1
|
Zhen L, Hou M, Wang S. Salidroside attenuates sepsis-induced acute lung injury by inhibiting ferroptosis-dependent pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:549-558. [PMID: 39467718 PMCID: PMC11519716 DOI: 10.4196/kjpp.2024.28.6.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 10/30/2024]
Abstract
Sepsis triggers a systemic inflammatory response that can lead to acute lung injury (ALI). Salidroside (SAL) has many pharmacological activities such as antiinflammatory and anti-oxidation. The objective of the study was to explore the mechanism of SAL on ALI caused by sepsis. A model of ALI in septic mice was established by cecal ligation and puncture. Following SAL treatment, the effect of SAL on the ferroptosis pathway in mice was analyzed. The pathological damage of lung tissue, the levels of inflammatory factors and apoptosis in bronchoalveolar lavage fluid (BALF) of mice were evaluated, and the changes of gene expression level and metabolite content abundance were explored by combining transcriptomics and metabolomics analysis. The effect of SAL on ferroptosis in mice with lung injury was observed by intraperitoneal injection of ferroptosis activator Erastin or ferroptosis inhibitor Ferrostatin-1 to promote or inhibit ferroptosis in mice. SAL significantly alleviated the pathological damage of lung tissue, decreased the number of TUNEL positive cells and the levels of TNF-α, IL-1β, IL-6 in BALF, and increased the level of IL- 10 in lung injury mice. Moreover, the Fe2+ content and malondialdehyde decreased significantly, the reactive oxygen species and glutathione content increased significantly, and the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20- HETE), (5Z, 8Z, 10E, 14Z)-12-Oxoeicosa-5,8,10,14-tetraenoic acid (12-OxOETE), (5Z, 8Z, 10E, 14Z)-(12S)-12-Hydroxyeicosa-5,8,10,14-tetraenoic acid (12(S)-HETE), (5Z, 8Z, 14Z)-11,12-Dihydroxyeicosa-5,8,14-trienoic acid (11,12-DHET), (5Z, 11Z, 14Z)-8,9- Dihydroxyeicosa-5,11,14-trienoic acid, Leukotriene B4, Leukotriene D4 were significantly up-regulated after SAL treatment. Salidroside alleviates ALI caused by sepsis by inhibiting ferroptosis.
Collapse
Affiliation(s)
- Lingling Zhen
- Intensive Care Unit, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Mingtong Hou
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
- Emergency Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, Gansu, China
| | - Shengbao Wang
- The Second Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu, China
- Emergency Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, Gansu, China
| |
Collapse
|
2
|
Zhang X, Zhang H, Liu Z, Huang T, Yi R, Ma Z, Gao Y. Salidroside improves blood-brain barrier integrity and cognitive function in hypobaric hypoxia mice by inhibiting microglia activation through GSK3β. Phytother Res 2024. [PMID: 39364585 DOI: 10.1002/ptr.8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 10/05/2024]
Abstract
Salidroside, an active component found in Rhodiola rosea L., has emerged as a potential therapeutic agent for the prevention and treatment of hypoxic brain injury, while the precise target and mechanism of salidroside were remain unclear. The study utilized techniques such as network pharmacology, transcriptome sequencing to investigate the mechanism and target of salidroside in regulating blood-brain barrier (BBB) function to protect hypoxic brain injury in vivo. Utilized macromolecular docking and molecular biology techniques to explore the molecular mechanism of salidroside in alleviating brain injury induced by hypoxia in BV2 cell model. The results show that salidroside alleviated the learning and memory dysfunction and pathological injury in mice exposed to hypobaric hypoxia, reduced brain water content and attenuate the inflammatory response and oxidative stress, effectively reversed S100β in serum and promoted the repair of BBB. GSK3β is an important therapeutic target of salidroside in the treatment of hypoxic cognitive impairment, and salidroside can specifically bind GSK3β in the ATP binding pocket, inducing the phosphorylation of GSK3β, targeting downstream Nrf-2 to regulate microglia activity, promoting the accumulation of β-catenin, thereby inhibiting microglial activation, improving the BBB integrity injury and achieving a neuroprotective effect. This study demonstrates that salidroside can inhibit the activation of microglia by inducing GSK3β phosphorylation, achieve neuroprotective effects and alleviate learning and memory dysfunction in hypobaric hypoxia mice. This study provides a theoretical basis for the development of salidroside and the clinical application of Rhodiola rosea L.
Collapse
Affiliation(s)
- Xianxie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Huiting Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Zuoxu Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Tianke Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Ru Yi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, People's Republic of China
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
3
|
Niu L, Xu M, Liu W, Yu H, Yu S, Li F, Wang T, Sun D, Yao T, Li W, Yang Z, Liu X, Zuo Z. The GLCCI1/STAT3 pathway: a novel pathway involved in diabetic cognitive dysfunction and the therapeutic effect of salidroside. J Mol Histol 2024; 55:851-861. [PMID: 39198367 DOI: 10.1007/s10735-024-10236-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Diabetic cognitive dysfunction (DCD) is a complication of diabetes that seriously affects quality of life. Glucocorticoid-induced transcript 1 (GLCCI1) has been found to be involved in inflammation, apoptosis and autophagy in various diseases. However, the distribution of GLCCI1 in the brain and its role in DCD have not yet been revealed. In addition, the potential therapeutics effects of salidroside (SAL), a phenyl propyl glycoside compound known for its neuroprotective effects in treating DCD are unknow. In the present study, we found that GLCCI1 was localized in hippocampal neurons. C57BL/6 J mice with DCD presented downregulation of GLCCI1 and Bcl-2 and upregulation of p-STAT3/STAT3, Bax, Cleaved Caspase-3/Caspase-3. Overexpression of GLCCI1 or SAL administration relieved DCD, reversed the changes in the expression of these cytokines, and alleviated morphological alterations in hippocampal neurons. Interestingly, SAL alleviated DCD and attenuated the expression of GLCCI1 and p-STAT3, showing similar effects as GLCCI1 overexpression. These findings suggest that the GLCCI1/STAT3 axis plays a crucial role in DCD and is involved in SAL-mediated attenuation of DCD.
Collapse
Affiliation(s)
- Lin Niu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Min Xu
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China
- College of Nursing, Physiology, Liaoning Vocational University of Technology, Jinzhou, 121001, Liaoning, China
| | - Wenqiang Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China
| | - Hongdan Yu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Shengxue Yu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Fuzhi Li
- Department of Thoraxes Surgery of the Third Affiliated Hospital, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Teng Wang
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Die Sun
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Tiefeng Yao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wanze Li
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhengzhong Yang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xuezheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China.
| | - Zhongfu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
4
|
Pan J, Yao Q, Wang Y, Chang S, Li C, Wu Y, Shen J, Yang R. The role of PI3K signaling pathway in Alzheimer's disease. Front Aging Neurosci 2024; 16:1459025. [PMID: 39399315 PMCID: PMC11466886 DOI: 10.3389/fnagi.2024.1459025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressively neurodegenerative disease. The best-characterized hallmark of AD, which is marked by behavioral alterations and cognitive deficits, is the aggregation of deposition of amyloid-beta (Aβ) and hyper-phosphorylated microtubule-associated protein Tau. Despite decades of experimental progress, the control rate of AD remains poor, and more precise deciphering is needed for potential therapeutic targets and signaling pathways involved. In recent years, phosphoinositide 3-kinase (PI3K) and Akt have been recognized for their role in the neuroprotective effect of various agents, and glycogen synthase kinase 3 (GSK3), a downstream enzyme, is also crucial in the tau phosphorylation and Aβ deposition. An overview of the function of PI3K/Akt pathway in the pathophysiology of AD is provided in this review, along with a discussion of recent developments in the pharmaceuticals and herbal remedies that target the PI3K/Akt signaling pathway. In conclusion, despite the challenges and hurdles, cumulative findings of novel targets and agents in the PI3K/Akt signaling axis are expected to hold promise for advancing AD prevention and treatment.
Collapse
Affiliation(s)
- Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yankai Wang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Suyan Chang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Chenlong Li
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongjiang Wu
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| | - Jianhong Shen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Riyun Yang
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
5
|
Zheng J, Zhang J, Han J, Zhao Z, Lin K. The effect of salidroside in promoting endogenous neural regeneration after cerebral ischemia/reperfusion involves notch signaling pathway and neurotrophic factors. BMC Complement Med Ther 2024; 24:293. [PMID: 39090706 PMCID: PMC11295647 DOI: 10.1186/s12906-024-04597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.
Collapse
Affiliation(s)
- Jiabing Zheng
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Zhichang Zhao
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Kan Lin
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
6
|
Wang B, Wang J, Liu C, Li C, Meng T, Chen J, Liu Q, He W, Liu Z, Zhou Y. Ferroptosis: Latest evidence and perspectives on plant-derived natural active compounds mitigating doxorubicin-induced cardiotoxicity. J Appl Toxicol 2024. [PMID: 39030835 DOI: 10.1002/jat.4670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/22/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug widely used in clinical settings, acting as a first-line treatment for various malignant tumors. However, its use is greatly limited by the cardiotoxicity it induces, including doxorubicin-induced cardiomyopathy (DIC). The mechanisms behind DIC are not fully understood, but its potential biological mechanisms are thought to include oxidative stress, inflammation, energy metabolism disorders, mitochondrial damage, autophagy, apoptosis, and ferroptosis. Recent studies have shown that cardiac injury induced by DOX is closely related to ferroptosis. Due to their high efficacy, availability, and low side effects, natural medicine treatments hold strong clinical potential. Currently, natural medicines have been shown to mitigate DOX-induced ferroptosis and ease DIC through various functions such as antioxidation, iron ion homeostasis correction, lipid metabolism regulation, and mitochondrial function improvement. Therefore, this review summarizes the mechanisms of ferroptosis in DIC and the regulation by natural plant products, with the expectation of providing a reference for future research and development of inhibitors targeting ferroptosis in DIC. This review explores the mechanisms of ferroptosis in doxorubicin-induced cardiomyopathy (DIC) and summarizes how natural plant products can alleviate DIC by inhibiting ferroptosis through reducing oxidative stress, correcting iron ion homeostasis, regulating lipid metabolism, and improving mitochondrial function.
Collapse
Affiliation(s)
- Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wang He
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Dai M, Qian K, Ye Q, Yang J, Gan L, Jia Z, Pan Z, Cai Q, Jiang T, Ma C, Lin X. Specific Mode Electroacupuncture Stimulation Mediates the Delivery of NGF Across the Hippocampus Blood-Brain Barrier Through p65-VEGFA-TJs to Improve the Cognitive Function of MCAO/R Convalescent Rats. Mol Neurobiol 2024:10.1007/s12035-024-04337-8. [PMID: 38995444 DOI: 10.1007/s12035-024-04337-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
Cognitive impairment frequently presents as a prevalent consequence following stroke, imposing significant burdens on patients, families, and society. The objective of this study was to assess the effectiveness and underlying mechanism of nerve growth factor (NGF) in treating post-stroke cognitive dysfunction in rats with cerebral ischemia-reperfusion injury (MCAO/R) through delivery into the brain using specific mode electroacupuncture stimulation (SMES). From the 28th day after modeling, the rats were treated with NGF mediated by SMES, and the cognitive function of the rats was observed after treatment. Learning and memory ability were evaluated using behavioral tests. The impact of SMES on blood-brain barrier (BBB) permeability, the underlying mechanism of cognitive enhancement in rats with MCAO/R, including transmission electron microscopy, enzyme-linked immunosorbent assay, immunohistochemistry, immunofluorescence, and TUNEL staining. We reported that SMES demonstrates a safe and efficient ability to open the BBB during the cerebral ischemia repair phase, facilitating the delivery of NGF to the brain by the p65-VEGFA-TJs pathway.
Collapse
Affiliation(s)
- Mengyuan Dai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
- Department of Rehabilitation, Lishui Central Hospital, Lishui, 323000, Zhejiang Province, China
| | - Kecheng Qian
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qinyu Ye
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Jinding Yang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Lin Gan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Zhaoxing Jia
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Zixing Pan
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Qian Cai
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Tianxiang Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China
| | - Congcong Ma
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Xihu District, Moganshan Road No. 219, Hangzhou, 310000, Zhejiang Province, China.
| | - Xianming Lin
- The Third Clinical Medical College, Zhejiang Chinese Medical University, 548 Binwen Road, Binjiang District, Hangzhou, 310051, Zhejiang Province, China.
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, China.
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Xihu District, Moganshan Road No. 219, Hangzhou, 310000, Zhejiang Province, China.
- Department of Rehabilitation, Zhejiang Rehabilitation Medical Center, No. 2828, Binsheng Road, Hangzhou, 310051, Zhejiang Province, China.
| |
Collapse
|
8
|
Almohawes ZN, El-Kott A, Morsy K, Shati AA, El-Kenawy AE, Khalifa HS, Elsaid FG, Abd-Lateif AEKM, Abu-Zaiton A, Ebealy ER, Abdel-Daim MM, Ghanem RA, Abd-Ella EM. Salidroside inhibits insulin resistance and hepatic steatosis by downregulating miR-21 and subsequent activation of AMPK and upregulation of PPARα in the liver and muscles of high fat diet-fed rats. Arch Physiol Biochem 2024; 130:257-274. [PMID: 35061559 DOI: 10.1080/13813455.2021.2024578] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 02/06/2023]
Abstract
This study evaluated if salidroside (SAL) alleviates high-fat diet (HFD)-induced non-alcoholic fatty liver disease (NAFLD) by downregulating miR-21. Rats (n = 8/group) were treated for 12 weeks as normal diet (control/ND), ND + agmoir negative control (NC) (150 µg/kg), ND + SAL (300 mg/kg), HFD, HFD + SAL, HFD + compound C (an AMPK inhibitor) (200 ng/kg), HFD + SAL + NXT629 (a PPAR-α antagonist) (30 mg/kg), and HFD + SAL + miR-21 agomir (150 µg/kg). SAL improved glucose and insulin tolerance and preserved livers in HFD-fed rats. In ND and HFD-fed rats, SAL reduced levels of serum and hepatic lipids and the hepatic expression of SREBP1, SREBP2, fatty acid (FA) synthase, and HMGCOAR. It also activated hepatic Nrf2 and increased hepatic/muscular activity of AMPK and levels of PPARα. All effects afforded by SAL were prevented by CC, NXT629, and miR-21 agmoir. In conclusion, activation of AMPK and upregulation of PPARα mediate the anti-steatotic effect of SAL.
Collapse
Affiliation(s)
- Zakiah N Almohawes
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Attalla El-Kott
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Kareem Morsy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, College of Science, Cairo University, Cairo, Egypt
| | - Ali A Shati
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Fahmy G Elsaid
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | | | - Eman R Ebealy
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Pharmaceutical Sciences Department, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Reham A Ghanem
- Oral Biology Department, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Gamasa, Egypt
| | - Eman M Abd-Ella
- Zoology Department, College of Science, Fayoum University, Fayoum, Egypt
- Biology Department, College of Science and Art, Al-Baha University, Al-Mandaq, Saudi Arabia
| |
Collapse
|
9
|
Crum AH, Philander L, Busta L, Yang Y. Traditional medicinal use is linked with apparency, not specialized metabolite profiles in the order Caryophyllales. AMERICAN JOURNAL OF BOTANY 2024; 111:e16308. [PMID: 38581167 DOI: 10.1002/ajb2.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 04/08/2024]
Abstract
PREMISE Better understanding of the relationship between plant specialized metabolism and traditional medicine has the potential to aid in bioprospecting and untangling of cross-cultural use patterns. However, given the limited information available for metabolites in most plant species, understanding medicinal use-metabolite relationships can be difficult. The order Caryophyllales has a unique pattern of lineages of tyrosine- or phenylalanine-dominated specialized metabolism, represented by mutually exclusive anthocyanin and betalain pigments, making Caryophyllales a compelling system to explore the relationship between medicine and metabolites by using pigment as a proxy for dominant metabolism. METHODS We compiled a list of medicinal species in select tyrosine- or phenylalanine-dominant families of Caryophyllales (Nepenthaceae, Polygonaceae, Simmondsiaceae, Microteaceae, Caryophyllaceae, Amaranthaceae, Limeaceae, Molluginaceae, Portulacaceae, Cactaceae, and Nyctaginaceae) by searching scientific literature until no new uses were recovered. We then tested for phylogenetic clustering of uses using a "hot nodes" approach. To test potential non-metabolite drivers of medicinal use, like how often humans encounter a species (apparency), we repeated the analysis using only North American species across the entire order and performed phylogenetic generalized least squares regression (PGLS) with occurrence data from the Global Biodiversity Information Facility (GBIF). RESULTS We hypothesized families with tyrosine-enriched metabolism would show clustering of different types of medicinal use compared to phenylalanine-enriched metabolism. Instead, wide-ranging, apparent clades in Polygonaceae and Amaranthaceae are overrepresented across nearly all types of medicinal use. CONCLUSIONS Our results suggest that apparency is a better predictor of medicinal use than metabolism, although metabolism type may still be a contributing factor.
Collapse
Affiliation(s)
- Alex H Crum
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St. Paul, 55108, MN, USA
| | - Lisa Philander
- Como Park Zoo and Conservatory, 1225 Estabrook Drive, St. Paul, 55103, MN, USA
| | - Lucas Busta
- University of Minnesota Duluth, 1038 University Drive, Duluth, 55812, MN, USA
| | - Ya Yang
- Department of Plant and Microbial Biology, University of Minnesota, 1445 Gortner Avenue, St. Paul, 55108, MN, USA
| |
Collapse
|
10
|
Zhang J, Li Z, Song J, Zhou L, Chen X, Ge W, Dong T, Luo Y, Mao T, Li Z, Tan D, Rasmussen LJ, Bohr VA, Tong X, Dai F. Salidroside promotes healthy longevity by interfering with HSP90 activity. GeroScience 2024; 46:1641-1655. [PMID: 37713088 PMCID: PMC10828337 DOI: 10.1007/s11357-023-00921-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/23/2023] [Indexed: 09/16/2023] Open
Abstract
Aging is a risk factor for human health and quality of life. Screening and development of novel supplements and medications to combat aging and delay the incidence of age-related diseases are of great significance. In this study, salidroside (SA), a primary natural small molecule from Rhodiola rosea, was investigated regarding its effects on life and healthspan and the underlying molecular mechanism(s) of anti-aging and antioxidation. Our results showed that SA effectively prolonged lifespan and exhibited anti-aging and antioxidative properties. Computer-assisted methods, label-free interaction analysis, and in vitro assays showed that SA directly bound heat shock protein 90 (HSP90). Furthermore, SA significantly inhibited the ATPase activity of HSP90, affecting the interaction between HSP90 and its interacting proteins and the expression of downstream genes to regulate lifespan and the oxidative stress response. Our findings provided new insights into the pharmacological properties of SA across multiple species and its potential as an anti-aging drug.
Collapse
Affiliation(s)
- Jianfei Zhang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Zhiquan Li
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Jiangbo Song
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Lei Zhou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Xin Chen
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Wen Ge
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Tianyi Dong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Yuxin Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Ting Mao
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Zheng Li
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Duan Tan
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
- Section on DNA Repair, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Zhang Y, Yu S, Guo X, Wang L, Yu L, Wang P. Therapeutic potential of salidroside in preserving rat cochlea organ of corti from gentamicin-induced injury through modulation of NRF2 signaling and GSK3β/NF-κB pathway. PLoS One 2024; 19:e0298529. [PMID: 38483863 PMCID: PMC10939193 DOI: 10.1371/journal.pone.0298529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
Salidroside (SAL) is a phenol glycoside compound found in plants of the Rhodiola genus which has natural antioxidant and free radical scavenging properties. SAL are able to protect against manganese-induced ototoxicity. However, the molecular mechanism by which SAL reduces levels of reactive oxygen species (ROS) is unclear. Here, we established an in vitro gentamicin (GM) ototoxicity model to observe the protective effect of SAL on GM-induced hair cells (HC) damage. Cochlear explants of postnatal day 4 rats were obtained and randomly divided into six groups: two model groups (treatment with 0.2 mM or 0.4 mM GM for 24 h); two 400 μmol/L SAL-pretreated groups pretreatment with SAL for 3 h followed by GM treatment (0.2 mM or 0.4 mM) for 24 h; 400 μmol/L SAL group (treatment with SAL for 24 h); control group (normal cultured cochlear explants). The protective effects of SAL on GM-induced HC damage, and on mRNA and protein levels of antioxidant enzymes were observed. HC loss occurred after 24 h of GM treatment. Pretreatment with SAL significantly reduced GM-induced OHC loss. In cochlear tissues, mRNA and protein levels of NRF2 and HO-1 were enhanced in the GM alone group compared with the SAL pretreatment GM treatment group. SAL may protect against GM-induced ototoxicity by regulating the antioxidant defense system of cochlear tissues; SAL can activate NRF2/HO-1 signaling, inhibit NF-κB activation, activate AKT, and increase inhibitory phosphorylation of GSK3β to decrease GSK3 activity, all of which exert antioxidant effects.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Luoying Wang
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Jilin, China
| | - Ling Yu
- Department of Pharmacy, the Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Zhu T, Liu H, Gao S, Jiang N, Chen S, Xie W. Effect of salidroside on neuroprotection and psychiatric sequelae during the COVID-19 pandemic: A review. Biomed Pharmacother 2024; 170:115999. [PMID: 38091637 DOI: 10.1016/j.biopha.2023.115999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health of individuals worldwide, and the risk of psychiatric sequelae and consequent mental disorders has increased among the general population, health care workers and patients with COVID-19. Achieving effective and widespread prevention of pandemic-related psychiatric sequelae to protect the mental health of the global population is a serious challenge. Salidroside, as a natural agent, has substantial pharmacological activity and health effects, exerts obvious neuroprotective effects, and may be effective in preventing and treating psychiatric sequelae and mental disorders resulting from stress stemming from the COVID-19 pandemic. Herein, we systematically summarise, analyse and discuss the therapeutic effects of salidroside in the prevention and treatment of psychiatric sequelae as well as its roles in preventing the progression of mental disorders, and fully clarify the potential of salidroside as a widely applicable agent for preventing mental disorders caused by stress; the mechanisms underlying the potential protective effects of salidroside are involved in the regulation of the oxidative stress, neuroinflammation, neural regeneration and cell apoptosis in the brain, the network homeostasis of neurotransmission, HPA axis and cholinergic system, and the improvement of synaptic plasticity. Notably, this review innovatively proposes that salidroside is a potential agent for treating stress-induced health issues during the COVID-19 pandemic and provides scientific evidence and a theoretical basis for the use of natural products to combat the current mental health crisis.
Collapse
Affiliation(s)
- Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiman Gao
- Department of Clinical Pharmacy, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, Donghu Road No. 115, Wuchang District, Wuhan 430071, China.
| | - Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200122, China.
| |
Collapse
|
13
|
Zhao G, Zhang T, Li J, Li L, Chen P, Zhang C, Li K, Cui C. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy. Am J Physiol Cell Physiol 2024; 326:C214-C228. [PMID: 38073486 PMCID: PMC11192483 DOI: 10.1152/ajpcell.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Oxaliplatin-induced peripheral nerve pain (OIPNP) is a common chemotherapy-related complication, but the mechanism is complex. Mitochondria are vital for cellular homeostasis and regulating oxidative stress. Parkin-mediated mitophagy is a cellular process that removes damaged mitochondria, exhibiting a protective effect in various diseases; however, its role in OIPNP remains unclear. In this study, we found that Parkin-mediated mitophagy was decreased, and reactive oxygen species (ROS) was upregulated in OIPNP rat dorsal root ganglion (DRG) in vivo and in PC12 cells stimulated with oxaliplatin (OXA) in vitro. Overexpression of Parkin indicated that OXA might cause mitochondrial and cell damage by inhibiting mitophagy. We also showed that salidroside (SAL) upregulated Parkin-mediated mitophagy to eliminate damaged mitochondria and promote PC12 cell survival. Knockdown of Parkin indicated that mitophagy is crucial for apoptosis and mitochondrial homeostasis in PC12 cells. In vivo study also demonstrated that SAL enhances Parkin-mediated mitophagy in the DRG and alleviates peripheral nerve injury and pain. These results suggest that Parkin-mediated mitophagy is involved in the pathogenesis of OIPNP and may be a potential therapeutic target for OIPNP.NEW & NOTEWORTHY This article discusses the effects and mechanisms of Parkin-mediated mitophagy in oxaliplatin-induced peripheral nerve pain (OIPNP) from both in vivo and in vitro. We believe that our study makes a significant contribution to the literature because OIPNP has always been the focus of clinical medicine, and mitochondrial quality regulation mechanisms especially Parkin-mediated mitophagy, have been deeply studied in recent years. We use a variety of molecular biological techniques and animal experiments to support our argument.
Collapse
Affiliation(s)
- Guoqing Zhao
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Te Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiannan Li
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Longyun Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Chen
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunlu Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Cancan Cui
- Radiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
14
|
Kumar S, Das A. A Cocktail of Natural Compounds Holds Promise for New Immunotherapeutic Potential in Head and Neck Cancer. Chin J Integr Med 2024; 30:42-51. [PMID: 37118529 DOI: 10.1007/s11655-023-3694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To obtain detailed understanding on the gene regulation of natural compounds in altering prognosis of head and neck squamous cell carcinomas (HNSC). METHODS Gene expression data of HNSC samples and peripheral blood mononuclear cells (PBMCs) of HNSC patients were collected from Gene Expression Omnibus (GEO). Differential gene expression analysis of GEO datasets were achieved by the GEO2R tool. Common differentially expressed gerres (DEGs) were screened by comparing DEGs of HNSC with those of PBMCs. The combination was further analyzed for regulating pathways and biological processes that were affected. RESULTS Totally 110 DEGs were retrieved and identified to be involved in biological processes related to tumor regulation. Then 102 natural compounds were screened for a combination such that the expression of all 110 commonly DEGs was altered. A combination of salidroside, ginsenoside Rd, oridonin, britanin, and scutellarein was chosen. A multifaceted, multi-dimensional tumor regression was showed by altering autophagy, apoptosis, inhibiting cell proliferation, angiogenesis, metastasis and inflammatory cytokines production. CONCLUSIONS This study has helped develop a unique combination of natural compounds that will markedly reduce the propensity of development of drug resistance in tumors and immune evasion by tumors. The result is crucial to developing a combinatorial natural therapeutic cocktail with accentuated immunotherapeutic potential.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
15
|
Chen XD, Wei JX, Wang HY, Peng YY, Tang C, Ding Y, Li S, Long ZY, Lu XM, Wang YT. Effects and mechanisms of salidroside on the behavior of SPS-induced PTSD rats. Neuropharmacology 2023; 240:109728. [PMID: 37742716 DOI: 10.1016/j.neuropharm.2023.109728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a complex mental disorder, closely associated with stress and traumatic events. Salidroside (Sal) has been reported to possess neuroprotective effects. However, the behavioral effects and mechanisms of Sal on PTSD remain unknown. In this study, we utilized a rat model of PTSD induced by single prolonged stress (SPS) and administered Sal intraperitoneally (25, 50, 75 mg/kg/d) for 14 days. We then examined the behavioral effects and underlying mechanisms of Sal on SPS-induced PTSD rats. Our findings demonstrated that Sal alleviated anxiety-like behavior and spatial learning and memory impairment in SPS-induced PTSD rats. Furthermore, Sal treatment preserved the histomorphology of the hippocampal region. It was observed that Sal protected against hippocampal neuronal apoptosis in PTSD rats by reducing the number of TUNEL-positive cells and modulating apoptosis-related proteins (Bcl-2 and Bax). Additionally, Sal inhibited the activation of the NF-κB/iNOS/COX-2 signaling pathway in the hippocampus of PTSD rats, thereby suppressing the release of inflammatory factors (TNF-α and IL-1β) and the activation of microglia. Notably, Sal increased the expression of synapse-associated proteins PSD95 and Synapsin I in the hippocampus, while also enhancing dendritic density in the region. In conclusion, our results demonstrated that Sal could attenuate SPS-induced PTSD-like behaviors by inhibiting hippocampal neuronal apoptosis, enhancing hippocampal synaptic plasticity, and reducing neuroinflammatory responses. These findings may provide a foundation for the potential clinical application of Sal in the treatment of PTSD.
Collapse
Affiliation(s)
- Xing-Dong Chen
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China; College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jing-Xiang Wei
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Hai-Yan Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yu-Yuan Peng
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Can Tang
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Yang Ding
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Sen Li
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zai-Yun Long
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xiu-Min Lu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
| | - Yong-Tang Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
16
|
Yang X, Zhang Y, Luo JX, Zhu T, Ran Z, Mu BR, Lu MH. Targeting mitophagy for neurological disorders treatment: advances in drugs and non-drug approaches. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3503-3528. [PMID: 37535076 DOI: 10.1007/s00210-023-02636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
Mitochondria serve as a vital energy source for nerve cells. The mitochondrial network also acts as a defense mechanism against external stressors that can threaten the stability of the nervous system. However, excessive accumulation of damaged mitochondria can lead to neuronal death. Mitophagy is an essential pathway in the mitochondrial quality control system and can protect neurons by selectively removing damaged mitochondria. In most neurological disorders, dysfunctional mitochondria are a common feature, and drugs that target mitophagy can improve symptoms. Here, we reviewed the role of mitophagy in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease, stroke, and traumatic brain injuries. We also summarized drug and non-drug approaches to promote mitophagy and described their therapeutic role in neurological disorders in order to provide valuable insight into the potential therapeutic agents available for neurological disease treatment. However, most studies on mitophagy regulation are based on preclinical research using cell and animal models, which may not accurately reflect the effects in humans. This poses a challenge to the clinical application of drugs targeting mitophagy. Additionally, these drugs may carry the risk of intolerable side effects and toxicity. Future research should focus on the development of safer and more targeted drugs for mitophagy.
Collapse
Affiliation(s)
- Xiong Yang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu Zhang
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia-Xin Luo
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tao Zhu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhao Ran
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ben-Rong Mu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Mei-Hong Lu
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
17
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
18
|
Wang XH, Zuo ZF, Meng L, Yang Q, Lv P, Zhao LP, Wang XB, Wang YF, Huang Y, Fu C, Liu WQ, Liu XZ, Zheng DY. Neuroprotective effect of salidroside on hippocampal neurons in diabetic mice via PI3K/Akt/GSK-3β signaling pathway. Psychopharmacology (Berl) 2023; 240:1865-1876. [PMID: 37490132 DOI: 10.1007/s00213-023-06373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 12/08/2022] [Indexed: 07/26/2023]
Abstract
BACKGROUND Diabetic encephalopathy is manifested by cognitive dysfunction. Salidroside, a nature compound isolated from Rhodiola rosea L, has the effects of anti-inflammatory and antioxidant, hypoglycemic and lipid-lowering, improving insulin resistance, inhibiting cell apoptosis, and protecting neurons. However, the mechanism by which salidroside alleviates neuronal degeneration and improves learning and memory impairment in diabetic mice remains unclear. OBJECTIVE To investigate the effects and mechanisms of salidroside on hippocampal neurons in streptozotocin-induced diabetic mice. MATERIALS AND METHODS C57BL/6 mice were randomly divided into 4 groups to receive either sham (control group (CON)), diabetes mellitus (diabetes group (DM)), diabetes mellitus + salidroside (salidroside group (DM + SAL)), and diabetes mellitus + salidroside + phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 (diabetes mellitus + salidroside + LY294002 group (DM + SAL + LY294002)). After 12 weeks of diabetes onset, the cognitive behaviors were tested using Morris water maze. The number of hippocampal neurons was detected by Nissl staining. The expressions of PI3K, p-PI3K, Akt, p-Akt, GSK-3β, p-GSK-3β, cleaved caspase-3, caspase-3, Bax, Bcl-2, MAP2, and SYN in the hippocampus were detected by Western blot. Moreover, the expression of MAP2 and SYN in the hippocampus was further confirmed by immunofluorescence staining. RESULTS Salidroside increased the time of diabetic mice in the platform quadrant and reduced the escape latency of diabetic mice. Salidroside also increased the expression of p-PI3K, p-Akt, p-GSK-3β, MAP2, SYN, Bcl-2, while suppressed the expression of cleaved caspase-3, caspase3, and Bax in the DM + SAL group compared with the DM group (P < 0.05). The Nissl staining showed that the number of hippocampus neurons in the DM + SAL group was increased with the intact, compact, and regular arrangement, compared with the DM groups (P < 0.05). Interestingly, the protective effects of salidroside on diabetic cognitive dysfunction, hippocampal morphological alterations, and protein expressions were abolished by inhibition of PI3K with LY294002. CONCLUSIONS Salidroside exerts neuroprotective properties in diabetic cognitive dysfunction partly via activating the PI3K/Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xue-Hua Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Zhong-Fu Zuo
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
- Department of Anatomy, Histology and Embryology, Postdoctoral Research Station, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Meng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Qi Yang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Pan Lv
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Li-Pan Zhao
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xiao-Bai Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Yu-Fei Wang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Ying Huang
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Cong Fu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wen-Qiang Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Xue-Zheng Liu
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
- Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| | - De-Yu Zheng
- Department of Anatomy, Histology and Embryology, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China.
| |
Collapse
|
19
|
Yang S, Wang L, Zeng Y, Wang Y, Pei T, Xie Z, Xiong Q, Wei H, Li W, Li J, Su Q, Wei D, Cheng W. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154762. [PMID: 36965372 DOI: 10.1016/j.phymed.2023.154762] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain. PURPOSE The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice. STUDY DESIGN AND METHODS SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed. RESULTS Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aβ plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation. CONCLUSION In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.
Collapse
Affiliation(s)
- Sixia Yang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Wenxu Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Jiaqi Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qian Su
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China.
| | - Weidong Cheng
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
20
|
Zhao D, Yang K, Guo H, Zeng J, Wang S, Xu H, Ge A, Zeng L, Chen S, Ge J. Mechanisms of ferroptosis in Alzheimer's disease and therapeutic effects of natural plant products: A review. Biomed Pharmacother 2023; 164:114312. [PMID: 37210894 DOI: 10.1016/j.biopha.2023.114312] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 05/23/2023] Open
Abstract
Neurodegenerative diseases, such as Alzheimer's disease (AD), are characterized by massive loss of specific neurons. It is a progressive disabling, severe and fatal complex disease. Due to its complex pathogenesis and limitations of clinical treatment strategies, it poses a serious medical challenge and medical burden worldwide. The pathogenesis of AD is not clear, and its potential biological mechanisms include aggregation of soluble amyloid to form insoluble amyloid plaques, abnormal phosphorylation of tau protein and formation of intracellular neurofibrillary tangles (NFT), neuroinflammation, ferroptosis, oxidative stress and metal ion disorders. Among them, ferroptosis is a newly discovered programmed cell death induced by iron-dependent lipid peroxidation and reactive oxygen species. Recent studies have shown that ferroptosis is closely related to AD, but the mechanism remains unclear. It may be induced by iron metabolism, amino acid metabolism and lipid metabolism affecting the accumulation of iron ions. Some iron chelating agents (deferoxamine, deferiprone), chloroiodohydroxyquine and its derivatives, antioxidants (vitamin E, lipoic acid, selenium), chloroiodohydroxyquine and its derivatives Fer-1, tet, etc. have been shown in animal studies to be effective in AD and exert neuroprotective effects. This review summarizes the mechanism of ferroptosis in AD and the regulation of natural plant products on ferroptosis in AD, in order to provide reference information for future research on the development of ferroptosis inhibitors.
Collapse
Affiliation(s)
- Da Zhao
- Hunan University of Chinese Medicine, Changsha, China
| | - Kailin Yang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hua Guo
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinsong Zeng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Shanshan Wang
- Hunan University of Chinese Medicine, Changsha, China
| | - Hao Xu
- Hunan University of Chinese Medicine, Changsha, China
| | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liuting Zeng
- Hunan University of Chinese Medicine, Changsha, China
| | - Shaowu Chen
- Hunan University of Chinese Medicine, Changsha, China
| | - Jinwen Ge
- Hunan University of Chinese Medicine, Changsha, China; Hunan Academy of Chinese Medicine, Changsha, China.
| |
Collapse
|
21
|
Liao R, Zhao P, Wu J, Fang K. Salidroside protects against intestinal barrier dysfunction in septic mice by regulating IL‑17 to block the NF‑κB and p38 MAPK signaling pathways. Exp Ther Med 2023; 25:89. [PMID: 36684648 PMCID: PMC9849854 DOI: 10.3892/etm.2023.11788] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Sepsis is a systemic inflammatory response syndrome, mainly caused by infection or suspected infectious factors. The intestine is not only one of the most easily involved organs in the course of sepsis, but also the dynamic organ for the course of sepsis. The present study investigated the protective effect and mechanism of salidroside on intestinal barrier dysfunction of septic mice. Briefly, C57BL/6 mice were used to establish a septic model and then administered with salidroside. The ileum tissues of mice were examined by histopathological examination. Fluorescein isothiocyanate-dextran concentration was measured. IL-17, IL-6, IL-13 and TNF-α levels in ileum tissues and NF-κB and p38 MAPK activations were detected by ELISA and the expressions of NF-κB p65 and p38 MAPK protein with their phosphorylation and intestinal tight junction proteins were gauged by western blotting. The above assays were performed again to investigate the effect of anti-IL-17A and salidroside (160 mg/kg) alone or in combination. The septic model induced the ileum tissue injury, increased intestinal permeability and TNF-α, IL-17 and IL-6 levels, activated NF-κB and p38 MAPK pathways, promoted the expressions of NF-κB p65 and p38 MAPK and their phosphorylation, while suppressing the levels of IL-13 and intestinal tight junction proteins. Salidroside and anti-IL-17A partially reversed the above effects of septic model, which in combination further strengthened the reversing effect. Collectively, salidroside protected against intestinal barrier dysfunction in septic mice by downregulating IL-17 level to inhibit NF-κB and p38 MAPK signaling pathways, thus providing a new treatment direction.
Collapse
Affiliation(s)
- Rongxin Liao
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China,Correspondence to: Dr Rongxin Liao, Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 13 Shiliugang Road, Haizhu, Guangzhou, Guangdong 510310, P.R. China
| | - Peng Zhao
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Jianming Wu
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| | - Keren Fang
- Center of Traditional Chinese Medicine Preventive Treatment, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, P.R. China
| |
Collapse
|
22
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
23
|
Liu A, Hu J, Yeh TS, Wang C, Tang J, Huang X, Chen B, Huangfu L, Yu W, Zhang L. Neuroprotective Strategies for Stroke by Natural Products: Advances and Perspectives. Curr Neuropharmacol 2023; 21:2283-2309. [PMID: 37458258 PMCID: PMC10556387 DOI: 10.2174/1570159x21666230717144752] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 09/09/2023] Open
Abstract
Cerebral ischemic stroke is a disease with high prevalence and incidence. Its management focuses on rapid reperfusion with intravenous thrombolysis and endovascular thrombectomy. Both therapeutic strategies reduce disability, but the therapy time window is short, and the risk of bleeding is high. Natural products (NPs) have played a key role in drug discovery, especially for cancer and infectious diseases. However, they have made little progress in clinical translation and pose challenges to the treatment of stroke. Recently, with the investigation of precise mechanisms in cerebral ischemic stroke and the technological development of NP-based drug discovery, NPs are addressing these challenges and opening up new opportunities in cerebral stroke. Thus, in this review, we first summarize the structure and function of diverse NPs, including flavonoids, phenols, terpenes, lactones, quinones, alkaloids, and glycosides. Then we propose the comprehensive neuroprotective mechanism of NPs in cerebral ischemic stroke, which involves complex cascade processes of oxidative stress, mitochondrial damage, apoptosis or ferroptosis-related cell death, inflammatory response, and disruption of the blood-brain barrier (BBB). Overall, we stress the neuroprotective effect of NPs and their mechanism on cerebral ischemic stroke for a better understanding of the advances and perspective in NPs application that may provide a rationale for the development of innovative therapeutic regimens in ischemic stroke.
Collapse
Affiliation(s)
- Aifen Liu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jingyan Hu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tzu-Shao Yeh
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Chengniu Wang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Jilong Tang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaohong Huang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Bin Chen
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Liexiang Huangfu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Weili Yu
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
24
|
Li F, Mao Q, Wang J, Zhang X, Lv X, Wu B, Yan T, Jia Y. Salidroside inhibited cerebral ischemia/reperfusion-induced oxidative stress and apoptosis via Nrf2/Trx1 signaling pathway. Metab Brain Dis 2022; 37:2965-2978. [PMID: 35976554 DOI: 10.1007/s11011-022-01061-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
Abstract
Cerebral ischemia reperfusion injury (CIRI) is still a serious problem threatening human health. Salidroside (SAL) is a natural phenylpropanoid glycoside compound with antioxidant, anti-inflammatory, and anti-ischemic properties. This study investigated the protective mechanism of SAL on middle cerebral artery occlusion (MCAO)- and oxygen-glucose deprivation/reoxygenation (OGD/R) model-induced CIRI via regulating the nuclear factor erythroid 2-related factor 2 (Nrf2)/thioredoxin 1 (Trx1) axis. The results indicated that SAL (50 mg/kg or 100 mg/kg, intraperitoneal injection) not only effectively alleviated infarction rate, improved histopathological changes, relieved apoptosis by strengthening the suppression of cleaved caspase-3 and Bax/Bcl-2 proteins and decreased malondialdehyde (MDA) formation, but also increased superoxide dismutase (SOD) and catalase (CAT) activities and upregulated the expressions of Nrf2 and Trx1 on MCAO-induced CIRI rats. SAL also efficiently inhibited apoptosis and decreased oxidative stress in OGD/R-stimulated PC12 cells. Furthermore, blocking the Nrf2/Trx1 pathway using tretinoin, an Nrf2 inhibitor, significantly reversed the protective effect of SAL on OGD/R-induced oxidative stress. Moreover, SAL reduced the expression of apoptosis signal-regulating kinase-1 (ASK1) and mitogen-activated protein kinase (MAPK) family proteins. These results demonstrated that SAL inhibited oxidative stress through Nrf2/Trx1 signaling pathway, and subsequently reduced CIRI-induced apoptosis by inhibiting ASK1/MAPK.
Collapse
Affiliation(s)
- Fuyuan Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Qianqian Mao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jinyu Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Xiaoying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinyan Lv
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, China.
| |
Collapse
|
25
|
Zarifi SH, Bagherniya M, Banach M, Johnston TP, Sahebkar A. Phytochemicals: A potential therapeutic intervention for the prevention and treatment of cachexia. Clin Nutr 2022; 41:2843-2857. [PMID: 36403384 DOI: 10.1016/j.clnu.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 09/26/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Cachexia, a multifactorial and often irreversible wasting syndrome, is often associated with the final phase of several chronic disorders. Although cachexia is characterized by skeletal muscle wasting and adipose tissue loss, it is a syndrome affecting different organs, which ultimately results in systemic complications and impaired quality of life. The pathogenesis and underlying molecular mechanisms of cachexia are not fully understood, and currently there are no effective standard treatments or approved drug therapies to completely reverse cachexia. Moreover, adequate nutritional interventions alone cannot significantly improve cachexia. Other approaches to ameliorate cachexia are urgently needed, and thus, the role of medicinal plants has received considerable importance in this respect due to their beneficial health properties. Increasing evidence indicates great potential of medicinal plants and their phytochemicals as an alternative and promising treatment strategy to reduce the symptoms of many diseases including cachexia. This article reviews the current status of cachexia, the molecular mechanisms of primary events driving cachexia, and state-of-the-art knowledge that reports the preventive and therapeutic activities of multiple families of phytochemical compounds and their pharmacological mode of action, which may hold promise as an alternative treatment modality for the management of cachexia. Based on our review of various in vitro and in vivo models of cachexia, we would conclude that phytochemicals may have therapeutic potential to attenuate cachexia, although clinical trials are required to unequivocally confirm this premise.
Collapse
Affiliation(s)
- Sudiyeh Hejri Zarifi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Bagherniya
- Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran; Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Chair of Nephrology and Hypertension, Medical University of Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Yao Y, Ren Z, Yang R, Mei Y, Dai Y, Cheng Q, Xu C, Xu X, Wang S, Kim KM, Noh JH, Zhu J, Zhao N, Liu YU, Mao G, Sima J. Salidroside reduces neuropathology in Alzheimer’s disease models by targeting NRF2/SIRT3 pathway. Cell Biosci 2022; 12:180. [PMCID: PMC9636768 DOI: 10.1186/s13578-022-00918-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Background Neurite dystrophy is a pathologic hallmark of Alzheimer’s disease (AD). However, drug discovery targeting neurite protection in AD remains largely unexplored. Methods Aβ-induced neurite and mitochondrial damage assays were used to evaluate Aβ toxicity and the neuroprotective efficacy of a natural compound salidroside (SAL). The 5×FAD transgenic mouse model of AD was used to study the neuroprotective function of SAL. To verify the direct target of SAL, we used surface plasmon resonance and cellular thermal shift assays to analyze the drug-protein interaction. Results SAL ameliorates Aβ-mediated neurite damage in cell culture. We further reveal that SAL represses mitochondrial damage in neurites by promoting mitophagy and maintaining mitochondrial homeostasis, dependent on an NAD-dependent deacetylase SIRT3. In AD mice, SAL protects neurite morphology, mitigates Aβ pathology, and improves cognitive function, which are all SIRT3-dependent. Notably, SAL directly binds to transcription factor NRF2, inhibits its degradation by blocking its interaction with KEAP1 ubiquitin ligase, and then advances NRF2-mediated SIRT3 transcription. Conclusions Overall, we demonstrate that SAL, a potential anti-aging drug candidate, attenuates AD pathology by targeting NRF2/SIRT3 pathway for mitochondrial and neurite protection. Drug discovery strategies focusing on SAL may thus provide promising therapeutics for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00918-z.
Collapse
Affiliation(s)
- Yuyuan Yao
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Zhichu Ren
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Ruihan Yang
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yilan Mei
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Yuying Dai
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Qian Cheng
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Chong Xu
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| | - Xiaogang Xu
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Sanying Wang
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Kyoung Mi Kim
- grid.254230.20000 0001 0722 6377Department of Biological Sciences, Chungnam National University, Daejeon, 34134 Korea
| | - Ji Heon Noh
- grid.254230.20000 0001 0722 6377Department of Biochemistry, Chungnam National University, Daejeon, 34134 Korea
| | - Jian Zhu
- grid.255392.a0000 0004 1936 7777Department of Psychology, Eastern Illinois University, Charleston, IL 61920 USA
| | - Ningwei Zhao
- China Exposomics Institute, 781 Cai Lun Road, Shanghai, 200120 China
| | - Yong U. Liu
- grid.79703.3a0000 0004 1764 3838Laboratory for Neuroscience in Health and Disease, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, 510180 China
| | - Genxiang Mao
- grid.417400.60000 0004 1799 0055Zhejiang Provincial Key Lab of Geriatrics and Geriatrics, Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, 310030 China
| | - Jian Sima
- grid.254147.10000 0000 9776 7793Laboratory of Aging Neuroscience and Neuropharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009 China
| |
Collapse
|
27
|
Xiao B, Kuruvilla J, Tan EK. Mitophagy and reactive oxygen species interplay in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:135. [PMID: 36257956 PMCID: PMC9579202 DOI: 10.1038/s41531-022-00402-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Mitophagy impairment and oxidative stress are cardinal pathological hallmarks in Parkinson's disease (PD), a common age-related neurodegenerative condition. The specific interactions between mitophagy and reactive oxygen species (ROS) have attracted considerable attention even though their exact interplay in PD has not been fully elucidated. We highlight the interactions between ROS and mitophagy, with a focus on the signalling pathways downstream to ROS that triggers mitophagy and draw attention to potential therapeutic compounds that target these pathways in both experimental and clinical models. Identifying a combination of ROS inhibitors and mitophagy activators to provide a physiologic balance in this complex signalling pathways may lead to a more optimal outcome. Deciphering the exact temporal relationship between mitophagy and oxidative stress and their triggers early in the course of neurodegeneration can unravel mechanistic clues that potentially lead to the development of compounds for clinical drug trials focusing on prodromic PD or at-risk individuals.
Collapse
Affiliation(s)
- Bin Xiao
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
| | - Joshua Kuruvilla
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Eng-King Tan
- Department of Neurology, National Neuroscience Institute, Singapore, Singapore.
- Neuroscience Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.
- Neuroscience and Behavioral Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
28
|
Esmaealzadeh N, Iranpanah A, Sarris J, Rahimi R. A literature review of the studies concerning selected plant-derived adaptogens and their general function in body with a focus on animal studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154354. [PMID: 35932607 DOI: 10.1016/j.phymed.2022.154354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/26/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Adaptogens are generally referred to the substances, mostly found in plants, which non-specifically increase resilience and chances of survival by activation of signaling pathways in affected cells. PURPOSE This literature review was conducted to summarize the investigation, until March 2021, on selected adaptogenic plants and plant-derived substances. STUDY DESIGN Electronic databases were searched (up to March 2021) for in vitro and animal studies, as well as clinical trials. Moreover, all modes of action connected with the adaptogenic effects of plants and phytochemicals were collected. METHODS The search of relevant studies was performed within electronic databases including Scopus, Science Direct, PubMed, and Cochrane library. The most important keywords were adaptogen, plant, phytochemical, and plant-derived. RESULTS The most investigated medicinal herbs for their adaptogenic activity are Eleutherococcus senticosus, Panax ginseng, Withania somnifera, Schisandra chinensis, and Rhodiola spp., salidroside, ginsenosides, andrographolide, methyl jasmonate, cucurbitacin R, dichotosin, and dichotosininare are phytochemicals that have shown a considerable adaptogenic activity. Phytochemicals that have been demonstrated adaptogenic properties mainly belong to flavonoids, terpenoids, and phenylpropanoid glycosides. CONCLUSION It is concluded that the main modes of action of the selected adaptogenic plants are stress modulatory, antioxidant, anti-fatigue, and physical endurance enhancement. Other properties were nootropic, immunomodulatory, cardiovascular, and radioprotective activities.
Collapse
Affiliation(s)
- Niusha Esmaealzadeh
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Kermanshah USERN Office, Universal Scientific Education and Research Network (USERN), Kermanshah, Iran
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, Australia; The Florey Institute of Neuroscience and Mental Health & The Professorial Unit, The Melbourne Clinic, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran P.O. Box 1417653761, Iran; PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
29
|
Salidroside alleviates hepatic ischemia-reperfusion injury during liver transplant in rat through regulating TLR-4/NF-κB/NLRP3 inflammatory pathway. Sci Rep 2022; 12:13973. [PMID: 35978104 PMCID: PMC9385636 DOI: 10.1038/s41598-022-18369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Salidroside has anti-inflammatory, antioxidant and hepatoprotective properties. However, its effect on hepatic ischemia–reperfusion injury (IRI), an unavoidable side effect associated with liver transplantation, remains undefined. Here, we aimed to determine whether salidroside alleviates hepatic IRI and elucidate its potential mechanisms. We used both in vivo and in vitro assays to assess the effect and mechanisms of salidroside on hepatic IRI. Hepatic IRI rat models were pretreated with salidroside (5, 10 or 20 mg/kg/day) for 7 days following liver transplantation while hypoxia/reoxygenation (H/R) model of RAW 264.7 macrophages were pretreated with salidroside (1, 10 or 50 μM). The effect of salidroside on hepatic IRI was assessed using hematoxylin–eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, qRT-PCR, immunosorbent assay and western blotting. Our in vivo assays showed that salidroside significantly reduced pathological liver damage, serum aminotransferase levels and serum levels of IL-1, IL-18 and TNF-α. Besides, salidroside reduced the expression of TLR-4/NF-κB/NLRP3 inflammatory pathway associated proteins (TLR-4, MyD88, p-IKKα, p-IKKβ, p-IKK, p-IκBα, p-P65, NLRP3, ASC, Cleaved caspase-1, IL-1β, IL-18, TNF-α and IL-6) in rats after liver transplantation. On the other hand, data from the in vitro analysis demonstrated that salidroside blocks expression of TLR-4/NF-κB/NLRP3 inflammatory pathway related proteins in the RAW264.7 cells treated with H/R. The salidroside-specific anti-inflammatory effects were partially inhibited by the TLR-4 agonist lipopolysaccharide. Taken together, our study showed that salidroside inhibits hepatic IRI following liver transplantation by modulating the TLR-4/NF-κB/NLRP3 inflammatory pathway.
Collapse
|
30
|
Salidroside ameliorates orthopedic surgery-induced cognitive dysfunction by activating adenosine 5'-monophosphate-activated protein kinase signaling in mice. Eur J Pharmacol 2022; 929:175148. [PMID: 35834964 DOI: 10.1016/j.ejphar.2022.175148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
Abstract
Perioperative neurocognitive disorders (PND) are the most common postoperative complications with few therapeutic options. Salidroside, a plant-derived compound, has gained increased attention as a treatment for various neurological diseases and particularly as a modifier of microglia-mediated neuroinflammation. However, the effect of salidroside on orthopedic surgery-induced cognitive dysfunction and the underlying mechanisms are largely unknown. Here, we found that salidroside greatly attenuated cognitive impairment in mice after orthopedic surgery. Neuroinflammation in the mouse hippocampus was also attenuated by salidroside. Meanwhile, salidroside treatment induced a switch in microglial polarization to the anti-inflammatory phenotype. In vitro, salidroside suppressed the expression of proinflammatory cytokines and induced a switch in microglial phenotype to the anti-inflammatory phenotype. Mechanistically, molecular docking studies revealed the potential AMPK activation activity of salidroside. And salidroside did up-regulated the AMPK pathway proteins. Moreover, AMPK antagonist abolished the effects of salidroside in vivo and in vitro. Taken together, our results demonstrated that salidroside effectively suppressed PND by suppressing microglia-mediated neuroinflammation through activating AMPK pathway, and it might be a novel therapeutic approach for PND.
Collapse
|
31
|
Yang S, Xie Z, Pei T, Zeng Y, Xiong Q, Wei H, Wang Y, Cheng W. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Aβ 1-42-induced Alzheimer's disease mice and glutamate-injured HT22 cells. Chin Med 2022; 17:82. [PMID: 35787281 PMCID: PMC9254541 DOI: 10.1186/s13020-022-00634-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/18/2022] [Indexed: 01/06/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disease. Ferroptosis plays a critical role in neurodegenerative diseases. Nuclear factor E2-related factor 2 (Nrf2) is considered an important factor in ferroptosis. Studies have demonstrated that salidroside has a potential therapeutic effect on AD. The intrinsic effect of salidroside on ferroptosis is unclear. The purpose of this study was to investigate the protective effects and pharmacological mechanisms of salidroside on alleviating neuronal ferroptosis in Aβ1−42-induced AD mice and glutamate-injured HT22 cells. Methods HT22 cells were injured by glutamate (Glu), HT22 cells transfected with siRNA Nrf2, and Aβ1−42-induced WT and Nrf2−/−AD mice were treated with salidroside. The mitochondria ultrastructure, intracellular Fe2+, reactive oxygen species, mitochondrial membrane potential, and lipid peroxidation of HT22 cells were detected. Malondialdehyde, reduced glutathione, oxidized glutathione disulfide, and superoxide dismutase were measured. The novel object recognition test, Y-maze, and open field test were used to investigate the protective effects of salidroside on Aβ1−42-induced WT and Nrf2−/−AD mice. The protein expressions of PTGS2, GPX4, Nrf2, and HO1 in the hippocampus were investigated by Western blot. Results Salidroside increased the cell viability and the level of MMP of Glu-injured HT22 cells, reduced the level of lipid peroxidation and ROS, and increased GPX4 and SLC7A11 protein expressions. These changes were not observed in siRNA Nrf2 transfected HT22 cells. Salidroside improved the ultrastructural changes in mitochondria of HT22 cells and Aβ1−42-induced AD mice, but not in Aβ1−42-induced Nrf2−/−AD mice. Salidroside increased protein expression levels of GPX4, HO1, and NQO1 and decreased protein expression of PTGS2 in Aβ1−42-induced AD mice but not in Aβ1−42-induced Nrf2−/−AD mice. Conclusions Salidroside plays a neuroprotective role by inhibiting neuronal ferroptosis in Aβ1−42-induced AD mice and Glu-injured HT22 cells, and its mechanism is related to activation of the Nrf2/HO1 signaling pathway. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Sixia Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Weidong Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
32
|
Fan H, Su BJ, Le JW, Zhu JH. Salidroside Protects Acute Kidney Injury in Septic Rats by Inhibiting Inflammation and Apoptosis. Drug Des Devel Ther 2022; 16:899-907. [PMID: 35386851 PMCID: PMC8978577 DOI: 10.2147/dddt.s361972] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/17/2022] [Indexed: 12/27/2022] Open
Abstract
Purpose To clarify the protective effect and mechanism of salidroside (SLDS) on acute kidney injury (AKI) in septic rats. Methods We pretreated rats with different doses of SLDS and analyzed the impact of SLDS on the survival of septic rats. We evaluated the levels of inflammatory factors in rats, the expression of NF-ƙB p65 in the kidney, and the apoptosis of kidney tubular epithelial cells (KTECs). Results SLDS significantly decreased the mortality of septic rats, and it reduced the levels of TNF-α, IL-1β, and IL-17A in plasma and kidneys and decreased the levels of serum creatinine, plasma renal injury molecule-1 and plasma neutrophil gelatin-associated lipocalin. Moreover, SLDS could significantly decrease the expression of NF-ƙB p65 in kidney tissues and the apoptotic number of KETCs, while reducing the mRNA levels of Caspase-3 and Bax mRNA, and increasing the level of Bcl-2 mRNA. Conclusion SLDS pretreatment protects against AKI in septic rats by inhibiting the inflammation of kidney and the apoptosis of KTECs.
Collapse
Affiliation(s)
- Heng Fan
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Bin-Jie Su
- Department of Intensive Care Unit, Ningbo First Hospital Haishu Branch, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Wei Le
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| | - Jian-Hua Zhu
- Department of Intensive Care Unit, Ningbo First Hospital, Ningbo, Zhejiang Province, People's Republic of China
| |
Collapse
|
33
|
Hao W, Li N, Mi C, Wang Q, Yu Y. Salidroside attenuates cardiac dysfunction in a rat model of diabetes. Diabet Med 2022; 39:e14683. [PMID: 34467560 DOI: 10.1111/dme.14683] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/30/2021] [Indexed: 12/20/2022]
Abstract
AIM This study aimed to investigate the therapeutic effects of salidroside on diabetes-induced cardiovascular disease. METHODS Sprague-Dawley rats treated with 65 mg/kg of streptozotocin (STZ) on a daily basis were used to establish the diabetic rat model (blood glucose levels >13.9 mmol/L). Cardiac functions of diabetic rats were evaluated by their haemodynamic alterations. Western blot assay was performed to evaluate the protein levels of multiple signalling pathway factors. Quantitative real-time PCR assay was performed to investigate the inflammation and oxidative stress of diabetic rats. RESULTS Salidroside treatment improved the cardiac functions of diabetic rats. In addition, salidroside therapy attenuated the cardiac oxidative stress induced by diabetes. Salidroside inhibited the diabetes-induced inflammation in diabetic rat hearts. The apoptosis of cardiomyocytes was also alleviated by the treatment of salidroside. Salidroside also upregulated the phosphorylation levels of AMPK, ACC, TSC2 and RAPTOR. CONCLUSION Salidroside exerts protective effects against diabetes-induced cardiac dysfunction by modulating the mTOR and AMPK signalling pathways.
Collapse
Affiliation(s)
- Weiwei Hao
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Na Li
- Department of Clinical Medicine, College of Medicine, Pingdingshan University, Pingdingshan, Henan, China
| | - Caifeng Mi
- Department of Gastroenterology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| | - Qiang Wang
- Department of Cardiology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| | - Yuanyuan Yu
- Department of Endocrinology, The First Affiliated Hospital of Pingdingshan University, Pingdingshan, Henan, China
| |
Collapse
|
34
|
Cai Y, Chai Y, Fu Y, Wang Y, Zhang Y, Zhang X, Zhu L, Miao M, Yan T. Salidroside Ameliorates Alzheimer's Disease by Targeting NLRP3 Inflammasome-Mediated Pyroptosis. Front Aging Neurosci 2022; 13:809433. [PMID: 35126093 PMCID: PMC8814655 DOI: 10.3389/fnagi.2021.809433] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Amyloid β-protein (Aβ) is reported to activate NLRP3 inflammasomes and drive pyroptosis, which is subsequently involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). To date, the pathogenesis of AD is unfortunately insufficiently elucidated. Therefore, this study was conducted to explore whether Salidroside (Sal) treatment could benefit AD by improving pyroptosis. Firstly, two animal models of AD, induced, respectively, by Aβ1-42 and D-galactose (D-gal)/AlCl3, have been created to assist our appreciation of AD pathophysiology. We then confirmed that pyroptosis is related to the pathogenesis of AD, and Sal can slow the progression of AD by inhibiting pyroptosis. Subsequently, we established the D-gal and Nigericin-induced PC12 cells injury model in vitro to verify Sal blocks pyroptosis mainly by targeting the NLRP3 inflammasome. For in vivo studies, we observed that Aβ accumulation, Tau hyperphosphorylation, neurons of hippocampal damage, and cognitive dysfunction in AD mice, caused by bilateral injection of Aβ1-42 into the hippocampus and treatments with D-gal combine AlCl3. Besides, accumulated Aβ promotes NLRP3 inflammasome activation, which leads to the activation and release of a pro-inflammatory cytokine, interleukin-1 beta (IL-1β). Notably, both Aβ accumulation and hyperphosphorylation of Tau decreased and inhibited pyroptosis by downregulating the expression of IL-1β and IL-18, which can be attributed to the treatment of Sal. We further found that Sal can reverse the increased protein expression of TLR4, MyD88, NF-κB, P-NF-κB, NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18 in vitro. The underlying mechanism may be through inhibiting TLR4/NF-κB/NLRP3/Caspase-1 signaling pathway. Our study highlights the importance of NLRP3 inflammasome-mediated pyroptosis in AD, and how the administration of pharmacological doses of Sal can inhibit NLRP3 inflammasome-mediated pyroptosis and ameliorate AD. Thus, we conclude that NLRP3 inflammasome-mediated pyroptosis plays a significant role in AD and Sal could be a therapeutic drug for AD.
Collapse
Affiliation(s)
- Yawen Cai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yuhui Chai
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Fu
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yingdi Wang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yiming Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xue Zhang
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Lingpeng Zhu
| | - Mingxing Miao
- Center of National Pharmaceutical Experimental Teaching Demonstration, China Pharmaceutical University, Nanjing, China
- Mingxing Miao
| | - Tianhua Yan
- Department of Physiology and Pharmacology, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Tianhua Yan
| |
Collapse
|
35
|
Fan Y, Wang W, Tian L, Yin J. Salidroside induced repair of myocardial infarction through Nrf2/HO-1. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Yanbo Fan
- Wuhan Hospital of Traditional Chinese Medicine, China
| | - Wei Wang
- Wuhan Hospital of Traditional Chinese Medicine, China
| | - Liqun Tian
- Wuhan Hospital of Traditional Chinese Medicine, China
| | - Jie Yin
- Hubei University of Chinese Medicine, PR China
| |
Collapse
|
36
|
Fan F, Xu N, Sun Y, Li X, Gao X, Yi X, Zhang Y, Meng X, Lin JM. Uncovering the Metabolic Mechanism of Salidroside Alleviating Microglial Hypoxia Inflammation Based on Microfluidic Chip-Mass Spectrometry. J Proteome Res 2021; 21:921-929. [PMID: 34851127 DOI: 10.1021/acs.jproteome.1c00647] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microglia are the main immune cells in the brain playing a critical role in neuroinflammation, and numerous pieces of evidence have proved that energy metabolism is closely associated with inflammation in activated microglia. Salidroside (Sal) isolated from Tibetan medicine Rhodiola crenulate can inhibit microglial hypoxia inflammation (HI). However, whether the inhibition is due to the intervening energy metabolic process in microglia is not clear. In this work, the hypoxic microenvironment of BV2 microglial cells was simulated using deferoxamine (DFO) in vitro and the change of cell metabolites (lactate, succinate, malate, and fumarate) was real-time online investigated based on a cell microfluidic chip-mass spectrometry (CM-MS) system. Meanwhile, for confirming the metabolic mechanism of BV2 cells under hypoxia, the level of HI-related factors (LDH, ROS, HIF-1α, NF-κB p65, TNF-α, IL-1β, and IL-6) was detected by molecular biotechnology. Integration of the detected results revealed that DFO-induced BV2 cell HI was associated with the process of energy metabolism, in which cell energy metabolism changed from oxidative phosphorylation to glycolysis. Furthermore, administration of Sal treatment could effectively invert this change, and two metabolites of Sal were identified: tyrosol and 4-hydroxyphenylacetic acid. In general, we illustrated a new mechanism of Sal for reducing BV2 cell HI injury and presented a novel analysis strategy that opened a way for real-time online monitoring of the energy metabolic mechanism of the effect of drugs on cells and further provided a superior strategy to screen natural drug candidates for HI-related brain disease treatment.
Collapse
Affiliation(s)
- Fangfang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China.,Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yucheng Sun
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinchang Gao
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Xizhen Yi
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yi Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jin-Ming Lin
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
37
|
Anwar H, Rasul A, Iqbal J, Ahmad N, Imran A, Malik SA, Ijaz F, Akram R, Maqbool J, Sajid F, Sun T, Hussain G, Manzoor MF. Dietary biomolecules as promising regenerative agents for peripheral nerve injury: An emerging nutraceutical-based therapeutic approach. J Food Biochem 2021; 45:e13989. [PMID: 34719796 DOI: 10.1111/jfbc.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/22/2022]
Abstract
Peripheral nerve damage is a debilitating condition that can result in partial or complete functional loss as a result of axonal degeneration, as well as lifelong dependence. Many therapies have been imbued with a plethora of positive features while posing little risks. It is worth noting that these biomolecules work by activating several intrinsic pathways that are known to be important in peripheral nerve regeneration. Although the underlying mechanism is used for accurate and speedy functional recovery, none of them are without side effects. As a result, it is believed that effective therapy is currently lacking. The dietary biomolecules-based intervention, among other ways, is appealing, safe, and effective. Upregulation of transcription factors, neurotrophic factors, and growth factors such as NGF, GDNF, BDNF, and CTNF may occur as a result of these substances' dietary intake. Upregulation of the signaling pathways ERK, JNK, p38, and PKA has also been seen, which aids in axonal regeneration. Although several mechanistic approaches to understanding their involvement have been suggested, more work is needed to reveal the amazing properties of these biomolecules. We have discussed in this article that how different dietary biomolecules can help with functional recovery and regeneration after an injury. PRACTICAL APPLICATIONS: Based on the information known to date, we may conclude that treatment techniques for peripheral nerve injury have downsides, such as complications, donor shortages, adverse effects, unaffordability, and a lack of precision in efficacy. These difficulties cast doubt on their efficacy and raise severe concerns about the prescription. In this situation, the need for safe and effective therapeutic techniques is unavoidable, and dietary biomolecules appear to be a safe, cost-efficient, and effective way to promote nerve regeneration following an injury. The information on these biomolecules has been summarized here. Upregulation of transcription factors, neurotrophic factors, and growth factors, such as NGF, GDNF, BDNF, and CTNF, as well as the ERK, JNK, p38, and PKA, signaling pathways, may stimulate axonal regeneration.
Collapse
Affiliation(s)
- Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javed Iqbal
- Department of Neurology, Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Nazir Ahmad
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Ali Imran
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Fazeela Ijaz
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, China
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan
| | | |
Collapse
|
38
|
Raju L, Jenny JC, Merin Saju S, Rajkumar E. GC-MS analysis, antidiabetic and antioxidant activity of methanolic extract of pluteus cervinus: an in vitro and in silico approach. Nat Prod Res 2021; 36:4540-4545. [PMID: 34668441 DOI: 10.1080/14786419.2021.1991339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pluteus cervinus is a mushroom species that demands a systematic study of its medicinal values. This study aims to explore the mycochemical contents of Pluteus cervinus extract, and evaluate their anti-diabetic and antioxidant potency. Twelve organic compounds were identified using Gas Chromatogram-Mass Spectroscopy(GC-MS) analysis of the methanolic extract. All the mycochemicals identified were evaluated for their drug-likeness, pharmacokinetics and bioactivity using admetSAR and molinspiration webservers. The extract was evaluated for the inhibitory effect of α-amylase and DPPH free radical scavenging ability. To further support the anti-diabetic and antioxidant characteristic, in silico molecular docking analysis was done for all the identified mycochemicals. It was found that, 2-(3,4-dimethoxyphenyl)-N-[4-(4-methoxyphenyl)-tetrahydropyran-4-ylmethyl]-acetamide, one of the compounds in the extract shares structural similarity and comparable docking binding energy with natural α-amylase inhibitor. Further, the 2-(3,4-dimethoxyphenyl)-N-[4-(4-methoxyphenyl)-tetrahydropyran-4-ylmethyl]-acetamide also showed high binding energy with Human peroxiredoxin 5 and has a structural relationship with natural antioxidants containing tetrahydropyran derivatives.
Collapse
Affiliation(s)
- Liju Raju
- Department of Chemistry, Madras Christian College, Affiliated to University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - Jeslin C Jenny
- Department of Chemistry, Madras Christian College, Affiliated to University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - Santra Merin Saju
- Department of Chemistry, Madras Christian College, Affiliated to University of Madras, Tambaram East, Chennai, Tamilnadu, India
| | - E Rajkumar
- Department of Chemistry, Madras Christian College, Affiliated to University of Madras, Tambaram East, Chennai, Tamilnadu, India
| |
Collapse
|
39
|
Hu T, Sun Q, Gou Y, Zhang Y, Ding Y, Ma Y, Liu J, Chen W, Lan T, Wang P, Li Q, Yang F. Salidroside Alleviates Chronic Constriction Injury-Induced Neuropathic Pain and Inhibits of TXNIP/NLRP3 Pathway. Neurochem Res 2021; 47:493-502. [PMID: 34626306 DOI: 10.1007/s11064-021-03459-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Neuropathic pain is one of the most common conditions requiring treatment worldwide. Salidroside (SAL), a phenylpropanoid glucoside extracted from Rhodiola, has been suggested to produce an analgesic effect in chronic pain. However, whether SAL could alleviate pain hypersensitivity after peripheral nerve injury and its mode of action remains unclear. Several studies suggest that activation of the spinal NOD-like receptor protein 3 (NLRP3) inflammasome and its related proteins contribute to neuropathic pain's pathogenesis. This study investigates the time course of activation of spinal NLRP3 inflammasome axis in the development of neuropathic pain and also whether SAL could be an effective treatment for this type of pain by modulating NLRP3 inflammasome. In the chronic constriction injury (CCI) mice model, spinal NLRP3 inflammasome-related proteins and TXNIP, the mediator of NLRP3, were upregulated from the 14th to the 28th day after injury. The TXNIP and NLRP3 inflammasome-related proteins were mainly present in neurons and microglial cells in the spinal dorsal horn after CCI. Intraperitoneal injection of SAL at 200 mg/kg for 14 consecutive days starting from the 7th day of CCI injury could ameliorate mechanical and thermal hypersensitivity in the CCI model. Moreover, SAL inhibited the activation of the TXNIP/NLRP3 inflammasome axis and mitigated the neuronal loss of spinal dorsal horn induced by nerve injury. These results indicate that SAL could produce analgesic and neuroprotective effects in the CCI model of neuropathic pain.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Qingyu Sun
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yurui Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yumeng Ding
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Yiran Ma
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Jing Liu
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Wen Chen
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Ting Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Peipei Wang
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China
| | - Qian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
40
|
Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo. J Mol Histol 2021; 52:1145-1154. [PMID: 34570327 DOI: 10.1007/s10735-021-10022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/23/2021] [Indexed: 01/19/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising tool for treating cerebral ischemic injury. However, their poor survival after transplantation limits their therapeutic effect and applications. Salidroside has been reported to exert potent cytoprotective and neuroprotective effects. This study aimed to investigate whether salidroside could improve MSC survival under hypoxic-ischemic conditions and, subsequently, alleviate cerebral ischemic injury in a rat model. MSCs were pretreated by salidroside under hypoxic-ischemic conditions. The cell proliferation, migratory capacity, and apoptosis were evaluated by means of Cell Counting Kit-8, transwell assay, and flow cytometry. MSCs pretreated with salidroside were transplanted into the rats subsequent to middle cerebral artery occlusion. The grip strength, 2,3,5-triphenyltetrazolium chloride, and hematoxylin-eosin staining were used to analyze the therapeutic efficiency and pathological changes. The mature neuron marker NeuN and astrocyte marker GFAP in the focal area were detected by immunofluorescence. These results indicated that salidroside promoted the proliferation, migration and reduced apoptosis of MSCs under hypoxic-ischemic conditions. In vivo experiments revealed that transplantation of salidroside-pretreated MSCs strengthened the therapeutic efficiency by enhancing neurogenesis and inhibiting neuroinflammation in the hippocampal CA1 area after ischemia. Our results suggest that pretreatment with salidroside could be an effective strategy to enhance the cell survival rate and the therapeutic effect of MSCs in treating cerebral ischemic injury.
Collapse
|
41
|
Park JS, Kwon E, Kim YS, Kim SM, Kim DS, Jang JJ, Yun JW, Kang BC. Safety Assessment of Acer tegmentosum Maxim. Water Extract: General Toxicity Studies in Sprague-Dawley Rats and Beagle Dogs With Re-evaluation of Genotoxic Potentials. Front Pharmacol 2021; 12:687261. [PMID: 34531739 PMCID: PMC8438563 DOI: 10.3389/fphar.2021.687261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 11/28/2022] Open
Abstract
Acer tegmentosum Maxim., commonly known as Manchurian stripe maple, is a deciduous tree belonging to the family of Aceraceae and has been traditionally used in folk medicine for its remedial effects in liver diseases and traumatic bleedings. With a growing body of experimental evidence for its pharmacological efficacies, such as neuroprotective, hepatoprotective, antioxidant, and anti-inflammatory activities, A. tegmentosum has gradually gained popularity as a health supplement and functional food. However, the large part of essential toxicity information still remained lacking despite the possibility of mutagenic potentials as previously suggested, posing safety concerns for human consumption. In this study, we evaluated 90-day repeated oral toxicity of A. tegmentosum Maxim. water extract (ATWE) in SD rats with acute toxicity assessment in beagle dogs, and reevaluated genotoxicity using a combination of in vitro and in vivo assays. During the oral study period, ATWE did not cause toxicity-related clinical signs and mortality in rodents without adverse effects observed in the analysis of hematology, serum biochemistry, and histopathology, establishing >5,000 mg/kg BW as the NOAEL. In addition, doses up to 5,000 mg/kg BW did not cause acute toxicity in beagle dogs. When assessed for genotoxicity using bacterial reverse mutation, chromosome aberration, and micronucleus formation, ATWE showed lack of mutagenicity and clastogenicity. These results demonstrated that AWTE was safe in the present preclinical study for systemic toxicity and genotoxicity at the tested doses, providing a guideline for safe use in humans.
Collapse
Affiliation(s)
- Jin-Sung Park
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Euna Kwon
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Yun-Soon Kim
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | | | | | - Ja-June Jang
- Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, Bucheon, South Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.,Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, South Korea.,Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul, South Korea.,Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, South Korea
| |
Collapse
|
42
|
Qian J, Wang X, Weng W, Zhou G, Zhu S, Liu C. Salidroside alleviates taurolithocholic acid 3-sulfate-induced AR42J cell injury. Biomed Pharmacother 2021; 142:112062. [PMID: 34435589 DOI: 10.1016/j.biopha.2021.112062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To investigate the protective effects of Salidroside (Sal) on AP cell model induced by taurolithocholic acid 3-sulfate (TLC-S) as well as its underlying mechanism. METHODS AR42J cells were divided into normal group (N group), AP cell model group (Mod group), Sal treated alone group (S+N group) and Sal treated AP cell model group (S+Mod group). The cell viability was examined by CCK-8 assay. Secretion of lipase and trypsin by AR42J cells, quantified using commercial assay kits, was used as the markers of TLC-S-induced pancreatitis. The levels of TNF-α, IL-1β, IL-8, IL-6 and IL-10 in the cell supernatant were measured by ELISA. The effect of Sal on molecules in the NF-κB signaling pathway and autophagy was investigated by qRT-PCR and western blot. RESULTS The decreased cell viability in Mod group was increased by Sal (P < 0.01). The upheaved activities of lipase and trypsin in AP cell model were declined by Sal (P < 0.01). The levels of TNF-α, IL-1β, IL-8 and IL-6 in the cell supernatant, Beclin-1 and LC3-Ⅱ mRNA and protein, p-p65/p65 protein, which were increased in AP cell model, were decreased by Sal; and IL-10 in the cell supernatant, LAMP2 mRNA and protein, p-IκBα/IκBα protein which was declined in AP cell model, was increased by Sal (P < 0.05 or 0.01). There were no significant differences in all indexes between the N and S+N groups (P > 0.05). CONCLUSIONS Sal alleviated AR42J cells injury induced by TLC-S, inhibited the inflammatory responses and modulated the autophagy, mainly through inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jing Qian
- Department of General Surgery, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China.
| | - Xiaohong Wang
- Department of Gastroenterology, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China.
| | - Wenjun Weng
- Department of Cardiothoracic Surgery, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, Jiangsu, China.
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Shunxing Zhu
- Laboratory Animal Center of Nantong University, Nantong 226001, Jiangsu, China.
| | - Chun Liu
- Laboratory Animal Center of Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
43
|
Zhu L, Liu Z, Ren Y, Wu X, Liu Y, Wang T, Li Y, Cong Y, Guo Y. Neuroprotective effects of salidroside on ageing hippocampal neurons and naturally ageing mice via the PI3K/Akt/TERT pathway. Phytother Res 2021; 35:5767-5780. [PMID: 34374127 DOI: 10.1002/ptr.7235] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 06/22/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022]
Abstract
Studies have found that salidroside, isolated from Rhodiola rosea L, has various pharmacological activities, but there have been no studies on the effects of salidroside on brain hippocampal senescence. The purpose of this study was to investigate the mechanistic role of salidroside in hippocampal neuron senescence and injury. In this study, long-term cultured primary rat hippocampal neurons and naturally aged C57 mice were treated with salidroside. The results showed that salidroside increased the viability and MAP2 expression, reduced β-galactosidase (β-gal) levels of rat primary hippocampal neurons. Salidroside also improved cognition dysfunction in ageing mice and alleviated neuronal degeneration in the ageing mice CA1 region. Moreover, salidroside decreased the levels of oxidative stress and p21, p16 protein expressions of hippocampal neurons and ageing mice. Salidroside promoted telomerase reverse transcriptase (TERT) protein expression via the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway. In conclusion, our findings suggest that salidroside has the potential to be used as a therapeutic strategy for anti-ageing and ageing-related disease treatment.
Collapse
Affiliation(s)
- Lin Zhu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Zhenchao Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yuqian Ren
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Xiaolin Wu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yingjuan Liu
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Tingting Wang
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| | - Yizhao Li
- Department of Neurology, Jinan Fanggan Rehabilitation Hospital, Jinan, China
| | - Yusheng Cong
- Institute of Aging Research, Hangzhou Normal University School of Medicine, Hangzhou, China
| | - Yunliang Guo
- Institute of Cerebrovascular Diseases, Medical Research Center, The Affiliated Hospital of Qingdao University, Taishan Scholars Construction Project Excellent Innovative Team of Shandong Province, Qingdao, China
| |
Collapse
|
44
|
Huang Y, Han X, Tang J, Long X, Wang X. Salidroside inhibits endothelial‑mesenchymal transition via the KLF4/eNOS signaling pathway. Mol Med Rep 2021; 24:692. [PMID: 34368873 PMCID: PMC8365603 DOI: 10.3892/mmr.2021.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 11/06/2022] Open
Abstract
Homocysteine (Hcy) was discovered to be an independent risk factor for the development of atherosclerosis (AS). Moreover, endothelial‑mesenchymal transition (EndMT) was found to be one of main mechanisms contributing to the pathogenesis of AS. Salidroside (SAL) has diverse pharmacological activities, including anti‑inflammatory, anti‑cancer, anti‑oxidative and anti‑fibrosis properties. However, whether SAL serves a beneficial role in Hcy‑induced EndMT remains unknown. The present study aimed to investigate whether SAL exerted its effects on Hcy‑induced EndMT via the Kruppel‑like factor 4 (KLF4)/endothelial nitric oxide (NO) synthase (eNOS) signaling pathway. HUVECs were pretreated with high and low doses (10 or 50 µmol/l) of SAL for 2 h, followed by 1 mmol/l Hcy for 48 h to induce EndMT. Western blotting was used to analyze the protein expression levels of the endothelial marker, VE‑cadherin, the mesenchymal cell marker, α‑smooth muscle actin (SMA), and the nuclear transcription factors, KLF4 and eNOS. Wound healing assays were used to determine the cell migratory ability, and the levels of NO in the cell culture supernatants were measured using a nitrate reductase assay. Cellular immunofluorescence was used to analyze the expression and localization of KLF4. Small interfering (si)RNA targeting KLF4 (siKLF4) was used to knock down KLF4 expression in HUVECs. The results of the present study revealed that treatment with SAL upregulated the expression levels of VE‑cadherin, downregulated the expression levels of α‑SMA, reduced cell migration and activated the eNOS/NO signaling axis, as well as downregulated KLF4 expression and translocation to the nucleus. Compared with the SAL + siKLF4 co‑administration group, no significant differences were observed in the expression levels of the phenotypic markers in the SAL or siKLF4 groups. In conclusion, the findings of the present study revealed that SAL may inhibit Hcy‑induced EndMT via regulation of the KLF4/eNOS signaling pathway.
Collapse
Affiliation(s)
- Yongpan Huang
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Xiaodong Han
- Department of Anesthesia, Medical College, Yan'an University, Yan'an, Shanxi 716000, P.R. China
| | - Jiayu Tang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| | - Xian Long
- Department of Clinic, Medicine School, Changsha Social Work College, Changsha, Hunan 410004, P.R. China
| | - Xiaoye Wang
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan 410007, P.R. China
| |
Collapse
|
45
|
Zhang M, Hu G, Shao N, Qin Y, Chen Q, Wang Y, Zhou P, Cai B. Thioredoxin-interacting protein (TXNIP) as a target for Alzheimer's disease: flavonoids and phenols. Inflammopharmacology 2021; 29:1317-1329. [PMID: 34350508 DOI: 10.1007/s10787-021-00861-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by amyloid plaques and tangles that have become the fifth leading cause of death worldwide. Previous studies have found that thioredoxin interacting protein (TXNIP) expression was increased during the development of AD neurons. TXNIP separates from the TXNIP-thioredoxin complex, and the TXNIP-NLRP3 complex assembles ASC and pro-caspase-1 to form the NLRP3 inflammasome, which triggers AD inflammation and apoptosis. CB-dock was used to explore whether 21 natural flavonoids and phenols target TXNIP based on references. Docking results showed that rutin, puerarin, baicalin, luteolin and quercetin are the most potent TXNIP inhibitors, and among them, rutin as the most effective flavonoid. And rosmarinic acid is the most potent TXNIP inhibitor of phenols. These phytochemicals could be helpful to find the lead compounds in designing and developing novel agents for Alzheimer's disease.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Guanhua Hu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Nan Shao
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yunpeng Qin
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Qian Chen
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yan Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| | - Biao Cai
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China. .,Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, Anhui, 230012, China. .,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, 230012, China.
| |
Collapse
|
46
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
47
|
Neuroprotective Phytochemicals in Experimental Ischemic Stroke: Mechanisms and Potential Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687386. [PMID: 34007405 PMCID: PMC8102108 DOI: 10.1155/2021/6687386] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
Ischemic stroke is a challenging disease with high mortality and disability rates, causing a great economic and social burden worldwide. During ischemic stroke, ionic imbalance and excitotoxicity, oxidative stress, and inflammation are developed in a relatively certain order, which then activate the cell death pathways directly or indirectly via the promotion of organelle dysfunction. Neuroprotection, a therapy that is aimed at inhibiting this damaging cascade, is therefore an important therapeutic strategy for ischemic stroke. Notably, phytochemicals showed great neuroprotective potential in preclinical research via various strategies including modulation of calcium levels and antiexcitotoxicity, antioxidation, anti-inflammation and BBB protection, mitochondrial protection and antiapoptosis, autophagy/mitophagy regulation, and regulation of neurotrophin release. In this review, we summarize the research works that report the neuroprotective activity of phytochemicals in the past 10 years and discuss the neuroprotective mechanisms and potential clinical applications of 148 phytochemicals that belong to the categories of flavonoids, stilbenoids, other phenols, terpenoids, and alkaloids. Among them, scutellarin, pinocembrin, puerarin, hydroxysafflor yellow A, salvianolic acids, rosmarinic acid, borneol, bilobalide, ginkgolides, ginsenoside Rd, and vinpocetine show great potential in clinical ischemic stroke treatment. This review will serve as a powerful reference for the screening of phytochemicals with potential clinical applications in ischemic stroke or the synthesis of new neuroprotective agents that take phytochemicals as leading compounds.
Collapse
|
48
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
49
|
Lin HQ, Dai SH, Liu WC, Lin X, Yu BT, Chen SB, Liu S, Ling H, Tang J. Effects of prolonged cold-ischemia on autophagy in the graft lung in a rat orthotopic lung transplantation model. Life Sci 2021; 268:118820. [PMID: 33278393 DOI: 10.1016/j.lfs.2020.118820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury causes present challenges in the field of graft transplantation which is also a major contributor to early graft dysfunction or failure after organ transplantation. The study focuses on the effects of prolonged cold-ischemia (CI) on the autophagic activity in the graft lung in a rat orthotopic lung transplantation model. MATERIAL AND METHODS Donor lungs were preserved under CI conditions for different periods. An orthotopic lung transplantation model was developed, and the lung tissues from donor lungs subjected to CI preservation and reperfusion were harvested. We evaluated the effects of different CI periods on autophagy, reactive oxygen species (ROS) and glucose consumption. Additionally, the mechanism by which prolonged CI affected autophagy was investigated through determination of the molecules related to the mTOR pathway after treatment with 3-Methyladenine (3-MA), rapamycin and an adenosine triphosphate (ATP) synthase inhibitor oligomycin (OM). RESULTS Prolonged CI led to increased activities of key glycolytic enzymes, glucose consumption and lactic acid production. Autophagy, ROS and glucose consumption were induced in the graft lung after I/R, which reached peak levels after 6 h and was gradually decreased. Most importantly, the perfusion treatment of 3-MA or OM decreased ROS level and autophagy, but increased the extent of mTOR phosphorylation, while the perfusion treatment of rapamycin induced ROS and autophagy. CONCLUSION Taken together, autophagy mediated by a prolonged CI preservation affects the glucose consumption and ROS production in the graft lung via the mTOR signaling pathway.
Collapse
Affiliation(s)
- Hui-Qing Lin
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shao-Hua Dai
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Wei-Cheng Liu
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Xiang Lin
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Shi-Biao Chen
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Sheng Liu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Hua Ling
- Department of Nursing, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| | - Jian Tang
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
50
|
Wang C, Nan X, Pei S, Zhao Y, Wang X, Ma S, Ma G. Salidroside and isorhamnetin attenuate urotensin II-induced inflammatory response in vivo and in vitro: Involvement in regulating the RhoA/ROCK II pathway. Oncol Lett 2021; 21:292. [PMID: 33732368 PMCID: PMC7905674 DOI: 10.3892/ol.2021.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022] Open
Abstract
Urotensin II (UII), a vital vasoconstrictor peptide, causes an inflammatory response in the pathogenesis of atherosclerosis. Previous studies have reported that the Ras homolog gene family, member A (RhoA)/Rho kinases (ROCK) pathway modulates the inflammatory response of the atherosclerotic process. However, to the best of our knowledge, whether the RhoA/ROCK pathway mediates the inflammatory effect of UII has not been previously elucidated. Salidroside and isorhamnetin are two early developed antioxidant Tibetan drugs, both displaying cardioprotective effects against atherosclerosis. Therefore, the aim of the present study was to investigate the protective effects of salidroside, isorhamnetin or combination of these two drugs on the UII-induced inflammatory response in vivo (rats) or in vitro [primary vascular smooth muscle cells (VSMCs)], as well as to examine the role of the RhoA/ROCK pathway in these processes. The levels of inflammatory markers were measured via ELISA. The mRNA and protein expression levels of RhoA and ROCK II were detected using reverse transcription-quantitative PCR assay and western blot analysis. It was demonstrated that salidroside, isorhamnetin and both in combination decreased the levels of the serum pro-inflammatory cytokines TNF-α and IL-1β, as well as increased the levels of the anti-inflammatory cytokine IL-10 and macrophage migration inhibitory factor in rats with subacute infusion of UII and in the culture supernatant from primary VSMCs-exposed to UII. Moreover, salidroside, isorhamnetin and both in combination attenuated the mRNA and protein expression levels of RhoA and ROCK II in vivo and in vitro, at concentrations corresponding to human therapeutic blood plasma concentrations. Thus, these drugs could inhibit the RhoA/ROCK II pathway under UII conditions. The combination of salidroside and isorhamnetin did not display a stronger inhibitory effect on the inflammatory response and the RhoA/ROCK II pathway compared with salidroside and isorhamnetin in isolation. Collectively, the results indicated that salidroside, isorhamnetin and both in combination inhibited the RhoA/ROCK II pathway, which then attenuated the inflammatory response under UII-induced conditions, resulting in cardioprotection in atherosclerosis.
Collapse
Affiliation(s)
- Chenjing Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaodong Nan
- Intensive Care Unit, Gansu Provincial Corps Hospital of Chinese People's Armed Police Force, Lanzhou, Gansu 730050, P.R. China
| | - Shuyan Pei
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Yu Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Xiaokun Wang
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Shijie Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| | - Guoyan Ma
- Department of Pharmacology, School of Basic Medical Sciences, Northwest Minzu University Health Science Center, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|