1
|
Kumar S, Hsiao YW, Wong VHY, Aubin D, Wang JH, Lisowski L, Rakoczy EP, Li F, Alarcon-Martinez L, Gonzalez-Cordero A, Bui BV, Liu GS. Characterization of RNA editing and gene therapy with a compact CRISPR-Cas13 in the retina. Proc Natl Acad Sci U S A 2024; 121:e2408345121. [PMID: 39475642 DOI: 10.1073/pnas.2408345121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
CRISPR-Cas13 nucleases are programmable RNA-targeting effectors that can silence gene expression in a transient manner. Recent iterations of Cas13 nucleases are compact for adeno-associated virus (AAV) delivery to achieve strong and persistent expression of various organs in a safe manner. Here, we report significant transcriptomic signatures of Cas13bt3 expression in retinal cells and show all-in-one AAV gene therapy with Cas13bt3 can effectively silence VEGFA mRNA in human retinal organoids and humanized VEGF transgenic mouse (trVEGF029, Kimba) models. Specifically, human embryonic stem cells (hESC)-derived retinal pigment epithelium cells show high expression of Cas13bt3 from virus delivery corresponding to a significant reduction of VEGFA mRNA. We further show that intravitreal delivery of Cas13bt3 by AAV2.7m8 can efficiently transduce mouse retinal cells for specific knockdown of human VEGFA in the Kimba mouse. Our results reveal important considerations for assessing Cas13 activity, and establish the Cas13bt3 RNA editing system as a potential anti-VEGF agent that can achieve significant control of VEGFA for the treatment of retinal neovascularization.
Collapse
Affiliation(s)
- Satheesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Yi-Wen Hsiao
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Deborah Aubin
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Stem Cell Medicine and Stem Cell and Organoid Facility, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine - National Research Institute, Warsaw 04-349, Poland
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Elizabeth P Rakoczy
- Centre for Ophthalmology and Visual Science, University of Western Australia, Crawley, WA 6009, Australia
| | - Fan Li
- Eye Center, Zhongshan City People's Hospital, Zhongshan, Guangdong Province 528403, China
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
| | - Anai Gonzalez-Cordero
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2050, Australia
- Stem Cell Medicine and Stem Cell and Organoid Facility, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC 3002, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC 3002, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
2
|
Fu S, Sun W, Liu L, Xiao J, Xiong J, Hu Y, Zhou Q, Yin X. Müller Cells Harboring Exosomal lncRNA OGRU Modulate Microglia Polarization in Diabetic Retinopathy by Serving as miRNA Sponges. Diabetes 2024; 73:1919-1934. [PMID: 39178104 PMCID: PMC11493765 DOI: 10.2337/db23-1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/19/2024] [Indexed: 08/25/2024]
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes worldwide and is associated with visual loss and blindness. However, effective treatments for both early- and late-stage DR remain lacking. A streptozotocin-induced diabetic mouse model and high glucose (HG)-treated Müller cell model were established. M1/M2 microglia polarization was assessed by immunofluorescence staining and flow cytometry. Expression of long noncoding RNA (lncRNA) OGRU, cytokines, and other key molecules was detected by quantitative RT-PCR or Western blot. ELISA was used to monitor cytokine secretion. Müller cell-derived exosomes were isolated and characterized by nanopartical tracking analysis, Western blot, and transmission electron microscopy, and exosome uptake assay was used to monitor the intercellular transport of exosomes. Associations among lncRNA-miRNA-mRNA networks were validated by RNA pulldown and RNA immunoprecipitation and dual luciferase assays. Increased M1 polarization but decreased M2 polarization of retinal microglia was observed in DR mice. HG-treated Müller cell-derived exosomes transported OGRU into microglia and promoted microglia polarization toward the M1 phenotype. Mechanistically, OGRU served as a competing endogenous RNA for miR-320-3p, miR-221-3p, and miR-574-5p to regulate aldose reductase (AR), PFKFB3, and glucose transporter 1 (GLUT1) expression in microglia, respectively. Loss of miR-320-3p/miR-221-3p/miR-574-5p or reinforced AR/PFKFB3/GLUT1 abrogated OGRU silencing-mediated microglia polarization in vitro. In vivo studies further showed that OGRU/miR-320-3p/AR, OGRU/miR-221-3p/PFKFB3, and OGRU/miR-574-5p/GLUT1 axes regulated microglia polarization in DR mice. Collectively, Müller cell-derived exosomal OGRU regulated microglia polarization in DR by modulating OGRU/miR-320-3p/AR, OGRU/miR-221-3p/PFKFB3, and OGRU/miR-574-5p/GLUT1 axes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- ShuHua Fu
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - WenJing Sun
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Lu Liu
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - JiPing Xiao
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jian Xiong
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - YaoYun Hu
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - QianQian Zhou
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - XiaoLong Yin
- Department of Ophthalmology, Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Patel S, Storey PP, Barakat MR, Hershberger V, Bridges WZ, Eichenbaum DA, Lally DR, Boyer DS, Bakri SJ, Roy M, Paggiarino DA. Phase I DAVIO Trial: EYP-1901 Bioerodible, Sustained-Delivery Vorolanib Insert in Patients With Wet Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100527. [PMID: 38881599 PMCID: PMC11179418 DOI: 10.1016/j.xops.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 06/18/2024]
Abstract
Purpose To evaluate safety and tolerability of EYP-1901, an intravitreal insert containing vorolanib, a pan-VEGF receptor inhibitor packaged in a bioerodible delivery technology (Durasert E™) for sustained delivery, in patients with wet age-related macular degeneration (wAMD) previously treated with anti-VEGF therapy. Design Phase I, multicenter, prospective, open-label, dose-escalation trial. Participants Patients with wAMD and evidence of prior anti-VEGF therapy response. Methods Patients received a single intravitreal injection of EYP-1901. Main Outcome Measures The primary objective was to evaluate safety and tolerability of EYP-1901. Secondary objectives assessed biologic activity of EYP-1901 including best-corrected visual acuity (BCVA) and central subfield thickness (CST). Exploratory analyses included reduction in anti-VEGF treatment burden and supplemental injection-free rates. Results Seventeen patients enrolled in the 440 μg (3 patients), 1030 μg (1 patient), 2060 μg (8 patients), and 3090 μg (5 patients) dose cohorts. No dose-limiting toxicity, ocular serious adverse events (AEs), or systemic AEs related to EYP-1901 were observed. There was no evidence of ocular or systemic toxicity related to vorolanib or the delivery technology. Moderate ocular treatment-emergent AEs (TEAEs) included reduced visual acuity (2/17) and retinal exudates (3/17). One patient with reduced BCVA had 3 separate reductions of 17, 18, and 16 letters, and another had a single drop of 25 letters. One severe TEAE, neovascular AMD (i.e., worsening/progressive disease activity), was reported in 1 of 17 study eyes but deemed unrelated to treatment. Mean change from baseline in BCVA was -1.8 letters and -5.4 letters at 6 and 12 months. Mean change from baseline in CST was +1.7 μm and +2.4 μm at 6 and 12 months. Reduction in treatment burden was 74% and 71% at 6 and 12 months. Of 16 study eyes, 13, 8, and 5 were injection-free up to 3, 6, and 12 months. Conclusion In the DAVIO trial (ClinicalTrials.gov identifier, NCT04747197), EYP-1901 had a favorable safety profile and was well tolerated in previously treated eyes with wAMD. Measures of biologic activity remained relatively stable following a single EYP-1901 injection. These preliminary data support ongoing phase II and planned phase III trials to assess efficacy and safety. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Sunil Patel
- Retina Research Institute of Texas, West Texas Retina Consultants, Abilene, Texas
| | - Philip P Storey
- Austin Retina Associates, University of Texas Dell Medical School, Austin, Texas
| | - Mark R Barakat
- Retina Macula Institute of Arizona; University of Arizona College of Medicine - Phoenix, Phoenix, Arizona
| | | | | | | | - David R Lally
- New England Retina Consultants, Springfield, Massachusetts
| | - David S Boyer
- Retina Vitreous Associates Medical Group, Los Angeles, California
| | - Sophie J Bakri
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Monica Roy
- EyePoint Pharmaceuticals, Watertown, Massachusetts
| | | |
Collapse
|
4
|
Nihei A, Yamamoto M, Hirayama K, Kyo A, Misawa N, Kohno T, Honda S. The impact of removing the epiretinal membrane and inner limiting membrane for sustained subretinal fluid by macular neovascularization refractory to anti-VEGF therapy. Am J Ophthalmol Case Rep 2024; 35:102078. [PMID: 38846070 PMCID: PMC11154113 DOI: 10.1016/j.ajoc.2024.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 06/09/2024] Open
Abstract
Purpose Anti-vascular endothelial growth factor (VEGF) therapy is the most prevalent intervention for exudative lesions secondary to neovascular age-related macular degeneration (nAMD) and other macular neovascularization (MNV). However, in some cases refractory to the latest anti-VEGF agents is associated with epiretinal membrane (ERM) or vitreomacular traction. We applied a vitrectomy to remove those pathologies which may be effective for reducing the exudation. Observations In this case report, we present 2 cases with sustained subretinal fluid and macular neovascularization secondary to nAMD or dome-shaped macula that poorly responded to anti-VEGF therapy. In both cases, removing thin ERM or vitreomacular traction with an inner limiting membrane peeling promptly resolved the subretinal fluid and no recurrence was observed thereafter. Conclusions and importance Vitrectomy could be an effective modality for anti-VEGF drug-resistant MNV cases with vitreomacular traction or ERM even in the anti-VEGF era.
Collapse
Affiliation(s)
- Aki Nihei
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Manabu Yamamoto
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Kumiko Hirayama
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Akika Kyo
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Norihiko Misawa
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Takeya Kohno
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Shigeru Honda
- Department of Ophthalmology and Visual Sciences, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Shoda C, Lee D, Miwa Y, Yamagami S, Nakashizuka H, Nimura K, Okamoto K, Kawagishi H, Negishi K, Kurihara T. Inhibition of hypoxia-inducible factors suppresses subretinal fibrosis. FASEB J 2024; 38:e23792. [PMID: 38953555 DOI: 10.1096/fj.202400540rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/15/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.
Collapse
Affiliation(s)
- Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | - Deokho Lee
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Aichi Animal Eye Clinic, Nagoya, Aichi, Japan
| | - Satoru Yamagami
- Ophthalmology, Nihon University School of Medicine, Tokyo, Japan
| | | | - Kazumi Nimura
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
| | - Kazutoshi Okamoto
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Shizuoka, Japan
- Marine Open Innovation Institute, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
- Research Institute for Mushroom Science, Shizuoka University, Shizuoka, Japan
| | - Kazuno Negishi
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Cammalleri M, Filippi L, Dal Monte M, Bagnoli P. A promising case of preclinical-clinical translation: β-adrenoceptor blockade from the oxygen-induced retinopathy model to retinopathy of prematurity. Front Physiol 2024; 15:1408605. [PMID: 38938747 PMCID: PMC11208707 DOI: 10.3389/fphys.2024.1408605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/27/2024] [Indexed: 06/29/2024] Open
Abstract
Although compartmentalization of the eye seems to promote its experimental manipulation, drug penetration to its posterior part is severely limited by hard barriers thus hindering drug development for eye diseases. In particular, angiogenesis-related retinal diseases share common mechanisms and are responsible for the majority of cases of blindness. Their prevalence is globally increasing mostly because of the increased incidence of systemic pathologies in the adult. Despite the number of preclinical findings demonstrating the efficacy of novel treatments, therapy of retinal neovascular diseases still remains confined to intravitreal anti-vascular endothelial growth factor treatments with some extension to anti-inflammatory therapy. In the mare magnum of preclinical findings aimed to develop novel avenues for future therapies, most compounds, despite their efficacy in experimental models, do not seem to meet the criteria for their therapeutic application. In particular, the groove between preclinical findings and their clinical application increases instead of decreasing and the attempt to bridging the gap between them creates intense frustration and a sense of defeat. In this complex scenario, we will discuss here the role that overactivation of the sympathetic system plays in retinal vessel proliferation in response to hypoxia using the oxygen-induced retinopathy (OIR) model. The potential application of the beta-adrenoceptor (β-AR) blockade with propranolol to the treatment of retinopathy of prematurity will be also discussed in light of preclinical findings in the OIR model and clinical trials using propranolol in preterm infants either per os or as eye drops.
Collapse
Affiliation(s)
| | - Luca Filippi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
7
|
Yao J, Huang W, Gao L, Liu Y, Zhang Q, He J, Zhang L. Comparative efficacy of anti-vascular endothelial growth factor on diabetic macular edema diagnosed with different patterns of optical coherence tomography: A network meta-analysis. PLoS One 2024; 19:e0304283. [PMID: 38848379 PMCID: PMC11161126 DOI: 10.1371/journal.pone.0304283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Intravitreal anti-vascular endothelial growth factor (anti-VEGF) injections have emerged as the most common therapeutic approach for the management of diabetic macular edema (DME). Despite their proven superiority over other interventions, there is a paucity of data regarding the relative effectiveness of anti-VEGF agents in treating DME diagnosed with different patterns of optical coherence tomography (OCT). In this regard, we conducted a systematic review and comparative analysis of the therapeutic efficacy of intravitreal bevacizumab, ranibizumab, aflibercept, and conbercept in the management of DME with diffuse retinal thickening (DRT), cystoid macular edema (CME), and serous retinal detachment (SRD) patterns identified using OCT. Our study encompassed a comprehensive search of PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), and Wan Fang Data from their inception until January 25, 2023. The network meta-analysis involved the inclusion of 1606 patients from 20 retrospective studies with a moderate risk of bias but no evidence of publication bias. The DRT group had the highest increase in best-corrected visual acuity (BCVA) with anti-VEGF, while the SRD group had the greatest reduction in Central Macular Thickness (CMT). Furthermore, conbercept, ranibizumab, and bevacizumab, respectively, showed the best treatment outcomes for patients with DRT, CME, and SRD in terms of improvement in BCVA. And, conbercept exhibited the highest reduction in CMT in the DRT, CME, and SRD groups. In conclusion, our study highlights the efficacy of anti-VEGF agents in the management of DME and provides valuable insights into the selection of anti-VEGF agents tailored to the individual needs of patients.
Collapse
Affiliation(s)
- Jiajia Yao
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, P.R. China
| | - Wanli Huang
- No. 927 hospital, Joint Logistics Support Force of Chinese PLA, Puer, Yunnan, China
| | - Lixia Gao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, P.R. China
| | - Yan Liu
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qi Zhang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai He
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Amy Medical University), Chongqing, P.R. China
- No. 927 hospital, Joint Logistics Support Force of Chinese PLA, Puer, Yunnan, China
| | - Li Zhang
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Moyo MTG, Adali T, Tulay P. Exploring gellan gum-based hydrogels for regenerating human embryonic stem cells in age-related macular degeneration therapy: A literature review. Regen Ther 2024; 26:235-250. [PMID: 38966602 PMCID: PMC11222715 DOI: 10.1016/j.reth.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 07/06/2024] Open
Abstract
Age-related macular degeneration (AMD) is a progressive ocular disease marked by the deterioration of retinal photoreceptor cells, leading to central vision decline, predominantly affecting the elderly population worldwide. Current treatment modalities, such as anti-VEGF agents, laser therapy, and photodynamic therapy, aim to manage the condition, with emerging strategies like stem cell replacement therapy showing promise. However, challenges like immune rejection and cell survival hinder the efficacy of stem cell interventions. Regenerative medicine faces obstacles in maximizing stem cell potential due to limitations in mimicking the dynamic cues of the extracellular matrix (ECM) crucial for guiding stem cell behaviour. Innovative biomaterials like gellan gum hydrogels offer tailored microenvironments conducive to enhancing stem cell culture efficacy and tissue regeneration. Gellan gum-based hydrogels, renowned for biocompatibility and customizable mechanical properties, provide crucial support for cell viability, differentiation, and controlled release of therapeutic factors, making them an ideal platform for culturing human embryonic stem cells (hESCs). These hydrogels mimic native tissue mechanics, promoting optimal hESC differentiation while minimizing immune responses and facilitating localized delivery. This review explores the potential of Gellan Gum-Based Hydrogels in regenerative AMD therapy, emphasizing their role in enhancing hESC regeneration and addressing current status, treatment limitations, and future directions.
Collapse
Affiliation(s)
- Mthabisi Talent George Moyo
- Near East University, Faculty of Engineering, Department of Biomedical Engineering, P.O. Box: 99138, Nicosia, Cyprus, Mersin 10, Turkey
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Terin Adali
- Girne American University, Faculty of Medicine, Department of Medical Biochemistry, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, Cyprus, Mersin 10, Turkey
- Girne American University, Research and Application Center of Biomedical Sciences, PO Box 99428, Karmi Campus, Karaoglanoglu, Kyrenia, North Cyprus, Mersin 10, Turkey
| | - Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus, Mersin 10, Turkey
- Near East University, DESAM Research Institute, Nicosia, Cyprus, Mersin 10, Turkey
| |
Collapse
|
9
|
Lee D, Fu Z, Hellstrom A, Smith LEH. Therapeutic Effects of Anti-Inflammatory and Anti-Oxidant Nutritional Supplementation in Retinal Ischemic Diseases. Int J Mol Sci 2024; 25:5503. [PMID: 38791541 PMCID: PMC11122288 DOI: 10.3390/ijms25105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Appropriate nutrients are essential for cellular function. Dietary components can alter the risk of systemic metabolic diseases, including cardiovascular diseases, cancer, diabetes, and obesity, and can also affect retinal diseases, including age-related macular degeneration, diabetic retinopathy, and glaucoma. Dietary nutrients have been assessed for the prevention or treatment of retinal ischemic diseases and the diseases of aging. In this article, we review clinical and experimental evidence concerning the potential of some nutritional supplements to prevent or treat retinal ischemic diseases and provide further insights into the therapeutic effects of nutritional supplementation on retinopathies. We will review the roles of nutrients in preventing or protecting against retinal ischemic diseases.
Collapse
Affiliation(s)
- Deokho Lee
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongjie Fu
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ann Hellstrom
- The Sahlgrenska Centre for Pediatric Ophthalmology Research, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 416 85 Gothenburg, Sweden
| | - Lois E. H. Smith
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Florek K, Mendyka D, Gomułka K. Vascular Endothelial Growth Factor (VEGF) and Its Role in the Cardiovascular System. Biomedicines 2024; 12:1055. [PMID: 38791016 PMCID: PMC11117514 DOI: 10.3390/biomedicines12051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with ischemic heart disease (IHD) as the most common. Ischemia-induced angiogenesis is a process in which vascular endothelial growth factor (VEGF) plays a crucial role. To conduct research in the field of VEGF's association in cardiovascular diseases, it is vital to understand its role in the physiological and pathological processes in the heart. VEGF-based therapies have demonstrated a promising role in preclinical studies. However, their potential in human therapies is currently under discussion. Furthermore, VEGF is considered a potential biomarker for collateral circulation assessment and heart failure (HF) mortality. Additionally, as VEGF is involved in angiogenesis, there is a need to elucidate the impact of VEGF-targeted therapies in terms of cardiovascular side effects.
Collapse
Affiliation(s)
- Kamila Florek
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Dominik Mendyka
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
11
|
Blanot M, Casaroli-Marano RP, Mondéjar-Medrano J, Sallén T, Ramírez E, Segú-Vergés C, Artigas L. Aflibercept Off-Target Effects in Diabetic Macular Edema: An In Silico Modeling Approach. Int J Mol Sci 2024; 25:3621. [PMID: 38612432 PMCID: PMC11011561 DOI: 10.3390/ijms25073621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Intravitreal aflibercept injection (IAI) is a treatment for diabetic macular edema (DME), but its mechanism of action (MoA) has not been completely elucidated. Here, we aimed to explore IAI's MoA and its multi-target nature in DME pathophysiology with an in silico (computer simulation) disease model. We used the Therapeutic Performance Mapping System (Anaxomics Biotech property) to generate mathematical models based on the available scientific knowledge at the time of the study, describing the relationship between the modulation of vascular endothelial growth factor receptors (VEGFRs) by IAI and DME pathophysiological processes. We also undertook an enrichment analysis to explore the processes modulated by IAI, visualized the effectors' predicted protein activity, and specifically evaluated the role of VEGFR1 pathway inhibition on DME treatment. The models simulated the potential pathophysiology of DME and the likely IAI's MoA by inhibiting VEGFR1 and VEGFR2 signaling. The action of IAI through both signaling pathways modulated the identified pathophysiological processes associated with DME, with the strongest effects in angiogenesis, blood-retinal barrier alteration and permeability, and inflammation. VEGFR1 inhibition was essential to modulate inflammatory protein effectors. Given the role of VEGFR1 signaling on the modulation of inflammatory-related pathways, IAI may offer therapeutic advantages for DME through sustained VEGFR1 pathway inhibition.
Collapse
Affiliation(s)
- Morgane Blanot
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
| | - Ricardo Pedro Casaroli-Marano
- Department of Surgery (FMCS), Universitat de Barcelona, 08007 Barcelona, Spain
- Hospital Clínic de Barcelona (IDIBAPS), Universitat de Barcelona, 08007 Barcelona, Spain
| | | | - Thaïs Sallén
- Bayer Hispania S.L., 08970 Sant Joan Despí, Spain; (J.M.-M.); (T.S.)
| | - Esther Ramírez
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
| | - Cristina Segú-Vergés
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
- Research Programme on Biomedical Informatics (GRIB), Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Laura Artigas
- Anaxomics Biotech S.L., 08007 Barcelona, Spain; (M.B.); (E.R.); (C.S.-V.); (L.A.)
| |
Collapse
|
12
|
Panos GD. Current Challenges in the Management of Vitreoretinal Conditions. J Clin Med 2024; 13:1171. [PMID: 38398484 PMCID: PMC10889987 DOI: 10.3390/jcm13041171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
In the dynamic realm of ophthalmology, the management of vitreoretinal conditions stands as a testament to both significant progress and ongoing challenges [...].
Collapse
Affiliation(s)
- Georgios D. Panos
- Department of Ophthalmology, Queen’s Medical Centre, Nottingham University Hospitals, Nottingham NG7 2UH, UK; ; Tel.: +44-115-924-9924
- Division of Ophthalmology and Visual Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
13
|
Liu P, Sun D, Zhang S, Chen S, Wang X, Li H, Wei F. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies. Cell Biosci 2024; 14:21. [PMID: 38341583 DOI: 10.1186/s13578-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.
Collapse
Affiliation(s)
- Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
14
|
Wang S, Zhang J, Chen J, Tang L, Ke M, Xue Y, He Y, Gong Y, Li Z. ω-3PUFAs Inhibit Hypoxia-Induced Retinal Neovascularization via Regulating Microglial Pyroptosis through METTL14-Mediated m6A Modification of IFNB1 mRNA. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04795-1. [PMID: 38175416 DOI: 10.1007/s12010-023-04795-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/05/2024]
Abstract
Retinal neovascular disease is the leading reason of vision impairment in all ages. Here, we figured out the function and mechanism of omega-3 polyunsaturated fatty acids (ω-3PUFAs) in hypoxia-induced retinal neovascularization by focusing on microglial pyroptosis. Microglia BV-2 cells were given ω-3PUFAs treatment and co-cultured with mouse retinal microvascular endothelial cells (MRMECs) under hypoxia. Tube formation assay, transwell assay and wound healing assay were utilized to monitor the MRMEC angiogenesis. Cell counting kit-8, western blot, lactate dehydrogenase assay, and enzyme-linked immunosorbent assay were used to assess pyroptosis of BV-2 cells. RNA sequencing and methylated RNA immunoprecipitation-polymerase chain reaction were utilized to identify the target gene of methyltransferase-like 14 (METTL14) and its N6-methyladenosine (m6A) level in BV-2 cells. BV-2 cells prominently enhanced MRMEC angiogenesis under hypoxia, but this effect was abolished after ω-3PUFAs treatment. ω-3PUFAs inhibited pyroptosis in hypoxia-induced BV-2 cells, and BV-2 cell pyroptosis boosted angiogenesis of MRMECs. Additionally, ω-3PUFAs markedly augment the expression of MELLL14 in BV-2 cells, and METTL14 knockdown promoted BV-2 cell pyroptosis and BV-2 cell-mediated angiogenesis in MEMECs. Mechanistically, interferon beta 1 (IFNB1) was a target of METTL14, and METTL14 silencing increased the mRNA expression and decreased the m6A modification of IFNB1 in BV-2 cells. Our results uncovered that ω-3PUFAs diminished hypoxia-induced retinal neovascularization through controlling microglial pyroptosis via METTL14-mediated m6A modification. This study offers a novel potential target for the treatment of retinal neovascular diseases.
Collapse
Affiliation(s)
- Shun Wang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jing Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Jun Chen
- Department of Ophthalmology, The People's Hospital of Huangmei, Huangmei Hospital Affiliated to Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lanlan Tang
- Department of Ophthalmology, Wuchang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yanni Xue
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Ying He
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhi Li
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
15
|
Choi A, Nawash BS, Du K, Ong J, Chhablani J. Barriers to care in neovascular age-related macular degeneration: Current understanding, developments, and future directions. Surv Ophthalmol 2024; 69:160-164. [PMID: 37716480 DOI: 10.1016/j.survophthal.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/22/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
Neovascular age-related macular degeneration is the advanced and irreversible stage of age-related macular degeneration, the leading cause of severe vision loss in older adults. While anti-vascular endothelial growth factor injections have been shown to preserve or improve vision quality in eyes with neovascular age-related macular degeneration, the treatment regimen can be demanding of patients and caregivers, leading to lower rates of adherence. Therefore, it is crucial that disparities and obstacles in neovascular age-related macular degeneration care are identified to improve access to treatment. Review of the current literature revealed 7 major categories of barriers: travel burden, psychological barriers, financial burden and socioeconomic status, treatment regimen, other comorbidities, provider-level barriers, and system-level barriers. We provide an overview of the major barriers to neovascular age-related macular degeneration care that have been reported, as well as gaps in research that need to be investigated further.
Collapse
Affiliation(s)
- Alison Choi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Baraa S Nawash
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Katherine Du
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joshua Ong
- Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Jay Chhablani
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Khanani AM, Boyer DS, Wykoff CC, Regillo CD, Busbee BG, Pieramici D, Danzig CJ, Joondeph BC, Major JC, Turpcu A, Kiss S. Safety and efficacy of ixoberogene soroparvovec in neovascular age-related macular degeneration in the United States (OPTIC): a prospective, two-year, multicentre phase 1 study. EClinicalMedicine 2024; 67:102394. [PMID: 38152412 PMCID: PMC10751837 DOI: 10.1016/j.eclinm.2023.102394] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023] Open
Abstract
Background Gene therapy, successfully used in rare, monogenetic disorders, may prove to be a durable management approach for common, polygenetic conditions, including neovascular age-related macular degeneration (nAMD). Repeated injections, oftentimes monthly, and possibly for decades, of vascular endothelial growth factor antagonists (anti-VEGF), is the standard for nAMD. We hypothesised that an in-office, intravitreal administration of ixoberogene soroparvovec (ixo-vec, formerly ADVM-022), a single-dose gene therapy encoding for the proven anti-VEGF protein, aflibercept, would transform retinal cells to continually produce aflibercept to minimise treatment burden in nAMD. Methods In this two-year, open-label, prospective, multicentre phase 1 study, patients with nAMD responding to anti-VEGF were assigned to four cohorts differing by ixo-vec dose (2 × 1011 vs 6 × 1011 vector genomes (vg/eye)) and prophylactic steroids (oral prednisone vs topical difluprednate). The primary outcome was the type, severity, and incidence of ocular and systemic adverse events (AEs); secondary endpoints included vision, central subfield thickness (CST), and the number of supplemental injections. This study was registered with ClinicalTrials.gov, NCT03748784. Findings Thirty patients with nAMD were enrolled between November 14, 2018 and June 30, 2020 at nine study sites in the United States. No systemic ixo-vec related AEs were noted. Across both dose groups the most common adverse event was anterior chamber cell, which was reported in 11 participants in the 6 × 1011 dose group and in 7 participants in the 2 × 1011 dose group; intraocular inflammation was responsive to topical corticosteroids, with no anterior chamber cells or vitreous cells observed in 2 × 1011 vg/eye patients at the end of the study. Vision and CST remained stable throughout two years with annualised anti-VEGF injections reduced by 80% (10.0 mean annualised anti-VEGF injections to 1.9) in 2 × 1011 vg/eye and 98% (9.8 mean annualised anti-VEGF injections to 0.2) in 6 × 1011 vg/eye cohorts. Interpretation Ixo-vec was generally well-tolerated, maintained vision, and improved anatomical outcomes in nAMD, with a substantial reduction in anti-VEGF injections. A single administration of an in-office gene therapy, with vectorised protein with an already established clinical benefit, has the potential to revolutionise the management of common ocular disorders requiring ongoing, frequent therapeutic interventions. Funding Adverum Biotechnologies.
Collapse
Affiliation(s)
- Arshad M. Khanani
- Sierra Eye Associates, Reno, NV, USA
- The University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - David S. Boyer
- Retina Vitreous Associates Medical Group, Beverly Hills, CA, USA
| | - Charles C. Wykoff
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Carl D. Regillo
- Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | - Carl J. Danzig
- Rand Eye Institute, Deerfield Beach, FL, USA
- Florida Atlantic University, Charles E. Schmidt School of Medicine, Boca Raton, FL, USA
| | | | - James C. Major
- Retina Consultants of Texas, Retina Consultants of America, Blanton Eye Institute, Houston Methodist Hospital, Houston, TX, USA
| | - Adam Turpcu
- Adverum Biotechnologies, Redwood City, CA, USA
| | - Szilárd Kiss
- Department of Ophthalmology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
17
|
Gao S, Lin Z, Zhong Y, Shen X. Clinical Efficacy of Preoperative and Intraoperative Intravitreal Ranibizumab as Adjuvant Therapy of Ahmed Glaucoma Valve Implantation Combined with Vitrectomy in the Management of Neovascular Glaucoma with Diabetic Vitreous Hemorrhage. J Pers Med 2023; 14:18. [PMID: 38248719 PMCID: PMC10821123 DOI: 10.3390/jpm14010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Neovascular glaucoma (NVG) secondary to proliferative diabetic retinopathy (PDR) is a devastating ocular disease with poor prognosis. Intravitreal ranibizumab injection (IVR) has been used as adjuvant therapy of surgical interventions preoperatively or intraoperatively. This study aimed to determine the efficacy and safety of combined IVR as adjuvant therapy in treating NVG with vitreous hemorrhage (VH) in PDR. A total of 39 NVG patients with VH (39 eyes) received IVR 3 to 5 days before surgery, and then they were assigned to either pars plana vitrectomy (PPV) + Ahmed glaucoma valve (AGV) implantation (Group 1, n = 22) or PPV + AGV implantation + intraoperative IVR (Group 2, n = 17). Patients were followed up for at least 9 months. Intraocular pressure (IOP), anti-glaucoma medications, best corrected visual acuity (BCVA), surgical success rates and postoperative complications were compared. Results showed that IOP decreased promptly after surgery and was notably maintained at a mid-term follow-up in both groups, and no significant differences were observed (all p > 0.05). Additional intraoperative IVR significantly reduced postoperative recurrent VH and iris neovascularization (p = 0.047, p = 0.025, respectively). There was no remarkable difference in postoperative anti-glaucoma medications, BCVA and complications between two groups (all p > 0.05). In conclusion, preoperative and intraoperative IVR as adjuvant therapy of AGV implantation combined with PPV could be a safe and effective treatment for NVG with VH in PDR. An additional intraoperative anti-VEGF injection could significantly reduce postoperative VH and iris neovascularization.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Zhongjing Lin
- Department of Ophthalmology, Renji Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai 200127, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital, Affiliated Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Marino R, Sappington R, Feligioni M. Retinoprotective compounds, current efficacy, and future prospective. Neural Regen Res 2023; 18:2619-2622. [PMID: 37449599 DOI: 10.4103/1673-5374.373662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Retinal dysfunction is the most common cause of vision loss in several retinal disorders. It has been estimated a great increase in these pathologies that are becoming more globally widespread and numerous over time, also supported by the life expectancy increment. Among different types of retinopathies, we can account some that share causes, symptoms, and treatment including diabetic retinopathy, age-related macular degeneration, glaucoma, and retinitis pigmentosa. Molecular changes, environmental factors, and genetic predisposition might be some of the main causes that drive retinal tissue to chronic inflammation and neurodegeneration in these retinopathies. The treatments available on the market contain compounds that efficiently ameliorate some of the important clinical features of these pathologies like stabilization of the intraocular pressure, reduction of eye inflammation, control of eye oxidative stress which are considered the major molecular mechanisms related to retinal dysfunction. Indeed, the most commonly used drugs are anti-inflammatories, such as corticosteroids, antioxidant, hypotonic molecules and natural neuroprotective compounds. Unfortunately, these drugs, which are fundamental to treating disease symptoms, are not capable to cure the pathologies and so they are not life-changing for patients. This review provided an overview of current treatments on the market, but more interestingly, wants to be a quick window on the new treatments that are now in clinical trials. Additionally, it has been here highlighted that the recent technical enhancement of the investigation methods to identify the various retinopathies causes might be used as a sort of "precise medicine" approach to tailor the identification of molecular pathways involved and potentially study a dedicated treatment for each patient. This approach includes the use of cutting-edge technologies like gene therapy and metabolomics.
Collapse
Affiliation(s)
- Rachele Marino
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| | - Rebecca Sappington
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Atrium Health Wake Forest Baptist Medical Center; Department of Ophthalmology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Marco Feligioni
- Laboratory of Neuronal Cell Signaling, EBRI Rita Levi-Montalcini Foundation, Rome; Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
19
|
Gacche RN. Changing landscape of anti-angiogenic therapy: Novel approaches and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:189020. [PMID: 37951481 DOI: 10.1016/j.bbcan.2023.189020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Targeting angiogenesis has remained one of the important aspects in disease biology in general and cancer in particular. Currently (June 2023), over 593 clinical trials have been registered at ClinicalTrials.gov having inference of term 'angiogenesis'. A panel of 14 anti-angiogenic drugs have been approved by FDA for the treatment of variety of cancers and other human ailments. Although the anti-angiogenic therapy (AAT) has gained significant clinical attention as a promising approach in the treatment of various diseases, particularly cancer, however, sizable literature has accumulated in the recent past describing the aggressive nature of tumours after the drug holidays, evolving drug resistance and off-target toxicities. Nevertheless, the emergence of inscrutable compensatory or alternative angiogenic mechanisms is limiting the efficacy of anti-angiogenic drugs and focussing the therapeutic regime as a puzzle of 'Lernaean hydra'. This review offers an overview of recent updates on the efficacy of antiangiogenic therapy and the current clinical performance of aaRTK inhibitors. Additionally, it also explores the changing application landscape of AAT, focusing on its role in diabetic nephropathy, age-related macular degeneration and other neovascular ocular disorders. Combination therapy with antiangiogenic drugs and immune check point inhibitors (ICIs) has emerged as a potential strategy to enhance the therapeutic index of cancer immunotherapy. While clinical studies have demonstrated the clinical efficacy of this approach, they also highlight the complex and sometimes unpredictable adverse events associated with it. Normalizing tumour vasculature has been identified as a key factor in unlocking the full potential of ICIs, thereby providing hope for improved treatment outcomes. The future prospects and challenges of AAT have been described with special reference to integration of technological advances for enhancing its efficacy and applications beyond its discovery.
Collapse
Affiliation(s)
- Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, MS, India.
| |
Collapse
|
20
|
Wang Z, Chen Y, Yang L, Yao D, Shen Y. Combinative effects of β-elemene and propranolol on the proliferation, migration, and angiogenesis of hemangioma. PeerJ 2023; 11:e15643. [PMID: 37456875 PMCID: PMC10349565 DOI: 10.7717/peerj.15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Hemangioma (HA) is one of the most common benign vascular tumors among children. Propranolol is used as the first-line treatment for hemangioma and is a non-selective blocker of the β-adrenergic receptor. β-elemene is a compound extracted from Rhizoma zedoariae and has been approved for the treatment of tumors in clinical practice. However, the combinatorial effects of β-elemene and propranolol in the treatment of HA remains unclear. This study explored the combinative effects and mechanisms of β-elemene and propranolol using hemangioma-derived endothelial cells (HemECs). Cytotoxic assays showed that the combinatorial treatment of β-elemene and propranolol did not increase the cytotoxic effects of HemECs. Furthermore, functional analysis showed that the combinatorial treatment with β-elemene and propranolol significantly inhibited the proliferation, migration, and tube formation of the HemECs compared to the single treatment regimens. Mechanistic analysis showed that combinative treatment with β-elemene and propranolol synergistically down-regulated the hypoxia-inducible factor-1 alpha/vascular endothelial growth factor-A (HIF-1-α/VEGFA) signaling pathway. Additionally, in a xenograft tumor model, angiogenesis in the combinatorial treatment group was significantly lower than in the control, propranolol, and β-elemene treatment alone groups. Our results suggest that β-elemene combined with propranolol can significantly inhibit the proliferation, migration, and tube formation of HemECs via synergistically down-regulating the HIF-1-α/VEGFA signaling pathway without increasing any cytotoxic side effects.
Collapse
Affiliation(s)
- Zhenyu Wang
- Department of Pediatric Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yinxian Chen
- Department of Pediatric Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lin Yang
- Department of Urinary Surgery, Cengong County People’s Hospital, Guizhou, China
| | - Dunbiao Yao
- Department of Orthopedics, Cengong County People’s Hospital, Guizhou, China
| | - Yang Shen
- Department of Pediatric Orthopedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
21
|
Bahr TA, Bakri SJ. Update on the Management of Diabetic Retinopathy: Anti-VEGF Agents for the Prevention of Complications and Progression of Nonproliferative and Proliferative Retinopathy. Life (Basel) 2023; 13:life13051098. [PMID: 37240743 DOI: 10.3390/life13051098] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Diabetic retinopathy (DR) is a microvascular disease caused by poorly controlled blood glucose, and it is a leading cause of vision loss in people with diabetes. In this review we discuss the current management of DR with particular focus on the use of intraocular anti-vascular endothelial growth factor (anti-VEGF) agents. Intraocular anti-VEGF agents were first studied in the 1990s, and now several of these agents are either FDA approved or used off-label as first-line treatments for DR. Recent evidence shows that anti-VEGF agents can halt the progression of markers of DR severity, reduce the risk of DR worsening, and reduce the onset of new macular edema. These significant benefits have been demonstrated in patients with proliferative DR and the milder nonproliferative DR (NPDR). A wealth of evidence from recent trials and meta-analyses has detailed the intraoperative and postoperative benefits of adjunctive anti-VEGF therapy prior to pars plana vitrectomy (PPV) for proliferative DR with vitreous hemorrhage. In this review, we also discuss literature comparing various anti-VEGF injection regimens including monthly, quarterly, as-needed, and treat and extend protocols. Combination protocols with panretinal photocoagulation (PRP) or PPV are also discussed. Current evidence suggests that anti-VEGF therapies are effective therapy for NPDR and PDR and may also provide significant benefits when used adjunctively with other DR treatment modalities such as PRP or PPV.
Collapse
Affiliation(s)
- Tyler A Bahr
- Mayo Clinic, Department of Ophthalmology, 200 First St SW, Rochester, MN 55902, USA
| | - Sophie J Bakri
- Mayo Clinic, Department of Ophthalmology, 200 First St SW, Rochester, MN 55902, USA
| |
Collapse
|
22
|
Khalili H, Kashkoli HH, Weyland DE, Pirkalkhoran S, Grabowska WR. Advanced Therapy Medicinal Products for Age-Related Macular Degeneration; Scaffold Fabrication and Delivery Methods. Pharmaceuticals (Basel) 2023; 16:620. [PMID: 37111377 PMCID: PMC10146656 DOI: 10.3390/ph16040620] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Retinal degenerative diseases such as age-related macular degeneration (AMD) represent a leading cause of blindness, resulting in permanent damage to retinal cells that are essential for maintaining normal vision. Around 12% of people over the age of 65 have some form of retinal degenerative disease. Whilst antibody-based drugs have revolutionised treatment of neovascular AMD, they are only effective at an early stage and cannot prevent eventual progression or allow recovery of previously lost vision. Hence, there is a clear unmet need to find innovative treatment strategies to develop a long-term cure. The replacement of damaged retinal cells is thought to be the best therapeutic strategy for the treatment of patients with retinal degeneration. Advanced therapy medicinal products (ATMPs) are a group of innovative and complex biological products including cell therapy medicinal products, gene therapy medicinal products, and tissue engineered products. Development of ATMPs for the treatment of retinal degeneration diseases has become a fast-growing field of research because it offers the potential to replace damaged retinal cells for long-term treatment of AMD. While gene therapy has shown encouraging results, its effectiveness for treatment of retinal disease may be hampered by the body's response and problems associated with inflammation in the eye. In this mini-review, we focus on describing ATMP approaches including cell- and gene-based therapies for treatment of AMD along with their applications. We also aim to provide a brief overview of biological substitutes, also known as scaffolds, that can be used for delivery of cells to the target tissue and describe biomechanical properties required for optimal delivery. We describe different fabrication methods for preparing cell-scaffolds and explain how the use of artificial intelligence (AI) can aid with the process. We predict that combining AI with 3D bioprinting for 3D cell-scaffold fabrication could potentially revolutionise retinal tissue engineering and open up new opportunities for developing innovative platforms to deliver therapeutic agents to the target tissues.
Collapse
Affiliation(s)
- Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | | | - Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | |
Collapse
|
23
|
Cammalleri M, Amato R, Dal Monte M, Filippi L, Bagnoli P. The β3 adrenoceptor in proliferative retinopathies: "Cinderella" steps out of its family shadow. Pharmacol Res 2023; 190:106713. [PMID: 36863427 DOI: 10.1016/j.phrs.2023.106713] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
In the retina, hypoxic condition leads to overgrowing leaky vessels resulting in altered metabolic supply that may cause impaired visual function. Hypoxia-inducible factor-1 (HIF-1) is a central regulator of the retinal response to hypoxia by activating the transcription of numerous target genes, including vascular endothelium growth factor, which acts as a major player in retinal angiogenesis. In the present review, oxygen urge by the retina and its oxygen sensing systems including HIF-1 are discussed in respect to the role of the beta-adrenergic receptors (β-ARs) and their pharmacologic manipulation in the vascular response to hypoxia. In the β-AR family, β1- and β2-AR have long been attracting attention because their pharmacology is intensely used for human health, while β3-AR, the third and last cloned receptor is no longer increasingly emerging as an attractive target for drug discovery. Here, β3-AR, a main character in several organs including the heart, the adipose tissue and the urinary bladder, but so far a supporting actor in the retina, has been thoroughly examined in respect to its function in retinal response to hypoxia. In particular, its oxygen dependence has been taken as a key indicator of β3-AR involvement in HIF-1-mediated responses to oxygen. Hence, the possibility of β3-AR transcription by HIF-1 has been discussed from early circumstantial evidence to the recent demonstration that β3-AR acts as a novel HIF-1 target gene by playing like a putative intermediary between oxygen levels and retinal vessel proliferation. Thus, targeting β3-AR may implement the therapeutic armamentarium against neovascular pathologies of the eye.
Collapse
Affiliation(s)
| | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
24
|
Mijit M, Liu S, Sishtla K, Hartman GD, Wan J, Corson TW, Kelley MR. Identification of Novel Pathways Regulated by APE1/Ref-1 in Human Retinal Endothelial Cells. Int J Mol Sci 2023; 24:1101. [PMID: 36674619 PMCID: PMC9865623 DOI: 10.3390/ijms24021101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
APE1/Ref-1 (apurinic/apyrimidinic endonuclease 1, APE1 or APEX1; redox factor-1, Ref-1) is a dual-functional enzyme with crucial roles in DNA repair, reduction/oxidation (redox) signaling, and RNA processing and metabolism. The redox function of Ref-1 regulates several transcription factors, such as NF-κB, STAT3, HIF-1α, and others, which have been implicated in multiple human diseases, including ocular angiogenesis, inflammation, and multiple cancers. To better understand how APE1 influences these disease processes, we investigated the effects of APEX1 knockdown (KD) on gene expression in human retinal endothelial cells. This abolishes both DNA repair and redox signaling functions, as well as RNA interactions. Using RNA-seq analysis, we identified the crucial signaling pathways affected following APEX1 KD, with subsequent validation by qRT-PCR. Gene expression data revealed that multiple genes involved in DNA base excision repair, other DNA repair pathways, purine or pyrimidine metabolism signaling, and histidine/one carbon metabolism pathways were downregulated by APEX1 KD. This is in contrast with the alteration of pathways by APEX1 KD in human cancer lines, such as pancreatic ductal adenocarcinoma, lung, HeLa, and malignant peripheral nerve sheath tumors. These results highlight the unique role of APE1/Ref-1 and the clinical therapeutic potential of targeting APE1 and pathways regulated by APE1 in the eye. These findings provide novel avenues for ocular neovascularization treatment.
Collapse
Affiliation(s)
- Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gabriella D. Hartman
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy W. Corson
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mark R. Kelley
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|