normal life. In this short communication, the author discusses how he suffered from idiopathic tinnitus and how he managed to adopt a combined pathophysiological and pharmacological approach to the reason for the first time in the medical literature that low-dose metformin might be safely and effectively repurposed to manage at least a subset of tinnitus patients while discussing the potential role of adenosine receptor agonists as potential future tinnitus therapeutics.
Collapse
Affiliation(s)
- Mina T Kelleni
- Pharmacology Department, College of Medicine, Minia University, Minya, 61111, Egypt.
| |
Collapse
|
27
|
Kang YT, Yang WJ, Huang HC, Tang SC, Ko JL. Exposure to nickel chloride induces epigenetic modification on detoxification enzyme glutathione S-transferase M2. ENVIRONMENTAL TOXICOLOGY 2024; 39:1729-1736. [PMID: 38050843 DOI: 10.1002/tox.24055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/23/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
Nickel (Ni) is a human carcinogen with genotoxic and epigenotoxic effects. Environmental and occupational exposure to Ni increases the risk of cancer and chronic inflammatory diseases. Our previous findings indicate that Ni alters gene expression through epigenetic regulation, specifically impacting E-cadherin and angiopoietin-like 4 (ANGPTL4), involved in epithelial-mesenchymal transition and migration. GST-M2, a member of the glutathione S-transferase (GST) enzyme family, plays a crucial role in cellular defense against oxidative damage and has been increasingly associated with cancer. GST-M2 overexpression inhibits lung cancer invasion and metastasis in vitro and in vivo. Hypermethylation of its promoter in cancer cells reduces gene expression, correlating with poor prognosis in non-small-cell lung cancer patients. The impact of Ni on GST-M2 remains unclear. We will investigate whether nickel exerts regulatory effects on GST-M2 through epigenetic modifications. Additionally, metformin, an antidiabetic drug, is being studied as a chemopreventive agent against nickel-induced damage. Our findings indicate that nickel chloride (NiCl2 ) exposure, both short-term and long-term, represses GST-M2 expression. However, the expression can be restored by demethylation agent 5-aza-2'-deoxycytidine and metformin. NiCl2 promotes hypermethylation of the GST-M2 promoter, as confirmed by methylation-specific PCR and bisulfite sequencing. Additionally, NiCl2 also influences histone acetylation, and metformin counteracts the suppressive effect of NiCl2 on histone H3 expression. Metformin reestablishes the binding of specificity protein 1 to the GST-M2 promoter, which is otherwise disrupted by NiCl2 . These findings elucidate the mechanism by which Ni reduces GST-M2 expression and transcriptional activity, potentially contributing to Ni-induced lung carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ting Kang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Wan-Jung Yang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Hsu Chih Huang
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, Chung-Shan Medical University, Taichung, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
Villa-Fernández E, García AV, Fernández-Fernández A, García-Villarino M, Ares-Blanco J, Pujante P, González-Vidal T, Fraga MF, Torre EM, Delgado E, Lambert C. Metformin and Glucose Concentration as Limiting Factors in Retinal Pigment Epithelial Cell Viability and Proliferation. Int J Mol Sci 2024; 25:2637. [PMID: 38473884 DOI: 10.3390/ijms25052637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Metformin is a well-established drug for the treatment of type 2 diabetes; however, the mechanism of action has not been well described and many aspects of how it truly acts are still unknown. Moreover, regarding in vitro experiments, the glycaemic status when metformin is used is generally not considered, which, added to the suprapharmacological drug concentrations that are commonly employed in research, has resulted in gaps of its mechanism of action. The aim of this study was to determine how glucose and metformin concentrations influence cell culture. Considering that diabetic retinopathy is one of the most common complications of diabetes, a retinal pigment epithelial cell line was selected, and cell viability and proliferation rates were measured at different glucose and metformin concentrations. As expected, glucose concentration by itself positively influenced cell proliferation rates. When the metformin was considered, results were conditioned, as well, by metformin concentration. This conditioning resulted in cell death when high concentrations of metformin were used under physiological concentrations of glucose, while this did not happen when clinically relevant concentrations of metformin were used independently of glucose status. Our study shows the importance of in vitro cell growth conditions when drug effects such as metformin's are being analysed.
Collapse
Affiliation(s)
- Elsa Villa-Fernández
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Ana Victoria García
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | | | - Miguel García-Villarino
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Department of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jessica Ares-Blanco
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Asturias Central University Hospital, 33011 Oviedo, Asturias, Spain
- Department of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Pedro Pujante
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Asturias Central University Hospital, 33011 Oviedo, Asturias, Spain
| | - Tomás González-Vidal
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Asturias Central University Hospital, 33011 Oviedo, Asturias, Spain
| | - Mario F Fraga
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institute of Oncology of Asturias (IUOPA), 33006 Oviedo, Asturias, Spain
- Department of Organisms and Systems Biology (B.O.S), University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Edelmiro Menéndez Torre
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Asturias Central University Hospital, 33011 Oviedo, Asturias, Spain
- Department of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Elias Delgado
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Asturias Central University Hospital, 33011 Oviedo, Asturias, Spain
- Department of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Carmen Lambert
- Endocrinology, Nutrition, Diabetes and Obesity Group, Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
- Department of Educational Sciences, University of Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
29
|
Yin K, Wu R. Systematic Investigation of Dose-Dependent Protein Thermal Stability Changes to Uncover the Mechanisms of the Pleiotropic Effects of Metformin. ACS Pharmacol Transl Sci 2024; 7:467-477. [PMID: 38357277 PMCID: PMC10863438 DOI: 10.1021/acsptsci.3c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 02/16/2024]
Abstract
Metformin is a widely used drug to treat type II diabetes. Beyond lowering blood sugar, it has been reported to have pleiotropic effects such as suppressing cancer growth and attenuating cell oxidative stress and inflammation. However, the underlying mechanisms of these effects remain to be explored. Here, we systematically study the thermal stability changes of proteins in liver cells (HepG2) induced by a wide dosage range of metformin by using the proteome integral solubility alteration (PISA) assay. The current results demonstrate that, besides the most accepted target of metformin (complex I), low concentrations of metformin (such as 0.2 μM) stabilize the complex IV subunits, suggesting its important role in the sugar-lowering effect. Low-dose metformin also results in stability alterations of ribosomal proteins, correlating with its inhibitive effect on cell proliferation. We further find that low-concentration metformin impacts mitochondrial cargo and vesicle transport, while high-concentration metformin affects cell redox responses and cell membrane protein sorting. This study provides mechanistic insights into the molecular mechanisms of lowering blood sugar and the pleiotropic effects of metformin.
Collapse
Affiliation(s)
- Kejun Yin
- School of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
30
|
Oruc A, Oruc KY, Yanar K, Mengi M, Caglar A, Kurt BO, Altan M, Sonmez OF, Cakatay U, Uzun H, Simsek G. The Role of Glycogen Synthase Kinase-3β in the Zinc-Mediated Neuroprotective Effect of Metformin in Rats with Glutamate Neurotoxicity. Biol Trace Elem Res 2024; 202:233-245. [PMID: 37071257 DOI: 10.1007/s12011-023-03667-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/11/2023] [Indexed: 04/19/2023]
Abstract
Metformin has been suggested to have protective effects on the central nervous system, but the mechanism is unknown. The similarity between the effects of metformin and the inhibition of glycogen synthase kinase (GSK)-3β suggests that metformin may inhibit GSK-3β. In addition, zinc is an important element that inhibits GSK-3β by phosphorylation. In this study, we investigated whether the effects of metformin on neuroprotection and neuronal survival were mediated by zinc-dependent inhibition of GSK-3β in rats with glutamate-induced neurotoxicity. Forty adult male rats were divided into 5 groups: control, glutamate, metformin + glutamate, zinc deficiency + glutamate, and zinc deficiency + metformin + glutamate. Zinc deficiency was induced with a zinc-poor pellet. Metformin was orally administered for 35 days. D-glutamic acid was intraperitoneally administered on the 35th day. On the 38th day, neurodegeneration was examined histopathologically, and the effects on neuronal protection and survival were evaluated via intracellular S-100β immunohistochemical staining. The findings were examined in relation to nonphosphorylated (active) GSK-3β levels and oxidative stress parameters in brain tissue and blood. Neurodegeneration was increased (p < 0.05) in rats fed a zinc-deficient diet. Active GSK-3β levels were increased in groups with neurodegeneration (p < 0.01). Decreased neurodegeneration, increased neuronal survival (p < 0.01), decreased active GSK-3β (p < 0.01) levels and oxidative stress parameters, and increased antioxidant parameters were observed in groups treated with metformin (p < 0.01). Metformin had fewer protective effects on rats fed a zinc-deficient diet. Metformin may exert neuroprotective effects and increase S-100β-mediated neuronal survival by zinc-dependent inhibition of GSK-3β during glutamate neurotoxicity.
Collapse
Affiliation(s)
- Aykut Oruc
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
| | - Kadriye Yagmur Oruc
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
- Department of Physiology, Faculty of Medicine, Istinye University, Istanbul, Turkey
| | - Karolin Yanar
- Department of Medical Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Murat Mengi
- Department of Physiology, Medical Faculty, Namık Kemal University, Tekirdag, Turkey
| | - Aysel Caglar
- Department of Pathology, Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Bahar Ozturk Kurt
- Department of Biophysics, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Mehmet Altan
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Osman Fuat Sonmez
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ufuk Cakatay
- Department of Medical Biochemistry, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul, Turkey
| | - Gonul Simsek
- Department of Physiology, Cerrahpaşa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
31
|
Liao M, Li X, Zhang H, Zhou L, Shi L, Li W, Shen R, Peng G, Zhao H, Shao J, Wang X, Sun Z, Zheng H, Long M. Effects and plasma proteomic analysis of GLP-1RA versus CPA/EE, in combination with metformin, on overweight PCOS women: a randomized controlled trial. Endocrine 2024; 83:227-241. [PMID: 37653215 PMCID: PMC10806039 DOI: 10.1007/s12020-023-03487-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Polycystic ovary syndrome (PCOS) is characterized by reproductive dysfunctions and metabolic disorders. This study aims to compare the therapeutic effectiveness of glucagon-like peptide-1 receptor agonist (GLP-1RA) + Metformin (Met) versus cyproterone acetate/ethinylestradiol (CPA/EE) + Met in overweight PCOS women and identify potential proteomic biomarkers of disease risk in women with PCOS. METHODS In this prospective, open-label randomized controlled trial, we recruited 60 overweight PCOS women into two groups at a 1:1 ratio to receive CPA/EE (2 mg/day: 2 mg cyproterone acetate and 35-μg ethinylestradiol,) +Met (1500 mg/day) or GLP-1 RA (liraglutide, 1.2-1.8 mg/day) +Met (1500 mg/day) for 12 weeks. The clinical effectiveness and adverse effects were evaluated, followed by plasma proteomic analysis and verification of critical biomarkers by ELISA. RESULTS Eighty(80%) patients completed the study. Both interventions improved menstrual cycle, polycystic ovaries, LH(luteinizing hormone) and HbA1c(hemoglobin A1c) levels after the 12-week treatment. GLP-1RA + Met was more effective than CPA/EE + Met in reducing body weight, BMI (Body Mass Index), and waist circumference, FBG(fasting blood glucose), AUCI(area under curve of insulin),TC (Total Cholesterol), IL-6(Interleukin-6) and improving insulin sensitivity, and ovulation in overweight women with PCOS, with acceptable short-term side effects. CPA/EE + Met was more effective in improving hyperandrogenemia, including T(total testosterone), LH, LH/FSH(Luteinizing hormone/follicle-stimulating hormone), SHBG(sex hormone-binding globulin) and FAI (free androgen index). By contract, GLP-1RA+Met group only improved LH. Plasma proteomic analysis revealed that the interventions altered proteins involved in reactive oxygen species detoxification (PRDX6, GSTO1, GSTP1, GSTM2), platelet degranulation (FN1), and the immune response (SERPINB9). CONCLUSIONS Both CPA/EE+Met and GLP-1RA + Met treatment improved reproductive functions in overweight PCOS women. GLP-1RA + Met was more effective than CPA/EE + Met in reducing body weight, BMI, and waist, and improving metabolism, and ovulation in overweight women with PCOS, with acceptable short-term side effects. CPA/EE + Met was more effective in reducing hyperandrogenemia. The novel plasma biomarkers PRDX6, FN1, and SERPINB9, might be indicators and targets for PCOS treatment. TRIAL REGISTRATION CLINICALTIALS. GOV TRIAL NO NCT03151005. Registered 12 May, 2017, https://clinicaltrials.gov/ct2/show/NCT03151005 .
Collapse
Affiliation(s)
- Mingyu Liao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Xing Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210016, China
| | - Hao Zhang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- Univeristy of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ling Zhou
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liu Shi
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Weixin Li
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Rufei Shen
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Guiliang Peng
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Huan Zhao
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Jiaqing Shao
- Department of Endocrinology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210016, China
| | - Xiujie Wang
- Key Laboratory of Genetic Network Biology, Collaborative Innovation Center of Genetics and Development, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- Univeristy of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology and Metabolism, Baylor College of Medicine, Houston, TX, USA.
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| | - Min Long
- Department of Endocrinology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
32
|
Olgun ME, Pire G, Güney İB. Effects of Metformin Therapy on Thyroid Volume and Functions in Patients with Newly Diagnosed Type 2 Diabetes Mellitus: A Single-center Prospective Study. Endocr Metab Immune Disord Drug Targets 2024; 24:1842-1855. [PMID: 38676519 DOI: 10.2174/0118715303307313240315162000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVE Patients with impaired glucose metabolism have increased thyroid volume and a higher prevalence of nodules. Yet, some studies show that there is an improvement in these thyroid parameters after diabetes treatment. Our observational study aimed to reveal the effect of treatment on thyroid function, thyroid volume, and the presence of nodules in newly diagnosed type 2 diabetes mellitus (T2DM) patients who were started on metformin treatment. METHODS Euthyroid and subclinically hypothyroid patients with a serum TSH level of <10 mU/L, who were newly diagnosed with T2DM and started on metformin as an antidiabetic treatment and not used any thyroid medication previously, were included in our study. Patients' characteristics were recorded. Baseline and 6th-month serum thyroid function tests were scheduled. Baseline and 6th-month thyroid gland characteristics were examined by thyroid ultrasonography. RESULTS A total of 101 (37 males, 64 females) newly diagnosed T2DM patients with euthyroid (n=95) or subclinical hypothyroidism (n=6) were included in the study. The mean age of the patients was 53.02 ± 11.9 years, and the mean BMI was 29.60 ± 3.9 kg/m2. Fifty-two (52%) patients were classified as obese. Body weight, BMI, serum TSH, ALT, Anti-TPO levels, and thyroid volume decreased significantly in the 6th-month compared to baseline values (p = 0.000; p = 0.000; p = 0.011; p = 0.022; p = 0.000, respectively). Serum anti-Tg, fT4, fT3 levels, and thyroid nodule count did not change significantly. A high agreement was found between the baseline and 6thmonth nodule counts (gamma= 0.886; p < 0.001) and the presence of multi-nodularity in the thyroid (gamma= 0.941; p < 0.001), but no significant change was observed. Anti-TPO levels showed a significant decrease in both with and without obesity groups at the end of 6 months (p = 0.003, p = 0.009, respectively). Serum TSH level decreased significantly only in non-obese subjects (p = 0.004), and thyroid volume decreased significantly only in obese subjects (p = 0.000). CONCLUSION Our results suggest that metformin treatment significantly reduces body weight, BMI, thyroid volume, and serum TSH, ALT, and Anti-TPO levels in patients with newly diagnosed T2DM. Moreover, serum TSH levels showed a significant decrease in non-obese subjects, while thyroid volume showed a significant decrease in obese subjects.
Collapse
Affiliation(s)
- Mehtap Evran Olgun
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Gizem Pire
- Department of Internal Medicine, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - İsa Burak Güney
- Department of Nuclear Medicine, Faculty of Medicine, Cukurova University, Adana, Turkey
| |
Collapse
|
33
|
Toma T, Miyakawa N, Tateishi M, Todaka M, Kondo T, Fujita M, Otsuka M, Araki E, Tateishi H. An ADAM17 selective inhibitor promotes glucose uptake by activating AMPK. J Pharmacol Sci 2024; 154:37-46. [PMID: 38081682 DOI: 10.1016/j.jphs.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
AMPK activation promotes glucose and lipid metabolism. Here, we found that our previously reported ADAM17 inhibitor SN-4 activates AMPK and promotes membrane translocation and sugar uptake of GLUT4. AMPK inhibitor dorsomorphin reversed this effect of SN-4, confirming that the effect is mediated by AMPK activation. In addition, SN-4 inhibited lipid accumulation in HepG2 under high glucose conditions by promoting lipid metabolism and inhibiting lipid synthesis. Although lactic acidosis is a serious side effect of biguanides such as metformin, SN-4 did not affect lactate production. Furthermore, SN-4 was confirmed to inhibit the release of TNF-α, a causative agent of insulin resistance, from adipocytes. In diabetes treatment, it is important to not only regulate blood sugar levels but also prevent complications. Our findings reveal the therapeutic potential of SN-4 as a new antidiabetic drug that can also help prevent future complications.
Collapse
Affiliation(s)
- Tsugumasa Toma
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Nobukazu Miyakawa
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Mika Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Mikio Todaka
- Todaka Internal Medical Clinic, 2-13-5 Shimoezu, Higashi-ku, Kumamoto, 862-0960, Japan
| | - Tatsuya Kondo
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto, 862-0976, Japan
| | - Eiichi Araki
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Kikuchi Medical Association Hospital, 75-3 Dairinji, Kikuchi, Kumamoto, 861-1306, Japan; Research Center for Health and Sport Sciences, Kumamoto Health Science University, 325 Izumicho, Kita-ku, Kumamoto, 861-5533, Japan.
| | - Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan; Research & Development, Hirata Corporation, 111 Hitotsugi Uekimachi, Kita-ku, Kumamoto, 861-0135, Japan.
| |
Collapse
|
34
|
De Sousa-Coelho AL, Fraqueza G, Aureliano M. Repurposing Therapeutic Drugs Complexed to Vanadium in Cancer. Pharmaceuticals (Basel) 2023; 17:12. [PMID: 38275998 PMCID: PMC10819319 DOI: 10.3390/ph17010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Repurposing drugs by uncovering new indications for approved drugs accelerates the process of establishing new treatments and reduces the high costs of drug discovery and development. Metal complexes with clinically approved drugs allow further opportunities in cancer therapy-many vanadium compounds have previously shown antitumor effects, which makes vanadium a suitable metal to complex with therapeutic drugs, potentially improving their efficacy in cancer treatment. In this review, covering the last 25 years of research in the field, we identified non-oncology-approved drugs suitable as ligands to obtain different vanadium complexes. Metformin-decavanadate, vanadium-bisphosphonates, vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs, and cetirizine and imidazole-based oxidovanadium(IV) complexes, each has a parent drug known to have different medicinal properties and therapeutic indications, and all showed potential as novel anticancer treatments. Nevertheless, the precise mechanisms of action for these vanadium compounds against cancer are still not fully understood.
Collapse
Affiliation(s)
- Ana Luísa De Sousa-Coelho
- Algarve Biomedical Center Research Institute (ABC-RI), Universidade do Algarve, 8005-139 Faro, Portugal
- Algarve Biomedical Center (ABC), Universidade do Algarve, 8005-139 Faro, Portugal
- Escola Superior de Saúde, Universidade do Algarve (ESSUAlg), 8005-139 Faro, Portugal
| | - Gil Fraqueza
- Instituto Superior de Engenharia (ISE), Universidade do Algarve, 8005-139 Faro, Portugal;
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
35
|
Hammad Uddin MK, Khan Sadiq MS, Ahmed A, Khan M, Maniar T, Mateen SM, Saba B, Kashif SM, Usman S, Najeeb S, Khurshid Z, Zafar MS. Applications of Metformin in Dentistry-A review. J Taibah Univ Med Sci 2023; 18:1299-1310. [PMID: 37275952 PMCID: PMC10239065 DOI: 10.1016/j.jtumed.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/30/2023] [Indexed: 06/07/2023] Open
Abstract
Metformin is a versatile drug with numerous medical uses. It is known primarily as an anti-hyperglycemic drug that has become the main oral blood-glucose-lowering medication for managing type 2 diabetes mellitus globally. Its use has been reported in a variety of oral conditions and dentistry in general. Recent clinical trials have indicated the effectiveness of adjunct topical application of metformin in improving the periodontal parameters of patients with diabetes and periodontitis. Additionally, studies have suggested that metformin stimulates odontogenic differentiation and mineral synthesis of stem cells in the tooth pulp. Metformin also stimulates osteoblast proliferation, decreases osteoclast activity and exerts regenerative effects on periodontal bone, thus making it a viable candidate for periodontal regeneration. Metformin monotherapy significantly enhances osseointegration of endosseous implants and has been reported to have anti-cancer effects on oral squamous cell carcinoma by impeding tumor progression. Animal studies have indicated that metformin improves orthodontic tooth movement and resists orthodontic appliance corrosion. This narrative review aims to provide a current summary of research highlighting the prospective uses of metformin in dentistry.
Collapse
Affiliation(s)
- Muhammad Khawaja Hammad Uddin
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- School of Dental Care Professionals (SDCP), Dow University of Health Sciences Karachi, Sindh, Pakistan
| | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Ashfaq Ahmed
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Mariam Khan
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Tooba Maniar
- Department of Science of Dental Materials, Dr. Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Sindh, Pakistan
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Sciences Campus (Karachi) Karachi, Sindh, Pakistan
| | - Syeda Mamoona Mateen
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
| | - Bilquees Saba
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Sindh, Pakistan
| | - Syed Muhammad Kashif
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of General Medicine, Civil Hospital, Dow University of Health Sciences, Karachi, Sindh, Pakistan
| | - Shumaila Usman
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Sindh, Pakistan
- Department of Molecular Medicine, Ziauddin Medical College, Ziauddin University, Karachi, Sindh, Pakistan
| | - Shariq Najeeb
- Evidentia Dental Outcomes Research, Calgary, Alberta, Canada
- Schulich Dentistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C, Canada
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, King Faisal University, Hofuf, Al-Ahsa, Saudi Arabia
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawara, 41311, Saudi Arabia
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| |
Collapse
|
36
|
Singh P, Walia V, Verma PK. Hypoglycemia and anxiolysis mediated by levofloxacin treatment in diabetic rats. J Diabetes Metab Disord 2023; 22:1197-1209. [PMID: 37975146 PMCID: PMC10638278 DOI: 10.1007/s40200-023-01234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/03/2023] [Indexed: 11/19/2023]
Abstract
Purpose The present study was designed to determine the effect of levofloxacin (LVX) treatment on the blood glucose level, insulin sensitivity, anxiety level, nitrite and MDA level of STZ induced diabetic rats. Methods Wistar rats were used in the present study. The rats were made diabetic by the administration of single dose of STZ (45 mg/kg, i.p.) and NAD (50 mg/kg, i.p.). The rats with the blood glucose level greater than 200 mg/dl were considered as diabetic (confirmed at day-3 of STZ-NAD administration). The non-diabetic rats were considered as control and received saline.Diabetic rats received metformin (50 mg/kg, p.o.) and LVX (20, 25, 30 and 35 mg/kg, i.p.) daily for 14 days (starting from the day at which STZ was injected). Following administration on 14th day,the blood sample was collected and the rats were subjected to behavioral assays for the determination of locomotor activity and anxiety level. Plasma was separated and used for the estimation ofnitrite and malondialdehyde (MDA)level. On 15th day OGTT was performed in the overnight fasted rats for the assessment of insulin sensitivity. Results The results obtained suggested that the administration of STZ-NAD induced the hyperglycemia at day-3 of administration. Diabetic rats displayed the significant increase in blood glucose, anxiety related behavior, MDA level while significant decrease in the insulin sensitivity and plasma nitrite level. Daily administration of metformin to the diabetic rats decreased the blood glucose level, increased the time spent at the center of open field, reversed the anxiety related behavior in LDT and EPM, did not affect the plasma nitrite level, decreased the plasma MDA level, decreased the fasting glucose level and AUC in OGTT assay. LVX (30 and 35 mg/kg) treatment significantly decreased the blood glucose level of diabetic rats. LVX (20, 25 and 30 mg/kg) treatment significantly decreased the number of square crossing while LVX (20, 25, 30 and 35) treatment significantly increased the time spent at the center of the field by the diabetic rats. LVX (20 and 35 mg/kg) treatment significantly reversed the STZ induced anxiety in LDT while LVX (20, 30 and 35 mg/kg) treatment significantly reversed the STZ induced anxiety in EPM test. LVX (20, 25 and 35 mg/kg) treatment significantly increased the plasma nitrite level and LVX (20-35 mg/kg) treatment significantly decreased the MDA level of diabetic rats. Further only LVX (35 mg/kg) treatment significantly decreased the fasting glucose level and increased the AUC of diabetic rats. Conclusion In conclusion, STZ-NAD administration increased the blood glucose level, anxiety related behavior, decreased the plasma nitrite and increased the MDA level. LVX administration potentiated the diabetogenic effects of STZ-NAD in rats. Daily administration of LVX decreased the blood glucose level of diabetic rats. LVX administration alleviated the STZ induced anxiety in OFT, LDT and EPM test. LVX administration increased the plasma nitrite level and decreased the lipid peroxidation in diabetic rats. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-023-01234-0.
Collapse
Affiliation(s)
- Poonam Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana India
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001 Haryana India
| |
Collapse
|
37
|
Ruiz-Mitjana A, Vidal-Sabanés M, Navaridas R, Perramon-Güell A, Yeramian A, Nicholson-Sabaté N, Egea J, Encinas M, Matias-Guiu X, Dolcet X. Metformin exhibits antineoplastic effects on Pten-deficient endometrial cancer by interfering with TGF-β and p38/ERK MAPK signalling. Biomed Pharmacother 2023; 168:115817. [PMID: 37925934 DOI: 10.1016/j.biopha.2023.115817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023] Open
Abstract
Metformin is a widespread antidiabetic agent that is commonly used as a treatment against type 2 diabetes mellitus patients. Regarding its therapeutic potential, multiple studies have concluded that Metformin exhibits antineoplastic activity on several types of cancer, including endometrial carcinoma. Although Metformin's antineoplastic activity is well documented, its cellular and molecular anticancer mechanisms are still a matter of controversy because a plethora of anticancer mechanisms have been proposed for different cancer cell types. In this study, we addressed the cellular and molecular mechanisms of Metformin's antineoplastic activity by using both in vitro and in vivo studies of Pten-loss driven carcinoma mouse models. In vivo, Metformin reduced endometrial neoplasia initiated by Pten-deficiency. Our in vitro studies using Pten-deficient endometrial organoids focused on both cellular and molecular levels in Metformin's tumor suppressive action. At cellular level, we showed that Metformin is involved in not only the proliferation of endometrial epithelial cells but also their regulation via a variety of mechanisms of epithelial-to-mesenchymal transition (EMT) as well as TGF-β-induced apoptosis. At the molecular level, Metformin was shown to affect the TGF-β signalling., a widely known signal that plays a pivotal role in endometrial carcinogenesis. In this respect, Metformin restored TGF-β-induced apoptosis of Pten-deficient endometrial organoids through a p38-dependent mechanism and inhibited TGF-β-induced EMT on no-polarized endometrial epithelial cells by inhibiting ERK/MAPK signalling. These results provide new insights into the link between the cellular and molecular mechanism for Metformin's antineoplastic activity in Pten-deficient endometrial cancers.
Collapse
Affiliation(s)
- Anna Ruiz-Mitjana
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Maria Vidal-Sabanés
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Raúl Navaridas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Aida Perramon-Güell
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Andree Yeramian
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Nathan Nicholson-Sabaté
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Joaquim Egea
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Mario Encinas
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, CIBERONC, Spain
| | - Xavier Dolcet
- Developmental and Oncogenic Signalling Group, Departament de Ciències Mèdiques Bàsiques and Departament de Medicina Experimental, Universitat de Lleida, Institut de Recerca Biomèdica de Lleida, IRBLleida, Lleida, Spain.
| |
Collapse
|
38
|
Hedayatyanfard K, Niazi S, Hesami S, Haddadi NS, Tavakoli-Far B, Bayat G, Doroodgar F, Niazi F. Metformin ointment may relieve hypertrophic and keloid scars. Australas J Dermatol 2023; 64:565-567. [PMID: 37807930 DOI: 10.1111/ajd.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/11/2023] [Accepted: 09/10/2023] [Indexed: 10/10/2023]
Affiliation(s)
- Keshvad Hedayatyanfard
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sana Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Hesami
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts School of Medicine, Worchester, Massachusetts, USA
| | - Bahareh Tavakoli-Far
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Bayat
- Department of Physiology and Pharmacology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farideh Doroodgar
- Department of Ophthalmology Translational Ophthalmic Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Negah Eye Hospital Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Feizollah Niazi
- Department of Plastic and Reconstructive Surgery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Bajetto A, Pattarozzi A, Sirito R, Barbieri F, Florio T. Metformin potentiates immunosuppressant activity and adipogenic differentiation of human umbilical cord-mesenchymal stem cells. Int Immunopharmacol 2023; 124:111078. [PMID: 37844465 DOI: 10.1016/j.intimp.2023.111078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Metformin, a first-line drug for type-2 diabetes, displays pleiotropic effects on inflammation, aging, and cancer. Obesity triggers a low-grade chronic inflammation leading to insulin resistance, characterized by increased pro-inflammatory cytokines produced by adipocytes and infiltrated immune cells, which contributes to metabolic syndrome. We investigated metformin's differentiation and immunoregulatory properties of human umbilical cord-mesenchymal stem cells (UC-MSC), as cellular basis of its beneficial role in metabolic dysfunctions. Isolation, characterization and multilineage differentiation of UC-MSC were performed using standard protocols and flow-cytometry. Metformin effects on UC-MSC growth was assessed by colony formation and MTT assay, gene and protein expression by qRT-PCR, and western blot analysis. Proliferation of peripheral blood mononuclear cells (PBMCs) co-cultured with metformin-treated UC-MSC-conditioned media was evaluated by dye dilution assay. We show that metformin decreases proliferation and colony formation of UC-MSCs and enhances their adipogenic lineage commitment. Metformin (3 mM) increases PPARγ and downregulates FABP4 mRNA both in basal and in adipogenic culture conditions; however, the modulation of PPARγ expression is unrelated to the antiproliferative effects. Moreover, metformin inhibits UC-MSC inflammatory activity reducing the expression of IL-6, MCP-1, and COX-2. Conditioned media, collected from metformin-treated UC-MSCs, down-regulate CD3+ T lymphocyte growth in stimulated PBMCs and, in particular, reduce the CD8+ T cell population. These results indicate that metformin may favor new adipocyte formation and potentiate immune suppressive properties of UC-MSCs. Thus, adipose tissue regeneration and anti-inflammatory activity may represent possible mechanisms by which metformin exerts its positive effect on lipid metabolism.
Collapse
Affiliation(s)
- Adriana Bajetto
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Alessandra Pattarozzi
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Rodolfo Sirito
- Section of Obstetrics and Gynaecology, International Evangelical Hospital, 16122 Genova, Italy
| | - Federica Barbieri
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy
| | - Tullio Florio
- Section of Pharmacology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy.
| |
Collapse
|
40
|
Jiang T, Wang J, Xie L, Zhou S, Huang Y, Chen Y, Gao X, Xiao W, Chen J. Biguanide-anchored albumin-based nanoplatform inhibits epithelial-mesenchymal transition and reduces the stemness phenotype for metastatic cancer therapy. Acta Biomater 2023; 171:565-579. [PMID: 37716479 DOI: 10.1016/j.actbio.2023.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
In clinical chemotherapy, albumin-bound paclitaxel (Abraxane) can improve the tumor targeting property and therapeutic efficacy of paclitaxel (PTX) against orthotopic malignancies. However, patients with metastatic cancer have a poor prognosis, probably due to the instability, chemoresistance, and inability of albumin-bound paclitaxel to alter the tumor microenvironment. Here we propose a new biguanide-modified albumin-based nanoplatform that encapsulates paclitaxel for the effective treatment of metastatic cancer. The PTX is encapsulated in poly (lactic-co-glycolic acid) cores coated with biguanide-modified albumin (HSA-NH). The functionalized nanoparticles (HSA-NH NPs) exhibit a remarkable stable profile with low drug release (P < 0.05 versus Abraxane), target tumor tissues, suppress epithelial-mesenchymal transition (EMT) events for anti-metastatic effects, and reduce the phenotype of cancer stem cells. As a result, HSA-NH NPs effectively prolong animal survival (55 days) by inhibiting not only primary tumor growth but also metastasis. This study provides proof of concept that the biguanide-anchored albumin-based nanoplatform encapsulating PTX is a powerful, safe, and clinically translational strategy for the treatment of metastatic cancer. STATEMENT OF SIGNIFICANCE: Albumin-bound paclitaxel (Abraxane) can increase paclitaxel's tumor targeting and therapeutic efficacy in clinical cancer treatments such as breast cancer. However, the instability, chemoresistance, and lack of tumor microenvironment modulation of albumin-bound paclitaxel may lead to poor therapeutic efficacy in metastatic cancer patients. Here we develop biguanide-anchored albumin-based nanoplatforms that encapsulate paclitaxel (HSA-NH NPs) for metastatic cancer treatment. Poly(lactic-co-glycolic acid) (PLGA) cores encapsulating paclitaxel improve the stability of HSA-NH NPs. Based on the activities of metformin, biguanide-anchored albumin adsorbed on PLGA cores improves paclitaxel efficacy, inhibits various aberrant changes during epithelial-mesenchymal transition, and reduces tumor cell stemness. The biguanide-anchored albumin-based nanoplatform encapsulating PTX can serve as a potent, safe, and clinically translational approach for metastatic cancer therapies.
Collapse
Affiliation(s)
- Tianze Jiang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Marine Drugs, Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jiahao Wang
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Laozhi Xie
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Songlei Zhou
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yu Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Wenze Xiao
- Department of Rheumatology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Shanghai 201399, China.
| | - Jun Chen
- Shanghai Pudong Hospital & Department of Pharmaceutics, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China; Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
41
|
Hassan I, Al-Tamimi J, Ebaid H, Habila MA, Alhazza IM, Rady AM. Silver Nanoparticles Decorated with Curcumin Enhance the Efficacy of Metformin in Diabetic Rats via Suppression of Hepatotoxicity. TOXICS 2023; 11:867. [PMID: 37888717 PMCID: PMC10611133 DOI: 10.3390/toxics11100867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Hepatotoxicity is one of the significant side effects of chronic diabetes mellitus (DM) besides nephrotoxicity and pancreatitis. The management of this disease is much dependent on the restoration of the liver to its maximum functionality, as it is the central metabolic organ that gets severely affected during chronic diabetes. The present study investigates if the silver nanoparticles decorated with curcumin (AgNP-Cur) can enhance the efficacy of metformin (a conventional antidiabetic drug) by countering the drug-induced hepatoxicity. Swiss albino rats were categorized into six treatment groups (n = 6): control (group I without any treatment), the remaining five groups (group II, IV, V, VI) were DM-induced by streptozocin. Group II was untreated diabetic positive control, whereas groups III was administered with AgNP-cur (5 mg/kg). Diabetic group IV treated with metformin while V and VI were treated with metformin in a combination of the two doses of NPs (5 and 10 mg/kg) according to the treatment schedule. Biochemical and histological analysis of blood and liver samples were conducted after the treatment. The groups V and VI treated with the combination exhibited remarkable improvement in fasting glucose, lipid profile (HDL and cholesterol), liver function tests (AST, ALT), toxicity markers (GGT, GST and LDH), and redox markers (GSH, MDA and CAT) in comparison to group II in most of the parameters. Histological evaluation and comet assay further consolidate these biochemical results, pleading the restoration of the cellular structure of the target tissues and their nuclear DNA. Therefore, the present study shows that the NPs can enhance the anti-diabetic action by suppression of the drug-mediated hepatoxicity via relieving from oxidative stress, toxic burden and inflammation.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Mohamed A. Habila
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Ibrahim M. Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| | - Ahmed M. Rady
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (J.A.-T.); (H.E.); (I.M.A.); (A.M.R.)
| |
Collapse
|
42
|
Guo Y, Jiang H, Wang M, Ma Y, Zhang J, Jing L. Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis. Chem Biol Interact 2023; 384:110723. [PMID: 37741536 DOI: 10.1016/j.cbi.2023.110723] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Stroke remains the main leading cause of death and disabilities worldwide, with diabetes mellitus being a significant independent risk factor for it. Metformin, as an efficient hypoglycemic drug in treating type 2 diabetes, has been reported to alleviate the risk of diabetes-related stroke. However, its underlying mechanisms remain unclear. This study aimed to investigate the role of mitophagy and its regulatory pathway in the neuroprotective mechanism of metformin against cerebral ischemia/reperfusion (I/R) injury aggravated by hyperglycemia. A hyperglycemic cerebral I/R animal model and a high glucose cultured oxygen-glucose deprivation/reperfusion (OGD/R) cell model were used in the experiment. The indexes of brain injury, cell activity, mitochondrial morphology and function, mitophagy, mitochondrial pathway apoptosis and the AMPK pathway were observed. In diabetic rats, metformin treatment decreased cerebral infarction volume and neuronal apoptosis, and improved neurological symptoms following I/R injury. Additionally, metformin induced activation of the AMPK/ULK1/PINK1/Parkin mitophagy pathway to have neuroprotective effects. In vitro, high glucose culture and OGD/R treatment impaired mitochondrial morphology and function, mitochondrial membrane potential, and induced apoptosis. However, metformin activated AMPK/ULK1/PINK1/Parkin mitophagy pathway, normalized mitochondrial injury. This protection was reversed by autophagy inhibitor 3-methyladenine (3MA) and AMPK inhibitor compound C. In conclusion, our present study validates the potential mechanism of metformin in alleviating hyperglycemia aggravated cerebral I/R injury by the activation of AMPK/ULK1/PINK1/Parkin mitophagy pathway.
Collapse
Affiliation(s)
- Yaqi Guo
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China; Clinical Laboratory Center, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Haifeng Jiang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Meng Wang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanmei Ma
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianzhong Zhang
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Li Jing
- Department of Pathology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| |
Collapse
|
43
|
Chadha J, Khullar L, Gulati P, Chhibber S, Harjai K. Anti-virulence prospects of Metformin against Pseudomonas aeruginosa: A new dimension to a multifaceted drug. Microb Pathog 2023; 183:106281. [PMID: 37541553 DOI: 10.1016/j.micpath.2023.106281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Metformin (MeT) is an FDA-approved drug with a myriad of health benefits. Besides being used as an anti-diabetic drug, MeT is also effective against various cancers, liver-, cardiovascular-, and renal diseases. This study was undertaken to examine its unique potential as an anti-virulence drug against an opportunistic bacterial pathogen, Pseudomonas aeruginosa. Due to the menace of multidrug resistance in pathogenic microorganisms, many novel or repurposed drugs with anti-virulence prospects are emerging as next-generation therapies with the aim to overshadow the application of existing antimicrobial regimens. The quorum sensing (QS) mechanisms of P. aeruginosa are an attractive drug target for attenuating bacterial virulence. In this context, the anti-QS potential of MeT was scrutinized using biosensor assays. MeT was comprehensively evaluated for its effects on different motility phenotypes, virulence factor production (phenotypic and genotypic expression) along with biofilm development in P. aeruginosa in vitro. At sub-lethal concentrations, MeT displayed prolific quorum quenching (QQ) ability and remarkably inhibited AHL biosynthesis in P. aeruginosa. Moreover, MeT (1/8 MIC) effectively downregulated the expression levels of various QS- and virulence genes in P. aeruginosa, which coincided with a notable reduction in the levels of alginate, hemolysin, pyocyanin, pyochelin, elastase, and protease production. In silico analysis through molecular docking also predicted strong associations between MeT and QS receptors of P. aeruginosa. MeT also compromised the motility phenotypes and successfully abrogated biofilm formation by inhibiting EPS production in P. aeruginosa. Hence, MeT may be repurposed as an anti-virulence drug against P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Pallavi Gulati
- Department of Microbiology, University of Delhi South Campus, New Delhi, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
44
|
Ali A, Shaheen S, Imran MZ, Memon Z, Zahid N, Ahmad F, Hameed A. Modulation of Altered Immune Parameters IL-2 and TNF-α in Diabetic Animal Models: A Therapeutic Insinuation of Metformin Beyond Diabetes. Cureus 2023; 15:e45216. [PMID: 37842429 PMCID: PMC10576253 DOI: 10.7759/cureus.45216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Immunomodulatory drugs target the overall immune system, hence producing numerous toxic effects on the other organs with serious health manifestations. Due to these safety concerns, there is a need to introduce or repurpose a new drug with immunomodulatory effects with good safety, efficacy, and better tolerance. Metformin, a standard antidiabetic drug, was evaluated for its immunomodulatory effects in diabetic models in the current study. METHODOLOGY The diabetic model was developed by intraperitoneal (IP) administration of streptozotocin (60 mg/kg). The experimental rats were divided into six groups (three diabetic and three non-diabetic) with six rats in each group. Metformin (50 mg/kg and 80 mg/kg) was given orally to both diabetic and non-diabetic groups, once a day, for 42 days. Immunomodulatory cytokines interleukin (IL)-2, IL-4, IL-5, tumor necrosis factor (TNF)-α, and interferon gamma (INF-ɣ) were analyzed from blood samples by BD FCAP flow cytometer. RESULTS The results revealed a significant (p=0.002) decrease in IL-2 and TNF-α in diabetic groups in comparison to control rats. However, no significant changes were observed in IL-4, IL-5, and INF-ɣ levels. Importantly, the treatment of metformin at both doses, i.e., 50 and 80 mg/kg, significantly reduced the elevated levels of IL-2 and TNF-α when compared to untreated diabetic groups. CONCLUSION Metformin may be considered as an optimum drug candidate to reduce pro-inflammatory cytokines, IL-2 and TNF-α, that can lead to the reduction of long-term diabetic complications.
Collapse
Affiliation(s)
- Akhtar Ali
- Pharmacology, Ziauddin Medical College, Ziauddin University, Karachi, PAK
| | - Shehla Shaheen
- Pharmacology, Ziauddin Medical College, Ziauddin University, Karachi, PAK
| | - Muhammad Z Imran
- Hematology, Ziauddin University Hospital, Ziauddin University, Karachi, PAK
| | - Zahida Memon
- Pharmacology, Ziauddin Medical College, Ziauddin University, Karachi, PAK
| | - Nisha Zahid
- Pharmacology and Toxicology, Sapienza University of Rome, Rome, ITA
| | - Farah Ahmad
- Community Health Sciences, Ziauddin University, Karachi, PAK
| | - Abdul Hameed
- Molecular Medicine, Ziauddin Medical College, Ziauddin University, Karachi, PAK
| |
Collapse
|
45
|
Siwakoti B, Lien TS, Lin YY, Pethaperumal S, Hung SC, Sun DS, Cheng CF, Chang HH. The Role of Activating Transcription Factor 3 in Metformin's Alleviation of Gastrointestinal Injury Induced by Restraint Stress in Mice. Int J Mol Sci 2023; 24:10995. [PMID: 37446172 DOI: 10.3390/ijms241310995] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Metformin is one of the most commonly used drugs for type 2 diabetes mellitus. In addition to its anti-diabetic property, evidence suggests more potential applications for metformin, such as antiaging, cellular protection, and anti-inflammation. Studies have reported that metformin activates pathways with anti-inflammatory effects, enhances the integrity of gut epithelial tight junctions, and promotes a healthy gut microbiome. These actions contribute to the protective effect of metformin against gastrointestinal (GI) tract injury. However, whether metformin plays a protective role in psychological-stress-associated GI tract injury remains elusive. We aim to elucidate the potential protective effect of metformin on the GI system and develop an effective intervention strategy to counteract GI injury induced by acute psychological stress. By monitoring the levels of GI-nonabsorbable Evans blue dye in the bloodstream, we assessed the progression of GI injury in live mice. Our findings demonstrate that the administration of metformin effectively mitigated GI leakage caused by psychological stress. The GI protective effect of metformin is more potent when used on wild-type mice than on activating-transcription-factor 3 (ATF3)-deficient (ATF3-/-) mice. As such, metformin-mediated rescue was conducted in an ATF3-dependent manner. In addition, metformin-mediated protection is associated with the induction of stress-induced GI mRNA expressions of the stress-induced genes ATF3 and AMP-activated protein kinase. Furthermore, metformin treatment-mediated protection of CD326+ GI epithelial cells against stress-induced apoptotic cell death was observed in wild-type but not in ATF3-/- mice. These results suggest that metformin plays a protective role in stress-induced GI injury and that ATF3 is an essential regulator for metformin-mediated rescue of stress-induced GI tract injury.
Collapse
Affiliation(s)
- Bijaya Siwakoti
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - You-Yen Lin
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Subhashree Pethaperumal
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
| | - Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 97004, Taiwan
- Institute of Medical Sciences, Tzu-Chi University, Hualien 97004, Taiwan
| |
Collapse
|
46
|
Medeiros LR, Colonetti T, Nagib EC, Rodrigues Uggioni ML, Denoni Junior JC, Ceretta L, Grande AJ, Rosa MI. Anti-Müllerian Hormone levels after metformin treatment in polycystic ovary syndrome: A systematic review and meta-analysis. Obes Res Clin Pract 2023; 17:288-297. [PMID: 37296002 DOI: 10.1016/j.orcp.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
This systematic review and meta-analysis aim to evaluate whether treatment with metformin would reduce Anti-Müllerian Hormone levels in patients with polycystic ovary syndrome. A search was performed in Medline, Embase, Web of Science, and Cochrane Library databases and grey literature (Google Scholar). The following keywords were used in the search strategy: "Polycystic Ovary Syndrome", "Anti-Mullerian Hormone", "Metformin". The search was limited to human studies, with no language restriction. 328 studies were found, 45 studies were selected for full-text reading and 16 of those studies, six randomized controlled trial and 10 non-randomized studies were included. The synthesis of randomized controlled trials, metformin showed a reduction in serum levels of Anti-Müllerian Hormone compared to control groups (SMD - 0.53, 95 %CI - 0.84 to - 0.22, p < 0.001, I2 = 0 %, four studies, 171 participants, high quality of evidence). Six non-randomized studies evaluated data before and after the metformin intervention. The synthesis showed that using metformin reduced serum Anti-Müllerian Hormone values (SMD - 0.79, 95 %CI - 1.03 to - 0.56, p < 0.001, I2 = 0 %, six studies, 299 participants, low quality of evidence). Metformin administration in women with polycystic ovary syndrome is associated significantly with reduced Anti-Müllerian Hormone serum levels.
Collapse
Affiliation(s)
- Lidia Rosi Medeiros
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil
| | - Tamy Colonetti
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil
| | - Erickson Cardoso Nagib
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil
| | - Maria Laura Rodrigues Uggioni
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil
| | - João Carlos Denoni Junior
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil
| | - Luciane Ceretta
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil
| | - Antonio José Grande
- Laboratory of Evidence-based Practice, Universidade Estadual de Mato Grosso do Sul, Av. Dom Antonio Barbosa (MS-080), 4.155, CEP 79115-898 Campo Grande, MS, Brazil
| | - Maria Inês Rosa
- Laboratory of Translational Biomedicine, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105 - Universitário, CEP 88806-000 Criciúma, SC, Brazil.
| |
Collapse
|
47
|
Alhazza IM, Hassan I, Ebaid H, Al-Tamimi J, Hasan Z. Zinc Oxide Nanoparticles Blunt Potassium-Bromate-Induced Renal Toxicity by Reinforcing the Redox System. Molecules 2023; 28:5084. [PMID: 37446744 DOI: 10.3390/molecules28135084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Potassium bromate (PB) is a general food additive, a significant by-product during water disinfection, and a carcinogen (Class II B). The compound emits toxicity depending on the extent of its exposure and dose through consumable items. The current study targeted disclosing the ameliorative efficacy of zinc oxide nanoparticles (ZnO NPs) prepared by green technology in PB-exposed Swiss albino rats. The rats were separated into six treatment groups: control without any treatment (Group I), PB alone (Group II), ZnO alone (Group III), ZnO NP alone (Group IV), PB + ZnO (Group V), and PB + ZnO NPs (Group VI). The blood and kidney samples were retrieved from the animals after following the treatment plan and kept at -20 °C until further analysis. Contrary to the control (Group I), PB-treated rats (Group II) exhibited a prominent trend in alteration in the established kidney function markers and disturbed redox status. Further, the analysis of the tissue and nuclear DNA also reinforced the biochemical results of the same treatment group. Hitherto, Groups III and IV also showed moderate toxic insults. However, Group VI showed a significant improvement from the PB-induced toxic insults compared to Group II. Hence, the present study revealed the significant therapeutic potential of the NPs against PB-induced nephrotoxicity in vivo, pleading for their usage in medicines having nephrotoxicity as a side effect or in enhancing the safety of the industrial use of PB.
Collapse
Affiliation(s)
- Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Zafrul Hasan
- College of Nursing, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
48
|
Hijazi MA, Gessner A, El-Najjar N. Repurposing of Chronically Used Drugs in Cancer Therapy: A Chance to Grasp. Cancers (Basel) 2023; 15:3199. [PMID: 37370809 DOI: 10.3390/cancers15123199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the advancement in drug discovery for cancer therapy, drug repurposing remains an exceptional opportunistic strategy. This approach offers many advantages (faster, safer, and cheaper drugs) typically needed to overcome increased challenges, i.e., side effects, resistance, and costs associated with cancer therapy. However, not all drug classes suit a patient's condition or long-time use. For that, repurposing chronically used medications is more appealing. This review highlights the importance of repurposing anti-diabetic and anti-hypertensive drugs in the global fight against human malignancies. Extensive searches of all available evidence (up to 30 March 2023) on the anti-cancer activities of anti-diabetic and anti-hypertensive agents are obtained from multiple resources (PubMed, Google Scholar, ClinicalTrials.gov, Drug Bank database, ReDo database, and the National Institutes of Health). Interestingly, more than 92 clinical trials are evaluating the anti-cancer activity of 14 anti-diabetic and anti-hypertensive drugs against more than 15 cancer types. Moreover, some of these agents have reached Phase IV evaluations, suggesting promising official release as anti-cancer medications. This comprehensive review provides current updates on different anti-diabetic and anti-hypertensive classes possessing anti-cancer activities with the available evidence about their mechanism(s) and stage of development and evaluation. Hence, it serves researchers and clinicians interested in anti-cancer drug discovery and cancer management.
Collapse
Affiliation(s)
- Mohamad Ali Hijazi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - André Gessner
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Nahed El-Najjar
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
49
|
Zarak MS, Khalafalla S, Batta Y, Mere C, Mehari A. Hemodialysis as an Effective Treatment for Combined Amlodipine and Metformin Overdose: A Case Report and Literature Review. Cureus 2023. [DOI: 10.7759/cureus.40032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
|
50
|
Zhang T, Yin X, Yu X, Shang R, Lu L, Miao J. Metformin protects fibroblasts from patients with GNE myopathy by restoring autophagic flux via an AMPK/mTOR-independent pathway. Biomed Pharmacother 2023; 164:114958. [PMID: 37263165 DOI: 10.1016/j.biopha.2023.114958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/13/2023] [Accepted: 05/27/2023] [Indexed: 06/03/2023] Open
Abstract
UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) myopathy is an autosomal recessive disease characterized by rimmed vacuoles (RVs). Previous studies have shown that metformin protects against several neuromuscular disorders. In the present study, we summarize the clinical features of three GNE patients with the p.D207V mutation. The pathogenesis of GNE myopathy is described, and the significance of metformin in this disease is observed. Skin biopsy-derived fibroblasts from patients with GNE myopathy, carrying a D207V mutation in GNE, were cultured. GNE fibroblasts and control fibroblasts were treated under normal culture conditions, serum starvation conditions, or serum starvation + metformin conditions. Histopathological and immunohistochemical analyses of muscle samples showed that autophagy was involved in the formation of RVs in the muscle of patients. Starved GNE fibroblasts showed decreased autophagy-related proteins and impaired autophagic flow (p < 0.05). The mRFP-GFP-LC3 assay showed that the fusion of autophagosomes with lysosomes was partially blocked in GNE cells. Notably, metformin treatment upregulated the expression of autophagy proteins, increased the number of autolysosomes (p < 0.001), and influenced the viability of GNE cells (p < 0.001). Furthermore, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) and phosphorylated (p)-AMPK expression levels were upregulated in serum-starved GNE fibroblasts, while the mammalian target of rapamycin (mTOR) and p-mTOR expression levels were downregulated in both groups. Metformin treatment inhibited the AMPK-mTOR signaling pathway. Our results suggest that metformin plays a protective role in the GNE fibroblast by restoring autophagic flux and through the AMPK/mTOR-independent pathway.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Xuefan Yu
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Ren Shang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China
| | - Liuzhe Lu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun 130000, China
| | - Jing Miao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|