1
|
Wu Y, Guo X, Jin L, Huang G, Niu L, Zhao Y. Lnc-LINC00511 promotes gastric cancer progression by regulating MiR-29c-3p/TRIP13 axis through AKT/mTOR pathway. Int J Biol Macromol 2024; 281:136455. [PMID: 39389496 DOI: 10.1016/j.ijbiomac.2024.136455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Thyroid hormone receptor-interacting factor 13 (TRIP13) contributes to the development of several cancers, including hepatocellular carcinoma (HCC). Although these studies have found that TRIP13 is involved in other cancers, its specific function in gastric cancer requires further investigation. Therefore, this study aimed to investigate the hypothesis that LINC00511 may act as an oncogenic factor in gastric cancer by influencing and regulating the expression level of TRIP13. This relationship has the potential to reveal the molecular mechanisms driving gastric cancer progression and further elucidate the roles of LINC00511 and TRIP13 in gastric cancer. In this study, we confirmed that LINC00511 could act as a ceRNA targeting miR-29c-3p to further regulate the expression of TRIP13. LINC00511 was also found to be able to be positively regulated by the transcription factor IRF9. In addition, TRIP13 could activate the AKT/mTOR pathway by interacting with its downstream protein ACTN2, thus promoting the proliferation of GC cells. lnc-LINC00511 could promote GC progression by regulating the miR-29c-3p/TRIP13 axis and activating the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yanyan Wu
- Department of Ultrasonic, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuanyan Guo
- Department of Ultrasonic, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Jin
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Taipa 999078, China
| | - Guixiang Huang
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, Yihuan Road, Qingyang District, Chengdu 610000, China
| | - Liangbo Niu
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, Yihuan Road, Qingyang District, Chengdu 610000, China.
| | - Yu Zhao
- Department of Emergency Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Section 2, Yihuan Road, Qingyang District, Chengdu 610000, China.
| |
Collapse
|
2
|
Wang G, Liu C, Wu Q, Wang J, Tang X, Wu Z, Tang L, Zhou Y. Systematical analysis of underlying markers associated with Marfan syndrome via integrated bioinformatics and machine learning strategies. J Biomol Struct Dyn 2024; 42:5713-5724. [PMID: 37449753 DOI: 10.1080/07391102.2023.2233021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Marfan syndrome (MFS) is a hereditary disease with high mortality. This study aimed to explore peripheral blood potential markers and underlying mechanisms in MFS via a series bioinformatics and machine learning analysis. First, we downloaded two MFS datasets from the GEO database. A total of 215 differentially expressed genes (DEGs) and 78 differentially expressed miRNAs (DEMs) were identified via "Limma" package. 60 DEGs, mainly enriched in abnormal transportation of structure and energy substances, were selected after protein-protein interaction (PPI) network construction, of which 20 were chosen for machine learning after three algorithms (betweenness, closeness, and degree) filtration using Cytoscape. Four overlapping DEGs (ACTN1, CFTR, GCKR, LAMA3) were finally selected as the candidate markers based on three machine-learning approaches (Lasso, random forest, and support vector machine-recursive feature elimination). Furthermore, we collected peripheral blood from MFS patients and healthy control to validate the findings and the results showed that compared with the control, the expression of the four DEGs was all statistically different in MFS patients validated by qRT-PCR. Besides, the area under the receiver operating characteristics curve was greater than 0.8 for each DEG. Single-sample gene-set enrichment analysis showed that the four DEGs were strongly associated with inflammation and myogenesis pathway. Finally, we constructed the mRNA-miRNA network based on the intersection of DEMs and predicted miRNAs targeting DEGs. In conclusion, our study partially provided four potential markers for MFS pathogenesis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guohua Wang
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Chunjiang Liu
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Qianyun Wu
- Department of Cardiology, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, China
| | - Jiajia Wang
- Department of Rheumatology, Shaoxing People's Hospital, Shaoxing, China
| | - Xiaoqi Tang
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Zhifeng Wu
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Liming Tang
- Department of General Surgery, Division of Vascular Surgery, Shaoxing People's Hospital, Shaoxing, China
| | - Yufei Zhou
- Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Huseinovic A, Xu M, Jaspers A, Bais B, Steenbergen RDM. miR-129-5p inhibits anchorage-independent growth through silencing of ACTN1 and the ELK4/c-FOS axis in HPV-transformed keratinocytes. J Med Virol 2024; 96:e29580. [PMID: 38566572 DOI: 10.1002/jmv.29580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
A persistent infection with human papillomavirus (HPV) can induce precancerous lesions of the cervix that may ultimately develop into cancer. Cervical cancer development has been linked to altered microRNA (miRNA) expression, with miRNAs regulating anchorage-independent growth being particularly important for the progression of precancerous lesions to cancer. In this study, we set out to identify and validate targets of miR-129-5p, a previously identified tumor suppressive miRNA involved in anchorage-independent growth and HPV-induced carcinogenesis. We predicted 26 potential miR-129-5p targets using online databases, followed by KEGG pathway enrichment analysis. RT-qPCR and luciferase assays confirmed that 3'UTR regions of six genes (ACTN1, BMPR2, CAMK4, ELK4, EP300, and GNAQ) were targeted by miR-129-5p. Expressions of ACTN1, CAMK4, and ELK4 were inversely correlated to miR-129-5p expression in HPV-transformed keratinocytes, and their silencing reduced anchorage-independent growth. Concordantly, miR-129-5p overexpression decreased protein levels of ACTN1, BMPR2, CAMK4 and ELK4 in anchorage-independent conditions. Additionally, c-FOS, a downstream target of ELK4, was downregulated upon miR-129-5p overexpression, suggesting regulation through the ELK4/c-FOS axis. ACTN1 and ELK4 expression was also upregulated in high-grade precancerous lesions and cervical cancers, supporting their clinical relevance. In conclusion, we identified six targets of miR-129-5p involved in the regulation of anchorage-independent growth, with ACTN1, BMPR2, ELK4, EP300, and GNAQ representing novel targets for miR-129-5p. For both ACTN1 and ELK4 functional and clinical relevance was confirmed, indicating that miR-129-5p-regulated ACTN1 and ELK4 expression contributes to HPV-induced carcinogenesis.
Collapse
Affiliation(s)
- Angelina Huseinovic
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mengfei Xu
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Annelieke Jaspers
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Brigitte Bais
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Renske D M Steenbergen
- Department of Pathology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Inayatullah M, Mahesh A, Turnbull AK, Dixon JM, Natrajan R, Tiwari VK. Basal-epithelial subpopulations underlie and predict chemotherapy resistance in triple-negative breast cancer. EMBO Mol Med 2024; 16:823-853. [PMID: 38480932 PMCID: PMC11018633 DOI: 10.1038/s44321-024-00050-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/18/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Inayatullah
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arun Mahesh
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Arran K Turnbull
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - J Michael Dixon
- Edinburgh Breast Cancer Now Research Group, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Vijay K Tiwari
- Institute for Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast, BT9 7BL, UK.
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
5
|
Zhou X, Duan J, Zhou W, Zhang A, Chen Q. Upregulated α-actinin-1 impairs endometrial epithelial cell adhesion by downregulating NEBL in recurrent implantation failure. iScience 2024; 27:109046. [PMID: 38384848 PMCID: PMC10879697 DOI: 10.1016/j.isci.2024.109046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/28/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Poor endometrial receptivity results in embryo implantation failure. Acquisition of endometrial receptivity involves substantial structural alterations in the cytoskeleton and plasma membrane of epithelial cells, which facilitate embryo adhesion. However, the underlying molecular mechanism remains largely unknown. In this study, we identified that α-actinin-1 (ACTN1) was significantly downregulated in the mid-secretory phase of the endometrium compared with other phases; however, ACTN1 significantly increased in women with recurrent implantation failure (RIF). In Ishikawa and human endometrial epithelial cells (HEECs), ACTN1 overexpression significantly decreased NEBL levels, enhanced F-actin fiber levels, and caused a notable impairment in blastocyst adhesion, which mimicked the process of embryo adhesion. However, NEBL overexpression notably restored adhesion. Moreover, NEBL expression was reduced in patients with RIF compared with that in controls. Finally, our data showed that ACTN1 upregulation impaired endometrial receptivity in women with RIF, possibly by regulating NEBL expression and subsequent cell-adhesion capability.
Collapse
Affiliation(s)
- Xiaowei Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingru Duan
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjie Zhou
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijun Zhang
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Mougeot JLC, Beckman MF, Alexander AS, Hovan AJ, Hasséus B, Legert KG, Johansson JE, von Bültzingslöwen I, Brennan MT, Mougeot FB. Single nucleotide polymorphisms conferring susceptibility to leukemia and oral mucositis: a multi-center pilot study of patients prior to conditioning therapy for hematopoietic cell transplant. Support Care Cancer 2024; 32:220. [PMID: 38467943 DOI: 10.1007/s00520-024-08408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Leukemias have been associated with oral manifestations, reflecting susceptibility to cancer therapy-induced oral mucositis. We sought to identify SNPs associated with both leukemia and oral mucositis (OM). METHODS Whole exome sequencing was performed on leukemia and non-cancer blood disorder (ncBD) patients' saliva samples (N = 50) prior to conditioning therapy. WHO OM grading scores were determined: moderate to severe (OM2-4) vs. none to mild (OM0-1). Reads were processed using Trim Galorev0.6.7, Bowtie2v2.4.1, Samtoolsv1.10, Genome Analysis Toolkit (GATK)v4.2.6.1, and DeepVariantv1.4.0. We utilized the following pipelines: P1 analysis with PLINK2v3.7, SNP2GENEv1.4.1 and MAGMAv1.07b, and P2 [leukemia (N = 42) vs. ncBDs (N = 8)] and P3 [leukemia + OM2-4 (N = 18) vs. leukemia + OM0-1 (N = 24)] with Z-tests of genotypes and protein-protein interaction determination. GeneCardsSuitev5.14 was used to identify phenotypes (P1 and P2, leukemia; P3, oral mucositis) and average disease-causing likelihood and DGIdb for drug interactions. P1 and P2 genes were analyzed with CytoScape plugin BiNGOv3.0.3 to retrieve overrepresented Gene Ontology (GO) terms and Ensembl's VEP for SNP outcomes. RESULTS In P1, 457 candidate SNPs (28 genes) were identified and 21,604 SNPs (1016 genes) by MAGMAv1.07b. Eighteen genes were associated with "leukemia" per VarElectv5.14 analysis and predicted to be deleterious. In P2 and P3, 353 and 174 SNPs were significant, respectively. STRINGv12.0 returned 77 and 32 genes (C.L. = 0.7) for P2 and P3, respectively. VarElectv5.14 determined 60 genes from P2 associated with "leukemia" and 11 with "oral mucositis" from P3. Overrepresented GO terms included "cellular process," "signaling," "hemopoiesis," and "regulation of immune response." CONCLUSIONS We identified candidate SNPs possibly conferring susceptibility to develop leukemia and oral mucositis.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Micaela F Beckman
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam S Alexander
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Allan J Hovan
- BC Cancer, Oral Oncology and Dentistry, Vancouver, BC, Canada
| | - Bengt Hasséus
- Department of Oral Medicine and Pathology, University of Gothenburg, Gothenburg, Sweden
| | - Karin Garming Legert
- Department of Dental Medicine, University Dental Clinic, Karolinska Institutet, Huddinge, Sweden
| | - Jan-Erik Johansson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Michael T Brennan
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health Carolinas Medical Center, Charlotte, NC, USA.
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
7
|
Yang Q, Lin Z, Xue M, Jiang Y, Chen L, Chen J, Liao Y, Lv J, Guo B, Zheng P, Huang H, Sun B. Deciphering the omicron variant: integrated omics analysis reveals critical biomarkers and pathophysiological pathways. J Transl Med 2024; 22:219. [PMID: 38424541 PMCID: PMC10905948 DOI: 10.1186/s12967-024-05022-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. METHODS This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein-protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. RESULTS Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. CONCLUSIONS This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.
Collapse
Affiliation(s)
- Qianyue Yang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Zhiwei Lin
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Respiratory Mechanics Laboratory, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Mingshan Xue
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China
| | - Yueting Jiang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Libing Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiahong Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yuhong Liao
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Jiali Lv
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baojun Guo
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Peiyan Zheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Huimin Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
8
|
Yang W, Lin L, Lu T, Yu H, Zhang S. Identification of EMT-associated prognostic features among grade II/III gliomas. Sci Rep 2024; 14:2822. [PMID: 38307919 PMCID: PMC10837424 DOI: 10.1038/s41598-024-53399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/31/2024] [Indexed: 02/04/2024] Open
Abstract
Grade II/III gliomas have a highly heterogeneous clinical course. Identifying prognostic biomarkers in grade II/III gliomas is essential to guide clinical management. We explored epithelial-mesenchymal transition (EMT)-related genes to uncover prognostic features in grade II/III gliomas. Consensus cluster analysis of 200 EMT-related genes classified 512 grade II/III glioma samples into two molecular subtypes, C1 and C2. The C1 subtype had significantly worse overall survival compared to the C2 subtype. Pathway analysis revealed C1 tumors were highly associated with tumor progression pathways and demonstrated higher immune cell infiltration scores. Differential expression analysis identified four genes (ACTN1, AQP1, LAMC3, NRM) that discriminated the two subtypes. Validation in external datasets confirmed that high expression of this four-gene signature predicted poor prognosis in grade II/III gliomas. Cellular experiments showed ACTN1, AQP1 and NRM promoted glioma cell proliferation, migration and invasion. We examined correlations of the signature genes with T cell exhaustion markers and found ACTN1 expression had the strongest association. Immunohistochemistry analysis further demonstrated that ACTN1 protein expression in grade II/III gliomas was negatively correlated with patient overall survival. In summary, our study identified a concise four-gene signature that robustly predicts grade II/III gliomas prognosis across multiple datasets. The signature provides clinical relevance in distinguishing more aggressive grade II/III glioma tumors. Targeting the ACTN1, AQP1 and NRM genes may offer new therapeutic opportunities to improve grade II/III gliomas patient outcomes.
Collapse
Affiliation(s)
- Wenyong Yang
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Tianqi Lu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hui Yu
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Sunfu Zhang
- Department of Neurosurgery, Department of Urology, Medical Research Center, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China.
| |
Collapse
|
9
|
Al-Rawi NH, Hachim IY, Hachim MY, Salmeh A, Uthman AT, Marei H. Anatomical landscape of oral squamous cell carcinoma: A single cancer center study in UAE. Heliyon 2023; 9:e15884. [PMID: 37206025 PMCID: PMC10189390 DOI: 10.1016/j.heliyon.2023.e15884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/12/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023] Open
Abstract
Objectives This study aimed to present demographic and clinicopathological aspects of OSCC identified in Pathology service in the UAE over a 13-year period and compare these findings to a cohort of 523 cases of Head and neck squamous cell carcinoma using the Cancer Genome Atlas's cBioPortal database (http://cbioportal.org). Material and methods Histological examination of all hematoxylin and eosin-stained slides and assessment of all demographic and clinical information from laboratory records were performed on all OSCC diagnosed between 2005 and 2018. Results Males made up 71.4% of the sample of 231 OSCCs that were evaluated. The patients' average age was 55.38 years. The two most prevalent afflicted sites were the anterior two-thirds of the tongue (57.6%) and the cheek (28.1%). The most prevalent site among smokers were the floor of mouth, cheek, and jaw bones. There was a link between tumor size and numerous anatomical subsites that was shown to be highly significant. OSCC in the FOM was associated with a 25% mortality rate. Patients with OSCC of the anterior tongue and cheek had the best prognosis, with only 15.7% and 15.3% of patients dying during follow-up. Conclusion The present investigation found a correlation between the diverse clinicopathological characteristics of the various anatomical subsites in OSCC. Different anatomical subsites also displayed varying degrees of gene mutation.
Collapse
Affiliation(s)
- Natheer H. Al-Rawi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Dental Medicine, University of Sharjah, United Arab Emirates
- Corresponding author. Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| | - Ibrahim Y. Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | | | - Asmaa T. Uthman
- College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Hesham Marei
- College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
10
|
Tao Y, Xiao‐hong L, Guo‐lin K, hua H, Jia‐hui J, Chao C. The value of ACTN1 in the diagnosis of cutaneous squamous cell carcinoma: A continuation study. Skin Res Technol 2023; 29:e13252. [PMID: 37113080 PMCID: PMC10234166 DOI: 10.1111/srt.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 04/29/2023]
Affiliation(s)
- Yuan Tao
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Lu Xiao‐hong
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Ke Guo‐lin
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Hu hua
- Department of DermatologyThe First Affiliated Hospital of Xinxiang Medical UniversityWeihuiChina
| | - Jiang Jia‐hui
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| | - Ci Chao
- Department of DermatologyYijishan Hospitalthe First Affiliated Hospital of Wannan Medical CollegeWuhuChina
| |
Collapse
|
11
|
Biao T, Cai-Feng H, Xiao-Hong L, Xiao-Li C, Wen-Bei L, Jun W, Chao C, Tao Y. From Bowen disease to cutaneous squamous cell carcinoma: eight markers were verified from transcriptomic and proteomic analyses. J Transl Med 2022; 20:416. [PMID: 36085041 PMCID: PMC9462620 DOI: 10.1186/s12967-022-03622-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Bowen's disease is a cutaneous squamous cell carcinoma (CSCC) in situ. If left untreated, BD may progress to invasive CSCC. CSCC is one of the most common cutaneous carcinoma in the elderly and the advanced, metastasis CSCC usually have a poor outcomes. However, the mechanisms of invasion and metastasis from Bowen’s disease to CSCC is complicated and still unclear. Objectives The aim of this study was to explore the biomarkers and molecular alterations in Bowen’s disease development process via analyzing the proteomics changes in tissues of CSCC, Bowen disease and healthy skin. Methods A total of 7 individuals with CSCC (5 for proteomics study and 2 for validation), 7 individuals with Bowen disease (5 for proteomics study and 2 for validation) and 7 healthy controls (5 for proteomics study and 2 for validation) presented to the Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College between January 2021 and December 2021 were enrolled. The proteomics analysis was performed to screen differentially expressed proteins/gens (DEPs/DEGs) in the lesions of CSCC, Bowen disease and healthy skin tissues. The transcriptomic data (GSE32628) of CSCC was selected and downloaded from the GEO database. The common DEGs in our proteomics results and GSE32628 between CSCC and healthy skin tissues were selected. And then, the common DEGs which significantly up or down-regulated between CSCC and Bowen disease in our proteomics results were further screened to identify using Western blot methods in the validation group. CSCC A431 cells were transfected with SERPINB1 small interfering RNA (si-SERPINB1) or small interfering RNA negative control (si-NC). To explore the effect of SERPINB1 silencing on migration and invasion ability of A431 cells. Results A total of 501 proteins were differentially expressed between the CSCC and healthy skin tissues, with 332 up-regulated and 169 down-regulated at least 1.5-fold with a P value < 0.05. These DEPs involved multiple biological functions such as protein binding process, immune, inflammation, ribosome, protein digestion and absorption, ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway and others. A total of 20 common DEGs (COL3A1, LUM, TNC, COL1A1, ALDH3A2, FSCN1, SERPINB4, SERPINB1, CD36, COL4A1, CSTB, GPX3, S100A7, ACTN1, SERPINB3, S100A8, RAB31, STAT1, SPRR1B, S100A9) between CSCC and healthy skin tissues in GSE32628 and our proteomics results were found. Besides, the proteins of TNC, FSCN1, SERPINB1, ACTN1 and RAB31 in CSCC were significantly up-regulated, while COL3A1, COL1A1 and CD36 were significantly down-regulated relative to Bowen disease in proteomics results. These proteins were mainly involved in multiple pathways, including Focal adhesion, ECM-receptor interaction, Human papillomavirus infection, PI3K-Akt signaling pathway, PPAR signaling pathway, AMPK signaling pathway and others. These eight proteins were selected for further validation. According to the Western blotting analysis, when compared with the Bowen disease and healthy skin tissues, we found that the relative expression levels of TNC, FSCN1, SERPINB1, ACTN1 and RAB31 in the CSCC were significantly increased, while COL1A1 and CD36 were significantly decreased, and the differences were statistically significant (P < 0.05). Furthermore, the relative expression levels of TNC, FSCN1, SERPINB1 in the Bowen disease were also significantly increased, while the COL3A1 were also significantly decreased relative to the healthy control. SERPINB1 siRNA inhibited the expression of SERPINB1 at mRNA and protein levels in the A431 cells. After interfering with the expression of SERPINB1, the migration and invasion ability in the A431 cells were significantly decreased (P < 0.05). Conclusions This study highlights that eight proteins, TNC, FSCN1, SERPINB1, ACTN1, RAB31, COL3A1, COL1A1, CD36, were significantly associated with the mechanisms of invasion and metastasis in Bowen’s disease. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03622-1.
Collapse
Affiliation(s)
- Tang Biao
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - He Cai-Feng
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Lu Xiao-Hong
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Chang Xiao-Li
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Liu Wen-Bei
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Wang Jun
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Ci Chao
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| | - Yuan Tao
- Department of Dermatology, Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
12
|
Bano A, Vats R, Yadav P, Bhardwaj R. Exosomics in oral cancer diagnosis, prognosis, and therapeutics - An emergent and imperative non-invasive natural nanoparticle-based approach. Crit Rev Oncol Hematol 2022; 178:103799. [PMID: 36031170 DOI: 10.1016/j.critrevonc.2022.103799] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 10/15/2022] Open
Abstract
Exosomes- the natural nanoparticles belonging to heterogeneous vesicles are released via nearly all sorts of cells, including tumour cells, to oprate intercellular communication. Selective packaging of exosomes amid nucleic acids, phospholipids, and proteins makes them ideal for intercellular communications occurring among different cells. The existence of exosomes has been validated in various biofluids, including saliva. Being non-invasive and in direct contact with oral malignant cells, saliva establishes itself as a preeminent source of early cancer biomarkers. In context, the role and providence of both recipient and donor secreting cells are persuaded through exosomal cargo.Several studies have emphasized the influence of exosomal contents in different stages of cancer development, reconciling interactions between tumour cells and their surrounding niche. More explicitly, a transformation of exosomal contents such as nucleic acids, lipids, and proteins can endorse tumour progression and help ascertain a secluded pre-metastatic niche crammed with substances that errand cancer cell proliferation,angiogenesis, metastasis, and drug resistance. The blooming field of exosomes has directed the evolution of high-end isolation and characterization techniques along with the development of an entirely new field- exosomics that comprises complete analysis of exosomal cargo in various physiological conditions, including oral cancer. Researchers have discovered multiple pathways involved in exosome biogenesis to understand numerous events associated with cancer progression. Tissue-specific packaging of exosomes makes them a novel source of prognostic and diagnostic biomarkers and potential therapeutic targets. The extent of the current review confers the contemporary perception of the versatile task of exosomes, especially salivary exosomes, as potential biomarkers in the progression and diagnosis as well as therapeutics of oral cancers and their potential employment in clinical applications.
Collapse
Affiliation(s)
- Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
13
|
Hafez F, Abd El Khalek SM, Abou Gabal H, Faheim R. Expression of actinin alpha 1 and E-cadherin in oral squamous-cell carcinoma: Immunohistochemical study. EGYPTIAN JOURNAL OF PATHOLOGY 2022; 42:69. [DOI: 10.4103/egjp.egjp_8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
14
|
Karpińska K, Gielata M, Gwiazdowska A, Boryń Ł, Kobielak A. Catulin Based Reporter System to Track and Characterize the Population of Invasive Cancer Cells in the Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 23:ijms23010140. [PMID: 35008571 PMCID: PMC8745103 DOI: 10.3390/ijms23010140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with a poor prognosis due to late diagnosis and loco-regional metastasis. Partial or more complete epithelial-mesenchymal transition (EMT) plays a role in tumor progression; however, it remains a challenge to observe the EMT in vivo, due to its transient nature. Here, we developed a novel catulin promoter-based reporter system that allows us to isolate and characterize in vivo a small fraction of invasive cancer cells. The analyses of tumors revealed that Catulin-green fluorescent protein (GFP)-positive cells were enriched in clusters of cells at the tumor invasion front. A functional genomic study unveiled genes involved in cellular movement and invasion providing a molecular profile of HNSCC invasive cells. This profile overlapped partially with the expression of signature genes related to the partial EMT available from the single cell analysis of human HNSCC specimens, highlighting the relevance of our data to the clinical disease progression state. Interestingly, we also observed upregulations of genes involved in axonal guidance-L1 cell adhesion molecule (L1CAM), neuropilin-1, semaphorins, and ephrins, indicating potential interactions of cancer cells and neuronal components of the stroma. Taken together, our data indicated that the catulin reporter system marked a population of invasive HNSCC cells with a molecular profile associated with cancer invasion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Aleksandra Gwiazdowska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
| | - Łukasz Boryń
- Laboratory of Stem Cells, Tissue Development and Regeneration, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland;
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, 00-927 Warsaw, Poland; (K.K.); (M.G.); (A.G.)
- Correspondence: ; Tel.: +48-22-55-43-735
| |
Collapse
|
15
|
Proteomic Signatures of Diffuse and Intestinal Subtypes of Gastric Cancer. Cancers (Basel) 2021; 13:cancers13235930. [PMID: 34885041 PMCID: PMC8656738 DOI: 10.3390/cancers13235930] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is a leading cause of death from cancer globally. Gastric cancer is classified into intestinal, diffuse and indeterminate subtypes based on histology according to the Laurén classification. The intestinal and diffuse subtypes, although different in histology, demographics and outcomes, are still treated in the same fashion. This study was designed to discover proteomic signatures of diffuse and intestinal subtypes. Mass spectrometry-based proteomics using tandem mass tags (TMT)-based multiplexed analysis was used to identify proteins in tumor tissues from patients with diffuse or intestinal gastric cancer with adjacent normal tissue control. A total of 7448 or 4846 proteins were identified from intestinal or diffuse subtype, respectively. This quantitative mass spectrometric analysis defined a proteomic signature of differential expression across the two subtypes, which included gremlin1 (GREM1), bcl-2-associated athanogene 2 (BAG2), olfactomedin 4 (OLFM4), thyroid hormone receptor interacting protein 6 (TRIP6) and melanoma-associated antigen 9 (MAGE-A9) proteins. Although GREM1, BAG2, OLFM4, TRIP6 and MAGE-A9 have all been previously implicated in tumor progression and metastasis, they have not been linked to intestinal or diffuse subtypes of gastric cancer. Using immunohistochemical labelling of a tissue microarray comprising of 124 cases of gastric cancer, we validated the proteomic signature obtained by mass spectrometry in the discovery cohort. Our findings should help investigate the pathogenesis of these gastric cancer subtypes and potentially lead to strategies for early diagnosis and treatment.
Collapse
|
16
|
Zhang S, Wang J, Chen T, Wang J, Wang Y, Yu Z, Zhao K, Zheng K, Chen Y, Wang Z, Li B, Wang C, Huang W, Fu Z, Chen J. α-Actinin1 promotes tumorigenesis and epithelial-mesenchymal transition of gastric cancer via the AKT/GSK3β/β-Catenin pathway. Bioengineered 2021; 12:5688-5704. [PMID: 34546849 PMCID: PMC8806412 DOI: 10.1080/21655979.2021.1967713] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
α-Actinin1 (ACTN1), an actin cross-linking protein, is implicated in cytokinesis, cell adhesion, and cell migration. In addition, it is involved in the tumorigenesis and development of certain cancers, such as breast cancer. We explored the function of ACTN1 in gastric cancer (GC), which has largely remained unclear. High-throughput sequencing and public microarray datasets from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) revealed the upregulation of ACTN1 in gastric cancer with a poor prognosis. These results were further verified by western blotting (WB), Real-Time Quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. We constructed loss and gain of function gastric cancer cells, which revealed the effect of ACTN1 over-expression on promoting GC cell proliferation, invasion, migration, and inhibited apoptosis. Mechanistic studies revealed that ACTN1 regulates the epithelial-mesenchymal transition (EMT) and tumorigenesis of gastric cancer via the AKT/GSK3β/β-catenin pathway, confirmed by the inhibitor of AKT MK2206. Altogether, these results demonstrated that ACTN1 could be a promising candidate for gastric cancer treatment.
Collapse
Affiliation(s)
- Siwen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junfu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Chen
- Graduate College, The Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, People's Republic of China
| | - Jiancheng Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhu Yu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kun Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kaitian Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yeyang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bopei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weijia Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhao Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junqiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Han Y, Wen X, Li X, Chen D, Peng L, Lai B, Huang H. Circular RNA hsa_circ_0075542 acts as a sponge for microRNA-1197 to suppress malignant characteristics and promote apoptosis in prostate cancer cells. Bioengineered 2021; 12:5620-5631. [PMID: 34515615 PMCID: PMC8806842 DOI: 10.1080/21655979.2021.1967064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Numerous differentially expressed circular RNAs (circRNAs) have been identified; however, their roles have not been fully elucidated. Since dysregulated circRNAs may have clinical applications, it is vital to study their expression characteristics, function, and mechanism in prostate cancer cells. The role, regulatory mechanism, and expression of hsa_circ_0075542 were analyzed using quantitative reverse transcription polymerase chain reaction. The results indicated that the expression of hsa_circ_0075542 was downregulated in prostate tumor tissues. The functions of prostate cancer cell lines LNCaP and PC3 cells were assessed using cell counting kit-8 and transwell assays and flow cytometry analysis. The results of the functional experiments showed that overexpression of hsa_circ_0075542 suppressed cell proliferation, reduced migration and invasiveness capabilities, and promoted apoptosis. Moreover, hsa_circ_0075542 targeted the microRNA-1197 (miR-1197) homeobox C11 (HOXC11) axis by sponging miR-1197. Overexpression of miR-1197 played a tumor-promoting role. Overexpression of hsa_circ_0075542 alleviated the tumor-promoting effect of miR-1197 overexpression In conclusion, hsa_circ_0075542 suppressed malignant characteristics and promoted apoptosis in LNCaP and PC3 cells by acting as a competing endogenous RNA of miR-1197. The hsa_circ_0075542/miR-1197 axis might play a role via HOXC11.
Collapse
Affiliation(s)
- Yuefu Han
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Xingqiao Wen
- Department of Urology, Third Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Li
- Department of Health Care, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Dong Chen
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Lian Peng
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Bin Lai
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| | - Hongcai Huang
- Department of Urology, Yuebei People Hospital Affiliated to Medical College of Shantou University, Shaoguan, China
| |
Collapse
|
18
|
Adaptor Protein Complex 1 Sigma 3 Is Highly Expressed in Glioma and Could Enhance Its Progression. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5086236. [PMID: 34367317 PMCID: PMC8346305 DOI: 10.1155/2021/5086236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
Introduction Glioma is the widely occurring deadly neoplasm induced by glial cell canceration in the central nervous system, including the brain and spinal cord. The function of AP1S3 is special in numerous diseases, but its exact role in glioma remains unknown. Methods Bioinformatics analysis was performed at the beginning. Based on TCGA database, differentially expressed genes were obtained. Protein-protein interaction (PPI) network analysis is performed by STRING. The annotation, visualization, and synthesis (DAVID) discovery database program was used for gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The Kaplan-Meier curve was plotted to determine the prognostic value of AP1S3 Also, in vitro experiments were conducted in our research. Results 4370 differentially expressed genes were identified. 215 key genes were screened by protein-protein interaction (PPI) analysis; AP1S3 had a higher degree. The top five enriched pathways related to AP1S3 contain protein processing in the endoplasmic reticulum (ER), extracellular matrix receptor (ECM receptor) interaction, focal adhesion, advanced glycation end product (AGE) receptor for AGE (RAGE) signaling pathway in diabetic complications, and mRNA surveillance pathway. Additionally, the AP1S3 level was dramatically upregulated in glioblastoma (GBM) samples, but greatly reduced in low-grade glioma (LGG) samples when compared to that in normal tissues. The Kaplan-Meier curve data showed that AP1S3 was closely related to the disease-free survival (DFS) of glioma. Our data suggested that the expression of AP1S3 was increased in glioma in comparison with normal tissues, in line with the data of clinical samples. What was more, our data demonstrated that the reduction of AP1S3 in glioma cells could result in the inhibition of cell proliferation, invasion, and migration. Conclusion Collectively, our results implied that AP1S3 was a promising biomarker of glioma diagnosis and displayed as an oncogene in glioma.
Collapse
|
19
|
Burton KM, Johnson KM, Krueger EW, Razidlo GL, McNiven MA. Distinct forms of the actin cross-linking protein α-actinin support macropinosome internalization and trafficking. Mol Biol Cell 2021; 32:1393-1407. [PMID: 34010028 PMCID: PMC8694038 DOI: 10.1091/mbc.e20-12-0755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The α-actinin family of actin cross-linking proteins have been implicated in driving tumor cell metastasis through regulation of the actin cytoskeleton; however, there has been little investigation into whether these proteins can influence tumor cell growth. We demonstrate that α-actinin 1 and 4 are essential for nutrient uptake through the process of macropinocytosis in pancreatic ductal adenocarcinoma (PDAC) cells, and inhibition of these proteins decreases tumor cell survival in the presence of extracellular protein. The α-actinin proteins play essential roles throughout the macropinocytic process, where α-actinin 4 stabilizes the actin cytoskeleton on the plasma membrane to drive membrane ruffling and macropinosome internalization and α-actinin 1 localizes to actin tails on macropinosomes to facilitate trafficking to the lysosome for degradation. In addition to tumor cell growth, we also observe that the α-actinin proteins can influence uptake of chemotherapeutics and extracellular matrix proteins through macropinocytosis, suggesting that the α-actinin proteins can regulate multiple tumor cell properties through this endocytic process. In summary, these data demonstrate a critical role for the α-actinin isoforms in tumor cell macropinocytosis, thereby affecting the growth and invasive potential of PDAC tumors.
Collapse
Affiliation(s)
- Kevin M Burton
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | | | - Eugene W Krueger
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gina L Razidlo
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| | - Mark A McNiven
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905.,Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
20
|
Chen Q, Zhou XW, Zhang AJ, He K. ACTN1 supports tumor growth by inhibiting Hippo signaling in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:23. [PMID: 33413564 PMCID: PMC7791991 DOI: 10.1186/s13046-020-01821-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2020] [Indexed: 11/18/2022]
Abstract
Background Alpha actinins (ACTNs) are major cytoskeletal proteins and exhibit many non-muscle functions. Emerging evidence have uncovered the regulatory role of ACTNs in tumorigenesis, however, the expression pattern, biological functions, and underlying mechanism of ACTN1 in hepatocellular carcinoma (HCC) remain largely unexplored. Methods Immunohistochemical analysis of a HCC tissue microarray (n = 157) was performed to determine the expression pattern and prognostic value of ACTN1 in HCC. In vitro loss-of-function study in HCC cells were carried out to investigate ACTN1 knockdown on cell proliferation. In vivo subcutaneous xenograft model and intrahepatic transplantation model were generated to decipher the contribution of ACTN1 in the tumor growth of HCC. Gene set enrichment analysis, quantitative real-time PCR, Co-immunoprecipitation, immunofluorescence and western blotting were performed to identify the underlying molecular mechanism. Results It was found that ACTN1 was significantly upregulated in HCC tissues and closely related to llpha-fetoprotein level, tumor thrombus, tumor size, TNM stage and patient prognoses. Knockdown of ACTN1 suppressed in vitro cell proliferation and in vivo tumor growth of HCC cells. Mechanistically, knockdown of ACTN1 increased Hippo signaling pathway activity and decreased Rho GTPases activities. Mechanistically, ACTN1 could competitively interact with MOB1 and decrease the phosphorylation of LATS1 and YAP. The growth-promoting effect induced by ACTN1 was significantly abrogated by pharmacological inhibition of YAP with verteporfin or super-TDU. Conclusions ACTN1 is highly expressed in HCC tissues and acts as a tumor promoter by suppressing Hippo signaling via physical interaction with MOB1. ACTN1 may serve as a potential prognostic marker and therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01821-6.
Collapse
Affiliation(s)
- Qian Chen
- Reproductive Medical Center, Department of Obstetrics and Gynecology of Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Xiao-Wei Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology of Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Ai-Jun Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology of Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|