1
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
2
|
Villagrán-Andrade KM, Núñez-Carro C, Blanco FJ, de Andrés MC. Nutritional Epigenomics: Bioactive Dietary Compounds in the Epigenetic Regulation of Osteoarthritis. Pharmaceuticals (Basel) 2024; 17:1148. [PMID: 39338311 PMCID: PMC11434976 DOI: 10.3390/ph17091148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Nutritional epigenomics is exceptionally important because it describes the complex interactions among food compounds and epigenome modifications. Phytonutrients or bioactive compounds, which are secondary metabolites of plants, can protect against osteoarthritis by suppressing the expression of inflammatory and catabolic mediators, modulating epigenetic changes in DNA methylation, and the histone or chromatin remodelling of key inflammatory genes and noncoding RNAs. The combination of natural epigenetic modulators is crucial because of their additive and synergistic effects, safety and therapeutic efficacy, and lower adverse effects than conventional pharmacology in the treatment of osteoarthritis. In this review, we have summarized the chondroprotective properties of bioactive compounds used for the management, treatment, or prevention of osteoarthritis in both human and animal studies. However, further research is needed into bioactive compounds used as epigenetic modulators in osteoarthritis, in order to determine their potential value for future clinical applications in osteoarthritic patients as well as their relation with the genomic and nutritional environment, in order to personalize food and nutrition together with disease prevention.
Collapse
Affiliation(s)
- Karla Mariuxi Villagrán-Andrade
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Carmen Núñez-Carro
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| | - Francisco J Blanco
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
- Grupo de Investigación en Reumatología y Salud, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, Campus de Oza, Universidade da Coruña (UDC), 15008 A Coruña, Spain
| | - María C de Andrés
- Unidad de Epigenética, Grupo de Investigación en Reumatología (GIR), Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario, de A Coruña (CHUAC), Sergas, 15006 A Coruña, Spain
| |
Collapse
|
3
|
Si Y, Li Y, Gu K, Yin H, Ma Y. Icariin ameliorates osteoporosis in ovariectomized rats by targeting Cullin 3/Nrf2/OH pathway for osteoclast inhibition. Biomed Pharmacother 2024; 173:116422. [PMID: 38471268 DOI: 10.1016/j.biopha.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Osteoporosis, characterized by low bone mass and bone microarchitecture breakdown, has become a growing public health problem. The increase in oxidative stress could lead to an imbalance between osteoblasts-mediated osteogenesis and osteoclast-mediated bone resorption, which gives rise to osteoporosis. Nrf2 is a master transcription factor that regulates oxidative stress and has recently been reported to take part in the development of osteoporosis. Icariin, a leading active flavonoid in herbal Epimedium pubescens, has significant antioxidant activity in and is widely applied for treating bone diseases. In this study, we aimed to explore the effect of icariin on osteoclastogenesis and its potential mechanism from the perspective of oxidative stress inhibition, using ovariectomized (OVX) rats and RANKL-induced RAW264.7 cells. Our results demonstrated that icariin-treated OVX rats exhibited higher bone density, fewer tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower ROS levels in bone tissues than vehicle-treated OVX rats. Also, icariin suppressed osteoclast differentiation and inhibited the expression of osteoclastogenesis-related genes, such as NFATc1, Ctsk, Trap, and c-Fos, in RANKL-induced RAW264.7 cells. Icariin also reduced intracellular ROS levels by increasing the expression of nuclear Nrf2 and HO-1. Further mechanistic studies showed icariin inhibited Cullin 3 expression and could delay Nrf2 degradation by reducing the ubiquitination of endogenous Nrf2 in RANKL-stimulated RAW264.7 cells, and these effects were markedly reversed by cullin three overexpression. These findings suggest icariin alleviated osteoporosis by suppressing osteoclastogenesis via targeting the Cullin 3/Nrf2/OH signaling pathway. Our study implied that icariin may be a potential candidate to treat osteoporosis.
Collapse
Affiliation(s)
- Yuhao Si
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Kuan Gu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Yin
- Department of Traumatology & Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi 214071, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province 214071, China.
| | - Yong Ma
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
4
|
Wang D, Zhang Z, Li X, He L. RNA binding protein PUM2 promotes IL-1β-induced apoptosis of chondrocytes via regulating FOXO3 expression. Heliyon 2024; 10:e25080. [PMID: 38356524 PMCID: PMC10865267 DOI: 10.1016/j.heliyon.2024.e25080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Objective RNA-binding proteins (RBPs) have been recently proven to be involved in the pathogenesis of several diseases. However, few studies elaborated RBPs in regulating osteoarthritis. This study aims to define the function and mechanism of RBPs-PUM2 in chondrocyte apoptosis during osteoarthritis. Methods Cartilage tissue samples and human juvenile chondrocyte cell line C28/I2 were collected for further study. PUM2 expression in the human tissues and cells was determined using qRT-PCR. Chondrocyte viability and apoptosis were determined by MTT and flow cytometry. ROS generation was determined by flow cytometry. The regulation of PUM2 on FOXO3 translation was evaluated by RNA immunoprecipitation, RNA pull-down, and Luciferase gene reporter analysis. Results PUM2 is upregulated in both cartilage tissue of osteoarthritis patients and IL-1β-stimulated chondrocytes. PUM2 overexpression reduces cell viability and promotes cell apoptosis and ROS generation of chondrocytes. PUM2 silencing increases cell viability and ameliorates cell apoptosis as well as ROS generation in chondrocytes induced by IL-1β. PUM2 inhibits FOXO3 expression via binding its mRNA 3'-UTR. PUM2 forms a signaling axis with FOXO3 in IL-1β induced chondrocyte damage. Conclusion PUM2 is upregulated in cartilage tissue of osteoarthritis and positively regulates chondrocytes apoptosis through controlling FOXO3 protein expression.
Collapse
Affiliation(s)
- Du Wang
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - ZhiLi Zhang
- Department of Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xili Li
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Ling He
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Qin DE, Liang W, Yu Y, Whelan EC, Yuan X, Wang ZL, Wu XW, Cao ZR, Hua SY, Yin L, Shi L, Liang T. Modified Simiaowan prevents and treats gouty arthritis via the Nrf2/NLRP3 inflammasome signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116906. [PMID: 37442492 DOI: 10.1016/j.jep.2023.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Modified Simiaowan (MSM) is a six-herb formula that has been shown to be effective in gouty arthritis (GA) has been proven, but its regulatory mechanism has not been fully elucidated. AIM OF THE STUDY To investigate the therapeutic effects and mechanism of MSM on gouty arthritis. MATERIALS AND METHODS Mouse J774A.1 macrophages were induced with Lipopolysaccharide (LPS) and then stimulated with Adenosine 5'-triphosphate (ATP) or Nigericin (Nig.) in presence or absence of MSM. Expression of key indicators of pro-inflammatory cytokines and the NLRP3 inflammasome signaling pathway were investigated by western blot, ELISA and qRT-PCR. Fluorescence staining and flow cytometry were performed to detect intracellular reactive oxygen species (ROS) production. Another study, the anti-inflammatory and antioxidant activities of MSM were evaluated in rats with monosodium urate (MSU) -induced gouty arthritis using ELISA, hematoxylin-eosin staining (HE) staining, immunohistochemistry, and oxidative stress kits to measure relevant inflammatory markers and oxidative stress-related biomarkers. RESULTS ELISA and qRT-PCR results demonstrated that MSM effectively reduced the secretion and the mRNA expression levels of pro-inflammatory cytokines. Western blot results indicated that MSM can suppress the expression of NLRP3, an inflamasomes-related protein. In addition, MSM regulated the transition from M1 to M2 macrophages and upregulated the protein expression of Nrf2 and HO-1. The flow cytometry results and the fluorescence staining result were consistent with hypothesis that a large amount of ROS could be effectively cleared by MSM. However, the anti-inflammatory effect of MSM was attenuated after the use of ML385. In vivo experiments demonstrated that joint swelling was significantly attenuated and knee neutrophil infiltration was alleviated in rats given MSM. SOD and GSH-px levels were elevated significantly, while COX-2 and MDA levels decreased. The immunohistochemical results suggested that MSM could effectively inhibit the activation of the NLRP3 inflammasome and the regulation of macrophage polarization in rat synovial tissue, and remarkably enhance the expression of Nrf2 and HO-1. CONCLUSION MSM has potent anti-inflammatory and antioxidant effects on MSU-induced gouty arthritis. MSM alleviates GA through Nrf2/HO-1/ROS/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Dong-Er Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Wei Liang
- Department of Traditional Chinese Medicine, Air Force Hospital, Eastern Theater of the Chinese People's Liberation Army, Nanjing, 210002, Jiangsu, China.
| | - Yun Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Eoin Christopher Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6303, USA.
| | - Xin Yuan
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, 210001, China.
| | - Zhang-Lian Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xiao-Wei Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zi-Rui Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Sheng-Yi Hua
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Lian Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Le Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tao Liang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
安 可, 周 学. [Latest Findings on Ferroptosis and Osteoarthropathy]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:1294-1299. [PMID: 38162082 PMCID: PMC10752773 DOI: 10.12182/20231160209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Indexed: 01/03/2024]
Abstract
Ferroptosis, a newly-discovered mode of programmed cell death, is closely associated with the development of various diseases throughout the human body, such as tumors of the digestive system, ischemia-reperfusion injury, osteoarthropathy, etc. Therefore, ferroptosis has become a hot research topic in many fields of study in recent years, providing new ideas for the prevention and treatment of relevant diseases. Among them, structural lesions in osteoarthropathies involving articular cartilage, subchondral bone, and synovial tissue have been found to be associated with iron overload, as well as oxidative stress, which suggests that inhibition of ferroptosis in relevant joint tissue cells may have a positive effect in halting the development of osteoarthropathy. Herein, focusing on ferroptosis and osteoarthropathy, we summarized the research developments in mechanisms related to iron metabolism and ferroptosis, analyzed the impact of ferroptosis on the pathogenesis and development of osteoarthropathy, and proposed new ideas for medication therapies of osteoarthropathy, taking into account the latest research findings.
Collapse
Affiliation(s)
- 可 安
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 学东 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 牙体牙髓病科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Su J, Yu M, Wang H, Wei Y. Natural anti-inflammatory products for osteoarthritis: From molecular mechanism to drug delivery systems and clinical trials. Phytother Res 2023; 37:4321-4352. [PMID: 37641442 DOI: 10.1002/ptr.7935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/31/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease that affects millions globally. The present nonsteroidal anti-inflammatory drug treatments have different side effects, leading researchers to focus on natural anti-inflammatory products (NAIPs). To review the effectiveness and mechanisms of NAIPs in the cellular microenvironment, examining their impact on OA cell phenotype and organelles levels. Additionally, we summarize relevant research on drug delivery systems and clinical randomized controlled trials (RCTs), to promote clinical studies and explore natural product delivery options. English-language articles were searched on PubMed using the search terms "natural products," "OA," and so forth. We categorized search results based on PubChem and excluded "natural products" which are mix of ingredients or compounds without the structure message. Then further review was separately conducted for molecular mechanisms, drug delivery systems, and RCTs later. At present, it cannot be considered that NAIPs can thoroughly prevent or cure OA. Further high-quality studies on the anti-inflammatory mechanism and drug delivery systems of NAIPs are needed, to determine the appropriate drug types and regimens for clinical application, and to explore the combined effects of different NAIPs to prevent and treat OA.
Collapse
Affiliation(s)
- Jianbang Su
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Minghao Yu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Haochen Wang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
10
|
Tong X, Wang Y, Dong B, Li Y, Lang S, Ma J, Ma X. Effects of genus Epimedium in the treatment of osteoarthritis and relevant signaling pathways. Chin Med 2023; 18:92. [PMID: 37525296 PMCID: PMC10388486 DOI: 10.1186/s13020-023-00788-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 08/02/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease in clinical practice with a high prevalence, especially in the elderly. Traditional Chinese Medicine (TCM) believes that OA belongs to the category of "Bi syndrome" and the "bone Bi syndrome". The etiology and pathogenesis lie in the deficiency of the liver and kidney, the deficiency of Qi and blood, and external exposure to wind, cold, and dampness. Epimedium is a yang-reinforcing herb in TCM, which can tonify the liver and kidney, strengthen muscles and bones, dispel wind, cold and dampness, and can treat both the symptoms and the root cause of "bone Bi syndrome". In addition, Epimedium contains a large number of ingredients. Through modern science and technology, more than 270 compounds have been found in Epimedium, among which flavonoids are the main active ingredients. Therefore, our study will review the effects and mechanisms of genus Epimedium in treating OA from two aspects: (1) Introduction of Epimedium and its main active ingredients; (2) Effects of Epimedium and its active ingredients in treating OA and relevant signaling pathways, in order to provide more ideas for OA treatment.
Collapse
Affiliation(s)
- Xue Tong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Wang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Benchao Dong
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Yan Li
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Shuang Lang
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Hospital, Tianjin University, Tianjin, China
| | - Jianxiong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Xinlong Ma
- Orthopaedics Institute of Tianjin, Tianjin Hospital, Tianjin, China.
- Tianjin Hospital, Tianjin University, Tianjin, China.
| |
Collapse
|
11
|
Wu Z, Yang Z, Liu L, Xiao Y. Natural compounds protect against the pathogenesis of osteoarthritis by mediating the NRF2/ARE signaling. Front Pharmacol 2023; 14:1188215. [PMID: 37324450 PMCID: PMC10266108 DOI: 10.3389/fphar.2023.1188215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Osteoarthritis (OA), a chronic joint cartilage disease, is characterized by the imbalanced homeostasis between anabolism and catabolism. Oxidative stress contributes to inflammatory responses, extracellular matrix (ECM) degradation, and chondrocyte apoptosis and promotes the pathogenesis of OA. Nuclear factor erythroid 2-related factor 2 (NRF2) is a central regulator of intracellular redox homeostasis. Activation of the NRF2/ARE signaling may effectively suppress oxidative stress, attenuate ECM degradation, and inhibit chondrocyte apoptosis. Increasing evidence suggests that the NRF2/ARE signaling has become a potential target for the therapeutic management of OA. Natural compounds, such as polyphenols and terpenoids, have been explored to protect against OA cartilage degeneration by activating the NRF2/ARE pathway. Specifically, flavonoids may function as NRF2 activators and exhibit chondroprotective activity. In conclusion, natural compounds provide rich resources to explore the therapeutic management of OA by activating NRF2/ARE signaling.
Collapse
Affiliation(s)
- Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Zhouxin Yang
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Luying Liu
- First Clinical Medical College of Gannan Medical University, Ganzhou, China
| | - Yong Xiao
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Xiaoyong Traditional Chinese Medicine Clinic in Yudu, Ganzhou, China
| |
Collapse
|
12
|
Dai W, Jin P, Li X, Zhao J, Lan Y, Li H, Zheng L. A carrier-free nano-drug assembled via π-π stacking interaction for the treatment of osteoarthritis. Biomed Pharmacother 2023; 164:114881. [PMID: 37210895 DOI: 10.1016/j.biopha.2023.114881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Osteoarthritis (OA) is considered to be the most common joint disorder. Exogenous drug intervention is one of the effective means for OA treatment. Clinical applications of numerous drugs are restricted owing to the short retention as well as rapid clearance in the joint cavity. A wide variety of carrier-based nanodrugs have been developed, but additional carriers may bring unexpected side effects or even toxicity. Herein, by exploiting the spontaneous fluorescence of Curcumin, we designed a new carrier-free self-assembly nanomedicine Curcumin (Cur)/icariin (ICA) nanoparticles with adjustable particle size, which is composed of two small-molecule natural drugs assembled via π-π stacking interaction. Experimental results revealed that Cur/ICA NPs endowed with little cytotoxicity, high cellular uptake and sustained drug release, could inhibit secretion of inflammatory cytokines and reduce cartilage degeneration. Moreover, both the in vitro and in vivo experiments showed the NPs exerted superior synergism effects in anti-inflammatory and cartilage protection than either Cur or ICA alone, and self-monitored its retention by autofluorescence. Thus, the new self-assembly nano-drug combining Cur and ICA represents a new strategy for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Wanwu Dai
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; Department of Bone and Joint Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Pan Jin
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Xingyan Li
- Department of Bone and Joint Surgery, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Ying Lan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China.
| | - Hongmian Li
- Department of Plastic and Reconstructive Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region & Research Center of Medical Sciences, Guangxi Academy of Medical Sciences, Nanning 530021, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Collaborative Innovation Center of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Life Sciences Institute, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Regenerative Medicine, Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
13
|
Cao Z, Wang H, Chen J, Zhang Y, Mo Q, Zhang P, Wang M, Liu H, Bao X, Sun Y, Zhang W, Yao Q. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact Mater 2023; 20:221-242. [PMID: 35702612 PMCID: PMC9163388 DOI: 10.1016/j.bioactmat.2022.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Osteochondral defects (OCD) cannot be efficiently repaired due to the unique physical architecture and the pathological microenvironment including enhanced oxidative stress and inflammation. Conventional strategies, such as the control of implant microstructure or the introduction of growth factors, have limited functions failing to manage these complex environments. Here we developed a multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) to provide a suitable microenvironment for enhanced OCD regeneration. The incorporation of CuTA nanozymes endowed the SF hydrogel with a uniform microstructure and elevated hydrophilicity. In vitro cultivation of mesenchymal stem cells (MSCs) and chondrocytes showed that CuTA@SF hydrogel accelerated cell proliferation and enhanced cell viability, as well as had antioxidant and antibacterial properties. Under the inflammatory environment with the stimulation of IL-1β, CuTA@SF hydrogel still possessed the potential to promote MSC osteogenesis and deposition of cartilage-specific extracellular matrix (ECM). The proteomics analysis further confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. In the full-thickness OCD model of rabbit, CuTA@SF hydrogel displayed successfully in situ OCD regeneration, as evidenced by micro-CT, histology (HE, S/O, and toluidine blue staining) and immunohistochemistry (Col I and aggrecan immunostaining). Therefore, CuTA@SF hydrogel is a promising biomaterial targeted at the regeneration of OCD. A multifunctional silk-based hydrogel incorporated with metal-organic framework nanozymes (CuTA@SF) was fabricated. CuTA@SF hydrogel has antioxidant, anti-inflammation and antibacterial capacities. Proteomics analysis confirmed that CuTA@SF hydrogel promoted cell proliferation and ECM synthesis. CuTA@SF hydrogel displayed successful osteochondral regeneration in vivo.
Collapse
Affiliation(s)
- Zhicheng Cao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Hongmei Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Department of Pharmaceutical Sciences, Binzhou Medical University, 264003, Yantai, Shandong, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
| | - Yanan Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Qingyun Mo
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Po Zhang
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Haoyang Liu
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Xueyang Bao
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Yuzhi Sun
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- School of Medicine, Southeast University, 210009, Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009, Nanjing, China
- Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. School of Medicine, Southeast University, 210009, Nanjing, China.
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
- China Orthopedic Regenerative Medicine Group (CORMed), China
- Corresponding author. Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China.
| |
Collapse
|
14
|
Zhang D, Su Y, He Q, Zhang Y, Gu N, Zhang X, Yan K, Yao N, Qian W. Icariin Exerts Estrogen-Like Actions on Proliferation of Osteoblasts in Vitro via Membrane Estrogen Receptors-Mediated Non-nuclear Effects. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2022; 21:e127000. [PMID: 36942079 PMCID: PMC10024316 DOI: 10.5812/ijpr-127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022]
Abstract
Background According to reports, icariin (ICA) is a bone anabolic agent able to prevent osteoporosis in both ovariectomized rats and postmenopausal women. However, its effect on osteoblast proliferation remains to be determined, and the underlying mechanism remains to be elucidated. Methods Icariin-bovine serum albumin (BSA) conjugates were purified by Sephadex G-25 gel chromatography technology. Primary osteoblasts from neonatal rats were used to evaluate the effects of ICA, ICA-BSA, ICA-BSA + ICI182780, and ICA-BSA + PD98059. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and propidium iodide (PI)-staining assays were used to detect the proliferation of osteoblasts after drug exposure. The intracellular calcium ions were detected using a confocal microscope with Fluo-3/AM as the fluorescent indicator. Western blot was capitalized on to measure the relative content of phospho-extracellular signal-regulated kinase (p-ERK). Results Primary osteoblasts in culture were detected by histochemical staining of alkaline phosphatase, and calcified nodules were obtained by sequential digestion. Icariin and bovine serum albumin could form conjugate, which could be purified by Sephadex G-25 gel chromatography technology. MTT and flow cytometry results show that ICA-BSA conjugate significantly facilitated the proliferation of osteoblasts (P < 0.05). The intracellular calcium ions also ascended vastly in the cells treated with ICA-BSA conjugate (P < 0.01). Icariin-bovine serum albumin exposure rapidly activated the extracellular signal-regulated kinase (ERK) signaling. Furthermore, ICA- and ICA-BSA-mediated actions on osteoblasts were signally alleviated after dealing with ERK inhibitor PD98059 or estrogen receptor (ER) antagonist ICI182780, which might have a relation to the repression of ERK phosphorylation. Conclusions Icariin could serve as estrogen in osteoblast cells by the rapid nongenomic ER signaling pathway independent of ligand and estrogen response element (ERE) and mediated by mitogen-activated protein kinase (MAPK).
Collapse
Affiliation(s)
- Dapeng Zhang
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Yan Su
- Reproductive Center, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu, P.R. China
| | - Qiang He
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Yajie Zhang
- Central Laboratory, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Ning Gu
- Department of Cardiovascular Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Kun Yan
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, P.R. China
| | - Nianwei Yao
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
| | - Weiqing Qian
- Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China
- Corresponding Author: Department of Orthopedics, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210022, Jiangsu, P.R. China.
| |
Collapse
|
15
|
Xu S, Zhao S, Jian Y, Shao X, Han D, Zhang F, Liang C, Liu W, Fan J, Yang Z, Zhou J, Zhang W, Wang Y. Icariin-loaded hydrogel with concurrent chondrogenesis and anti-inflammatory properties for promoting cartilage regeneration in a large animal model. Front Cell Dev Biol 2022; 10:1011260. [PMID: 36506090 PMCID: PMC9730024 DOI: 10.3389/fcell.2022.1011260] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Currently, an effective repair method that can promote satisfactory cartilage regeneration is unavailable for cartilage damages owing to inevitable inflammatory erosion. Cartilage tissue engineering has revealed considerable treatment options for cartilage damages. Icariin (ICA) is a flavonoid component of Epimedii folium with both chondrogenic and anti-inflammatory properties. In this study, we prepared an ICA/CTS hydrogel by loading ICA into chitosan (CTS) hydrogel to impart chondrogenesis and anti-inflammatory properties to the ICA/CTS hydrogel. In vitro results revealed that ICA showed sustained release kinetics from the ICA/CTS hydrogel. In addition, compared to the CTS hydrogel, the ICA/CTS hydrogel exhibited a favorable in vitro anti-inflammatory effect upon incubation with lipopolysaccharide pre-induced RAW264.7 macrophages, as indicated by the suppression of inflammatory-related cytokines (IL-6 and TNF-α). Additionally, when co-cultured with chondrocytes in vitro, the ICA/CTS hydrogel showed good cytocompatibility, accelerated chondrocyte proliferation, and enhanced chondrogenesis compared to the CTS hydrogel. Moreover, the in vitro engineered cartilage from the chondrocyte-loaded ICA/CTS hydrogel achieved stable cartilage regeneration when subcutaneously implanted in a goat model. Finally, the addition of ICA endowed the ICA/CTS hydrogel with a potent anti-inflammatory effect compared to what was observed in the CTS hydrogel, as confirmed by the attenuated IL-1β, IL-6, TNF-α, and TUNEL expression. The prepared ICA/CTS hydrogel offered an effective method of delivery for chondrogenic and anti-inflammatory agents and served as a useful platform for cartilage regeneration in an immunocompetent large animal model.
Collapse
Affiliation(s)
- Songshan Xu
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Shaohua Zhao
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Yanpeng Jian
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Xinwei Shao
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Dandan Han
- Medical Imaging Center, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Fan Zhang
- Department of Nursing, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Chen Liang
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Weijie Liu
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Jun Fan
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Zhikui Yang
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Jinge Zhou
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China
| | - Wenqiang Zhang
- Department of Orthopaedics, The First Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Yigong Wang
- Department of Spinal Cord Surgery, Xuchang Central Hospital, Henan University of Science and Technology, Xuchang, China,*Correspondence: Yigong Wang,
| |
Collapse
|
16
|
Chen Y, Pan X, Zhao J, Li C, Lin Y, Wang Y, Liu X, Tian M. Icariin alleviates osteoarthritis through PI3K/Akt/mTOR/ULK1 signaling pathway. Eur J Med Res 2022; 27:204. [PMID: 36253872 PMCID: PMC9575285 DOI: 10.1186/s40001-022-00820-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES This study aims to investigate the effects of Icariin (ICA) on interleukin-1β (IL-1β)-induced osteoarthritis (OA) and its potential mechanism of action. METHODS SW1353 chondrocytes were pretreated with ICA for 2 h, followed by stimulation with IL-1β to mimic OA. Expression levels of matrix metalloproteinases (MMP-3) and collagen II were determined using real-time PCR and Western blot assays. Autophagy activation (by ICA) or inhibition (by shRNA) was determined based on the expression levels of ULK1, Beclin-1, LC3-II/I, and p62, using Western blot analysis. The phosphorylation levels of PI3K, Akt, mTOR, and ULK1 were also detected using Western blot analysis. RESULTS IL-1β increased MMP-3 overproduction, induced collagen II degradation, and reduced the level of autophagy-associated proteins, including ULK1, Beclin-1, and LC3-II/I. In contrast, ICA pretreatment attenuated IL-1β-induced MMP-3 overproduction, increased collagen II expression, and induced expression of autophagy-related proteins. ICA also decreased PI3K, Akt, and mTOR phosphorylation, increased the production of ULK1, and induced autophagy. Short hairpin RNA-mediated knockdown of ULK1 led to activation of the PI3K/Akt/mTOR pathway, which reversed the protective effects of ICA. CONCLUSIONS Our findings indicate that ICA can induce autophagy by regulating the PI3K/AKT/mTOR/ULK1 signaling pathway. This study suggests that ICA may be effective for treating OA.
Collapse
Affiliation(s)
- Yan Chen
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Xiaoli Pan
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jing Zhao
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Chunyan Li
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Yupei Lin
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Yu Wang
- Department of Rheumatology and Immunology Department, Zunyi Medical University, Zunyi, 563006, China
| | - Xu Liu
- Department of Rheumatology and Immunology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Mei Tian
- Department of Rheumatology and Immunology Department, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
| |
Collapse
|
17
|
Wang Z, Efferth T, Hua X, Zhang XA. Medicinal plants and their secondary metabolites in alleviating knee osteoarthritis: A systematic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154347. [PMID: 35914361 DOI: 10.1016/j.phymed.2022.154347] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/30/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND With the increasing ages of the general population, the incidence of knee osteoarthritis (KOA) is also rising, and KOA has become a major health problem worldwide. Recently, medicinal plants and their secondary metabolites have gained interest due to their activity in treating KOA. In this paper, a comprehensive systematic review of the literature was performed concerning the effects of medicinal plant extracts and natural compounds against KOA in recent years. The related molecular pathways of natural compounds against KOA were summarized, and the possible crosstalk among components in chondrocytes was discussed to propose possible solutions for the current situation of treating KOA. PURPOSE This review focused on the molecular mechanisms by which medicinal plants and their secondary metabolites act against KOA. METHODS Literature searches were performed in the PUBMED, Embase, Science Direct, and Web of Science databases for a 10-year period from 2011 to 2022 with the search terms "medicinal plants," "bioactive compounds," "natural products," "phytochemical," "knee osteoarthritis," "knee joint osteoarthritis," "knee osteoarthritis," "osteoarthritis of the knee," and "osteoarthritis of knee joint." RESULTS According to the results, substantial plant extracts and secondary metabolites show a positive effect in fighting KOA. Plant extracts and their secondary metabolites can affect the diagnostic and prognostic biomarkers of KOA. Natural products inhibit the expression of MMP1, MMP3, MMP19, syndecan IV, ADAMTS-4, ADAMTS-5, iNOS, COX-2, collagenases, IL-6, IL-1β, and TNF-α in vitro and in vivo and . Cytokines also upregulate the expression of collagen II and aggrecan. The main signaling pathways affected by the extracts and isolated compounds include AMPK, SIRT, NLRP3, MAPKs, PI3K/AKT, mTOR, NF-κB, WNT/β-catenin, JAK/STAT3, and NRF2, as well as the cell death modes apoptosis, autophagy, pyroptosis, and ferroptosis. CONCLUSION The role of secondary metabolites in different signaling pathways supplies a better understanding of their potential to develop further curative options for KOA.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Xin Hua
- College of Life Science, Northeast Forestry University, No. 26 Hexing Road, Harbin, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China.
| | - Xin-An Zhang
- School of Kinesiology, Shenyang Sport University, No. 36 Jinqiansong East Road, Shenyang, China.
| |
Collapse
|
18
|
Ma Y, Zhang J, Yu H, Zhang Y, Zhang H, Hao C, Zuo L, Shi N, Li W. Traditional Chinese Medicine Rhodiola Sachalinensis Borissova from Baekdu Mountain (RsB BM) for Rheumatoid Arthritis: Therapeutic Effect and Underlying Molecular Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186058. [PMID: 36144788 PMCID: PMC9500815 DOI: 10.3390/molecules27186058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
The lack of effective rheumatoid arthritis (RA) therapies is a persistent challenge worldwide, prompting researchers to urgently evaluate traditional Chinese medicines (TCMs) as potential clinical RA treatments. The present investigation was conducted to evaluate the therapeutic effects and potential molecular mechanisms of the active components isolated from TCM Rhodiola sachalinensis Borissova from Baekdu Mountain (RsBBM) using an experimental adjuvant arthritis model induced by injection of rats with Freund’s complete adjuvant. After induction of the adjuvant arthritis rat model, the extract-treated and untreated groups of arthritic rats were evaluated for RsBBM therapeutic effects based on comparisons of ankle circumferences and ELISA-determined blood serum inflammatory factor levels (TNF-α, IL-1β, and PGE2). In addition, the joint health of rats was evaluated via microscopic examination of hematoxylin-eosin-stained synovial tissues. Furthermore, to explore whether NF-κB and RANK/RANKL/OPG signaling pathways participated in observed therapeutic effects from a molecular mechanistic viewpoint, mRNA and protein levels related to the expression of nuclear factor kappa-B (NF-κB), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-Β ligand (RANKL) were analyzed via quantitative RT-PCR and Western blot analysis, respectively. Treatment of arthritic rats with the extract of RsBBM was shown to reduce ankle swelling, reduce blood serum levels of inflammatory factors, and alleviate arthritis-associated synovial inflammation and joint damage. Moreover, an RsBBM 50% ethanol extract treatment inhibited bone destruction by up-regulating OPG-related mRNA and protein expression and down-regulating RANKL-related mRNA and protein expression, while also reducing inflammation by the down-regulating of the NF-κB pathway activity. The results clearly demonstrated that the extract of RsBBM alleviated adjuvant arthritis-associated joint damage by altering activities of inflammation-associated NF-κB and the RANK/RANKL/OPG signaling pathways. Due to its beneficial effects for alleviating adjuvant arthritis, this RsBBM 50% ethanol extract should be further evaluated as a promising new therapeutic TCM treatment for RA.
Collapse
Affiliation(s)
- Yinghui Ma
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
| | - Jinbei Zhang
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
| | - Huan Yu
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
| | - Yanfei Zhang
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
| | - Huifeng Zhang
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
| | - Chengyi Hao
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
| | - Lili Zuo
- College of Public Health, Jilin Medical University, Jilin 132013, China
| | - Nianqiu Shi
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
- College of Pharmaceutical Science, Yanbian University, Yanji 133002, China
- Correspondence: (N.S.); (W.L.); Tel.: +86-0432-64560530 (N.S.); +86-0432-64560536 (W.L.)
| | - Wenliang Li
- College of Pharmacy, Jilin Medical University, Jilin 132106, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China
- Correspondence: (N.S.); (W.L.); Tel.: +86-0432-64560530 (N.S.); +86-0432-64560536 (W.L.)
| |
Collapse
|
19
|
The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel) 2022; 11:antiox11091668. [PMID: 36139742 PMCID: PMC9495695 DOI: 10.3390/antiox11091668] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 01/17/2023] Open
Abstract
Ferroptosis, a recently discovered regulated cell death modality, is characterised by iron-dependent accumulation of lipid hydroperoxides, which can reach lethal levels but can be specifically reversed by ferroptosis inhibitors. Osteoarthritis (OA), the most common degenerative joint disease, is characterised by a complex pathogenesis involving mechanical overload, increased inflammatory mediator levels, metabolic alterations, and cell senescence and death. Since iron accumulation and oxidative stress are the universal pathological features of OA, the role played by ferroptosis in OA has been extensively explored. Increasing evidence has shown that iron dyshomeostasis and lipid peroxidation are closely associated with OA pathogenesis. Therefore, in this review, we summarize recent evidence by focusing on ferroptotic mechanisms and the role played by ferroptosis in OA pathogenesis from the perspectives of clinical findings, animal models, and cell research. By summarizing recent research advances that characterize the relationship between ferroptosis and OA, we highlight avenues for further research and potential therapeutic targets.
Collapse
|
20
|
Luo Z, Dong J, Wu J. Impact of Icariin and its derivatives on inflammatory diseases and relevant signaling pathways. Int Immunopharmacol 2022; 108:108861. [PMID: 35597118 DOI: 10.1016/j.intimp.2022.108861] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023]
Abstract
Herba Epimedii is a famous herb collected from China and Korea. It has been used for impotency, osteoporosis, and amnestic treatment for thousands of years. Icariin, a typical flavonoid compound isolated from Herba Epimedii, was reported as a potential anti-inflammatory drug. Icariside and icaritin are the two metabolites of icariin. Icariin and its metabolites have been used to treat a wide range of inflammatory diseases, such as atherosclerosis, Alzheimer's disease, depression, osteoarthritis, and asthma. They exert powerful suppression of proinflammatory signaling, such as NF-κB and MAPKs. More importantly, they can upregulate anti-inflammatory signaling, such as GR and Nrf2. In this study, we review the therapeutic effects and mechanisms of icariin and its metabolites in inflammatory diseases and provide novel insights into these potential anti-inflammatory drugs.
Collapse
Affiliation(s)
- Zhuyu Luo
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
21
|
Mu P, Feng J, Hu Y, Xiong F, Ma X, Tian L. Botanical Drug Extracts Combined With Biomaterial Carriers for Osteoarthritis Cartilage Degeneration Treatment: A Review of 10 Years of Research. Front Pharmacol 2022; 12:789311. [PMID: 35173609 PMCID: PMC8841352 DOI: 10.3389/fphar.2021.789311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is a long-term chronic arthrosis disease which is usually characterized by pain, swelling, joint stiffness, reduced range of motion, and other clinical manifestations and even results in disability in severe cases. The main pathological manifestation of OA is the degeneration of cartilage. However, due to the special physiological structure of the cartilage, once damaged, it is unable to repair itself, which is one of the challenges of treating OA clinically. Abundant studies have reported the application of cartilage tissue engineering in OA cartilage repair. Among them, cell combined with biological carrier implantation has unique advantages. However, cell senescence, death and dedifferentiation are some problems when cultured in vitro. Botanical drug remedies for OA have a long history in many countries in Asia. In fact, botanical drug extracts (BDEs) have great potential in anti-inflammatory, antioxidant, antiaging, and other properties, and many studies have confirmed their effects. BDEs combined with cartilage tissue engineering has attracted increasing attention in recent years. In this review, we will explain in detail how cartilage tissue engineering materials and BDEs play a role in cartilage repair, as well as the current research status.
Collapse
Affiliation(s)
- Panyun Mu
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Feng
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yimei Hu
- Department of Orthopedics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yimei Hu,
| | - Feng Xiong
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xu Ma
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Linling Tian
- Department of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
22
|
Zhou LP, Zhang RJ, Jia CY, Kang L, Zhang ZG, Zhang HQ, Wang JQ, Zhang B, Shen CL. Ferroptosis: A potential target for the intervention of intervertebral disc degeneration. Front Endocrinol (Lausanne) 2022; 13:1042060. [PMID: 36339421 PMCID: PMC9630850 DOI: 10.3389/fendo.2022.1042060] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022] Open
Abstract
Ferroptosis, an iron-dependent form of programmed cell death marked by phospholipid peroxidation, is regulated by complex cellular metabolic pathways including lipid metabolism, iron balance, redox homeostasis, and mitochondrial activity. Initial research regarding the mechanism of ferroptosis mainly focused on the solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 (GPX4) signal pathway. Recently, novel mechanisms of ferroptosis, independent of GPX4, have been discovered. Numerous pathologies associated with extensive lipid peroxidation, such as drug-resistant cancers, ischemic organ injuries, and neurodegenerative diseases, are driven by ferroptosis. Ferroptosis is a new therapeutic target for the intervention of IVDD. The role of ferroptosis in the modulation of intervertebral disc degeneration (IVDD) is a significant topic of interest. This is a novel research topic, and research on the mechanisms of IVDD and ferroptosis is ongoing. Herein, we aim to review and discuss the literature to explore the mechanisms of ferroptosis, the relationship between IVDD and ferroptosis, and the regulatory networks in the cells of the nucleus pulposus, annulus fibrosus, and cartilage endplate to provide references for future basic research and clinical translation for IVDD treatment.
Collapse
|
23
|
Tang W, Zhang H, Liu D, Jiao F. Icariin accelerates cartilage defect repair by promoting chondrogenic differentiation of BMSCs under conditions of oxygen-glucose deprivation. J Cell Mol Med 2021; 26:202-215. [PMID: 34859578 PMCID: PMC8742234 DOI: 10.1111/jcmm.17073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/17/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022] Open
Abstract
This study explored the role played by combined ICA and bone mesenchymal stem cells (BMSCs) in repairing rabbit knee cartilage defects. Firstly, rabbit BMSCs were isolated and used to construct an in vitro cellular model of oxygen‐glucose deprivation/reoxygenation (OGD/R). Subsequently, ICA processing, Alcian blue staining, immunofluorescence and Western blot studies were performed to evaluate the ability of BMSCs to display signs of chondrogenic differentiation. Furthermore, a rabbit knee cartilage injury model was established in vivo. International Cartilage Repair Society (ICRS) macroscopic evaluations, H&E, Alcian blue and EdU staining, as well as immunohistochemistry, were analysed cartilage repair and pathological condition of the knee cartilage tissue. Our in vitro results showed that ICA promoted the chondrogenic differentiation of BMSCs, as well as aggrecan (AGR), bone morphogenetic protein 2 (BMP2) and COL2A1 protein expression in BMSCs. In vivo experiments showed that rabbits in the BMSCs or ICA treatment group had higher ICRS scores and displayed a better restoration of cartilage‐like tissue and chondrocyte expression on the surface of their cartilage defects. In conclusion, ICA or BMSCs alone could repair rabbit knee cartilage damage, and combined treatment with ICA and BMSCs showed a better ability to repair rabbit knee cartilage damage.
Collapse
Affiliation(s)
- Wang Tang
- Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Hongyi Zhang
- Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Donghua Liu
- Spinal Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| | - Feng Jiao
- Joint Surgery, Guangzhou Hospital of Integrated Traditional and Western Medicine, Guangzhou, China
| |
Collapse
|
24
|
Sun K, Guo Z, Hou L, Xu J, Du T, Xu T, Guo F. Iron homeostasis in arthropathies: From pathogenesis to therapeutic potential. Ageing Res Rev 2021; 72:101481. [PMID: 34606985 DOI: 10.1016/j.arr.2021.101481] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/25/2021] [Accepted: 09/29/2021] [Indexed: 02/08/2023]
Abstract
Iron is an essential element for proper functioning of cells within mammalian organ systems; in particular, iron homeostasis is critical for joint health. Excess iron can induce oxidative stress damage, associated with the pathogenesis of iron-storage and ageing-related diseases. Therefore, iron levels in body tissues and cells must be tightly regulated. In the past decades, excess iron content within joints has been found in some patients with joint diseases including hemophilic arthropathy, hemochromatosis arthropathy, and osteoarthritis (OA). Currently, increased evidence has shown that iron accumulation is closely associated with multiple pathological changes of these arthropathies. This review summarizes system-level and intracellular regulation of iron homeostasis, and emphasizes the role of iron in synovial alterations, cartilage degeneration, and subchondral bone of several arthropathies. Of note, we discuss the potential link between iron homeostasis and OA pathogenesis. Finally, we discuss the therapeutic potential of maintaining iron homeostasis in these arthropathies.
Collapse
|
25
|
Circ_SPG11 plays contributing effects on IL-1β-induced chondrocyte apoptosis and ECM degradation via miR-665 inhibition-mediated GREM1 upregulation. Clin Immunol 2021; 233:108889. [PMID: 34798237 DOI: 10.1016/j.clim.2021.108889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/13/2021] [Indexed: 12/16/2022]
Abstract
The dysregulation of circular RNA (circRNA) has been monitored in osteoarthritis (OA) cartilage, hinting that circRNA deregulation modulates OA progression. We thus aimed to unveil the role of circRNA spastic paraplegia 11 (circ_SPG11) in OA conditions. The upregulation of circ_SPG11 was observed in OA cartilage and IL-1β-treated chondrocytes. Knockdown of circ_SPG11 restored IL-1β-depleted cell proliferation and alleviated IL-1β-induced cell apoptosis and ECM degradation. Circ_SPG11 bound to miR-665 and negatively regulated miR-665 expression. Inhibition of miR-665 reversed the inhibitory effect on IL-1β-induced chondrocyte injury caused by circ_SPG11 knockdown. GREM1 was a target of miR-665, and circ_SPG11 knockdown depleted GREM1 expression by enriching miR-665. Overexpression of GREM1 also reversed the inhibitory effect on IL-1β-induced chondrocyte injury caused by miR-665 enrichment. Circ_SPG11 might promote IL-1β-induced chondrocyte apoptosis and ECM degradation via increasing GREM1 expression by decoying miR-665.
Collapse
|
26
|
Zhou L, Huang Z, Yang S, Wei J, Xu Y, Hu L, Guo X, Yuan L, Yuan Z, Yang X, Tao X, Zhang Q. Preparation of ICA-loaded mPEG-ICA nanoparticles and their application in the treatment of LPS-induced H9c2 cell damage. NANOSCALE RESEARCH LETTERS 2021; 16:155. [PMID: 34657986 PMCID: PMC8523016 DOI: 10.1186/s11671-021-03609-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 05/05/2023]
Abstract
Hydrophilic polyethylene glycol monomethyl ether (mPEG) was grafted onto Icariin (ICA) by succinic anhydride to form a polyethylene glycol-Icariin (mPEG-ICA) polymer. The structure of the polymer was characterized by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance spectroscopy (NMR). mPEG-ICA nanoparticles loaded with ICA were prepared by physical embedding of ICA by dialysis. The particle size was determined to be (220 ± 13.7) nm, and the ζ potential was (2.30 ± 1.33) mV by dynamic light scattering (DLS). Under a transmission electron microscope (TEM), the nanoparticles were spherical, and the morphology was regular. In the medium with pH 7.4, the drug release rate of mPEG-ICA nanoparticles reached (52.80 ± 1.70)% within 72 h. At pH 6.8, the cumulative drug release of nanoparticles reached (75.66 ± 0.17)% within 48 h. Treatment of the nanoparticles with LPS-treated H9c2 cells maintained cell viability, reduced LDH release and exerted antiapoptotic effects. Moreover, ICA-loaded mPEG-ICA nanoparticles significantly decreased the mRNA expression of the myocardial inflammatory cytokines TNF-α, IL-1β and IL-6M. In conclusion, ICA-loaded mPEG-ICA nanoparticles protected against LPS-induced H9c2 cell injury.
Collapse
Affiliation(s)
- Lin Zhou
- Department of Geriatrics and General Medicine (QZ) of Affiliated Taihe Hospital, Pharmaology Department (LZ, JW, XG, QZ), School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhi Huang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China
| | - Shanyi Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China
| | - Jiarui Wei
- Department of Geriatrics and General Medicine (QZ) of Affiliated Taihe Hospital, Pharmaology Department (LZ, JW, XG, QZ), School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yan Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China
| | - Lin Hu
- Department of Geriatrics and General Medicine (QZ) of Affiliated Taihe Hospital, Pharmaology Department (LZ, JW, XG, QZ), School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xinrong Guo
- Department of Geriatrics and General Medicine (QZ) of Affiliated Taihe Hospital, Pharmaology Department (LZ, JW, XG, QZ), School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Hubei Key Laboratory of Embryonic Stem Cell Research (XG), Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Limin Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China
| | - Zexuan Yuan
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China
| | - Xiaojun Tao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province (ZH, SY, YX, LY, ZY, XY, XT), School of Medicine, Hunan Normal University, Changsha, China.
| | - Qiufang Zhang
- Department of Geriatrics and General Medicine (QZ) of Affiliated Taihe Hospital, Pharmaology Department (LZ, JW, XG, QZ), School of Basic Medical Science, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
27
|
Zhang C, Zhu M, Wang H, Wen J, Huang Z, Chen S, Zhao H, Li H. LOXL2 attenuates osteoarthritis through inactivating Integrin/FAK signaling. Sci Rep 2021; 11:17020. [PMID: 34426599 PMCID: PMC8382747 DOI: 10.1038/s41598-021-96348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/13/2021] [Indexed: 11/14/2022] Open
Abstract
Temporomandibular joint OA (TMJOA) is a common degenerative joint disease, leads to structural damage and ultimately loss of function. Matrix degradation is one of the first pathogenesis during the progression of OA, it was effective to inhibit matrix degradation to block the development of OA. In this study, an in vivo model (compressive mechanical force) and an in vitro model (IL-1β) were used to induce OA-like changes in TMJ cartilage and chondrocytes. We revealed lysyl oxidase like-2 (LOXL2) play a critical role in TMJOA. LOXL2 expression decreased in mechanical stress/IL-β induced TMJOA-like lesions in both in vivo models and in vitro models. Furthermore, recombinant LOXL2 (rhLOXL2) treatment ameliorated the degenerative changes induced by mechanical stress in vivo, including the thinning cartilage, down-expression of collagen II and proteoglycan, and over-expression of TNF-a, while LOXL2 antibody (anti-LOXL2) treatment exacerbated these changes. Mechanistically, the protection of LOXL2 in chondrocytes was induced partly through activation of the Integrin/FAK pathway. The inhibition of the Integrin/FAK pathway could neutralized the effects caused by rhLOXL2. Collectively, our study suggests that the LOXL2 plays a protective role in mechanical stress induced TMJOA-like changes, and the Integrin/FAK pathway may be a key downstream pathway in this process.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengjiao Zhu
- Shanghai Xuhui District Dental Center, 500 Fenglin Road, Shanghai, China
| | - Huijuan Wang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Juan Wen
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ziwei Huang
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Sheng Chen
- Department of Oral Pathology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongting Zhao
- Medical School of Nanjing University, Nanjing, China
| | - Huang Li
- Department of Orthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
28
|
Jiang J, Cai M. Cardamonin Inhibited IL-1β Induced Injury by Inhibition of NLRP3 Inflammasome via Activating Nrf2/NQO-1 Signaling Pathway in Chondrocyte. J Microbiol Biotechnol 2021; 31:794-802. [PMID: 34024891 PMCID: PMC9705951 DOI: 10.4014/jmb.2103.03057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
In this study we investigated the role and mechanism of cardamonin on IL-1β induced injury in OA. CHON-001 cells were treated with cardamonin and IL-1β and transfected with silencing nuclear factor erythroid 2-related factor 2 (siNrf2). Cell viability was detected by Cell Counting Kit-8 assay and flow cytometer assay was utilized for cell apoptosis assessment. IL-6, IL-8, TNF-α and Nrf2 mRNA expression was tested by qRT-PCR. Western blot was employed to evaluate MMP-3, MMP-13, Collagen II, Nrf2, NQO-1, NLRP3, Caspase 1 and apoptosis-associated speck-like protein containing a caspase-1 recruitment domain (ASC) protein levels. In CHON-001 cells, IL-1β suppressed cell viability and Collagen II level while promoting cell apoptosis and expression of pro-inflammatory cytokines (IL-6, IL-8, TNF-α), MMPs (MMP-3, MMP-13), NQO-1, and NLRP3 inflammasome (NLRP3, Caspase 1 and ASC), with no significant influence on Nrf2. Cardamonin reversed the effect of IL-1β on cell viability, cell apoptosis, pro-inflammatory cytokines, MMPs, Collagen II, and NLRP3 inflammasome levels. In addition, cardamonin advanced Nrf2 and NQO-1 expression of CHON-001 cells. SiNrf2 reversed the function of cardamonin on IL-1β-induced cell apoptosis and expression of pro-inflammatory cytokines, Nrf2, NQO-1, and NLRP3 inflammasome in chondrocytes. Taken together Cardamonin inhibited IL-1β induced injury by inhibition of NLRP3 inflammasome via activating Nrf2/NQO1 signaling pathway in chondrocyte.
Collapse
Affiliation(s)
- Jianqing Jiang
- No. 4 Trauma Area, Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine, Hangzhou City, Zhejiang Province, 311400, P.R. China
| | - Mingsong Cai
- No. 4 Trauma Area, Hangzhou Fuyang District Bone Injury Hospital of Traditional Chinese Medicine, Hangzhou City, Zhejiang Province, 311400, P.R. China,Corresponding author Phone: +86-571-61773106 E-mail:
| |
Collapse
|
29
|
Shu H, Zhao H, Shi Y, Lu C, Li L, Zhao N, Lu A, He X. Transcriptomics-based analysis of the mechanism by which Wang-Bi capsule alleviates joint destruction in rats with collagen-induced arthritis. Chin Med 2021; 16:31. [PMID: 33845855 PMCID: PMC8042720 DOI: 10.1186/s13020-021-00439-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied with joint destruction that often leads to disability. Wang-Bi capsule (WB), a traditional Chinese medicine-based herbs formula, has exhibited inhibition effect on joint destruction of collagen-induced arthritis (CIA) animal model in our previous study. But its molecular mechanisms are still obscure. METHODS CIA rats were treated intragastrical with WB for eight weeks, and the effect of joints protection were evaluated by hematoxylin and eosin (H&E) staining, safranin O fast green staining, tartrate-resistant acid phosphatase (TRAP) staining and micro‑CT scanning analysis. The transcriptomic of tarsal joints were used to investigate how WB alleviated joint destruction. RESULTS The histological examination of ankle joints showed WB alleviated both cartilage damage and bone destruction of CIA rats. This protective effect on joints were further evidenced by micro-CT analysis. The transcriptomic analysis showed that WB prominently changed 12 KEGG signaling pathways ("calcium signaling pathway", "cAMP signaling pathway", "cell adhesion molecules", "chemokine signaling pathway", "complement and coagulation cascades", "MAPK signaling pathway", "NF-kappa B signaling pathway", "osteoclast differentiation", "PI3K-Akt signaling pathway", "focal adhesion", "Gap junction" and "Rap1 signaling pathway") associated with bone or cartilage. Several genes (including Il6, Tnfsf11, Ffar2, Plg, Tnfrsf11b, Fgf4, Fpr1, Siglec1, Vegfd, Cldn1, Cxcl13, Chad, Arrb2, Fgf9, Egfr) regulating bone resorption, bone formation and cartilage development were identified by further analysis. Meanwhile, these differentially expressed genes were validated by real-time quantitative PCR. CONCLUSIONS Overall, the protective effect of WB treatment on joint were confirmed in CIA rats, and its basic molecular mechanisms may be associated with regulating some genes (including Il6, Tnfsf11, Ffar2 and Plg etc.) involved in bone resorption, bone formation and cartilage development.
Collapse
Affiliation(s)
- Haiyang Shu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hanxiao Zhao
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingjie Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Shanghai Innovation Center of TCM Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
30
|
He J, Yang J, Shen T, He J. Overexpression of long non-coding RNA XIST promotes IL-1β-induced degeneration of nucleus pulposus cells through targeting miR-499a-5p. Mol Cell Probes 2021; 57:101711. [PMID: 33722663 DOI: 10.1016/j.mcp.2021.101711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/07/2021] [Accepted: 03/08/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND Long non-coding RNA X-interactive specific transcript (XIST) is implicated in many diseases. However, its role and interaction with microRNA (miR)-499a-5p in intervertebral disc degeneration (IDD) remained unclear. METHODS Nucleus pulposus (NP) tissue samples were collected and nucleus pulposus cells (NPCs) were isolated for Interleukin-1β (IL-1β) treatment and identification. XIST and miR-499a-5p expressions in the tissue were measured with quantitative real-time polymerase chain reaction (qRT-PCR). After IL-1β treatment, NPC apoptosis was detected by flow cytometry. The potential binding sites of XIST and miR-499a-5p were predicted by starBase and confirmed by dual-luciferase reporter assay. Relative expressions of tissue inhibitor of metalloproteinases-3 (TIMP-3), Matrix metalloproteinases-3 (MMP-3), MMP-13, Collagen II, Aggrecan and apoptosis-related proteins (Bcl-2 associated X protein, Bax; B-cell lymphoma 2, Bcl-2; cleaved caspase-3) were measured by qRT-PCR and Western blot as needed. RESULTS XIST expression was upregulated in the NP tissues of patients with IDD, and IL-1β treatment resulted in a degradation of NPCs. Overexpressed XIST promoted the effects of IL-1β on increasing NPC apoptosis and expressions of XIST, MMP-3, MMP-13, Bax and Cleaved caspase-3, but down-regulated TIMP-3, Collagen II, Aggrecan and Bcl-2 expressions. Silencing XIST, however, showed the opposite effects to its overexpression. MiR-499a-5p expression was downregulated in NP tissues of IDD patients and could bind with XIST, while its upregulation reversed the effects of overexpressed XIST in the IL-1β-treated NPCs. CONCLUSION Overexpressed XIST caused NPC degeneration through promoting apoptosis and extracellular matrix degradation of IL-1β-treated NPCs through targeting miR-499a-5p, and therefore can serve as a potential treatment for IDD.
Collapse
Affiliation(s)
- Jun He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jing Yang
- Department of Cardiology, Zhejiang Hospital, Xihu District, Hangzhou, Zhejiang, 310013, China
| | - Tulan Shen
- Outpatient Department, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China
| | - Jian He
- Department of Orthopedics, Zhejiang Hospital, Xihu District, Hangzhou City, Zhejiang Province, 310030, China.
| |
Collapse
|
31
|
Dong M, Wu S, Xu H, Yu X, Wang L, Bai H, Niu W. FBS-Derived Exosomes as a Natural Nano-Scale Carrier for Icariin Promote Osteoblast Proliferation. Front Bioeng Biotechnol 2021; 9:615920. [PMID: 33718337 PMCID: PMC7952636 DOI: 10.3389/fbioe.2021.615920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/09/2021] [Indexed: 12/16/2022] Open
Abstract
Icariin is a class IV drug of low solubility, permeability, and poor bioavailability. Synthetic nanomaterials have developed rapidly. However, some literatures point out that synthetic nanomaterials such as liposomes, aptamers, metal nanoparticles, and nanogels have high toxicity and are affected by the reticuloendothelial system or mononuclear phagocyte system. It is known that exosomes could be used as an ideal clinical drug delivery vehicle to avoid the above-mentioned problems to a certain extent. Studies have shown that drugs can be loaded into exosomes by passive and active loading. We used Fetal bovine serum (FBS) exosomes to carry Icariin for the first time in this experiment, FBS exosomes-Icariin (FBS EXO-ICA) more effectively promoted the proliferation of osteoblasts and bone regeneration than Icariin alone. FBS EXO-ICA could become a new nano scale drug formulation for treating diseases associated with bone loss.
Collapse
Affiliation(s)
- Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Saixuan Wu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Huijun Xu
- Department of Stomatology, Bozhou People's Hospital, Bozhou, China
| | - Xinxin Yu
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Hua Bai
- School of Stomatology, Dalian Medical University, Dalian, China
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, China
| |
Collapse
|
32
|
Pérez-Lozano ML, Cesaro A, Mazor M, Esteve E, Berteina-Raboin S, Best TM, Lespessailles E, Toumi H. Emerging Natural-Product-Based Treatments for the Management of Osteoarthritis. Antioxidants (Basel) 2021; 10:265. [PMID: 33572126 PMCID: PMC7914872 DOI: 10.3390/antiox10020265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 01/10/2023] Open
Abstract
Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.
Collapse
Affiliation(s)
- Maria-Luisa Pérez-Lozano
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Annabelle Cesaro
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
| | - Marija Mazor
- Center for Proteomics, Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, B. Branchetta 20, 51000 Rijeka, Croatia;
| | - Eric Esteve
- Service de Dermatologie, Centre Hospitalier Régional d′Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France;
| | - Sabine Berteina-Raboin
- Institut de Chimie Organique et Analytique ICOA, Université d’Orléans-Pôle de Chimie, UMR CNRS 7311, Rue de Chartres-BP 6759, CEDEX 2, 45067 Orléans, France;
| | - Thomas M. Best
- Department of Orthopedics, Division of Sports Medicine, Health Sports Medicine Institute, University of Miami, Coral Gables, FL 33146, USA;
| | - Eric Lespessailles
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| | - Hechmi Toumi
- Laboratory I3MTO, EA 4708, Université d’Orléans, CEDEX 2, 45067 Orléans, France; (M.-L.P.-L.); (A.C.); (E.L.)
- Plateforme Recherche Innovation Médicale Mutualisée d’Orléans, Centre Hospitalier Régional d’Orléans, 14 Avenue de l’Hôpital, 45100 Orléans, France
- Centre Hospitalier Régional d’Orléans, Institut Département de Rhumatologie, 45067 Orléans, France
| |
Collapse
|
33
|
Cahill SV, Kwon HK, Back J, Lee I, Lee S, Alder KD, Hao Z, Yu KE, Dussik CM, Kyriakides TR, Lee FY. Locally delivered adjuvant biofilm-penetrating antibiotics rescue impaired endochondral fracture healing caused by MRSA infection. J Orthop Res 2021; 39:402-414. [PMID: 33336805 DOI: 10.1002/jor.24965] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Infection is a devastating complication following an open fracture. We investigated whether local rifampin-loaded hydrogel can combat infection and improve healing in a murine model of methicillin-resistant Staphylococcus aureus (MRSA) osteomyelitis. A transverse fracture was made at the tibia midshaft of C57BL/6J mice aged 10-12 weeks and stabilized with an intramedullary pin. A total of 1 × 106 colony-forming units (CFU) of MRSA was inoculated. A collagen-based hydrogel containing low-dose (60 μg) and high-dose (300 μg) rifampin was applied before closure. Postoperative treatment response was assessed through bacterial CFU counts from tissue and hardware, tibial radiographs and microcomputed tomography (μCT), immunohistochemistry, and histological analyses. All untreated MRSA-infected fractures progressed to nonunion by 28 days with profuse MRSA colonization. Infected fractures demonstrated decreased soft callus formation on safranin O stain compared to controls. Areas of dense interleukin-1β stain were associated with poor callus formation. High-dose rifampin hydrogels reduced the average MRSA load in tissue (p < 0.0001) and implants (p = 0.041). Low-dose rifampin hydrogels reduced tissue bacterial load by 50% (p = 0.021). Among sterile models, 88% achieved union compared to 0% of those infected. Mean radiographic union scale in tibia scores improved from 6 to 8.7 with high-dose rifampin hydrogel (p = 0.024) and to 10 with combination local/systemic rifampin therapy (p < 0.0001). μCT demonstrated reactive bone formation in MRSA infection. Histology demonstrated restored fracture healing with bacterial elimination. Rifampin-loaded hydrogels suppressed osteomyelitis, prevented implant colonization, and improved healing. Systemic rifampin was more effective at eliminating infection and improving fracture healing. Further investigation into rifampin-loaded hydrogels is required to correlate these findings with clinical efficacy.
Collapse
Affiliation(s)
- Sean V Cahill
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hyuk-Kwon Kwon
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jungho Back
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Inkyu Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Saelim Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
- College of Medicine, Dankook University, Yongin, Gyeonggi-do, Republic of Korea
| | - Kareme D Alder
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Zichen Hao
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Emergency and Trauma, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Kristin E Yu
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christopher M Dussik
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Francis Y Lee
- Department of Orthopaedics and Rehabilitation, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
34
|
Liu W, Chen Y, Zeng G, Yang T, Song W. INSR mediated by transcription factor KLF4 and DNA methylation ameliorates osteoarthritis progression via inactivation of JAK2/STAT3 signaling pathway. Am J Transl Res 2020; 12:7953-7967. [PMID: 33437372 PMCID: PMC7791516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To probe into the role and regulatory mechanisms of INSR in pathogenesis of osteoarthritis (OA). METHODS KLF4 and INSR expression was detected in cartilage tissues of 40 OA patients and 10 controls using RT-qPCR. IL-1β-induced OA chondrocytes and anterior cruciate ligament transection (ACLT)-induced OA models were respectively constructed. After overexpressing or silencing KLF4 or INSR, flow cytometry assay was utilized to detect chondrocyte apoptosis. Furthermore, JAK2/STAT3, cartilage markers and OA-related markers were examined by western blot. Dual luciferase report and CHIP assay were carried out to verify the interactions between KLF4 and INSR, followed by functional gain and loss assay. INSR promoter methylation was assessed by MS-PCR. RESULTS Both KLF4 and INSR were down-regulated both in OA chondrocytes and cartilage tissues. Knockdown of KLF4 or INSR accelerated apoptosis of IL-1β-induced OA chondrocytes. However, overexpression of KLF4 or INSR ameliorated OA progression both in OA chondrocytes and OA mouse models. Moreover, INSR inactivated JAK2/STAT3 pathway in OA chondrocytes. Dual luciferase report and CHIP assay results confirmed that INSR was transcriptionally regulated by KLF4. As shown in MS-PCR results, INSR expression was mediated by DNA methylation in OA. CONCLUSION Our findings suggested that INSR, as a key regulator for OA, was regulated by transcription factor KLF4 and DNA methylation, thereby mediating the activation of JAK2/STAT3 signaling, which was considered as an underlying therapeutic target for OA.
Collapse
Affiliation(s)
- Wenzhou Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510000, Guangdong, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510000, Guangdong, China
| | - Gang Zeng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510000, Guangdong, China
| | - Tao Yang
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510000, Guangdong, China
| | - Weidong Song
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhou 510000, Guangdong, China
| |
Collapse
|
35
|
Protective effects of Clostridium butyricum against oxidative stress induced by food processing and lipid-derived aldehydes in Caco-2 cells. Appl Microbiol Biotechnol 2020; 104:9343-9361. [PMID: 32965561 DOI: 10.1007/s00253-020-10896-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/18/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
The human body is almost always facing the oxidative stress caused by foodborne aldehydes such as glyoxal (GO) and methylglyoxal (MGO), 4-hydroxyhexenal (HHE), and 4-hydroxynonenal (HNE). When these aldehydes build up, they can cause a range of harm. However, a probiotic, Clostridium butyricum, can increase nuclear factor erythroid-2 related factor 2 (Nrf2) and may have the potential to relieve oxidative stress. If C. butyricum is indeed resistant to aldehydes, the advantages (accessibility, convenience, and safety) will be of great significance compared with drugs. Unfortunately, whether C. butyricum can play a role in alleviating toxic effects of foodborne aldehydes in the intestine (the first line of defense against food-derived toxin) was unclear. To investigate these, we measured the viability, ROS, autophagy, and inflammatory cytokine expression of Caco-2 which were co-cultured with C. butyricum and stimulated by the four aldehydes via Nrf2 pathway (Staphylococcus aureus and Enterococcus faecium as controls). Then, we explored the link among C. butyricum, NLRP6, and Nrf2 signaling pathways when facing the stimuli. In the present study, we demonstrated that Clostridium butyricum relieved the oxidative stress induced by the aldehydes in Caco-2. Most interestingly, we found a "complementary" relationship between NLRP6 and Nrf2 in C. butyricum treatment under aldehyde stress. Our research not only makes a contribution to the popularization of C. butyricum as a probiotic-rich food instead of medicines but also sheds new light on the application of subsequent microecological formulation of C. butyricum. KEY POINTS: • The adverse effects are caused in a dose-dependent manner by foodborne aldehydes. • Clostridium butyricum can significantly ameliorate oxidative stress. • There is a "complementary" relationship between the NLRP6 and Nrf2 signaling pathways. • Using Clostridium butyricum foods to alleviate oxidative stress shows great prospects.
Collapse
|
36
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|