1
|
Cimino C, Vidal LB, Conti F, López ES, Bucolo C, García ML, Musumeci T, Pignatello R, Carbone C. From Preformulative Design to in Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 2: In Vitro, Ex Vivo, and In Vivo Studies. Mol Pharm 2024. [PMID: 39514183 DOI: 10.1021/acs.molpharmaceut.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of ocular pathologies is constantly increasing, as is the interest of the researchers in developing new strategies to ameliorate the treatment of these conditions. Nowadays, drug delivery systems are considered among the most relevant approaches due to their applicability in the treatment of a great variety of inner and outer eye pathologies through painless topical administrations. The design of such nanocarriers requires a deep study of many aspects related to the administration route but also a consideration of the authorities and pharmacopeial requirements, in order to achieve a clinical outcome. On such bases, the scope of this review is to describe the path of the analyses that could be performed on nanoparticles, along with the assessment of their applicability for ophthalmic treatments. Preformulation studies, physicochemical and technological characterization, and preliminary noncellular in vitro studies have been described in part 1 of this review. Herein, first the in vitro cellular assays are described; subsequently, nonocular organotypic tests and ex vivo studies are reported, as to present the various analyses to which the formulations can be subjected before in vivo studies, described in the last part. In each step, the models that could be used are presented and compared, highlighting the pros and cons. Moreover, their reliability and eventual acceptance by regulatory agencies are discussed. Hence, this review provides an overview of the most relevant assays applicable for nanocarriers intended for ophthalmic administration to guide researchers in the experimental decision process.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Lorena Bonilla Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95124 Catania, Italy
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
2
|
Cimino C, Zingale E, Bonaccorso A, Musumeci T, Carbone C, Pignatello R. From Preformulative Design to In Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 1: Design, Characterization, and Preliminary In Vitro Studies. Mol Pharm 2024. [PMID: 39441703 DOI: 10.1021/acs.molpharmaceut.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ocular pathologies are widely diffused worldwide, and their effective treatment, combined with a high patient compliance, is sometimes challenging to achieve due to the barriers of the eye; in this context, the use of nanoparticles for topical ophthalmic application could represent a successful strategy. Aiming to develop nanoplatforms with potential clinical applications, great attention has to be paid to their features, in relation to the route of administration and to the pharmacopoeial requirements. This review (part 1) thus embraces the preliminary steps of nanoparticle development and characterization. At the beginning, the main barriers of the eye and the different administration routes are resumed, followed by a general description of the advantages of the employment of nanoparticles for ocular topical administration. Subsequently, the preformulative steps are discussed, deepening the choice of raw materials and determining the quantitative composition. Then, a detailed report of the physicochemical and technological characterization of nanoparticles is presented, analyzing the most relevant tests that should be performed on nanoparticles to verify their properties and the requisites (both mandatory and suggested) demanded by regulatory agencies. In conclusion, some preliminary noncellular in vitro evaluation methods are described. Studies from in vitro cellular assays to in vivo tests will be discussed in a separate (part 2) review paper. Hence, this overview aims to offer a comprehensive tool to guide researchers in the choice of the most relevant studies to develop a nanoplatform for ophthalmic drug administration.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Elide Zingale
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Angela Bonaccorso
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
3
|
Visan AI, Negut I. Development and Applications of PLGA Hydrogels for Sustained Delivery of Therapeutic Agents. Gels 2024; 10:497. [PMID: 39195026 DOI: 10.3390/gels10080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) hydrogels are highly utilized in biomedical research due to their biocompatibility, biodegradability, and other versatile properties. This review comprehensively explores their synthesis, properties, sustained release mechanisms, and applications in drug delivery. The introduction underscores the significance of PLGA hydrogels in addressing challenges like short half-lives and systemic toxicity in conventional drug formulations. Synthesis methods, including emulsion solvent evaporation, solvent casting, electrospinning, thermal gelation, and photopolymerization, are described in detail and their role in tailoring hydrogel properties for specific applications is highlighted. Sustained release mechanisms-such as diffusion-controlled, degradation-controlled, swelling-controlled, and combined systems-are analyzed alongside key kinetic models (zero-order, first-order, Higuchi, and Peppas models) for designing controlled drug delivery systems. Applications of PLGA hydrogels in drug delivery are discussed, highlighting their effectiveness in localized and sustained chemotherapy for cancer, as well as in the delivery of antibiotics and antimicrobials to combat infections. Challenges and future prospects in PLGA hydrogel research are discussed, with a focus on improving drug loading efficiency, improving release control mechanisms, and promoting clinical translation. In summary, PLGA hydrogels provide a promising platform for the sustained delivery of therapeutic agents and meet diverse biomedical requirements. Future advancements in materials science and biomedical engineering are anticipated to further optimize their efficacy and applicability in clinical settings. This review consolidates the current understanding and outlines future research directions for PLGA hydrogels, emphasizing their potential to revolutionize therapeutic delivery and improve patient outcomes.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| |
Collapse
|
4
|
Fu J, You L, Sun D, Zhang L, Zhao J, Li P. Shikonin-loaded PLGA nanoparticles: A promising strategy for psoriasis treatment. Heliyon 2024; 10:e31909. [PMID: 38845878 PMCID: PMC11153250 DOI: 10.1016/j.heliyon.2024.e31909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Psoriasis is an inflammation-based skin illness marked by aggravated proliferation of epidermal cells. Shikonin is a natural naphthoquinone obtained from Arnebiae radix. It exerts anti-inflammatory and immunosuppressive effects. However, the poor water solubility and low bioavailability of shikonin limit its application. In this study, shikosin-loaded PLGA nanoparticle hydrogel was prepared and used to deliver the drug to the epidermis of psoriasis mice through local administration. The results demonstrated that shikosin-loaded PLGA nanoparticles inhibited HaCaT cell multiplication, increased drug uptake, and induced apoptosis of HaCaT cells. Results from Western blotting assays indicated that shikosin down-regulated the protein expressions of p65 and p-p65. Furthermore, shikonin mitigated psoriasis and decreased the concentrations of inflammation-inducing cytokines, i.e., IL17A, IL-17F, IL-22, IL-1β, and TNF-α. Taken together, these results suggest that shikonin-PLGA nanoparticles loaded in hydrogel system possess promising therapeutic potential for psoriasis.
Collapse
Affiliation(s)
- Jing Fu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Longtai You
- Department of Pharmacy, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Daohan Sun
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Lu Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| |
Collapse
|
5
|
Fathi-Karkan S, Amiri Ramsheh N, Arkaban H, Narooie-Noori F, Sargazi S, Mirinejad S, Roostaee M, Sargazi S, Barani M, Malahat Shadman S, Althomali RH, Rahman MM. Nanosuspensions in ophthalmology: Overcoming challenges and enhancing drug delivery for eye diseases. Int J Pharm 2024; 658:124226. [PMID: 38744414 DOI: 10.1016/j.ijpharm.2024.124226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This review article provides a comprehensive overview of the advancements in using nanosuspensions for controlled drug delivery in ophthalmology. It highlights the significance of ophthalmic drug delivery due to the prevalence of eye diseases and delves into various aspects of this field. The article explores molecular mechanisms, drugs used, and physiological factors affecting drug absorption. It also addresses challenges in treating both anterior and posterior eye segments and investigates the role of mucus in obstructing micro- and nanosuspensions. Nanosuspensions are presented as a promising approach to enhance drug solubility and absorption, covering formulation, stability, properties, and functionalization. The review discusses the pros and cons of using nanosuspensions for ocular drug delivery and covers their structure, preparation, characterization, and applications. Several graphical representations illustrate their role in treating various eye conditions. Specific drug categories like anti-inflammatory drugs, antihistamines, glucocorticoids, and more are discussed in detail, with relevant studies. The article also addresses current challenges and future directions, emphasizing the need for improved nanosuspension stability and exploring potential technologies. Nanosuspensions have shown substantial potential in advancing ophthalmic drug delivery by enhancing solubility and absorption. This article is a valuable resource for researchers, clinicians, and pharmaceutical professionals in this field, offering insights into recent developments, challenges, and future prospects in nanosuspension use for ocular drug delivery.
Collapse
Affiliation(s)
- Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd 94531-55166, Iran; Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, 16846, Tehran, Iran.
| | - Hasan Arkaban
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran.
| | - Foroozan Narooie-Noori
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sara Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran; Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mahmood Barani
- Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
| | | | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia.
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
6
|
Roldan TL, Li S, Guillon C, Heindel ND, Laskin JD, Lee IH, Gao D, Sinko PJ. Optimizing Nanosuspension Drug Release and Wound Healing Using a Design of Experiments Approach: Improving the Drug Delivery Potential of NDH-4338 for Treating Chemical Burns. Pharmaceutics 2024; 16:471. [PMID: 38675132 PMCID: PMC11053863 DOI: 10.3390/pharmaceutics16040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
NDH-4338 is a highly lipophilic prodrug comprising indomethacin and an acetylcholinesterase inhibitor. A design of experiments approach was used to synthesize, characterize, and evaluate the wound healing efficacy of optimized NDH-4338 nanosuspensions against nitrogen mustard-induced skin injury. Nanosuspensions were prepared by sonoprecipitation in the presence of a Vitamin E TPGS aqueous stabilizer solution. Critical processing parameters and material attributes were optimized to reduce particle size and determine the effect on dissolution rate and burn healing efficacy. The antisolvent/solvent ratio (A/S), dose concentration (DC), and drug/stabilizer ratio (D/S) were the critical sonoprecipitation factors that control particle size. These factors were subjected to a Box-Behnken design and response surface analysis, and model quality was assessed. Maximize desirability and simulation experiment optimization approaches were used to determine nanosuspension parameters with the smallest size and the lowest defect rate within the 10-50 nm specification limits. Optimized and unoptimized nanosuspensions were prepared and characterized. An established depilatory double-disc mouse model was used to evaluate the healing of nitrogen mustard-induced dermal injuries. Optimized nanosuspensions (A/S = 6.2, DC = 2% w/v, D/S = 2.8) achieved a particle size of 31.46 nm with a narrow size range (PDI = 0.110) and a reduced defect rate (42.2 to 6.1%). The optimized nanosuspensions were stable and re-dispersible, and they showed a ~45% increase in cumulative drug release and significant edema reduction in mice. Optimized NDH-4338 nanosuspensions were smaller with more uniform sizes that led to improved physical stability, faster dissolution, and enhanced burn healing efficacy compared to unoptimized nanosuspensions.
Collapse
Affiliation(s)
- Tomas L. Roldan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
| | - Shike Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
| | - Christophe Guillon
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Ned D. Heindel
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
- Department of Chemistry, Lehigh University, Bethlehem, PA 18015, USA
| | - Jeffrey D. Laskin
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, USA
| | - In Heon Lee
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
| | - Dayuan Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
| | - Patrick J. Sinko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA; (T.L.R.); (S.L.); (I.H.L.); (D.G.)
- CounterACT Center of Excellence, Rutgers University, Piscataway, NJ 08854, USA; (C.G.); (N.D.H.); (J.D.L.)
| |
Collapse
|
7
|
Chen C, Yang L, Peng Y, Zhang WJ, Yang XX, Zhou W. Autophagic blockage by metformin-loaded PLGA nanoparticles causes cell cycle arrest of HepG2 cells. Nanomedicine (Lond) 2024; 19:43-58. [PMID: 38197371 DOI: 10.2217/nnm-2023-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aim: To fabricate and characterize metformin-loaded PLGA nanoparticles and investigate their inhibitory effect on HepG2 cells. Materials & methods: The nanoparticles were prepared using a double emulsification method, then characterized and subjected to a series of in vitro assays on HepG2 cells. Results: The nanoparticles were ~277.9 nm in size, and the entrapment efficiency and drug loading of metformin were 31.3 and 14.4%, respectively. In vitro studies suggested that the nanoparticles showed a higher inhibitory effect on HepG2 cells compared with metformin alone, mainly attributed to its blockage of autophagy, and ultimately result in cell cycle inhibition. Conclusion: The metformin-loaded PLGA nanoparticles could inhibit mTOR activity, increase p53 levels and decrease HIF1A levels, which ultimately caused HepG2 cell cycle arrest.
Collapse
Affiliation(s)
- Chen Chen
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Li Yang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Ying Peng
- Key Laboratory of Metabolism & Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wen Jie Zhang
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Xiao Xiao Yang
- Key Laboratory of Metabolism & Regulation for Major Diseases of Anhui Higher Education Institutes, College of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| | - Wei Zhou
- School of Food & Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, People's Republic of China
| |
Collapse
|
8
|
Singh CP, Rai PK, Kumar M, Tiwari V, Tiwari A, Sharma A, Sharma K. Emphasis on Nanostructured Lipid Carriers in the Ocular Delivery of Antibiotics. Pharm Nanotechnol 2024; 12:126-142. [PMID: 37519002 DOI: 10.2174/2211738511666230727102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Drug distribution to the eye is still tricky because of the eye's intricate structure. Systemic delivery, as opposed to more traditional methods like eye drops and ointments, is more effective but higher doses can be harmful. OBJECTIVE The use of solid lipid nanoparticles (SLNPs) as a method of drug delivery has been the subject of research since the 1990s. Since SLNPs are derived from naturally occurring lipids, they pose no health risks to the user. To raise the eye's absorption of hydrophilic and lipophilic drugs, SLNs can promote corneal absorption and improve the ocular bioavailability of SLNPs. METHODS To address problems related to ocular drug delivery, many forms of nano formulation were developed. Some of the methods developed are, emulsification and ultra-sonication, high-speed stirring and ultra-sonication, thin layer hydration, adapted melt-emulsification, and ultrasonication techniques, hot o/w micro-emulsion techniques, etc. Results: Nanostructured lipid carriers are described in this review in terms of their ocular penetration mechanism, structural characteristic, manufacturing process, characterization, and advantages over other nanocarriers. CONCLUSION Recent developments in ocular formulations with nanostructured bases, such as surfacemodified attempts have been made to increase ocular bioavailability in both the anterior and posterior chambers by incorporating cationic chemicals into a wide variety of polymeric systems.
Collapse
Affiliation(s)
- Chandra Pratap Singh
- Usha college of Pharmacy & Medical Sciences, Vijaygaon, Ambedkar Nagar, 224122, UP, India
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Pankaj Kumar Rai
- Faculty of Pharmaceutical Sciences, Invertis University, Bareilly, 243123, UP, India
| | - Manish Kumar
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| | - Varsha Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Abhishek Tiwari
- Pharmacy Academy, IFTM University, Lodhipur-Rajput, Moradabad, 244102, India
| | - Ajay Sharma
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi, 110017, India
| | - Kamini Sharma
- School of Pharmaceutical Sciences, CT University, Ludhiana, Punjab, India
| |
Collapse
|
9
|
Chen ER, Wozniak RAF. Reimagining the Past: A Future for Antibiotic Drug Discovery in Ophthalmology. Cornea 2024; 43:1-5. [PMID: 37702607 DOI: 10.1097/ico.0000000000003391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
ABSTRACT Antibiotic resistance has emerged as a critical threat for the treatment of bacterial ocular infections. To address the critical need for novel therapeutics, antibiotic drug repurposing holds significant promise. As such, examples of existing FDA-approved drugs currently under development for new applications, novel combinations, and improved delivery systems are discussed.
Collapse
Affiliation(s)
- Eric R Chen
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | | |
Collapse
|
10
|
Al-Shoubki AA, Teaima MH, Abdelmonem R, El-Nabarawi MA, Elhabal SF. Sucrose acetate isobutyrate (SAIB) and glyceryl monooleate (GMO) hybrid nanoparticles for bioavailability enhancement of rivaroxaban: an optimization study. Pharm Dev Technol 2023; 28:928-938. [PMID: 37870222 DOI: 10.1080/10837450.2023.2274944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/20/2023] [Indexed: 10/24/2023]
Abstract
This study aims to improve the RXB bioavailability using hybrid nanoparticles. A modified melt dispersion technique created different formulas with varying GMO-SAIB: RXB and GMO: SAIB ratios, with fixed GMO-SAIB: poloxamer 407 ratios. The PS, PDI, ZP, and EE were measured to determine the optimal formula, which was selected using Design-Expert™ software. The optimized formula was lyophilized and tested for PS, PDI, ZP, and EE. The chosen lyophilized formula (L4) was characterized using FTIR, DSC, PXRD, dissolution studies, and pharmacokinetics studies. The study found correlations between variables and identified how GMO-SAIB concentration affects drug encapsulation. The dissolution parameters were calculated, including % Q5 and % DE). The % Q5 values were 68.4 ± 1.7% and 89.7 ± 3.6% for Xarelto and L4 tablets, respectively. The % DE values were 89.7 ± 0.4% and 97.5 ± 2.1% for Xarelto and L4 tablets, respectively. The AUC values were 2117.0 ng.h/mL (±77.3) and 3919.4 ng.h/mL (±134.8) for Xarelto and L4 tablets, respectively. The Cmax values were 241.3 ng/mL (±21.0) and 521.5 ng/mL (±91.5) for Xarelto and L4 tablets, respectively. In conclusion, the study found that using GMO-SAIB as co-formers effectively enhanced the bioavailability of RXB. The authors recommend using the hybrid nanoparticles technique and suggest further research to enhance its effectiveness for drug delivery.
Collapse
Affiliation(s)
- Adam A Al-Shoubki
- Department of Pharmaceutics and Industrial Pharmacy, University of Derna, Derna, Libya
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MuST), Giza, Egypt
| | | | - Sammar Fathy Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Egypt Cairo
| |
Collapse
|
11
|
Huang X, Li L, Chen Z, Yu H, You X, Kong N, Tao W, Zhou X, Huang J. Nanomedicine for the Detection and Treatment of Ocular Bacterial Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302431. [PMID: 37231939 DOI: 10.1002/adma.202302431] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Ocular bacterial infection is a prevalent cause of blindness worldwide, with substantial consequences for normal human life. Traditional treatments for ocular bacterial infections areless effective, necessitating the development of novel techniques to enable accurate diagnosis, precise drug delivery, and effective treatment alternatives. With the rapid advancement of nanoscience and biomedicine, increasing emphasis has been placed on multifunctional nanosystems to overcome the challenges posed by ocular bacterial infections. Given the advantages of nanotechnology in the biomedical industry, it can be utilized to diagnose ocular bacterial infections, administer medications, and treat them. In this review, the recent advancements in nanosystems for the detection and treatment of ocular bacterial infections are discussed; this includes the latest application scenarios of nanomaterials for ocular bacterial infections, in addition to the impact of their essential characteristics on bioavailability, tissue permeability, and inflammatory microenvironment. Through an in-depth investigation into the effect of sophisticated ocular barriers, antibacterial drug formulations, and ocular metabolism on drug delivery systems, this review highlights the challenges faced by ophthalmic medicine and encourages basic research and future clinical transformation based on ophthalmic antibacterial nanomedicine.
Collapse
Affiliation(s)
- Xiaomin Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Luoyuan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Haoyu Yu
- The Eighth Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518033, P. R. China
| | - Xinru You
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology Brigham and Women's Hospital Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University; Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200030, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| |
Collapse
|
12
|
Ahmed LM, Hassanein KMA, Mohamed FA, Elfaham TH. Formulation and evaluation of simvastatin cubosomal nanoparticles for assessing its wound healing effect. Sci Rep 2023; 13:17941. [PMID: 37864028 PMCID: PMC10589326 DOI: 10.1038/s41598-023-44304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
Wound healing is one of the most challenging medical circumstances for patients. Pathogens can infect wounds, resulting in tissue damage, inflammation, and disruption of the healing process. Simvastatin was investigated recently, as a wound healing agent that may supersede the present therapies for wounds. Our goal in this paper is to focus on formulation of simvastatin cubosomes for topical delivery, as a potential approach to improve simvastatin skin permeation. By this technique its wound healing effect could be improved. Cubosomes were prepared using the top-down method and the prepared cubosomes were characterized by several techniques. The most optimal simvastatin cubosomal formulation was then included in a cubogel dosage form using different gelling agents. The results showed that the average particle size of the prepared cubosomes was 113.90 ± 0.58 nm, the entrapment efficiency was 93.95 ± 0.49% and a sustained simvastatin release was achieved. The optimized formula of simvastatin cubogel displayed pseudoplastic rheological behavior. This same formula achieved enhancement in drug permeation through excised rat skin compared to free simvastatin hydrogel with flux values of 46.18 ± 2.12 mcg cm-2 h-1 and 25.92 ± 3.45 mcg cm-2 h-1 respectively. Based on the in-vivo rat studies results, this study proved a promising potential of simvastatin cubosomes as wound healing remedy.
Collapse
Affiliation(s)
- Lamiaa M Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Khaled M A Hassanein
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Fergany A Mohamed
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Tahani H Elfaham
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
13
|
Kaur B, Kaur M, Ahlawat P, Sharma S. In vitro and in vivo evaluation of dual Clofazimine and Verapamil loaded PLGA nanoparticles. Indian J Clin Biochem 2023; 38:466-474. [PMID: 37746540 PMCID: PMC10516816 DOI: 10.1007/s12291-022-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/15/2022] [Indexed: 10/14/2022]
Abstract
Combination therapy may counter the risk caused by efflux pumps mediated resistance developed by mycobacteria with a concomitant increase of the bactericidal effect of anti-TB drugs. In the present study, combination of two drugs in a nanoformulation was prepared. Clofazimine targets type 2 NADH dehydrogenase of the electron transport chain, and Verapamil inhibits various mycobacterial efflux pumps. The nanotechnology approach was adopted to overcome limitations associated with administration of free form of drugs by using poly (D, L-lactic-co-glycolic acid) as a polymer. Nanoparticles were prepared by oil/water single emulsion solvent evaporation procedure and characterized by various techniques. The results thus highlighted that developed nanoparticles were spherical with nano range size (200-450 nm). Fourier transform infrared spectroscopy revealed successful encapsulation of drugs in developed nanoformulations. Drugs in combination showed higher encapsulation efficiency and percentage drug loading capacity as compared to individual drug nanoformulations. Also, reduced toxicity of nanoformulation was observed in hemolysis assay as compared to free drugs. Ex-vivo analysis demonstrated efficient uptake of rhodamine encapsulated nanoparticles by THP-1 cells, while in-vivo results revealed sustained drug release of nanoformulation as compared to free drugs in combination. Therefore, we were able to achieve development of a single nanoformulation encapsulating Clofazimine and Verapamil in combination. Based on these findings, future studies can be designed to explore the potential of co-encapsulated Clofazimine and Verapamil nanoparticles in management of tuberculosis. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01062-8.
Collapse
Affiliation(s)
- Bhavneet Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, 160012 Chandigarh, India
| | - Maninder Kaur
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, 160012 Chandigarh, India
| | - Priyanca Ahlawat
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, 160012 Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, 160012 Chandigarh, India
| |
Collapse
|
14
|
Budama-Kilinc Y, Gok B, Cetin Aluc C, Kecel-Gunduz S. In vitro and in silico evaluation of the design of nano-phyto-drug candidate for oral use against Staphylococcus aureus. PeerJ 2023; 11:e15523. [PMID: 37309371 PMCID: PMC10257901 DOI: 10.7717/peerj.15523] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Onopordum acanthium is a medicinal plant with many important properties, such as antibacterial, anticancer, and anti-hypotensive properties. Although various studies reported the biological activities of O. acanthium, there is no study on its nano-phyto-drug formulation. The aim of this study is to develop a candidate nano-drug based on phytotherapeutic constituents and evaluate its efficiency in vitro and in silico. In this context, poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) of O. acanthium extract (OAE) were synthesized and characterized. It was determined that the average particle size of OAE-PLGA-NPs was 214.9 ± 6.77 nm, and the zeta potential was -8.03 ± 0.85 mV, and PdI value was 0.064 ± 0.013. The encapsulation efficiency of OAE-PLGA-NPs was calculated as 91%, and the loading capacity as 75.83%. The in vitro drug release study showed that OAE was released from the PLGA NPs with 99.39% over the 6 days. Furthermore, the mutagenic and cytotoxic activity of free OAE and OAE-PLGA-NPs were evaluated by the Ames test and MTT test, respectively. Although 0.75 and 0.37 mg/mL free OAE concentrations caused both frameshift mutation and base pair substitution (p < 0.05), the administered OAE-PLGA NP concentrations were not mutagenic. It was determined with the MTT analysis that the doses of 0.75 and 1.5 mg/mL of free OAE had a cytotoxic effect on the L929 fibroblast cell line (p < 0.05), and OAE-PLGA-NPs had no cytotoxic effect. Moreover, the interaction between the OAE and S. aureus was also investigated using the molecular docking analysis method. The molecular docking and molecular dynamics (MD) results were implemented to elucidate the S. aureus MurE inhibition potential of OAE. It was shown that quercetin in the OAE content interacted significantly with the substantial residues in the catalytic pocket of the S. aureus MurE enzyme, and quercetin performed four hydrogen bond interactions corresponding to a low binding energy of -6.77 kcal/mol with catalytic pocket binding residues, which are crucial for the inhibition mechanism of S. aureus MurE. Finally, the bacterial inhibition values of free OAE and OAE-PLGA NPs were determined against S. aureus using a microdilution method. The antibacterial results showed that the inhibition value of the OAE-PLGA NPs was 69%. In conclusion, from the in vitro and in silico results of the nano-sized OAE-PLGA NP formulation produced in this study, it was evaluated that the formulation may be recommended as a safe and effective nano-phyto-drug candidate against S. aureus.
Collapse
Affiliation(s)
- Yasemin Budama-Kilinc
- Bioengineering Department, Yildiz Technical University, Istanbul, Turkey
- Health Biotechnology Joint Research and Application Center of Excellence, Istanbul, Turkey
| | - Bahar Gok
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
| | - Cigdem Cetin Aluc
- Graduate School of Natural and Applied Science, Yildiz Technical University, Istanbul, Turkey
- Abdi Ibrahim Production Facilities, Abdi Ibrahim Pharmaceuticals, Istanbul, Turkey
| | | |
Collapse
|
15
|
Overview of Antimicrobial Biodegradable Polyester-Based Formulations. Int J Mol Sci 2023; 24:ijms24032945. [PMID: 36769266 PMCID: PMC9917530 DOI: 10.3390/ijms24032945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/05/2023] Open
Abstract
As the clinical complications induced by microbial infections are known to have life-threatening side effects, conventional anti-infective therapy is necessary, but not sufficient to overcome these issues. Some of their limitations are connected to drug-related inefficiency or resistance and pathogen-related adaptive modifications. Therefore, there is an urgent need for advanced antimicrobials and antimicrobial devices. A challenging, yet successful route has been the development of new biostatic or biocide agents and biomaterials by considering the indisputable advantages of biopolymers. Polymers are attractive materials due to their physical and chemical properties, such as compositional and structural versatility, tunable reactivity, solubility and degradability, and mechanical and chemical tunability, together with their intrinsic biocompatibility and bioactivity, thus enabling the fabrication of effective pharmacologically active antimicrobial formulations. Besides representing protective or potentiating carriers for conventional drugs, biopolymers possess an impressive ability for conjugation or functionalization. These aspects are key for avoiding malicious side effects or providing targeted and triggered drug delivery (specific and selective cellular targeting), and generally to define their pharmacological efficacy. Moreover, biopolymers can be processed in different forms (particles, fibers, films, membranes, or scaffolds), which prove excellent candidates for modern anti-infective applications. This review contains an overview of antimicrobial polyester-based formulations, centered around the effect of the dimensionality over the properties of the material and the effect of the production route or post-processing actions.
Collapse
|
16
|
Anter HM, Aman RM, Othman DIA, Elamin KM, Hashim IIA, Meshali MM. Apocynin-loaded PLGA nanomedicine tailored with galactosylated chitosan intrigue asialoglycoprotein receptor in hepatic carcinoma: Prospective targeted therapy. Int J Pharm 2023; 631:122536. [PMID: 36572262 DOI: 10.1016/j.ijpharm.2022.122536] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Nature serves as a priceless source for phytomedicines to treat different types of cancer, including hepatocellular carcinoma (HCC). Apocynin (APO), an anti-cancer phytomedicine, is a particular nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase) inhibitor, which has recently dawned for its multilateral pharmacological activities. As far as we are aware, no investigation has been carried out yet to develop a targeted-nanostructured delivery system of APO to HCC. Consequently, chitosan derivative with galactose groups namely; galactosylated chitosan (GC), particularly recognized by the asialoglycoprotein receptor (ASGR), was synthesized and its chemical structure was thoroughly characterized by substantial techniques. Afterwards, GC-coated nanoplatform for hepatocyte attachment "APO-loaded galactosylated chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles (APO-loaded GC-coated PLGA NPs)" was developed. The prosperous APO-loaded GC-coated PLGA NPs would be comprehensively appraised through extensive investigations. Their solid state characterization using Fourier transform-infrared spectroscopy, powder X-ray diffraction, and differential scanning calorimetry proved APO's encapsulation in the polymeric matrix. Transmission electron microscopy imaging of the investigated NPs highlighted their spherical architecture with a nanosized range and a characteristic halo-like appearance traceable to the GC coating of the NPs' surface. Saliently, the results of in vitro cytotoxicity screening revealed the spectacular anti-cancer efficacy of APO-loaded GC-coated PLGA NPs formula against the HepG2 cell line. Moreover, the fluorescence microscope disclosed the distinguished cellular uptake of such formula via ASGPR mediated endocytosis. Inclusively, a multifunctional nano-phytomedicine delivery system with a promising active hepatocyte-targeting, effective uptake into HepG2 cells, and sustained drug release pattern was successfully developed.
Collapse
Affiliation(s)
- Hend Mohamed Anter
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt.
| | - Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Dina Ibrahim Ali Othman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Khaled M Elamin
- Global Center for Natural Resources Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| |
Collapse
|
17
|
Mohamed Anter H, Mokhtar Aman R, Abdelaziz Shaaban A, Ibrahim Abu Hashim I, Mohamed Meshali M. Propitious maneuvering for delivery of the phytopharmaceutical "apocynin" to induced fulminant hepatitis in BALB/c mice: In vitro and in vivo assessments. Int J Pharm 2022; 626:122165. [PMID: 36089210 DOI: 10.1016/j.ijpharm.2022.122165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/14/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022]
Abstract
Apocynin (APO), a specific nicotinamide adenine dinucleotide phosphate-oxidase (NADPH-oxidase, NOX) inhibitor, has recently emerged as a bioactive phytochemical with eminent anti-inflammatory and anti-oxidant activities. To our knowledge, no research has been conducted to fabricate a mucoadhesive nanostructured delivery system of APO that targets the liver. Accordingly, chitosan (CS) surface decorated polymeric nanoparticulate delivery system (PNDS) was victoriously fabricated by double emulsion-solvent evaporation method. Herein, a randomized full 33 factorial design was employed to assess the impact of the independently processing parameters (IPPs) namely; (poly(d,l-lactide-co-glycolide) (PLGA) amount (A)), (polyvinyl alcohol (PVA) concentration (B)), and (CS concentration (C)), on different dependently measured attributes (DMAs). The optimal APO-loaded chitosan-coated poly(d,l-lactide-co-glycolide) nanoparticles (APO-loaded CS-coated PLGA NPs) formula (F19) would be extensively appraised through meticulous in vitro-in vivo studies. Crucially, the results revealed that oral pre-treatment with the optimal formula evoked a prodigious in vivo hepatoprotective efficacy against lipopolysaccharide (LPS)/D-(+)-galactosamine (D-GalN) induced fulminant hepatitis (FH) in BALB/c mice when compared with pure APO, uncoated F19, and plain NPs (P NPs) pretreated groups. In conclusion, APO-loaded CS-coated PLGA NPs could be considered as a promising oral mucoadhesive phytopharmaceutical PNDS to open new prospects for therapeutic intervention in inflammatory based liver diseases.
Collapse
Affiliation(s)
- Hend Mohamed Anter
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt.
| | - Reham Mokhtar Aman
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Ahmed Abdelaziz Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia 35516, Egypt
| |
Collapse
|
18
|
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges. Cells 2022; 11:cells11182851. [PMID: 36139426 PMCID: PMC9497093 DOI: 10.3390/cells11182851] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022] Open
Abstract
In this review, we will discuss the current status of extracellular vesicle (EV) delivery via biopolymeric scaffolds for therapeutic applications and the challenges associated with the development of these functionalized scaffolds. EVs are cell-derived membranous structures and are involved in many physiological processes. Naïve and engineered EVs have much therapeutic potential, but proper delivery systems are required to prevent non-specific and off-target effects. Targeted and site-specific delivery using polymeric scaffolds can address these limitations. EV delivery with scaffolds has shown improvements in tissue remodeling, wound healing, bone healing, immunomodulation, and vascular performance. Thus, EV delivery via biopolymeric scaffolds is becoming an increasingly popular approach to tissue engineering. Although there are many types of natural and synthetic biopolymers, the overarching goal for many tissue engineers is to utilize biopolymers to restore defects and function as well as support host regeneration. Functionalizing biopolymers by incorporating EVs works toward this goal. Throughout this review, we will characterize extracellular vesicles, examine various biopolymers as a vehicle for EV delivery for therapeutic purposes, potential mechanisms by which EVs exert their effects, EV delivery for tissue repair and immunomodulation, and the challenges associated with the use of EVs in scaffolds.
Collapse
Affiliation(s)
- Kasey S. Leung
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Lyndon F. Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
19
|
Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, Mathur K, Joshi S, Dhuri S, Parikh D, Mutalik S, Mehta T. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release 2022; 350:538-568. [PMID: 36030993 DOI: 10.1016/j.jconrel.2022.08.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/17/2022]
Abstract
The invigoration of protein and peptides in serious eye disease includes age-related macular degeneration, choroidal neovascularization, retinal neovascularization, and diabetic retinopathy. The transportation of macromolecules like aptamers, recombinant proteins, and monoclonal antibodies to the posterior segment of the eye is challenging due to their high molecular weight, rapid degradation, and low solubility. Moreover, it requires frequent administration for prolonged therapy. The long-acting novel formulation strategies are helpful to overcome these issues and provide superior therapy. It avoids frequent administration, improves stability, high retention time, and avoids burst release. This review briefly enlightens posterior segments of eye diseases with their diagnosis techniques and treatments. This article mainly focuses on recent advanced approaches like intravitreal implants and injectables, electrospun injectables, 3D printed drug-loaded implants, nanostructure thin-film polymer devices encapsulated cell technology-based intravitreal implants, injectable and depots, microneedles, PDS with ranibizumab, polymer nanoparticles, inorganic nanoparticles, hydrogels and microparticles for delivering macromolecules in the eye for intended therapy. Furthermore, novel techniques like aptamer, small Interference RNA, and stem cell therapy were also discussed. It is predicted that these systems will make revolutionary changes in treating posterior segment eye diseases in future.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Priyanka Bangar
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Amarjitsing Rajput
- Department of Pharmaceutics, Bharti Vidyapeeth Deemed University, Poona College of Pharmacy, Pune, Maharashtra 411038, India
| | - Prashant Pingale
- Department of Pharmaceutics, GES's Sir Dr. M.S. Gosavi College of Pharmaceutical Education and Research, Nashik, Maharashtra 422005, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Anam Sami
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Khushboo Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Shubham Joshi
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Sonika Dhuri
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Dhaivat Parikh
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481, India.
| |
Collapse
|
20
|
Suner SS, Sahiner M, Ayyala RS, Sahiner N. Degradable and Non-Degradable Chondroitin Sulfate Particles with the Controlled Antibiotic Release for Bacterial Infections. Pharmaceutics 2022; 14:pharmaceutics14081739. [PMID: 36015365 PMCID: PMC9415033 DOI: 10.3390/pharmaceutics14081739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
Non-degradable, slightly degradable, and completely degradable micro/nanoparticles derived from chondroitin sulfate (CS) were synthesized through crosslinking reactions at 50%, 40%, and 20% mole ratios, respectively. The CS particles with a 20% crosslinking ratio show total degradation within 48 h, whereas 50% CS particles were highly stable for up to 240 h with only 7.0 ± 2.8% weight loss in physiological conditions (pH 7.4, 37 °C). Tobramycin and amikacin antibiotics were encapsulated into non-degradable CS particles with high loading at 250 g/mg for the treatment of corneal bacterial ulcers. The highest release capacity of 92 ± 2% was obtained for CS-Amikacin particles with sustainable and long-term release profiles. The antibacterial effects of CS particles loaded with 2.5 mg of antibiotic continued to render a prolonged release time of 240 h with 24 ± 2 mm inhibition zones against Pseudomonas aeruginosa. Furthermore, as a carrier, CS particles significantly improved the compatibility of the antibiotics even at high particle concentrations of 1000 g/mL with a minimum of 71 ± 7% fibroblast cell viability. In summary, the sustainable delivery of antibiotics and long-term treatment of bacterial keratitis were shown to be afforded by the design of tunable degradation ability of CS particles with improved biocompatibility for the encapsulated drugs.
Collapse
Affiliation(s)
- Selin S. Suner
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Mehtap Sahiner
- Bioengineering Department, Engineering Faculty, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
| | - Ramesh S. Ayyala
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Nurettin Sahiner
- Department of Chemistry & Nanoscience and Technology Research and Application Center, Canakkale Onsekiz Mart University Terzioglu Campus, Canakkale 17100, Turkey
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Chemical and Biomolecular Engineering, University of South Florida, Tampa, FL 33620, USA
- Correspondence: or
| |
Collapse
|
21
|
Development of Chitosan-Coated PLGA-Based Nanoparticles for Improved Oral Olaparib Delivery: In Vitro Characterization, and In Vivo Pharmacokinetic Studies. Processes (Basel) 2022. [DOI: 10.3390/pr10071329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Olaparib (OLP) is an orally active poly (ADP-ribose) polymerase enzyme inhibitor, approved for treatment for the metastatic stage of prostate, pancreatic, breast and ovarian cancer. Due to its low bioavailability, an increase in dose and frequency is required to achieve therapeutic benefits, which also results in associated toxicity in patients. In the current study, OLP-loaded poly (d,l-lactide-co-glycolide) (PLGA) nanoparticles (NPs) (OLP-PLGA NPs) and a coating of OLP-PLGA NPs with chitosan (CS) (OLP-CS-PLGA NPs) were prepared successfully in order to improve the dissolution rate and bioavailability. The developed OLP-PLGA NPs were evaluated for hydrodynamic particle size (392 ± 5.3 nm), PDI (0.360 ± 0.03), ZP (−26.9 ± 2.1 mV), EE (71.39 ± 5.5%) and DL (14.86 ± 1.4%), and OLP-CS-PLGA NPs, hydrodynamic particle size (622 ± 9.5 nm), PDI (0.321 ± 0.02), ZP (+36.0 ± 1.7 mV), EE (84.78 ± 6.3%) and DL (11.05 ± 2.6%). The in vitro release profile of both developed NPs showed a sustained release pattern. Moreover, the pharmacokinetics results exhibited a 2.0- and 4.75-fold increase in the bioavailability of OLP-PLGA NPs and OLP-CS-PLGA NPs, respectively, compared to normal OLP suspension. The results revealed that OLP-CS-PLGA NPs could be an effective approach to sustaining and improving the bioavailability of OLP.
Collapse
|
22
|
González-Cela-Casamayor MA, López-Cano JJ, Bravo-Osuna I, Andrés-Guerrero V, Vicario-de-la-Torre M, Guzmán-Navarro M, Benítez-del-Castillo JM, Herrero-Vanrell R, Molina-Martínez IT. Novel Osmoprotective DOPC-DMPC Liposomes Loaded with Antihypertensive Drugs as Potential Strategy for Glaucoma Treatment. Pharmaceutics 2022; 14:pharmaceutics14071405. [PMID: 35890300 PMCID: PMC9317418 DOI: 10.3390/pharmaceutics14071405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Glaucoma is a group of chronic irreversible neuropathies that affect the retina and the optic nerve. It is considered one of the leading causes of blindness in the world. Although it can be due to various causes, the most important modifiable risk factor is the elevated intraocular pressure (IOP). In this case, the treatment of choice consists of instilling antihypertensive formulations on the ocular surface. The chronicity of the pathology, together with the low bioavailability of the drugs that are applied on the ocular surface, make it necessary to instill the formulations very frequently, which is associated, in many cases, with the appearance of dry eye disease (DED). The objective of this work is the design of topical ocular formulations capable of treating glaucoma and, at the same time, preventing DED. For this, two liposome formulations, loaded with brimonidine or with travoprost, were Tadeveloped using synthetic phospholipids and enriched by the addition of compounds with osmoprotective activity. The proposed formulations not only presented physicochemical characteristics (size, pH, osmolarity, surface tension, and viscosity) and encapsulation efficiency values (EE% of 24.78% and ≥99.01% for brimonidine and travoprost, respectively) suitable for ocular surface administration, but also showed good tolerance in human corneal and conjunctival cell cultures, as well as an in vitro osmoprotective activity. The hypotensive effect of both liposomal formulations was evaluated in normotensive albino New Zealand rabbits, showing a faster and longer lasting reduction of intraocular pressure in comparison to the corresponding commercialized products used as control. According to these results, the hypotensive liposomal formulations combined with osmoprotective agents would result in a very promising platform for the treatment of glaucoma and the simultaneous protection of the ocular surface.
Collapse
Affiliation(s)
- Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - José Javier López-Cano
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Vanessa Andrés-Guerrero
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Marta Vicario-de-la-Torre
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Manuel Guzmán-Navarro
- Biomedical Sciences Department, Pharmacy and Pharmaceutical Technology Unit, Facultad de Farmacia, Universidad de Alcalá, 28801 Madrid, Spain;
| | - José Manuel Benítez-del-Castillo
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Ocular Surface and Inflammation Unit (USIO), Departamento de Inmunología, Oftalmología y OLR, Hospital Clínico San Carlos, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| | - Irene Teresa Molina-Martínez
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (M.A.G.-C.-C.); (J.J.L.-C.); (I.B.-O.); (V.A.-G.); (M.V.-d.-l.-T.); (J.M.B.-d.-C.)
- Department of Pharmaceutics and Food Technology, Facultad de Farmacia, Universidad Complutense de Madrid (UCM), IdISSC, 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Correspondence: (R.H.-V.); (I.T.M.-M.)
| |
Collapse
|
23
|
Hosseini SM, Taheri M, Nouri F, Farmani A, Moez NM, Arabestani MR. Nano drug delivery in intracellular bacterial infection treatments. Biomed Pharmacother 2022; 146:112609. [PMID: 35062073 DOI: 10.1016/j.biopha.2021.112609] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/20/2022] Open
Abstract
The present work aimed to review the potential mechanisms used by macrophages to kill intracellular bacteria, their entrance to the cell, and mechanisms of escape of cellular immunity and applications of various nanoparticles. Since intracellular bacteria such as Mycobacterium and Brucella can survive in host cells and can resist the lethal power of macrophages, they can cause chronic disease or recur in 10-30% of cases in improved patients Nano drug-based therapeutics are promising tools for treating intracellular bacteria and preventing recurrence of the disease caused by these bacteria. In addition, among their unique features, we can mention the small size and the ability of these compounds to purposefully reach the target location.
Collapse
Affiliation(s)
- Seyed Mostafa Hosseini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmani
- Department of Nanobiotechnology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Narjes Morovati Moez
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
24
|
Chang YF, Cheng YH, Ko YC, Chiou SH, Jui-Ling Liu C. Development of topical chitosan/ β-glycerophosphate-based hydrogel loaded with levofloxacin in the treatment of keratitis: An ex-vivo study. Heliyon 2022; 8:e08697. [PMID: 35028471 PMCID: PMC8741500 DOI: 10.1016/j.heliyon.2021.e08697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/18/2021] [Accepted: 12/27/2021] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus species are responsible for most cases of post-operative endophthalmitis. Topical ocular drug was applied for post-operative infection prevention, but the way of delivery encounters many challenges in terms of patient's compliance, drug efficacy, and drug penetration. We used the levofloxacin-loaded chitosan/gelatin/β-glycerophosphate hydrogel sustained releasing system with good in vitro anti-bacterial efficacy and biocompatibility, which we had previously designed, for ex vivo keratitis model to test the preclinical drug efficacy and to determine drug level in the anterior chamber of the eye. The result showed that the ex-vivo corneal keratitis model with S. aureus infection revealed mild opacity over the central cornea with stromal infiltrate, but without obvious stromal infiltration post levofloxacin-loaded hydrogel treatment after 24 h of infection. Quantification of viable bacteria showed a significant anti-bacterial activity. The histological evidence also showed no visible S. aureus after levofloxacin-loaded hydrogel treatment, with a significant anti-inflammatory effect. We also examined the drug concentration in the aqueous humor 24 h after instilling one drop of the levofloxacin-loaded hydrogel. The concentration achieved to a desired drug level. These results suggested that by the ex-vivo model, levofloxacin-loaded hydrogel can be applied for treatment in post-operative endophthalmitis or keratitis after the ophthalmic surgery.
Collapse
Affiliation(s)
- Yu-Fan Chang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yung-Hsin Cheng
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Yu-Chieh Ko
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Catherine Jui-Ling Liu
- National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
25
|
Abdelkader DH, Abosalha AK, Khattab MA, Aldosari BN, Almurshedi AS. A Novel Sustained Anti-Inflammatory Effect of Atorvastatin-Calcium PLGA Nanoparticles: In Vitro Optimization and In Vivo Evaluation. Pharmaceutics 2021; 13:1658. [PMID: 34683951 PMCID: PMC8540852 DOI: 10.3390/pharmaceutics13101658] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/23/2023] Open
Abstract
Atorvastatin Calcium (At-Ca) has pleiotropic effect as anti-inflammatory drug beside its main antihyperlipidemic action. Our study was conducted to modulate the anti-inflammatory effect of At-Ca to be efficiently sustained for longer time. Single oil-water emulsion solvent evaporation technique was used to fabricate At-Ca into polymeric nanoparticles (NPs). In vitro optimization survey was performed on Poly(lactide-co-glycolide) (PLGA) loaded with At-Ca regrading to particle size, polydispersity index (PDI), zeta potential, percent entrapment efficiency (% EE), surface morphology and in vitro release pattern. In vitro drug-polymers interactions were fully scanned using Fourier-Transform Infrared Spectroscopy (FTIR) and Differential Scanning calorimetry (DSC) proving that the method of fabrication is an optimal strategy maintaining the drug structure with no interaction with polymeric matrix. The optimized formula with particle size (248.2 ± 15.13 nm), PDI (0.126 ± 0.048), zeta potential (-12.41 ± 4.80 mV), % EE (87.63 ± 3.21%), initial burst (39.78 ± 6.74%) and percent cumulative release (83.63 ± 3.71%) was orally administered in Male Sprague-Dawley rats to study the sustained anti-inflammatory effect of At-Ca PLGA NPs after carrageenan induced inflammation. In vivo results demonstrate that AT-Ca NPs has a sustained effect extending for approximately three days. Additionally, the histological examination revealed that the epidermal/dermal layers restore their typical normal cellular alignment with healthy architecture.
Collapse
Affiliation(s)
- Dalia H. Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Ahmed Kh. Abosalha
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Mohamed A. Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Basmah N. Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Alanood S. Almurshedi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
26
|
Nguyen DCT, Dowling J, Ryan R, McLoughlin P, Fitzhenry L. Pharmaceutical-loaded contact lenses as an ocular drug delivery system: A review of critical lens characterization methodologies with reference to ISO standards. Cont Lens Anterior Eye 2021; 44:101487. [PMID: 34353748 DOI: 10.1016/j.clae.2021.101487] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 01/12/2023]
Abstract
Therapeutic contact lenses for ocular drug delivery have received considerable interest as they can potentially enhance ocular bioavailability, increase patient compliance, and reduce side effects. Along with the successful in vitro and in vivo studies on sustained drug delivery through contact lenses, lens critical properties such as water content, optical transparency and modulus have also been investigated. Aside from issues such as drug stability or burst release, the potential for the commercialization of pharmaceutical-loaded lenses can be limited by the alteration of lens physical and chemical properties upon the incorporation of therapeutic or non-therapeutic components. This review outlines advances in the use of pharmaceutical-loaded contact lenses and their relevant characterization methodologies as a potential ocular drug delivery system from 2010 to 2020, while summarizing current gaps and challenges in this field. A key reference point for this review is the relevant ISO standards on contact lenses, relating to the associated characterization methodologies. The content of this review is categorized based on the chemical, physical and mechanical properties of the loaded lens with the shortcomings of such analytical technologies examined.
Collapse
Affiliation(s)
- Dan Chau Thuy Nguyen
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland.
| | - Joseph Dowling
- Research and Development Department, Bausch + Lomb Ireland Ltd., Waterford City, County Waterford X91 V383, Ireland
| | - Richie Ryan
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland
| | - Peter McLoughlin
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland
| | - Laurence Fitzhenry
- Ocular Therapeutics Research Group (OTRG), Pharmaceutical & Molecular Biotechnology Research Centre (PMBRC), Waterford Institute of Technology, Waterford City, County Waterford X91 K0EK, Ireland
| |
Collapse
|
27
|
Cortés H, Hernández-Parra H, Bernal-Chávez SA, Prado-Audelo MLD, Caballero-Florán IH, Borbolla-Jiménez FV, González-Torres M, Magaña JJ, Leyva-Gómez G. Non-Ionic Surfactants for Stabilization of Polymeric Nanoparticles for Biomedical Uses. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3197. [PMID: 34200640 PMCID: PMC8226872 DOI: 10.3390/ma14123197] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Surfactants are essential in the manufacture of polymeric nanoparticles by emulsion formation methods and to preserve the stability of carriers in liquid media. The deposition of non-ionic surfactants at the interface allows a considerable reduction of the globule of the emulsion with high biocompatibility and the possibility of oscillating the final sizes in a wide nanometric range. Therefore, this review presents an analysis of the three principal non-ionic surfactants utilized in the manufacture of polymeric nanoparticles; polysorbates, poly(vinyl alcohol), and poloxamers. We included a section on general properties and uses and a comprehensive compilation of formulations with each principal non-ionic surfactant. Then, we highlight a section on the interaction of non-ionic surfactants with biological barriers to emphasize that the function of surfactants is not limited to stabilizing the dispersion of nanoparticles and has a broad impact on pharmacokinetics. Finally, the last section corresponds to a recommendation in the experimental approach for choosing a surfactant applying the systematic methodology of Quality by Design.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - María L. Del Prado-Audelo
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (H.H.-P.); (I.H.C.-F.)
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Fabiola V. Borbolla-Jiménez
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (H.C.); (F.V.B.-J.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, CDMX, Ciudad de México 14380, Mexico;
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| |
Collapse
|
28
|
Rebibo L, Tam C, Sun Y, Shoshani E, Badihi A, Nassar T, Benita S. Topical tacrolimus nanocapsules eye drops for therapeutic effect enhancement in both anterior and posterior ocular inflammation models. J Control Release 2021; 333:283-297. [PMID: 33798665 DOI: 10.1016/j.jconrel.2021.03.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
Tacrolimus has shown efficacy in eye inflammatory diseases. However, due to the drug lability, its formulation into a stable ophthalmic product remains a challenge. Tacrolimus-loaded nanocapsules (NCs) were designed for ocular instillation. Further, the stability and effects of the formulation were analyzed under different experimental conditions. Physicochemical characterization of the NCs revealed suitable homogeneous size and high encapsulation efficiency. Moreover, the lyophilized formulation was stable at ICH long term and accelerated storage conditions, for at least 18 and 3 months, respectively. The tacrolimus NCs did not elicit any eye irritation in rabbits after single- and multiple-dose applications. Additionally, ex vivo penetration assays on isolated porcine cornea and pharmacokinetics analyses in various rabbit eye compartments demonstrated the superiority of the NCs in retention and permeation into the anterior chamber of the eye compared to the free drug dissolved in oil. Moreover, multiple dose ocular instillation of the NCs in rats allowed high tacrolimus levels in the eye with very low plasma concentrations. Finally, the developed delivery system achieved a significant decrease in four typical inflammatory markers in a murine model of keratitis, an anterior chamber inflammation. Furthermore, these NCs, applied as eye drops, displayed clinical and histological efficacy in the mainly posterior chamber inflammation model of murine, experimental auto-immune uveitis.
Collapse
Affiliation(s)
- Leslie Rebibo
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Connie Tam
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Yan Sun
- Department of Ophthalmic Research, Cole Eye Institute and Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | - Taher Nassar
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Simon Benita
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel; BioNanoSim Ltd., Jerusalem, Israel.
| |
Collapse
|