1
|
Tian G, Hu J, Qin C, Li L, Ning Y, Zhu S, Xie S, Zou X, Seeberger PH, Yin J. Chemical Synthesis and Antigenicity Evaluation of an Aminoglycoside Trisaccharide Repeating Unit of Pseudomonas aeruginosa Serotype O5 O-Antigen Containing a Rare Dimeric-Man pN3NA. J Am Chem Soc 2024; 146:18427-18439. [PMID: 38946080 DOI: 10.1021/jacs.4c03814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Pseudomonas aeruginosa bacteria are becoming increasingly resistant against multiple antibiotics. Therefore, the development of vaccines to prevent infections with these bacteria is an urgent medical need. While the immunological activity of lipopolysaccharide O-antigens in P. aeruginosa is well-known, the specific protective epitopes remain unidentified. Herein, we present the first chemical synthesis of highly functionalized aminoglycoside trisaccharide 1 and its acetamido derivative 2 found in the P. aeruginosa serotype O5 O-antigen. The synthesis of the trisaccharide targets is based on balancing the reactivity of disaccharide acceptors and monosaccharide donors. Glycosylations were analyzed by quantifying the reactivity of the hydroxyl group of the disaccharide acceptor using the orbital-weighted Fukui function and dual descriptor. The stereoselective formation of 1,2-cis-α-fucosylamine linkages was achieved through a combination of remote acyl participation and reagent modulation. The simultaneous SN2 substitution of azide groups at C2' and C2″ enabled the efficient synthesis of 1,2-cis-β-linkages for both 2,3-diamino-D-mannuronic acids. Through a strategic orthogonal modification, the five amino groups on target trisaccharide 1 were equipped with a rare acetamidino (Am) and four acetyl (Ac) groups. Glycan microarray analyses of sera from patients infected with P. aeruginosa indicated that trisaccharides 1 and 2 are key antigenic epitopes of the serotype O5 O-antigen. The acetamidino group is not an essential determinant of antibody binding. The β-D-ManpNAc3NAcA residue is a key motif for the antigenicity of serotype O5 O-antigen. These findings serve as a foundation for the development of glycoconjugate vaccines targeting P. aeruginosa serotype O5.
Collapse
Affiliation(s)
- Guangzong Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Lingxin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Yunzhan Ning
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Shengyong Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Suqing Xie
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaopeng Zou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| | - Peter H Seeberger
- Biomolecular Systems Department, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue 1800, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
2
|
Yin C, Alam MZ, Fallon JT, Huang W. Advances in Development of Novel Therapeutic Strategies against Multi-Drug Resistant Pseudomonas aeruginosa. Antibiotics (Basel) 2024; 13:119. [PMID: 38391505 PMCID: PMC10885988 DOI: 10.3390/antibiotics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) with multi-drug resistance (MDR) is a major cause of serious healthcare-associated infections, leading to high morbidity and mortality. This opportunistic pathogen is responsible for various infectious diseases, such as those seen in cystic fibrosis, ventilator-associated pneumonia, urinary tract infection, otitis externa, and burn and wound injuries. Due to its relatively large genome, P. aeruginosa has great diversity and can use various molecular mechanisms for antimicrobial resistance. For example, outer membrane permeability can contribute to antimicrobial resistance and is determined by lipopolysaccharide (LPS) and porin proteins. Recent findings on the regulatory interaction between peptidoglycan and LPS synthesis provide additional clues against pathogenic P. aeruginosa. This review focuses on recent advances in antimicrobial agents and inhibitors targeting LPS and porin proteins. In addition, we explore current and emerging treatment strategies for MDR P. aeruginosa, including phages, vaccines, nanoparticles, and their combinatorial therapies. Novel strategies and their corresponding therapeutic agents are urgently needed for combating MDR pathogens.
Collapse
Affiliation(s)
- Changhong Yin
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Md Zahidul Alam
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - John T Fallon
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Weihua Huang
- Department of Pathology and Laboratory Medicine, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Wang X, Liu C, Rcheulishvili N, Papukashvili D, Xie F, Zhao J, Hu X, Yu K, Yang N, Pan X, Liu X, Wang PG, He Y. Strong immune responses and protection of PcrV and OprF-I mRNA vaccine candidates against Pseudomonas aeruginosa. NPJ Vaccines 2023; 8:76. [PMID: 37231060 DOI: 10.1038/s41541-023-00672-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Pseudomonas aeruginosa (PA) is a leading cause of hospital-acquired and ventilator-associated pneumonia. The multidrug-resistance (MDR) rate of PA is increasing making the management of PA a global challenge. Messenger RNA (mRNA) vaccines represent the most promising alternative to conventional vaccines and are widely studied for viral infection and cancer immunotherapy while rarely studied for bacterial infections. In this study, two mRNA vaccines encoding PcrV- the key component of the type III secretion system in Pseudomonas and the fusion protein OprF-I comprising outer membrane proteins OprF and OprI were constructed. The mice were immunized with either one of these mRNA vaccines or with the combination of both. Additionally, mice were vaccinated with PcrV, OprF, or the combination of these two proteins. Immunization with either mRNA-PcrV or mRNA-OprF-I elicited a Th1/Th2 mixed or slighted Th1-biased immune response, conferred broad protection, and reduced bacterial burden and inflammation in burn and systemic infection models. mRNA-PcrV induced significantly stronger antigen-specific humoral and cellular immune responses and higher survival rate compared with the OprF-I after challenging with all the PA strains tested. The combined mRNA vaccine demonstrated the best survival rate. Moreover, the mRNA vaccines showed the superiority over protein vaccines. These results suggest that mRNA-PcrV as well as the mixture of mRNA-PcrV and mRNA-OprF-I are promising vaccine candidates for the prevention of PA infection.
Collapse
Affiliation(s)
- Xingyun Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China
| | - Cong Liu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fengfei Xie
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jiao Zhao
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xing Hu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kaiwei Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Nuo Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xuehua Pan
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xueyan Liu
- Department of Critical Medicine, Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen, China.
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| | - Yunjiao He
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Sanya DRA, Onésime D, Vizzarro G, Jacquier N. Recent advances in therapeutic targets identification and development of treatment strategies towards Pseudomonas aeruginosa infections. BMC Microbiol 2023; 23:86. [PMID: 36991325 PMCID: PMC10060139 DOI: 10.1186/s12866-023-02832-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is the causal agent of a wide variety of infections. This non-fermentative Gram-negative bacillus can colonize zones where the skin barrier is weakened, such as wounds or burns. It also causes infections of the urinary tract, respiratory system or bloodstream. P. aeruginosa infections are common in hospitalized patients for which multidrug-resistant, respectively extensively drug-resistant isolates can be a strong contributor to a high rate of in-hospital mortality. Moreover, chronic respiratory system infections of cystic fibrosis patients are especially concerning, since very tedious to treat. P. aeruginosa exploits diverse cell-associated and secreted virulence factors, which play essential roles in its pathogenesis. Those factors encompass carbohydrate-binding proteins, quorum sensing that monitor the production of extracellular products, genes conferring extensive drug resistance, and a secretion system to deliver effectors to kill competitors or subvert host essential functions. In this article, we highlight recent advances in the understanding of P. aeruginosa pathogenicity and virulence as well as efforts for the identification of new drug targets and the development of new therapeutic strategies against P. aeruginosa infections. These recent advances provide innovative and promising strategies to circumvent infection caused by this important human pathogen.
Collapse
Affiliation(s)
| | - Djamila Onésime
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, 78350, France
| | - Grazia Vizzarro
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
- Present Address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital and University of Lausanne, Lausanne, 1011, Switzerland.
| |
Collapse
|
5
|
Lin J, Yang J, Cheng J, Zhang W, Yang X, Ding W, Zhang H, Wang Y, Shen X. Pseudomonas aeruginosa H3-T6SS Combats H 2O 2 Stress by Diminishing the Amount of Intracellular Unincorporated Iron in a Dps-Dependent Manner and Inhibiting the Synthesis of PQS. Int J Mol Sci 2023; 24:1614. [PMID: 36675127 PMCID: PMC9866239 DOI: 10.3390/ijms24021614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
The type VI secretion system (T6SS), a protein translocation nanomachine, is widely distributed in Gram-negative bacteria and delivers effectors directly into target cells or the extracellular environment to help the bacteria gain a competitive fitness advantage and promote bacterial survival in harmful environments. In this study, we demonstrated that the synthesis of the Pseudomonas quinolone signal (PQS) in Pseudomonas aeruginosa PAO1 was inhibited by the H3-T6SS gene cluster under iron-rich conditions, and that this inhibition was relieved under iron starvation conditions. Conversely, PQS differentially regulated the expression of the H3-T6SS structural genes and the effector protein gene tseF. The expression of tseF was inhibited by PQS, while the expressions of the H3-T6SS structural genes were positively regulated by PQS. Further studies showed that the H3-T6SS was involved in the resistance of P. aeruginosa to oxidative stress caused by hydrogen peroxide (H2O2). Interestingly, H3-T6SS expression was neither induced by H2O2 stress nor regulated by OxyR (a global anti-oxidative transcriptional regulator) but was positively regulated by RpoS (a major transcription regulator of the stress response). In addition, we found that the clpV3 (a structural gene of H3-T6SS) mutation resulted in upregulation of two proteins related to PQS synthesis and many proteins related to oxidative stress resistance, while the expression of some iron storage proteins, especially Dps, were significantly downregulated. Furthermore, the clpV3 mutation led to an increase in the intracellular free Fe2+ content of P. aeruginosa. Further studies showed that both the PQS deficient mutation and overexpression of dps effectively restored the H2O2 sensitive phenotype of the H3-T6SS mutant. Finally, we proposed the following model of H3-T6SS-mediated resistance to H2O2 stress in P. aeruginosa. H3-T6SS not only reduces the intracellular free Fe2+ level by upregulating the expression of ferritin Dps, but also inhibits the synthesis of PQS to mediate the resistance of P. aeruginosa to H2O2 stress. This study highlights the important role of H3-T6SS in the ability of P. aeruginosa to combat H2O2 stress and provides a perspective for understanding the stress response mechanism of bacteria.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Juanli Cheng
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Weipeng Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wei Ding
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Heng Zhang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
6
|
Antimicrobial Treatment of Pseudomonas aeruginosa Severe Sepsis. Antibiotics (Basel) 2022; 11:antibiotics11101432. [PMID: 36290092 PMCID: PMC9598900 DOI: 10.3390/antibiotics11101432] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a pathogen often encountered in a healthcare setting. It has consistently ranked among the most frequent pathogens seen in nosocomial infections, particularly bloodstream and respiratory tract infections. Aside from having intrinsic resistance to many antibiotics, it rapidly acquires resistance to novel agents. Given the high mortality of pseudomonal infections generally, and pseudomonal sepsis particularly, and with the rise of resistant strains, treatment can be very challenging for the clinician. In this paper, we will review the latest evidence for the optimal treatment of P. aeruginosa sepsis caused by susceptible as well as multidrug-resistant strains including the difficult to treat pathogens. We will also discuss the mode of drug infusion, indications for combination therapy, along with the proper dosing and duration of treatment for various conditions with a brief discussion of the use of non-antimicrobial agents.
Collapse
|
7
|
Dela Ahator S, Liu Y, Wang J, Zhang LH. The virulence factor regulator and quorum sensing regulate the type I-F CRISPR-Cas mediated horizontal gene transfer in Pseudomonas aeruginosa. Front Microbiol 2022; 13:987656. [PMID: 36246261 PMCID: PMC9563714 DOI: 10.3389/fmicb.2022.987656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is capable of thriving in diverse environments due to its network of regulatory components for effective response to stress factors. The survival of the bacteria is also dependent on the ability to discriminate between the acquisition of beneficial and non-beneficial genetic materials via horizontal gene transfer (HGT). Thus, bacteria have evolved the CRISPR-Cas adaptive immune system for defense against the deleterious effect of phage infection and HGT. By using the transposon mutagenesis approach, we identified the virulence factor regulator (Vfr) as a key regulator of the type I-F CRISPR-Cas system in P. aeruginosa. We showed that Vfr influences the expression of the CRISPR-Cas system through two signaling pathways in response to changes in calcium levels. Under calcium-rich conditions, Vfr indirectly regulates the CRISPR-Cas system via modulation of the AHL-QS gene expression, which could be vital for defense against phage infection at high cell density. When encountering calcium deficiency, however, Vfr can directly regulate the CRISPR-Cas system via a cAMP-dependent pathway. Furthermore, we provide evidence that mutation of vfr reduces the CRISPR-Cas spacer acquisition and interference of HGT. The results from this study add to the regulatory network of factors controlling the CRISPR-Cas system in response to abiotic factors in the environment. The findings may facilitate the design of effective and reliable phage therapies against P. aeruginosa infections, as targeting Vfr could prevent the development of the CRISPR-Cas mediated phage resistance.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jianhe Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
- *Correspondence: Lian-Hui Zhang,
| |
Collapse
|
8
|
Sun L, Li M, Yang J, Li J. Cell Membrane-Coated Nanoparticles for Management of Infectious Diseases: A Review. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lizhong Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Meng Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 323] [Impact Index Per Article: 161.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
10
|
Joean O, Welte T. Vaccination and modern management of chronic obstructive pulmonary disease - a narrative review. Expert Rev Respir Med 2022; 16:605-614. [PMID: 35713962 DOI: 10.1080/17476348.2022.2092099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) carries a tremendous societal and individual burden, posing significant challenges for public health systems worldwide due to its high morbidity and mortality. Due to aging and multimorbidity but also in the wake of important progress in deciphering the heterogeneous disease endotypes, an individualized approach to the prevention and management of COPD is necessary. AREAS COVERED This article tackles relevant immunization strategies that are available or still under development with a focus on the latest evidence but also controversies around different regional immunization approaches. Further, we present the crossover between chronic lung inflammation and lung microbiome disturbance as well as its role in delineating COPD endotypes. Moreover, the article attempts to underline endotype-specific treatment approaches. Lastly, we highlight non-pharmacologic prevention and management programs in view of the challenges and opportunities of the COVID-19 era. EXPERT OPINION Despite the remaining challenges, personalized medicine has the potential to offer tailored approaches to prevention and therapy and promises to improve the care of patients living with COPD.
Collapse
Affiliation(s)
- Oana Joean
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Tobias Welte
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease, Member of the German Center for Lung Research, Hannover, Germany
| |
Collapse
|
11
|
Cairns CM, Michael FS, Jamshidi M, van Faassen H, Yang Q, Henry KA, Hussack G, Sauvageau J, Vinogradov EV, Cox AD. Structural Characterization and Evaluation of an Epitope at the Tip of the A-Band Rhamnan Polysaccharide of Pseudomonas aeruginosa. ACS Infect Dis 2022; 8:1336-1346. [PMID: 35653593 DOI: 10.1021/acsinfecdis.2c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa produces a variety of cell surface glycans. Previous studies identified a common polysaccharide (PS) antigen often termed A-band PS that was composed of a neutral d-rhamnan trisaccharide repeating unit as a relatively conserved cell surface carbohydrate. However, nuclear magnetic resonance (NMR) spectra and chemical analysis of A-PS preparations showed the presence of several additional components. Here, we report the characterization of the carbohydrate component responsible for these signals. The carbohydrate antigen consists of an immunogenic methylated rhamnan oligosaccharide at the nonreducing end of the A-band PS. Initial studies performed with the isolated antigen permitted the production of conjugates that were used to immunize mice and rabbits and generate monoclonal and polyclonal antibodies. The polyclonal antibodies were able to recognize the majority of P. aeruginosa strains in our collection, and three monoclonal antibodies were generated, one of which was able to recognize and facilitate opsonophagocytic killing of a majority of P. aeruginosa strains. This monoclonal antibody was able to recognize all P. aeruginosa strains in our collection that includes clinical and serotype strains. Synthetic oligosaccharides (mono- to pentasaccharides) representing the terminal 3-O-methyl d-rhamnan were prepared, and the trisaccharide was identified as the antigenic determinant required to effectively mimic the natural antigen recognized by the broadly cross-reactive monoclonal antibody. These data suggest that there is considerable promise in this antigen as a vaccine or therapeutic target.
Collapse
Affiliation(s)
- Chantelle M. Cairns
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Frank St. Michael
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Mohammad Jamshidi
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Henk van Faassen
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Qingling Yang
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Kevin A. Henry
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Greg Hussack
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Janelle Sauvageau
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Evgeny V. Vinogradov
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| | - Andrew D. Cox
- Vaccine and Emerging Infections Research, Human Health Therapeutics Research Centre, National Research Council, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
12
|
Schwenk V, Dietrich R, Klingl A, Märtlbauer E, Jessberger N. Characterization of strain-specific Bacillus cereus swimming motility and flagella by means of specific antibodies. PLoS One 2022; 17:e0265425. [PMID: 35298545 PMCID: PMC8929632 DOI: 10.1371/journal.pone.0265425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/01/2022] [Indexed: 11/18/2022] Open
Abstract
One of the multiple factors determining the onset of the diarrhoeal disease caused by enteropathogenic Bacillus cereus is the ability of the bacteria to actively move towards the site of infection. This ability depends on flagella, but it also varies widely between different strains. To gain more insights into these strain-specific variations, polyclonal rabbit antisera as well as monoclonal antibodies (mAbs) were generated in this study, which detected recombinant and natural B. cereus flagellin proteins in Western blots as well as in enzyme immunoassays (EIAs). Based on mAb 1A11 and HRP-labelled rabbit serum, a highly specific sandwich EIA was developed. Overall, it could be shown that strain-specific swimming motility correlates with the presence of flagella/flagellin titres obtained in EIAs. Interestingly, mAb 1A11, recognizing an epitope in the N-terminal region of the flagellin protein, proved to inhibit bacterial swimming motility, while the rabbit serum rather decreased growth of selected B. cereus strains. Altogether, powerful tools enabling the in-depth characterization of the strain-specific variations in B. cereus swimming motility were developed.
Collapse
Affiliation(s)
- Valerie Schwenk
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Richard Dietrich
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Andreas Klingl
- Department of Biology I, Plant Development and Electron Microscopy, Biocenter Ludwig-Maximilians Universität München, Planegg-Martinsried, München, Germany
| | - Erwin Märtlbauer
- Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Nadja Jessberger
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
13
|
Vaccination of mice with hybrid protein containing Exotoxin S and PcrV with adjuvants alum and MPL protects Pseudomonas aeruginosa infections. Sci Rep 2022; 12:1325. [PMID: 35079054 PMCID: PMC8789797 DOI: 10.1038/s41598-022-05157-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/07/2022] [Indexed: 11/28/2022] Open
Abstract
Pseudomonas aeruginosa as a common pathogen causing urinary tract infections (UTIs) has been resistant to different antibiotics and developing an effective vaccine can be an alternative strategy. In the present study, the immunogenicity and protection efficacy of formulations composed of a hybrid protein composed of P. aeruginosa V-antigen (PcrV) and exoenzyme S (ExoS) with alum and MPL were evaluated. The hybrid protein could increase the specific systemic and mucosal immune responses, as well as cellular responses as compared with control groups. Combining of alum or MPL adjuvant with the hybrid protein significantly improved the levels of IgG1, serum IgA, mucosal IgG, and IL-17 as compared to the ExoS.PcrV alone. After bladder challenge with a P. aeruginosa strain, the bacterial loads of bladder and kidneys were significantly decreased in mice received ExoS.PcrV admixed with alum and ExoS.PcrV admixed with MPL than controls. The present study indicated that immunization of mice with a hybrid protein composed of ExoS and PcrV could induce multifactorial immune responses and opsonize the bacteria and decrease the viable bacterial cells. Because P. aeruginosa have caused therapeutic challenges worldwide, our study proposed ExoS.PcrV + alum and ExoS.PcrV + MPL as promising candidates for the prevention of infections caused by P. aeruginosa.
Collapse
|
14
|
Abstract
The Pseudomonas aeruginosa is one of the bacteria that cause serious infections due to resistance to many antibiotics can be fatal in severe cases. Antimicrobial resistance is a global public health concern. To solve this problem, interest in phage therapy has revived; some studies are being developed to try to prove the effectiveness of this therapy. Thus, in this opinion article, several historical aspects are addressed as well some applications of phage therapy against P. aeruginosa.
Collapse
|
15
|
Denman S, Tellam R, Vuocolo T, Ingham A, Wijffels G, James P, Colditz I. Fleece rot and dermatophilosis (lumpy wool) in sheep: opportunities and challenges for new vaccines. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During prolonged wetting of the fleece, proliferation of bacterial flora often dominated by Pseudomonas aeruginosa or Dermatophilus congolensis can induce dermatitis and fleece damage termed fleece rot and dermatophilosis respectively, which predispose sheep to blowfly strike. A large research effort in the 1980s and 1990s on vaccines to control fleece rot and dermatophilosis met with limited success. This review examines theoretical and technological advances in microbial ecology, pathogenesis, immunology, vaccine development and the characterisation of microbial virulence factors that create new opportunities for development of vaccines against these diseases. Genomic technologies have now created new opportunities for examining microbial dynamics and pathogen virulence in dermatitis. An effective vaccine requires the combination of appropriate antigens with an adjuvant that elicits a protective immune response that ideally provides long-lasting protection in the field. A clinical goal informed by epidemiological, economic and animal welfare values is needed as a measure of vaccine efficacy. Due to dependence of fleece rot and dermatophilosis on sporadic wet conditions for their expression, vaccine development would be expedited by in vitro correlates of immune protection. The efficacy of vaccines is influenced by genetic and phenotypic characteristics of the animal. Advances in understanding vaccine responsiveness, immune defence in skin and immune competence in sheep should also inform any renewed efforts to develop new fleece rot and dermatophilosis vaccines. The commercial imperatives for new vaccines are likely to continue to increase as the animal welfare expectations of society intensify and reliance on pharmacotherapeutics decrease due to chemical resistance, market pressures and societal influences. Vaccines should be considered part of an integrated disease control strategy, in combination with genetic selection for general immune competence and resistance to specific diseases, as well as management practices that minimise stress and opportunities for disease transmission. The strategy could help preserve the efficacy of pharmacotherapeutics as tactical interventions to alleviate compromised welfare when adverse environmental conditions lead to a break down in integrated strategic disease control. P. aeruginosa and D. congolensis are formidable pathogens and development of effective vaccines remains a substantial challenge.
Collapse
|
16
|
Defining the Mechanistic Correlates of Protection Conferred by Whole-Cell Vaccination against Pseudomonas aeruginosa Acute Murine Pneumonia. Infect Immun 2021; 89:IAI.00451-20. [PMID: 33199354 PMCID: PMC7822147 DOI: 10.1128/iai.00451-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe pulmonary infections associated with high morbidity and mortality in immunocompromised patients. The development of a vaccine against P. aeruginosa could help prevent infections caused by this highly antibiotic-resistant microorganism. Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe pulmonary infections associated with high morbidity and mortality in immunocompromised patients. The development of a vaccine against P. aeruginosa could help prevent infections caused by this highly antibiotic-resistant microorganism. We propose that identifying the vaccine-induced correlates of protection against P. aeruginosa will facilitate the development of a vaccine against this pathogen. In this study, we investigated the mechanistic correlates of protection of a curdlan-adjuvanted P. aeruginosa whole-cell vaccine (WCV) delivered intranasally. The WCV significantly decreased bacterial loads in the respiratory tract after intranasal P. aeruginosa challenge and raised antigen-specific antibody titers. To study the role of B and T cells during vaccination, anti-CD4, -CD8, and -CD20 depletions were performed prior to WCV vaccination and boosting. The depletion of CD4+, CD8+, or CD20+ cells had no impact on the bacterial burden in mock-vaccinated animals. However, depletion of CD20+ B cells, but not CD8+ or CD4+ T cells, led to the loss of vaccine-mediated bacterial clearance. Also, passive immunization with serum from WCV group mice alone protected naive mice against P. aeruginosa, supporting the role of antibodies in clearing P. aeruginosa. We observed that in the absence of T cell-dependent antibody production, mice vaccinated with the WCV were still able to reduce bacterial loads. Our results collectively highlight the importance of the humoral immune response for protection against P. aeruginosa and suggest that the production of T cell-independent antibodies may be sufficient for bacterial clearance induced by whole-cell P. aeruginosa vaccination.
Collapse
|
17
|
Colditz I, Vuocolo T, Denman S, Ingham A, Wijffels G, James P, Tellam R. Fleece rot in sheep: a review of pathogenesis, aetiology, resistance and vaccines. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Zhang L, Zhao SQ, Zhang J, Sun Y, Xie YL, Liu YB, Ma CC, Jiang BG, Liao XY, Li WF, Cheng XJ, Wang ZL. Proteomic Analysis of Vesicle-Producing Pseudomonas aeruginosa PAO1 Exposed to X-Ray Irradiation. Front Microbiol 2020; 11:558233. [PMID: 33384665 PMCID: PMC7770229 DOI: 10.3389/fmicb.2020.558233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023] Open
Abstract
Ionizing irradiation kills pathogens by destroying nucleic acids without protein structure destruction. However, how pathogens respond to irradiation stress has not yet been fully elucidated. Here, we observed that Pseudomonas aeruginosa PAO1 could release nucleic acids into the extracellular environment under X-ray irradiation. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), X-ray irradiation was observed to induce outer membrane vesicle (OMV) formation in P. aeruginosa PAO1. The size distribution of the OMVs of the irradiated PAO1 was similar to that of the OMVs of the non-irradiated PAO1 according to nanoparticle tracking analysis (NTA). The pyocin-related proteins are involved in OMV production in P. aeruginosa PAO1 under X-ray irradiation conditions, and that this is regulated by the key SOS gene recA. The OMV production was significantly impaired in the irradiated PAO1 Δlys mutant, suggesting that Lys endolysin is associated with OMV production in P. aeruginosa PAO1 upon irradiation stress. Meanwhile, no significant difference in OMV production was observed between PAO1 lacking the pqsR, lasR, or rhlR genes and the parent strain, demonstrating that the irradiation-induced OMV biosynthesis of P. aeruginosa was independent of the Pseudomonas quinolone signal (PQS).
Collapse
Affiliation(s)
- Li Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Qiao Zhao
- Department of Clinical Laboratory, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Jie Zhang
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Sun
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ya-Liu Xie
- Department of Otolaryngology, The Seventh People's Hospital of Chengdu, Chengdu, China
| | - Yan-Bin Liu
- Infectious Diseases Center, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Cui Ma
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Bo-Guang Jiang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Yuan Liao
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Fang Li
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen-Ling Wang
- State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Sainz-Mejías M, Jurado-Martín I, McClean S. Understanding Pseudomonas aeruginosa-Host Interactions: The Ongoing Quest for an Efficacious Vaccine. Cells 2020; 9:cells9122617. [PMID: 33291484 PMCID: PMC7762141 DOI: 10.3390/cells9122617] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of chronic respiratory infections in people with cystic fibrosis (CF), bronchiectasis or chronic obstructive pulmonary disease (COPD), and acute infections in immunocompromised individuals. The adaptability of this opportunistic pathogen has hampered the development of antimicrobial therapies, and consequently, it remains a major threat to public health. Due to its antimicrobial resistance, vaccines represent an alternative strategy to tackle the pathogen, yet despite over 50 years of research on anti-Pseudomonas vaccines, no vaccine has been licensed. Nevertheless, there have been many advances in this field, including a better understanding of the host immune response and the biology of P. aeruginosa. Multiple antigens and adjuvants have been investigated with varying results. Although the most effective protective response remains to be established, it is clear that a polarised Th2 response is sub-optimal, and a mixed Th1/Th2 or Th1/Th17 response appears beneficial. This comprehensive review collates the current understanding of the complexities of P. aeruginosa-host interactions and its implication in vaccine design, with a view to understanding the current state of Pseudomonal vaccine development and the direction of future efforts. It highlights the importance of the incorporation of appropriate adjuvants to the protective antigen to yield optimal protection.
Collapse
|
20
|
Vrancianu CO, Gheorghe I, Dobre EG, Barbu IC, Cristian RE, Popa M, Lee SH, Limban C, Vlad IM, Chifiriuc MC. Emerging Strategies to Combat β-Lactamase Producing ESKAPE Pathogens. Int J Mol Sci 2020; 21:E8527. [PMID: 33198306 PMCID: PMC7697847 DOI: 10.3390/ijms21228527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of penicillin by Alexander Fleming in 1929 as a therapeutic agent against staphylococci, β-lactam antibiotics (BLAs) remained the most successful antibiotic classes against the majority of bacterial strains, reaching a percentage of 65% of all medical prescriptions. Unfortunately, the emergence and diversification of β-lactamases pose indefinite health issues, limiting the clinical effectiveness of all current BLAs. One solution is to develop β-lactamase inhibitors (BLIs) capable of restoring the activity of β-lactam drugs. In this review, we will briefly present the older and new BLAs classes, their mechanisms of action, and an update of the BLIs capable of restoring the activity of β-lactam drugs against ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens. Subsequently, we will discuss several promising alternative approaches such as bacteriophages, antimicrobial peptides, nanoparticles, CRISPR (clustered regularly interspaced short palindromic repeats) cas technology, or vaccination developed to limit antimicrobial resistance in this endless fight against Gram-negative pathogens.
Collapse
Affiliation(s)
- Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Irina Gheorghe
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Elena-Georgiana Dobre
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Ilda Czobor Barbu
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Roxana Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
| | - Sang Hee Lee
- Department of Biological Sciences, Myongji University, 03674 Myongjiro, Yongin 449-728, Gyeonggido, Korea;
- National Leading Research Laboratory, Department of Biological Sciences, Myongji University, 116 Myongjiro, Yongin 17058, Gyeonggido, Korea
| | - Carmen Limban
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Ilinca Margareta Vlad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia no.6, 020956 Bucharest, Romania; (C.L.); (I.M.V.)
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department and The Research Institute of the University of Bucharest, Faculty of Biology, University of Bucharest, 020956 Bucharest, Romania; (C.O.V.); (E.-G.D.); (I.C.B.); (M.P.); (M.C.C.)
- Academy of Romanian Scientists, 030167 Bucharest, Romania
| |
Collapse
|
21
|
The Landscape of Pseudomonas aeruginosa Membrane-Associated Proteins. Cells 2020; 9:cells9112421. [PMID: 33167383 PMCID: PMC7694347 DOI: 10.3390/cells9112421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Pseudomonas aeruginosa cell envelope-associated proteins play a relevant role in infection mechanisms. They can contribute to the antibiotic resistance of the bacterial cells and be involved in the interaction with host cells. Thus, studies contributing to elucidating these key molecular elements are of great importance to find alternative therapeutics. Methods: Proteins and peptides were extracted by different methods and analyzed by Multidimensional Protein Identification Technology (MudPIT) approach. Proteomic data were processed by Discoverer2.1 software and multivariate statistics, i.e., Linear Discriminant Analysis (LDA), while the Immune Epitope Database (IEDB) resources were used to predict antigenicity and immunogenicity of experimental identified peptides and proteins. Results: The combination of 29 MudPIT runs allowed the identification of 10,611 peptides and 2539 distinct proteins. Following application of extraction methods enriching specific protein domains, about 15% of total identified peptides were classified in trans inner-membrane, inner-membrane exposed, trans outer-membrane and outer-membrane exposed. In this scenario, nine outer membrane proteins (OprE, OprI, OprF, OprD, PagL, OprG, PA1053, PAL and PA0833) were predicted to be highly antigenic. Thus, they were further processed and epitopes target of T cells (MHC Class I and Class II) and B cells were predicted. Conclusion: The present study represents one of the widest characterizations of the P. aeruginosa membrane-associated proteome. The feasibility of our method may facilitates the investigation of other bacterial species whose envelope exposed protein domains are still unknown. Besides, the stepwise prioritization of proteome, by combining experimental proteomic data and reverse vaccinology, may be useful for reducing the number of proteins to be tested in vaccine development.
Collapse
|
22
|
Qin C, Liu Z, Ding M, Cai J, Fu J, Hu J, Seeberger PH, Yin J. Chemical synthesis of the Pseudomonas aeruginosa O11 O-antigen trisaccharide based on neighboring electron-donating effect. J Carbohydr Chem 2020. [DOI: 10.1080/07328303.2020.1839479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhonghua Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meiru Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Juntao Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Peter H. Seeberger
- Department of Biomolecular Systems, Max-Plank Institute of Colloids and Interfaces, Potsdam, Germany
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
23
|
Qin S, Lin P, Wu Q, Pu Q, Zhou C, Wang B, Gao P, Wang Z, Gao A, Overby M, Yang J, Jiang J, Wilson DL, Tahara YK, Kool ET, Xia Z, Wu M. Small-Molecule Inhibitor of 8-Oxoguanine DNA Glycosylase 1 Regulates Inflammatory Responses during Pseudomonas aeruginosa Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2231-2242. [PMID: 32929043 PMCID: PMC7541742 DOI: 10.4049/jimmunol.1901533] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 08/17/2020] [Indexed: 02/05/2023]
Abstract
The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises 8-oxo-7,8-dihydroguanine lesions induced in DNA by reactive oxygen species, has been linked to the pathogenesis of lung diseases associated with bacterial infections. A recently developed small molecule, SU0268, has demonstrated selective inhibition of OGG1 activity; however, its role in attenuating inflammatory responses has not been tested. In this study, we report that SU0268 has a favorable effect on bacterial infection both in mouse alveolar macrophages (MH-S cells) and in C57BL/6 wild-type mice by suppressing inflammatory responses, particularly promoting type I IFN responses. SU0268 inhibited proinflammatory responses during Pseudomonas aeruginosa (PA14) infection, which is mediated by the KRAS-ERK1-NF-κB signaling pathway. Furthermore, SU0268 induces the release of type I IFN by the mitochondrial DNA-cGAS-STING-IRF3-IFN-β axis, which decreases bacterial loads and halts disease progression. Collectively, our results demonstrate that the small-molecule inhibitor of OGG1 (SU0268) can attenuate excessive inflammation and improve mouse survival rates during PA14 infection. This strong anti-inflammatory feature may render the inhibitor as an alternative treatment for controlling severe inflammatory responses to bacterial infection.
Collapse
Affiliation(s)
- Shugang Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qinqin Pu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Chuanmin Zhou
- Wuhan University School of Health Sciences, Wuhan, Hubei Province 430071, China
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Pan Gao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Zhihan Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China; and
| | - Ashley Gao
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Madison Overby
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, The Third Military Medical University, Chongqing 400042, China
| | - David L Wilson
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Yu-Ki Tahara
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Eric T Kool
- Department of Chemistry, Stanford Cancer Institute, and Chemistry, Engineering and Medicine for Human Health Institute, Stanford University, Stanford, CA 94305
| | - Zhenwei Xia
- Department of Pediatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203;
| |
Collapse
|
24
|
Xu W, Li L, Wen X, Liu Q, Liu Y, Wang X, Lei L, Chen Q, Liu L. Construction of Genomic Library and High-Throughput Screening of Pseudomonas aeruginosa Novel Antigens for Potential Vaccines. Biol Pharm Bull 2020; 43:1469-1475. [PMID: 32779581 DOI: 10.1248/bpb.b19-01052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hospital-acquired infections with Pseudomonas aeruginosa have become a great challenge in caring for critically ill and immunocompromised patients. The cause of high mortality is the presence of multi-drug resistant (MDR) strains, which confers a pressing need for vaccines. Although vaccines against P. aeruginosa have been in development for more than several decades, there is no vaccine for patients at present. In this study, we purified genomic DNA of P. aeruginosa from sera of patients affected, constructed genome-wide library with random recombinants, and screened candidate protein antigens by evaluating their protective effects in vivo. After 13-round of screening, 115 reactive recombinants were obtained, among which 13 antigens showed strong immunoreactivity (more than 10% reaction to PcrV, a well-characterized V-antigen of P. aeruginosa). These 13 antigens were: PpiA, PtsP, OprP, CAZ10_34235, HmuU_2, PcaK, CarAd, RecG, YjiR_5, LigD, KinB, RtcA, and PscF. In vivo studies showed that vaccination with PscF protected against lethal P. aeruginosa challenge, and decreased lung inflammation and injury. A genomic library of P. aeruginosa could be constructed in this way for the first time, which could not only screen candidate antigens but also in a high-throughput way. PscF was considered as an ideal promising vaccine candidate for combating P. aeruginosa infection and was supported for further evaluation of its safety and efficacy.
Collapse
Affiliation(s)
- Wanting Xu
- The Second Affiliated Hospital of Chengdu
| | - Lei Li
- The Second Affiliated Hospital of Chengdu
| | | | - Qun Liu
- The Second Affiliated Hospital of Chengdu
| | - Yan Liu
- The Second Affiliated Hospital of Chengdu
| | - Xingyong Wang
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Langhuan Lei
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Qiushan Chen
- Ministry of Education Key Laboratory of Child Development and Disorders.,Chongqing International Science and Technology Cooperation Center for Child Development and Disorders
| | - Li Liu
- The Second Affiliated Hospital of Chengdu
| |
Collapse
|
25
|
Terra ACG, Salvador EA. In silico integrative analysis predicts relevant properties of exotoxin-derived peptides for the design of vaccines against Pseudomonas aeruginosa. INFECTION GENETICS AND EVOLUTION 2020; 85:104424. [PMID: 32561294 DOI: 10.1016/j.meegid.2020.104424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/25/2020] [Accepted: 06/12/2020] [Indexed: 11/18/2022]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic human pathogen responsible for causing serious infections in patients with cystic fibrosis. Infections caused by PA are difficult to treat and eradicate due to intrinsic and added resistance to antibiotic therapy. Therefore, it is necessary to establish effective prevention strategies against this infectious agent. In this study, a combination of immunoinformatic tools was applied to predict immunogenic and immunodominant regions in the structure of exotoxins commonly secreted as virulence factors in PA infection (ExoA, ExoS, ExoT, ExoU and ExoY). The peptides derived from exotoxins were evaluated for the potential affinity for human leukocyte antigen (HLA) I and HLA-II molecules, antigenicity score and toxicity profile. From an initial screening of 941 peptides, 13 (1.38%) were successful in all analyzes. The peptides with relevant immunogenic properties were mainly those derived from Exo A (10 / 76.9%). All peptides selected in the last analysis present a high population coverage rate based on the interaction of HLA alleles (95.36 ± 7.83%). Therefore, the peptides characterized in this study are recommended for in vitro and in vivo studies and can provide the basis for the rational design of a vaccine against PA.
Collapse
|
26
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 23:788-99. [PMID: 32404435 DOI: 10.1111/imb.12124] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
27
|
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev 2020; 33:e00181-19. [PMID: 32404435 PMCID: PMC7227449 DOI: 10.1128/cmr.00181-19] [Citation(s) in RCA: 901] [Impact Index Per Article: 225.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Antimicrobial-resistant ESKAPE ( Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens represent a global threat to human health. The acquisition of antimicrobial resistance genes by ESKAPE pathogens has reduced the treatment options for serious infections, increased the burden of disease, and increased death rates due to treatment failure and requires a coordinated global response for antimicrobial resistance surveillance. This looming health threat has restimulated interest in the development of new antimicrobial therapies, has demanded the need for better patient care, and has facilitated heightened governance over stewardship practices.
Collapse
Affiliation(s)
- David M P De Oliveira
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Brian M Forde
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Patrick N A Harris
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| | - David L Paterson
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
- UQ Centre for Clinical Research, The University of Queensland, QLD, Australia
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, QLD, Australia
| |
Collapse
|
28
|
Fakoor MH, Mousavi Gargari SL, Owlia P, Sabokbar A. Protective Efficacy of the OprF/OprI/PcrV Recombinant Chimeric Protein Against Pseudomonas aeruginosa in the Burned BALB/c Mouse Model. Infect Drug Resist 2020; 13:1651-1661. [PMID: 32606816 PMCID: PMC7294051 DOI: 10.2147/idr.s244081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa infection is the major cause of death in burn patients. Thus, in this study, a chimeric vaccine harboring the OprF185–350–OprI22–83–PcrV was designed and expressed in Escherichia coli. The immunogenicity of the recombinant chimer, OprI, OprF, and PcrV was studied in a burned mouse model. Methodology Recombinant proteins including the proposed chimer, OprF, OprI, and PcrV were expressed in the E.coli. Mice were immunized with the purified recombinant proteins, and the antibody titre was estimated in the sera obtained from immunized mice. Immunized and control mice were challenged with 2, 5, and 10xLD50 of the P. aeruginosa strains (PAO1, PAK, and R5), and microbial counts were measured in the skin, liver, spleen, and kidney of the studied mice. Results Results showed that the antibody titre (total IgG) was significantly increased by injection of 10 μg of chimeric protein in the experimental groups compared to the control groups. The antibody survival titre was high until 235 days after administration of the second booster. The survival rate of the mice infected with 10xLD50 was significantly increased and the number of bacteria was reduced, especially in the internal organs (kidney, spleen, and liver) compared to the mice immunized with any of the OprF, OprI, and PcrV proteins alone. Conclusion The findings of our study revealed that the chimeric protein is a promising vaccine candidate for control of the P. aeruginosa infection.
Collapse
Affiliation(s)
| | | | - Parviz Owlia
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| | - Azar Sabokbar
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
29
|
The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens 2019; 9:pathogens9010006. [PMID: 31861540 PMCID: PMC7168646 DOI: 10.3390/pathogens9010006] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
The major constituent of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS), which is comprised of lipid A, core oligosaccharide, and O antigen, which is a long polysaccharide chain extending into the extracellular environment. Due to the localization of LPS, it is a key molecule on the bacterial cell wall that is recognized by the host to deploy an immune defence in order to neutralize invading pathogens. However, LPS also promotes bacterial survival in a host environment by protecting the bacteria from these threats. This review explores the relationship between the different LPS glycoforms of the opportunistic pathogen Pseudomonas aeruginosa and the ability of this organism to cause persistent infections, especially in the genetic disease cystic fibrosis. We also discuss the role of LPS in facilitating biofilm formation, antibiotic resistance, and how LPS may be targeted by new antimicrobial therapies.
Collapse
|