1
|
Wang M, Chen Z, Tang Z, Tang S. Natural products derived from traditional Chinese medicines targeting ER stress for the treatment of kidney diseases. Ren Fail 2024; 46:2396446. [PMID: 39192602 PMCID: PMC11360642 DOI: 10.1080/0886022x.2024.2396446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Various factors, both internal and external, can disrupt endoplasmic reticulum (ER) homeostasis and increase the burden of protein folding, resulting in ER stress. While short periods of ER stress can help cells return to normal function, excessive or prolonged ER stress triggers a complex signaling network that negatively affects cells. Numerous studies have demonstrated the significant role of ER stress in various kidney diseases, such as immune-related kidney injury, diabetic kidney diseases, renal ischemia reperfusion injury, and renal fibrosis. To date, there is a severe shortage of medications for the treatment of acute and chronic kidney diseases of all causes. Natural products derived from various traditional Chinese medicines (TCM), which are a major source of new drugs, have garnered considerable attention. Recent research has revealed that many natural products have renoprotective effects by targeting ER stress-mediated events, such as apoptosis, oxidative stress, inflammation, autophagy, and epithelial-mesenchymal transition. This article provides a comprehensive review of the current research progress on natural products targeting ER stress for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Mengping Wang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhengtao Chen
- Department of Cardiovascular, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| | - Ziru Tang
- Department of Nephrology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- GCP Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
3
|
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of Nanobubble Therapy for Cancer Treatment. Int J Mol Sci 2024; 25:7292. [PMID: 39000401 PMCID: PMC11242568 DOI: 10.3390/ijms25137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynaecology and Practical Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089 Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| |
Collapse
|
4
|
Chen S, Li B, Luo W, Rehman AU, He M, Yang Q, Wang S, Guo J, Chen L, Li X. Paclitaxel-induced Immune Dysfunction and Activation of Transcription Factor AP-1 Facilitate Hepatitis B Virus Replication. J Clin Transl Hepatol 2024; 12:457-468. [PMID: 38779518 PMCID: PMC11106347 DOI: 10.14218/jcth.2023.00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 05/25/2024] Open
Abstract
Background and Aims Hepatitis B virus (HBV) reactivation is commonly observed in individuals with chronic HBV infection undergoing antineoplastic drug therapy. Paclitaxel (PTX) treatment has been identified as a potential trigger for HBV reactivation. This study aimed to uncover the mechanisms of PTX-induced HBV reactivation in vitro and in vivo, which may inform new strategies for HBV antiviral treatment. Methods The impact of PTX on HBV replication was assessed through various methods including enzyme-linked immunosorbent assay, dual-luciferase reporter assay, quantitative real-time PCR, chromatin immunoprecipitation, and immunohistochemical staining. Transcriptome sequencing and 16S rRNA sequencing were employed to assess alterations in the transcriptome and microbial diversity in PTX-treated HBV transgenic mice. Results PTX enhanced the levels of HBV 3.5-kb mRNA, HBV DNA, HBeAg, and HBsAg both in vitro and in vivo. PTX also promoted the activity of the HBV core promoter and transcription factor AP-1. Inhibition of AP-1 gene expression markedly suppressed PTX-induced HBV reactivation. Transcriptome sequencing revealed that PTX activated the immune-related signaling networks such as IL-17, NF-κB, and MAPK signaling pathways, with the pivotal common key molecule being AP-1. The 16S rRNA sequencing revealed that PTX induced dysbiosis of gut microbiota. Conclusions PTX-induced HBV reactivation was likely a synergistic outcome of immune suppression and direct stimulation of HBV replication through the enhancement of HBV core promoter activity mediated by the transcription factor AP-1. These findings propose a novel molecular mechanism, underscoring the critical role of AP-1 in PTX-induced HBV reactivation.
Collapse
Affiliation(s)
- Shi Chen
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Benhua Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Wei Luo
- Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Adeel ur Rehman
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Miao He
- Laboratory Animal Center of Chongqing Medical University, Chongqing, China
| | - Qian Yang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinjun Guo
- Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Chen
- The Center of Experimental Teaching Management, Chongqing Medical University, Chongqing, China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Yakut S, Atcalı T, Çaglayan C, Ulucan A, Kandemir FM, Kara A, Anuk T. Therapeutic Potential of Silymarin in Mitigating Paclitaxel-Induced Hepatotoxicity and Nephrotoxicity: Insights into Oxidative Stress, Inflammation, and Apoptosis in Rats. Balkan Med J 2024; 41:193-205. [PMID: 38700358 PMCID: PMC11077923 DOI: 10.4274/balkanmedj.galenos.2024.2024-1-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Background Paclitaxel (PAX) is a widely used chemotherapy drug for various cancer types but often induces significant toxicity in multiple organ systems. Silymarin (SIL), a natural flavonoid, has shown therapeutic potential due to its multiple benefits. Aims To evaluate the therapeutic efficacy of SIL in mitigating liver and kidney damage induced by PAX in rats, focusing on oxidative stress, inflammation, and apoptosis pathways. Study Design Experimental animal model. Methods The study included 28 male Wistar rats aged 12-14 weeks weighing 270-300 g. The rats were divided into four groups: control, SIL, PAX, and PAX + SIL, with seven in each group. The rats received intraperitoneal (i.p.) injections at a dose of 2 mg per kilogram of body weight of PAX for 5 successive days, followed by oral gavage with 200 mg/kg body mass of SIL for 10 uninterrupted days. We examined the effect of SIL on specific serum biochemical parameters using an autoanalyzer and rat-specific kits. The spectrophotometric methods was used to investigate oxidative stress indicators in kidney and liver tissues. Aquaporin-2 (AQP-2), B-cell lymphoma-2 (Bcl-2), cysteine aspartate-specific protease-3 (caspase-3), interleukin-6 (IL-6), nuclear factor kappa B (NF-κB), and streptavidin-biotin staining were used to assess immunoreactivity in PAX-induced liver and kidney injury models. Results SIL treatment significantly reduced serum levels of alanine aminotransferase, aspartate aminotransferase, creatinine, urea, and C-reactive protein, indicating its effectiveness in treating PAX-induced liver and kidney injury. SIL treatment significantly reduced oxidative stress by increasing essential antioxidant parameters, such as superoxide dismutase, catalase, glutathione peroxidase, and glutathione. It also reduced malondialdehyde levels in liver and kidney tissues of SIL-PAX groups (p < 0.05). SIL administration reduced NF-κB, caspase-3, and IL-6 expression while increasing Bcl-2 and AQP2 levels in liver and kidney tissues of rats treated with SIL and PAX (p < 0.05). Conclusion Our findings indicate the potential of SIL to alleviate PAX-induced liver and kidney damage in rats by reducing oxidative stress, inflammation, and apoptotic processes.
Collapse
Affiliation(s)
- Seda Yakut
- Department of Histology and Embryology, Burdur Mehmet Akif Ersoy University Faculty of Veterinary Medicine, Burdur, Türkiye
| | - Tuğçe Atcalı
- Department of Physiology, Bingöl University Faculty of Veterinary Medicine, Bingöl, Türkiye
| | - Cüneyt Çaglayan
- Department of Biochemistry, Bilecik Şeyh Edebali University Faculty of Medicine, Bilecik, Türkiye
| | - Aykut Ulucan
- Department of Medical Services and Techniques, Bingöl University, Vocational School of Health Services, Bingöl, Türkiye
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Aksaray University Faculty of Medicine, Aksaray, Türkiye
| | - Adem Kara
- Department of Molecular Biology and Genetics, Erzurum Technique University Faculty of Science, Erzurum, Türkiye
| | - Turgut Anuk
- Clinic of General Surgery, University of Health Sciences Türkiye, Erzurum Regional Training and Research Hospital, Erzurum, Türkiye
| |
Collapse
|
6
|
Sati P, Sharma E, Dhyani P, Attri DC, Rana R, Kiyekbayeva L, Büsselberg D, Samuel SM, Sharifi-Rad J. Paclitaxel and its semi-synthetic derivatives: comprehensive insights into chemical structure, mechanisms of action, and anticancer properties. Eur J Med Res 2024; 29:90. [PMID: 38291541 PMCID: PMC10826257 DOI: 10.1186/s40001-024-01657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Cancer is a disease that can cause abnormal cell growth and can spread throughout the body. It is among the most significant causes of death worldwide, resulting in approx. 10 million deaths annually. Many synthetic anticancer drugs are available, but they often come with side effects and can interact negatively with other medications. Additionally, many chemotherapy drugs used for cancer treatment can develop resistance and harm normal cells, leading to dose-limiting side effects. As a result, finding effective cancer treatments and developing new drugs remains a significant challenge. However, plants are a potent source of natural products with the potential for cancer treatment. These biologically active compounds may be the basis for enhanced or less toxic derivatives. Herbal medicines/phytomedicines, or plant-based drugs, are becoming more popular in treating complicated diseases like cancer due to their effectiveness and are a particularly attractive option due to their affordability, availability, and lack of serious side effects. They have broad applicability and therapeutic efficacy, which has spurred scientific research into their potential as anticancer agents. This review focuses on Paclitaxel (PTX), a plant-based drug derived from Taxus sp., and its ability to treat specific tumors. PTX and its derivatives are effective against various cancer cell lines. Researchers can use this detailed information to develop effective and affordable treatments for cancer.
Collapse
Affiliation(s)
- Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Dharam Chand Attri
- Department of Botany, Central University of Jammu, Rahya-Suchani (Bagla), Jammu and Kashmir, India
| | - Rohit Rana
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144, Doha, Qatar.
| | | |
Collapse
|
7
|
Alkan AH, Ensoy M, Cansaran-Duman D. Strategic and Innovative Roles of lncRNAs Regulated by Naturally-derived Small Molecules in Cancer Therapy. Curr Med Chem 2024; 31:6672-6691. [PMID: 37921177 DOI: 10.2174/0109298673264372230919102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/22/2023] [Accepted: 08/17/2023] [Indexed: 11/04/2023]
Abstract
In the field of precision and personalized medicine, the next generation sequencing method has begun to take an active place as genome-wide screening applications in the diagnosis and treatment of diseases. Studies based on the determination of the therapeutic efficacy of personalized drug use in cancer treatment in the size of the transcriptome and its extension, lncRNA, have been increasing rapidly in recent years. Targeting and/or regulating noncoding RNAs (ncRNAs) consisting of long noncoding RNAs (lncRNAs) are promising strategies for cancer treatment. Within the scope of rapidly increasing studies in recent years, it has been shown that many natural agents obtained from biological organisms can potentially alter the expression of many lncRNAs associated with oncogenic functions. Natural agents include effective small molecules that provide anti-cancer effects and have been used as chemotherapy drugs or in combination with standard anti-cancer drugs used in routine treatment. In this review, it was aimed to provide detailed information about the potential of natural agents to regulate and/or target non-coding RNAs and their mechanisms of action to provide an approach for cancer therapy. The discovery of novel anti-cancer targets and subsequent development of effective drugs or combination strategies that are still needed for most cancers will be promising for cancer treatment.
Collapse
Affiliation(s)
- Ayşe Hale Alkan
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, Bartın, Turkey
| | - Mine Ensoy
- Biotechnology Institute, Ankara University, Keçiören, Ankara, Turkey
| | | |
Collapse
|
8
|
Dorababu A, Maraswami M. Recent Advances (2015-2020) in Drug Discovery for Attenuation of Pulmonary Fibrosis and COPD. Molecules 2023; 28:molecules28093674. [PMID: 37175084 PMCID: PMC10179756 DOI: 10.3390/molecules28093674] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
A condition of scarring of lung tissue due to a wide range of causes (such as environmental pollution, cigarette smoking (CS), lung diseases, some medications, etc.) has been reported as pulmonary fibrosis (PF). This has become a serious problem all over the world due to the lack of efficient drugs for treatment or cure. To date, no drug has been designed that could inhibit fibrosis. However, few medications have been reported to reduce the rate of fibrosis. Meanwhile, ongoing research indicates pulmonary fibrosis can be treated in its initial stages when symptoms are mild. Here, an attempt is made to summarize the recent studies on the effects of various chemical drugs that attenuate PF and increase patients' quality of life. The review is classified based on the nature of the drug molecules, e.g., natural/biomolecule-based, synthetic-molecule-based PF inhibitors, etc. Here, the mechanisms through which the drug molecules attenuate PF are discussed. It is shown that inhibitory molecules can significantly decrease the TGF-β1, profibrotic factors, proteins responsible for inflammation, pro-fibrogenic cytokines, etc., thereby ameliorating the progress of PF. This review may be useful in designing better drugs that could reduce the fibrosis process drastically or even cure the disease to some extent.
Collapse
Affiliation(s)
- Atukuri Dorababu
- Department of Chemistry, SRMPP Government First Grade College, Huvinahadagali 583219, India
| | - Manikantha Maraswami
- Department of Chemistry, Abzena LLC., 360 George Patterson Blvd, Bristol, PA 19007, USA
| |
Collapse
|
9
|
Yang H, Velmurugan BK, Chen M, Lin C, Lo Y, Chuang Y, Ho H, Hsieh M, Ko J. 7‐Epitaxol
induces apoptosis in cisplatin‐resistant head and neck squamous cell carcinoma via suppression of
AKT
and
MAPK
signalling. J Cell Mol Med 2022; 26:5807-5819. [DOI: 10.1111/jcmm.17602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Hui‐Ju Yang
- Institute of Medicine Chung Shan Medical University Taichung Taiwan
- Department of Dermatology Changhua Christian Hospital Changhua Taiwan
| | | | - Mu‐Kuan Chen
- Department of Otorhinolaryngology, Head and Neck Surgery Changhua Christian Hospital Changhua Taiwan
| | - Chia‐Chieh Lin
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Yu‐Sheng Lo
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Yi‐Ching Chuang
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Hsin‐Yu Ho
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
| | - Ming‐Ju Hsieh
- Oral Cancer Research Center Changhua Christian Hospital Changhua Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine College of Medicine, National Chung Hsing University Taichung Taiwan
- Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan
| | - Jiunn‐Liang Ko
- Institute of Medicine Chung Shan Medical University Taichung Taiwan
- Department of Medical Oncology and Chest Medicine Chung Shan Medical University Hospital Taichung Taiwan
| |
Collapse
|
10
|
Öztürk-Kaygusuz T, Sağmak-Tartar A, Akbulut A. An Unusual Cause of Acute Isolated Hepatitis in a Cancer Patient Post-COVID Pneumonia: HSV-2. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2022; 4:210-213. [PMID: 38633396 PMCID: PMC10986694 DOI: 10.36519/idcm.2022.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 04/19/2024]
Abstract
Herpes simplex virus is a rare cause of hepatitis in immunosuppressed and immunocompetent individuals. It can cause clinical pictures in patients ranging from an asymptomatic course to fatal acute fulminant hepatitis. Early diagnosis and treatment may be delayed if it is not suspected because of the patients' nonspecific clinic. This study presents a case of isolated HSV-2 hepatitis in a patient with a history of cancer chemotherapy and a recent diagnosis of COVID-19 who received steroid therapy.
Collapse
Affiliation(s)
- Türkkan Öztürk-Kaygusuz
- Department of Infectious Diseases and Clinical Microbiology, Fırat University School of Medicine, Elazığ, Turkey
| | - Ayşe Sağmak-Tartar
- Department of Infectious Diseases and Clinical Microbiology, Fırat University School of Medicine, Elazığ, Turkey
| | - Ayhan Akbulut
- Department of Infectious Diseases and Clinical Microbiology, Fırat University School of Medicine, Elazığ, Turkey
| |
Collapse
|
11
|
Kim SH, Kim KH, Hyun JW, Kim JH, Seo SS, Kim HJ, Park SY, Lim MC. Blood neurofilament light chain as a biomarker for monitoring and predicting paclitaxel-induced peripheral neuropathy in patients with gynecological cancers. Front Oncol 2022; 12:942960. [PMID: 36059704 PMCID: PMC9428708 DOI: 10.3389/fonc.2022.942960] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
Objective We aimed to evaluate the potential of serum neurofilament light chain (sNfL) and serum brain-derived neurotrophic factor (sBDNF) as reliable biomarkers for paclitaxel-induced peripheral neuropathy (PIPN). Methods Forty-eight patients with gynecologic cancer scheduled to undergo six cycles of paclitaxel-based chemotherapy at the National Cancer Center of Korea between September 2020 and January 2022 were prospectively assessed during and after chemotherapy. Results At the end of the chemotherapy, 12 (25%) patients were classified as having grade 3 PIPN according to the National Cancer Institute-Common Toxicity Criteria. The sNfL levels increased during paclitaxel treatment in all patients. After two, four, and six cycles, patients with grade 3 PIPN exhibited higher mean sNfL levels than those in the 0-2 grade range (p = 0.004, p = 001, and p < 0.001, respectively). For sNfL levels ≥ 124 pg/mL, after two cycles of chemotherapy, the sensitivity and specificity for predicting grade 3 PIPN at the end of treatment were 80% and 79%, respectively. Over the course of paclitaxel-based treatment, sBDNF levels continued to decrease regardless of the severity of PIPN. At the end of treatment and six months after chemotherapy, patients with grade 3 PIPN had lower sBDNF levels than those within the 0-2 grade range (p =0.037 and 0.02, respectively), and the patients in the latter group had better clinical symptoms six months after the end of treatment. Conclusions The sNfL levels during paclitaxel-based chemotherapy reflect ongoing neuroaxonal injury and serve as reliable biomarkers of PIPN severity. The sNfL levels during early treatment with paclitaxel might be prognostic indicators for PIPN progression. Low sBDNF levels 6 months after chemotherapy might adversely affect PIPN recovery.
Collapse
Affiliation(s)
- Su-Hyun Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Ki Hoon Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Jae-Won Hyun
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Ji Hyun Kim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Sang-Soo Seo
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, South Korea
| | - Sang-Yoon Park
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, National Cancer Center, Goyang, South Korea
- Center for Clinical Trial, Hospital, National Cancer Center, Goyang, South Korea
- Department of Cancer Control and Population Health, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- Rare and Pediatric Cancer Branch and Immuno-oncology Branch, Division of Rare and Refractory Cancer, Research Institute, National Cancer Center, Goyang, South Korea
- Department of Cancer Control and Policy, National Cancer Center, Goyang, South Korea
| |
Collapse
|
12
|
Mihai CT, Mihaila I, Pasare MA, Pintilie RM, Ciorpac M, Topala I. Cold Atmospheric Plasma-Activated Media Improve Paclitaxel Efficacy on Breast Cancer Cells in a Combined Treatment Model. Curr Issues Mol Biol 2022; 44:1995-2014. [PMID: 35678664 PMCID: PMC9164030 DOI: 10.3390/cimb44050135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
The use of plasma-activated media (PAM), an alternative to direct delivery of cold atmospheric plasma to cancer cells, has recently gained interest in the plasma medicine field. Paclitaxel (PTX) is used as a chemotherapy of choice for various types of breast cancers, which is the leading cause of mortality in females due to cancer. In this study, we evaluated an alternative way to improve anti-cancerous efficiency of PTX by association with PAM, the ultimate achievement being a better outcome in killing tumoral cells at smaller doses of PTX. MCF-7 and MDA-MB-231 cell lines were used, and the outcome was measured by cell viability (MTT assay), the survival rate (clonogenic assay), apoptosis occurrence, and genotoxicity (COMET assay). Treatment consisted of the use of PAM in combination with under IC50 doses of PTX in short- and long-term models. The experimental data showed that PAM had the capacity to improve PTX's cytotoxicity, as viability of the breast cancer cells dropped, an effect maintained in long-term experiments. A higher frequency of apoptotic, dead cells, and DNA fragmentation was registered in cells treated with the combined treatment as compared with those treated only with PT. Overall, PAM had the capacity to amplify the anti-cancerous effect of PTX.
Collapse
Affiliation(s)
- Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ilarion Mihaila
- Integrated Centre of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Alexandru Ioan Cuza University of Iasi, 11 Carol I Blvd., 700506 Iasi, Romania;
| | - Maria Antoanela Pasare
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Robert Mihai Pintilie
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Mitica Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 700115 Iasi, Romania; (M.A.P.); (R.M.P.); (M.C.)
| | - Ionut Topala
- Iasi Plasma Advanced Research Centre (IPARC), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I blvd., 700506 Iasi, Romania
| |
Collapse
|
13
|
Zhao Y, Peng H, Liang L, Li Y, Hu X, Wang B, Xu Y, Chen S. Polarity protein Par3 sensitizes breast cancer to paclitaxel by promoting cell cycle arrest. Breast Cancer Res Treat 2022; 192:75-87. [PMID: 35079981 DOI: 10.1007/s10549-021-06490-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/02/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Paclitaxel, belongs to tubulin-binding agents (TBAs), shows a great efficacy against breast cancer via stabilizing microtubules. Drug resistance limits its clinical application. Here we aimed to explore a role of Polarity protein Par3 in improving paclitaxel effectiveness. METHODS Breast cancer specimens from 45 patients were collected to study the relationship between Par3 expression and paclitaxel efficacy. The Kaplan-Meier method was used for survival analysis. Cell viability was measured in breast cancer cells (SK-BR-3 and T-47D) with Par3 over-expression or knockdown. The flow cytometry assays were performed to measure cell apoptosis and cell cycle. BrdU incorporation assay and Hoechst 33,258 staining were performed to measure cell proliferation and cell apoptosis, respectively. Immunofluorescence was used to detect microtubule structures. RESULTS Par3 expression was associated with good response of paclitaxel in breast cancer patients. Consistently, Par3 over-expression significantly sensitized breast cancer cells to paclitaxel by promoting cell apoptosis and reducing cell proliferation. In Par3 overexpressing cells upon paclitaxel treatment, we observed intensified cell cycle arrests at metaphase. Further exploration showed that Par3 over-expression stabilized microtubules of breast cancer cells in response to paclitaxel and resists to microtubules instability induced by nocodazole, a microtubule-depolymerizing agent. CONCLUSION Par3 facilitates polymeric forms of tubulin and stabilizes microtubule structure, which aggravates paclitaxel-induced delay at the metaphase-anaphase transition, leading to proliferation inhibition and apoptosis of breast cancer cells. Par3 has a potential role in sensitizing breast cancer cells to paclitaxel, which may provide a more precise assessment of individual treatment and novel therapeutic targets.
Collapse
Affiliation(s)
- Yannan Zhao
- Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.,NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Huitong Peng
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Limiao Liang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Yi Li
- Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.,NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Xichun Hu
- Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China
| | - Biyun Wang
- Department of Medical Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University, 270 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| | - Yingying Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, 130 Dong'an Road, Xuhui District, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
14
|
Sun K, Liu Z, Wang H. Drug-Coated Balloon vs. Stent for de novo Non-small Coronary Artery Disease: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2021; 8:700235. [PMID: 34957227 PMCID: PMC8702625 DOI: 10.3389/fcvm.2021.700235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Drug-coated balloon (DCB) has been an attractive option in de novo vessels. A systematic review and meta-analysis were conducted to evaluate the efficacy and safety of DCB vs. stent for treating de novo lesions in non-small vessels. Methods: Studies in PubMed, Embase, the Cochrane Central Register of Controlled Trials, and Web of Science were searched (from their commencement to March 2021). This meta-analysis was performed by Review Manager 5.3. Results: A total of 3 random controlled trials (RCTs) with 255 patients and 2 observational studies (OS) with 265 patients were included in this meta-analysis following our inclusion criteria. It could be observed that DCB presented no significant difference in cardiac death (CD) (RR 0.33, 95% CI [0.01, 8.29], p = 0.50 in OS), myocardial infarction (MI) (RR 0.49, 95% CI [0.09, 2.50], p = 0.39 in RCT), target lesion revascularization (TLR) (RR 0.64, 95% CI [0.19, 2.18], p = 0.47 in RCT) (RR 1.72, 95% CI [0.56, 5.26], p = 0.34 in OS), and late lumen loss (LLL) (SMD −0.48, 95% CI [−1.32, 0.36], p = 0.26 in RCT) for de novo non-small coronary artery disease (CAD) compared with stents, whereas minimal lumen diameter (MLD) including MLD1 (SMD −0.67, 95% CI [−0.92 −0.42], p < 0.00001 in RCT) and MLD2 (SMD −0.36, 95% CI [−0.61 −0.11], p = 0.004 in RCT) was smaller in DCB group. Conclusion: This systematic review showed that DCB might provide a promising way on de novo non-small coronary artery disease compared with stents. However, more RCTs are still needed to further prove the benefits of the DCB strategy. Systematic Review Registration:https://www.crd.york.ac.uk/PROSPERO/#recordDetails.
Collapse
Affiliation(s)
- Kaiwen Sun
- The Second Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhenzhu Liu
- Department of Cardiovascular Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hongyan Wang
- Department of Cardiovascular Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Ciszewski WM, Wawro ME, Sacewicz-Hofman I, Sobierajska K. Cytoskeleton Reorganization in EndMT-The Role in Cancer and Fibrotic Diseases. Int J Mol Sci 2021; 22:ijms222111607. [PMID: 34769036 PMCID: PMC8583721 DOI: 10.3390/ijms222111607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammation promotes endothelial plasticity, leading to the development of several diseases, including fibrosis and cancer in numerous organs. The basis of those processes is a phenomenon called the endothelial–mesenchymal transition (EndMT), which results in the delamination of tightly connected endothelial cells that acquire a mesenchymal phenotype. EndMT-derived cells, known as the myofibroblasts or cancer-associated fibroblasts (CAFs), are characterized by the loss of cell–cell junctions, loss of endothelial markers, and gain in mesenchymal ones. As a result, the endothelium ceases its primary ability to maintain patent and functional capillaries and induce new blood vessels. At the same time, it acquires the migration and invasion potential typical of mesenchymal cells. The observed modulation of cell shape, increasedcell movement, and invasion abilities are connected with cytoskeleton reorganization. This paper focuses on the review of current knowledge about the molecular pathways involved in the modulation of each cytoskeleton element (microfilaments, microtubule, and intermediate filaments) during EndMT and their role as the potential targets for cancer and fibrosis treatment.
Collapse
|
16
|
Sharifi-Rad J, Quispe C, Patra JK, Singh YD, Panda MK, Das G, Adetunji CO, Michael OS, Sytar O, Polito L, Živković J, Cruz-Martins N, Klimek-Szczykutowicz M, Ekiert H, Choudhary MI, Ayatollahi SA, Tynybekov B, Kobarfard F, Muntean AC, Grozea I, Daştan SD, Butnariu M, Szopa A, Calina D. Paclitaxel: Application in Modern Oncology and Nanomedicine-Based Cancer Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3687700. [PMID: 34707776 PMCID: PMC8545549 DOI: 10.1155/2021/3687700] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Paclitaxel is a broad-spectrum anticancer compound, which was derived mainly from a medicinal plant, in particular, from the bark of the yew tree Taxus brevifolia Nutt. It is a representative of a class of diterpene taxanes, which are nowadays used as the most common chemotherapeutic agent against many forms of cancer. It possesses scientifically proven anticancer activity against, e.g., ovarian, lung, and breast cancers. The application of this compound is difficult because of limited solubility, recrystalization upon dilution, and cosolvent-induced toxicity. In these cases, nanotechnology and nanoparticles provide certain advantages such as increased drug half-life, lowered toxicity, and specific and selective delivery over free drugs. Nanodrugs possess the capability to buildup in the tissue which might be linked to enhanced permeability and retention as well as enhanced antitumour influence possessing minimal toxicity in normal tissues. This article presents information about paclitaxel, its chemical structure, formulations, mechanism of action, and toxicity. Attention is drawn on nanotechnology, the usefulness of nanoparticles containing paclitaxel, its opportunities, and also future perspective. This review article is aimed at summarizing the current state of continuous pharmaceutical development and employment of nanotechnology in the enhancement of the pharmacokinetic and pharmacodynamic features of paclitaxel as a chemotherapeutic agent.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Yengkhom Disco Singh
- Department of Post-Harvest Technology, College of Horticulture and Forestry, Central Agricultural University, Pasighat, 791102 Arunachal Pradesh, India
| | - Manasa Kumar Panda
- Environment and Sustainability Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University, Goyangsi, Republic of Korea
| | - Charles Oluwaseun Adetunji
- Applied Microbiology, Biotechnology and Nanotechnology Laboratory, Department of Microbiology, Edo University Iyamho, PMB 04, Auchi, Edo State, Nigeria
| | - Olugbenga Samuel Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra 94976, Slovakia
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Marta Klimek-Szczykutowicz
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Halina Ekiert
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Muhammad Iqbal Choudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Pharmacognosy and Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bekzat Tynybekov
- Department of Biodiversity of Bioresources, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ana Covilca Muntean
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Ioana Grozea
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Jagiellonian University, Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
17
|
7-Epitaxol Induces Apoptosis and Autophagy in Head and Neck Squamous Cell Carcinoma through Inhibition of the ERK Pathway. Cells 2021; 10:cells10102633. [PMID: 34685613 PMCID: PMC8534141 DOI: 10.3390/cells10102633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 01/10/2023] Open
Abstract
As the main derivative of paclitaxel, 7-Epitaxol is known to a have higher stability and cytotoxicity. However, the anticancer effect of 7-Epitaxol is still unclear. The purpose of this study was to explore the anticancer effects of 7-Epitaxol in squamous cell carcinoma of the head and neck (HNSCC). Our study findings revealed that 7-Epitaxol potently suppressed cell viability in SCC-9 and SCC-47 cells by inducing cell cycle arrest. Flow cytometry and DAPI staining demonstrated that 7-Epitaxol treatment induced cell death, mitochondrial membrane potential and chromatin condensation in OSCC cell lines. The compound regulated the proteins of extrinsic and intrinsic pathways at the highest concentration, and also increased the activation of caspases 3, 8, 9, and PARP in OSCC cell lines. Interestingly, a 7-Epitaxol-mediated induction of LC3-I/II expression and suppression of p62 expression were observed in OSCC cells lines. Furthermore, the MAPK inhibitors indicated that 7-Epitaxol induces apoptosis and autophagy marker proteins (cleaved-PARP and LC3-I/II) by reducing the phosphorylation of ERK1/2. In conclusion, these findings indicate the involvement of 7-Epitaxol in inducing apoptosis and autophagy through ERK1/2 signaling pathway, which identify 7-Epitaxol as a potent cytotoxic agent in HNSCC.
Collapse
|
18
|
Chen X, Lin H, Chen J, Wu L, Zhu J, Ye Y, Chen S, Du H, Li J. Paclitaxel Inhibits Synoviocyte Migration and Inflammatory Mediator Production in Rheumatoid Arthritis. Front Pharmacol 2021; 12:714566. [PMID: 34566640 PMCID: PMC8458635 DOI: 10.3389/fphar.2021.714566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/26/2021] [Indexed: 11/23/2022] Open
Abstract
Activated fibroblast-like synoviocytes (FLSs) play a crucial role in the pathogenesis and progression of rheumatoid arthritis (RA). It is urgent to develop new drugs that can effectively inhibit the abnormal activation of RA-FLS. In our study, the RA-FLS cell line, MH7A, and mice with collagen-induced arthritis (CIA) were used to evaluate the effect of paclitaxel (PTX). Based on the results, PTX inhibited the migration of RA-FLS in a dose-dependent manner and significantly reduced the spontaneous expression of IL-6, IL-8, and RANKL mRNA and TNF-α-induced transcription of the IL-1β, IL-8, MMP-8, and MMP-9 genes. However, PTX had no significant effect on apoptosis in RA-FLS. Mechanistic studies revealed that PTX significantly inhibited the TNF-α-induced phosphorylation of ERK1/2 and JNK in the mitogen-activated protein kinase (MAPK) pathway and suppressed the TNF-α-induced activation of AKT, p70S6K, 4EBP1, and HIF-1α in the AKT/mTOR pathway. Moreover, PTX alleviated synovitis and bone destruction in CIA mice. In conclusion, PTX inhibits the migration and inflammatory mediator production of RA-FLS by targeting the MAPK and AKT/mTOR signaling pathways, which provides an experimental basis for the potential application in the treatment of RA.
Collapse
Affiliation(s)
- Xiaochen Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haofeng Lin
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinyang Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lisheng Wu
- Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junqing Zhu
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongnong Ye
- Department of Drug and Device Center, Huaxin Orthopaedic Hospital, Shantou University, Guangzhou, China
| | - Shixian Chen
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hongyan Du
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Juan Li
- Department of Rheumatic and TCM Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Traditional Chinese Internal Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Parama D, Rana V, Girisa S, Verma E, Daimary UD, Thakur KK, Kumar A, Kunnumakkara AB. The promising potential of piperlongumine as an emerging therapeutics for cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:323-354. [PMID: 36046754 PMCID: PMC9400693 DOI: 10.37349/etat.2021.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
In spite of the immense advancement in the diagnostic and treatment modalities, cancer continues to be one of the leading causes of mortality across the globe, responsible for the death of around 10 million patients every year. The foremost challenges faced in the treatment of this disease are chemoresistance, adverse effects of the drugs, and the high cost of treatment. Though scientific studies over the past few decades have foreseen and are focusing on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action, many more of these agents are not still explored. Piperlongumine (PL), or piplartine, is one such alkaloid isolated from Piper longum Linn. which is shown to be safe and has significant potential in the prevention and therapy of cancer. Numerous shreds of evidence have established the ability of this alkaloid and its analogs and nanoformulations in modulating various complex molecular pathways such as phosphatidylinositol-3-kinase/protein kinase B /mammalian target of rapamycin, nuclear factor kappa-B, Janus kinases/signal transducer and activator of transcription 3, etc. and inhibit different hallmarks of cancer such as cell survival, proliferation, invasion, angiogenesis, epithelial-mesenchymal-transition, metastases, etc. In addition, PL was also shown to inhibit radioresistance and chemoresistance and sensitize the cancer cells to the standard chemotherapeutic agents. Therefore, this compound has high potential as a drug candidate for the prevention and treatment of different cancers. The current review briefly reiterates the anti-cancer properties of PL against different types of cancer, which permits further investigation by conducting clinical studies.
Collapse
Affiliation(s)
- Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Elika Verma
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Aviral Kumar
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| |
Collapse
|
20
|
Simultaneous Targeting Tumor Cells and Cancer-Associated Fibroblasts with a Paclitaxel-Hyaluronan Bioconjugate: In Vitro Evaluation in Non-Melanoma Skin Cancer. Biomedicines 2021; 9:biomedicines9060597. [PMID: 34073987 PMCID: PMC8225214 DOI: 10.3390/biomedicines9060597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) facilitate many aspects of cancer development by providing a structural framework rich in bioactive compounds. There are emerging studies proposing a combination of conventional anti-cancer therapies directed against neoplastic cells to molecules targeting tumor microenvironments. METHODS The study evaluated the pharmacological properties of the anti-tumor agent paclitaxel conjugated to hyaluronic acid (HA) regarding non-melanoma skin cancer (NMSC) and the surrounding fibroblasts. This molecule, named Oncofid-P20 (Onco-P20), preferentially targets cells expressing high levels of CD44, the natural ligand of HA. RESULTS Consistent with paclitaxel's mechanism of action involving interference with the breakdown of microtubules during cell division, highly sensitive carcinoma cells rapidly underwent apoptotic cell death. Interestingly, less sensitive cells, such as dermal fibroblasts, resisted the Onco-P20 treatment and experienced a prolonged growth arrest characterized by morphological change and significant modification of the gene expression profile. Onco-P20-treated fibroblasts exhibited reduced growth factor production, downmodulation of the Wnt signaling pathway, and the acquisition of a marked pro-inflammatory profile. Independently of direct exposure to taxol, in the presence of Onco-P20-treated fibroblasts or in their conditioned medium, carcinoma cells had a reduced proliferation rate. Similar to NHF, fibroblasts isolated from skin cancer lesions or from adjacent tissue acquired anti-neoplastic activity under Onco-P20 treatment. CONCLUSION Collectively, our data demonstrate that Onco-P20, exerting both a direct and an NHF-mediated indirect effect on carcinoma cells, is a candidate for an innovative therapy alternative to surgery for the treatment of NMSC.
Collapse
|
21
|
Nawara HM, Afify SM, Hassan G, Zahra MH, Seno A, Seno M. Paclitaxel-Based Chemotherapy Targeting Cancer Stem Cells from Mono- to Combination Therapy. Biomedicines 2021; 9:biomedicines9050500. [PMID: 34063205 PMCID: PMC8147479 DOI: 10.3390/biomedicines9050500] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Paclitaxel (PTX) is a chemotherapeutical agent commonly used to treat several kinds of cancer. PTX is known as a microtubule-targeting agent with a primary molecular mechanism that disrupts the dynamics of microtubules and induces mitotic arrest and cell death. Simultaneously, other mechanisms have been evaluated in many studies. Since the anticancer activity of PTX was discovered, it has been used to treat many cancer patients and has become one of the most extensively used anticancer drugs. Regrettably, the resistance of cancer to PTX is considered an extensive obstacle in clinical applications and is one of the major causes of death correlated with treatment failure. Therefore, the combination of PTX with other drugs could lead to efficient therapeutic strategies. Here, we summarize the mechanisms of PTX, and the current studies focusing on PTX and review promising combinations.
Collapse
Affiliation(s)
- Hend M. Nawara
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Said M. Afify
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus 10769, Syria
| | - Maram H. Zahra
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Akimasa Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
| | - Masaharu Seno
- Department of Biotechnology and Drug Discovery, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (H.M.N.); (S.M.A.); (G.H.); (M.H.Z.); (A.S.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
22
|
Downstream Paclitaxel Released Following Drug-Coated Balloon Inflation and Distal Limb Wound Healing in Swine. JACC Basic Transl Sci 2021; 6:416-427. [PMID: 34095632 PMCID: PMC8165120 DOI: 10.1016/j.jacbts.2021.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 11/25/2022]
Abstract
PCBs are a clinically proven antirestenotic alternative to plain percutaneous transluminal angioplasty of superficial femoral arteries but their application in critical limb ischemia is inhibited by the concern that the downstream release of particulate paclitaxel may negatively impact distal lower limb’s circulation and its tissues already compromised by chronic ischemia. To investigate this concern experimentally, we used an animal model of standardized distal limb wounds to determine the effect of downstream paclitaxel released during PCB treatment of superficial femoral arteries on distal wound healing process. A clinically relevant concentration of paclitaxel in the vicinity of the wound did not impair the healing of preexisting distal cutaneous lesions in healthy swine even after multiple PCB deployments.
The authors evaluated the presence of paclitaxel and healing of distal hind limb wounds created in 27 swine using biopsy punches followed by paclitaxel-coated balloon (PCB) use in the iliofemoral arteries of healthy swine. After 14 and 28 days, no differences were seen in time course, appearance, and histopathology of wound healing between the single or triple PCB and uncoated balloon treatment despite clinically relevant paclitaxel concentrations in the skin adjacent to the healing wounds. Presence of paclitaxel downstream from the PCB treatment site does not impair the wound healing response of preexisting distal cutaneous lesions in healthy swine.
Collapse
|
23
|
Lian J, Hua T, Xu J, Ding J, Liu Z, Fan Y. Interleukin-1β weakens paclitaxel sensitivity through regulating autophagy in the non-small cell lung cancer cell line A549. Exp Ther Med 2021; 21:293. [PMID: 33717236 PMCID: PMC7885084 DOI: 10.3892/etm.2021.9724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) poses a threat to human health and paclitaxel chemotherapy has been approved for the treatment of this type of cancer. However, resistance to treatment severely compromises the survival rate and prognosis of patients with NSCLC. The aim of the present study was to investigate the role of IL-1β in paclitaxel sensitivity of NSCLC cells and elucidate the underlying mechanism. The expression of IL-1β was found to be upregulated in NSCLC tissues and cells compared with healthy adjacent tissues and a normal epithelial cell line, respectively, as detected by reverse transcription-quantitative PCR and western blot analyses. Subsequently, Cell Counting Kit-8 assay and flow cytometry revealed that IL-1β weakened the sensitivity of A549 cells to paclitaxel. It was subsequently demonstrated that IL-1β induced A549 cell autophagy, while tunicamycin-induced autophagy increased the IL-1β expression level and weakened paclitaxel sensitivity. Thus, the results revealed that IL-1β reduced the sensitivity to paclitaxel in A549 cells by promoting autophagy and suggested that IL-1β may be of value for improving the therapeutic efficacy of paclitaxel chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Juanwen Lian
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Tao Hua
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jialing Xu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Jie Ding
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Zejie Liu
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| | - Yu Fan
- Department of Oncology, Xi'an Chest Hospital, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
24
|
Son SS, Kang JS, Lee EY. Paclitaxel Ameliorates Palmitate-Induced Injury in Mouse Podocytes. Med Sci Monit Basic Res 2020; 26:e928265. [PMID: 33323915 PMCID: PMC7751256 DOI: 10.12659/msmbr.928265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Palmitate, a common saturated free fatty acid, is increased in patients with diabetic nephropathy (DN). Excessive palmitate in kidney is known to cause proteinuria and fibrosis. Several studies have demonstrated that paclitaxel has anti-fibrotic and anti-inflammatory effects on kidney disease. However, whether paclitaxel can relieve podocyte injury is unclear. Material/Methods Immortalized mouse podocytes were used as an in vitro system. Palmitate was used to induce podocyte injury. Podocytes were divided into 4 groups: bovine serum albumin, palmitate, palmitate+1 nM paclitaxel, and palmitate+5 nM paclitaxel. The effects of paclitaxel on palmitate-induced podocyte injury were analyzed by western blot and real-time PCR. Intracellular reactive oxygen species (ROS) generation and podocyte cytoskeletons were analyzed using CM-H2DCF-DA and phalloidin staining. Results Paclitaxel restored downregulated expression of nephrin and synaptopodin and upregulated VEGF expression after injury induced by palmitate. Remarkably, palmitate-induced actin cytoskeleton rearrangement in podocytes was repaired by paclitaxel. Four endoplasmic reticulum stress markers, ATF-6α, Bip, CHOP, and spliced xBP1, were significantly increased in palmitate-treated podocytes compared with control podocytes. Such increases were decreased by paclitaxel treatment. Palmitate-induced ROS generation was ameliorated by paclitaxel. Elevated Nox4 expression was also improved by paclitaxel. Paclitaxel alleviated the expression levels of the antioxidant molecules, Nrf-2, HO-1, SOD-1, and SOD-2. The paclitaxel effects were accompanied by inhibition of the inflammatory cytokines, MCP-1, TNF-α, TNF-R2, and TLR4, as well as attenuation of the apoptosis markers, Bax, Bcl-2, and Caspase-3. Furthermore, paclitaxel suppressed the palmitate-induced fibrosis molecules, fibronectin and TGF-β1. Conclusions This study suggests that paclitaxel could be a therapeutic agent for treating palmitate-induced podocyte injury in DN.
Collapse
Affiliation(s)
- Seung Seob Son
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Department of Internal Medicine, BK21 Four Project, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
25
|
Duarte D, Vale N. New Trends for Antimalarial Drugs: Synergism between Antineoplastics and Antimalarials on Breast Cancer Cells. Biomolecules 2020; 10:E1623. [PMID: 33271968 PMCID: PMC7761440 DOI: 10.3390/biom10121623] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/28/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy plays a key role in breast cancer therapy, but drug resistance and unwanted side effects make the treatment less effective. We propose a new combination model that combines antineoplastic drugs and antimalarials for breast cancer therapy. Cytotoxic effects of two antineoplastic agents alone and in combination with several antimalarials on MCF-7 tumor cell line was evaluated. Different concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay method. The results indicate doxorubicin (DOX) and paclitaxel (PTX) alone at concentrations of their IC50 and higher are cell growth inhibitors. Mefloquine, artesunate, and chloroquine at concentrations of their IC50 demonstrate anti-cancer activity. In combination, almost all antimalarials demonstrate higher ability than DOX and PTX alone to decrease cell viability at concentrations of IC50 and lower than their IC50. The combination of chloroquine, artesunate and mefloquine with DOX and PTX was synergic (CI < 1). The combination of DOX and mefloquine after 48 h incubation demonstrated the highest cytotoxicity against MCF-7 cells, and the combination of DOX and artesunate was the most synergic. These results suggest antimalarials could act synergistically with DOX/PTX for breast cancer therapy.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Medicine, University of Porto, Al. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
26
|
Salehi M, Moieni A, Safaie N, Farhadi S. Whole fungal elicitors boost paclitaxel biosynthesis induction in Corylus avellana cell culture. PLoS One 2020; 15:e0236191. [PMID: 32673365 PMCID: PMC7365444 DOI: 10.1371/journal.pone.0236191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/30/2020] [Indexed: 12/29/2022] Open
Abstract
Paclitaxel is an effective natural-source chemotherapeutic agent commonly applied to treat a vast range of cancers. In vitro Corylus avellana culture has been reported as a promising and inexpensive system for paclitaxel production. Fungal elicitors have been made known as the most efficient strategy for the biosynthesis induction of secondary metabolites in plant in vitro culture. In this research, C. avellana cell suspension culture (CSC) was exposed to cell extract (CE) and culture filtrate (CF) derived from Camarosporomyces flavigenus, either individually or combined treatment, in mid and late log phase. There is no report on the use of whole fungal elicitors (the combined treatment of CE and CF) for the elicitation of secondary metabolite biosynthesis in plant in vitro culture. The combined treatment of CE and CF significantly led to more paclitaxel biosynthesis and secretion than the individual use of them. Also, multivariate statistical approaches including stepwise regression (SR), ordinary least squares regression (OLSR), principal component regression (PCR) and partial least squares regression (PLSR) were used to model and predict paclitaxel biosynthesis and secretion. Based on value account for (VAF), root mean square error (RMSE), coefficient of determination (R2), mean absolute percentage error (MAPE) and relative percent difference (RPD) can be concluded that mentioned regression models effectively worked only for modeling and predicting extracellular paclitaxel portion in C. avellana cell culture.
Collapse
Affiliation(s)
- Mina Salehi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Moieni
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Siamak Farhadi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
27
|
Utilizing Melatonin to Alleviate Side Effects of Chemotherapy: A Potentially Good Partner for Treating Cancer with Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6841581. [PMID: 32566095 PMCID: PMC7260648 DOI: 10.1155/2020/6841581] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/14/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Persistent senescence seems to exert detrimental effects fostering ageing and age-related disorders, such as cancer. Chemotherapy is one of the most valuable treatments for cancer, but its clinical application is limited due to adverse side effects. Melatonin is a potent antioxidant and antiageing molecule, is nontoxic, and enhances the efficacy and reduces the side effects of chemotherapy. In this review, we first summarize the mitochondrial protective role of melatonin in the context of chemotherapeutic drug-induced toxicity. Thereafter, we tabulate the protective actions of melatonin against ageing and the harmful roles induced by chemotherapy and chemotherapeutic agents, including anthracyclines, alkylating agents, platinum, antimetabolites, mitotic inhibitors, and molecular-targeted agents. Finally, we discuss several novel directions for future research in this area. The information compiled in this review will provide a comprehensive reference for the protective activities of melatonin in the context of chemotherapy drug-induced toxicity and will contribute to the design of future studies and increase the potential of melatonin as a therapeutic agent.
Collapse
|
28
|
Chae HK, Yang JI, An JH, Lee IH, Son MH, Song WJ, Youn HY. Use of oral paclitaxel for the treatment of bladder tumors in dogs. J Vet Med Sci 2020; 82:527-530. [PMID: 32249251 PMCID: PMC7273596 DOI: 10.1292/jvms.19-0578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
An oral paclitaxel formulation that overcomes the hypersensitivity reaction of paclitaxel has been evaluated for safety and efficacy in humans, but not in dogs. We present the first case
report on the use of oral paclitaxel in dogs. In this study, oral paclitaxel was well-tolerated in four dogs with either transitional cell carcinoma or prostate cancer; adverse effects were
limited to mild neutropenia. Each of the dogs had progressive disease at the end, but clinical responses, including changes in mass size and improvement of clinical symptoms, were confirmed
in some of the animals following oral paclitaxel chemotherapy. Although this study is somewhat limited by a small sample size, it suggests that oral paclitaxel may be a chemotherapeutic
option for malignant tumors in dogs.
Collapse
Affiliation(s)
- Hyung-Kyu Chae
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji-In Yang
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Ju-Hyun An
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - In-Hyun Lee
- Daehwa Pharmaceutical Company Co., Ltd., Seoul 06699, Republic of Korea
| | - Min-Hee Son
- Daehwa Pharmaceutical Company Co., Ltd., Seoul 06699, Republic of Korea
| | - Woo-Jin Song
- Laboratory of Veterinary Internal Medicine, College of Veterianry Medicine, Jeju National University, Jeju 63243, Korea
| | - Hwa-Young Youn
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
29
|
Abu Samaan TM, Samec M, Liskova A, Kubatka P, Büsselberg D. Paclitaxel's Mechanistic and Clinical Effects on Breast Cancer. Biomolecules 2019; 9:biom9120789. [PMID: 31783552 PMCID: PMC6995578 DOI: 10.3390/biom9120789] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023] Open
Abstract
Paclitaxel (PTX), the most widely used anticancer drug, is applied for the treatment of various types of malignant diseases. Mechanisms of PTX action represent several ways in which PTX affects cellular processes resulting in programmed cell death. PTX is frequently used as the first-line treatment drug in breast cancer (BC). Unfortunately, the resistance of BC to PTX treatment is a great obstacle in clinical applications and one of the major causes of death associated with treatment failure. Factors contributing to PTX resistance, such as ABC transporters, microRNAs (miRNAs), or mutations in certain genes, along with side effects of PTX including peripheral neuropathy or hypersensitivity associated with the vehicle used to overcome its poor solubility, are responsible for intensive research concerning the use of PTX in preclinical and clinical studies. Novelties such as albumin-bound PTX (nab-PTX) demonstrate a progressive approach leading to higher efficiency and decreased risk of side effects after drug administration. Moreover, PTX nanoparticles for targeted treatment of BC promise a stable and efficient therapeutic intervention. Here, we summarize current research focused on PTX, its evaluations in preclinical research and application clinical practice as well as the perspective of the drug for future implication in BC therapy.
Collapse
Affiliation(s)
- Tala M. Abu Samaan
- Department of Pre-Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| | - Marek Samec
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Alena Liskova
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
- Correspondence: (T.M.A.S.); (D.B.); Tel.: +974-4492-8334 (D.B.); Fax: +974-4492-8333 (D.B.)
| |
Collapse
|
30
|
Dey P, Kundu A, Chakraborty HJ, Kar B, Choi WS, Lee BM, Bhakta T, Atanasov AG, Kim HS. Therapeutic value of steroidal alkaloids in cancer: Current trends and future perspectives. Int J Cancer 2019; 145:1731-1744. [PMID: 30387881 PMCID: PMC6767045 DOI: 10.1002/ijc.31965] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/04/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022]
Abstract
Discovery and development of new potentially selective anticancer agents are necessary to prevent a global cancer health crisis. Currently, alternative medicinal agents derived from plants have been extensively investigated to develop anticancer drugs with fewer adverse effects. Among them, steroidal alkaloids are conventional secondary metabolites that comprise an important class of natural products found in plants, marine organisms and invertebrates, and constitute a judicious choice as potential anti-cancer leads. Traditional medicine and modern science have shown that representatives from this compound group possess potential antimicrobial, analgesic, anticancer and anti-inflammatory effects. Therefore, systematic and recapitulated information about the bioactivity of these compounds, with special emphasis on the molecular or cellular mechanisms, is of high interest. In this review, we methodically discuss the in vitro and in vivo potential of the anticancer activity of natural steroidal alkaloids and their synthetic and semi-synthetic derivatives. This review focuses on cumulative and comprehensive molecular mechanisms, which will help researchers understand the molecular pathways involving steroid alkaloids to generate a selective and safe new lead compound with improved therapeutic applications for cancer prevention and therapy. In vitro and in vivo studies provide evidence about the promising therapeutic potential of steroidal alkaloids in various cancer cell lines, but advanced pharmacokinetic and clinical experiments are required to develop more selective and safe drugs for cancer treatment.
Collapse
Affiliation(s)
- Prasanta Dey
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Amit Kundu
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | | | - Babli Kar
- Bengal Homoeopathic Medical College and HospitalAsansolIndia
| | - Wahn Soo Choi
- School of MedicineKonkuk UniversityChungjuRepublic of Korea
| | - Byung Mu Lee
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| | - Tejendra Bhakta
- Regional Institute of Pharmaceutical Science & TechnologyTripuraIndia
| | - Atanas G. Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of SciencesJastrzebiecPoland
- Department of PharmacognosyUniversity of ViennaViennaAustria
| | - Hyung Sik Kim
- School of PharmacySungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
31
|
Wang YM, Ji R, Chen WW, Huang SW, Zheng YJ, Yang ZT, Qu HP, Chen H, Mao EQ, Chen Y, Chen EZ. Paclitaxel alleviated sepsis-induced acute lung injury by activating MUC1 and suppressing TLR-4/NF-κB pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3391-3404. [PMID: 31576113 PMCID: PMC6766586 DOI: 10.2147/dddt.s222296] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/01/2019] [Indexed: 12/14/2022]
Abstract
Purpose It has been reported that approximately 40% of ALI (acute lung injury) incidence resulted from sepsis. Paclitaxel, as a classic anti-cancer drug, plays an important role in the regulation of inflammation. However, we do not know whether it has a protective effect against CLP (cecal ligation and puncture)-induced septic ALI. Our study aims to illuminate the mitigative effects of paclitaxel on sepsis-induced ALI and its relevant mechanisms. Materials and methods The survival rates and organ injuries were used to evaluate the effects of paclitaxel on CLP mice. The levels of inflammatory cytokines were tested by ELISA. MUC1 siRNA pre-treatment was used to knockdown MUC1 expression in vitro. GO203 was used to inhibit the homodimerization of MUC1-C in vivo. The expression levels of MUC1, TLR 4 and p-NF-κB/p65 were detected by Western blot. Results Our results showed that paclitaxel improved the survival rates and ameliorated organ injuries especially lung injury in CLP-induced septic mice. These were accompanied by reduced inflammatory cytokines in sera and BALF (bronchoalveolar lavage fluid). We also found paclitaxel could attenuate TLR 4-NF-κB/p65 activation both in lung tissues of septic mice and LPS-stimulated lung type II epithelial cell line A549. At the upstream level, paclitaxel-upregulated expression levels of MUC1 in both in vivo and in vitro experiments. The inhibitory effects of paclitaxel on TLR 4-NF-κB/p65 activation were reversed in lung tissues of septic mice pre-treated with MUC1 inhibitor and in MUC1-knockdown A549 cells. Protection of paclitaxel on sepsis-induced ALI and decrease of inflammatory cytokines were also abolished by inhibition of MUC1. Conclusion Collectively, these results indicated paclitaxel could significantly alleviate acute lung injury in CLP-induced septic mice and LPS-stimulated lung type II epithelial cell line A549 by activating MUC1 and suppressing TLR-4/NF-κB pathway.
Collapse
Affiliation(s)
- Yu-Ming Wang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ran Ji
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wei-Wei Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shun-Wei Huang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan-Jun Zheng
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Zhi-Tao Yang
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Ping Qu
- Department of Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao Chen
- Department of General Surgery, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - En-Qiang Mao
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ying Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Er-Zhen Chen
- Department of Emergency, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
32
|
Luo Y, Xie L, Liu HM, Liu B. [Effect of low-concentration paclitaxel on collagen deposition outside rat pulmonary artery smooth muscle cells and related mechanism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:924-929. [PMID: 31506155 PMCID: PMC7390237 DOI: 10.7499/j.issn.1008-8830.2019.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the effect of low-concentration paclitaxel (PTX) on transforming growth factor-β1 (TGF-β1)-induced collagen deposition outside rat pulmonary artery smooth muscle cells (PASMCs) and related mechanism. METHODS Primary rat PASMCs were divided into a blank control group (n=3), a model group (n=3), and a drug intervention group (n=3). No treatment was given for the blank control group. The model group was treated with TGF-β1 with a final concentration of 10 ng/mL. The drug intervention group was treated with PTX with a final concentration of 100 nmol/L in addition to the treatment in the model group. MTT colorimetry was used to measure cell proliferation. Quantitative real-time PCR was used to measure the relative mRNA expression of collagen type I (COL-I) and collagen type III (COL-III). ELISA was used to measure the OD value of COL-I and COL-III proteins. Western blot was used to measure the relative protein expression of COL-I, COL-III, and the key proteins of the TGF-β1/Smad3 signaling pathway (Smad3 and p-Smad3). RESULTS Compared with the blank control group, the model group had significant increases in proliferation ability, relative mRNA and protein expression of COL-I and COL-III, and relative protein expression of p-Smad3 (P<0.05). Compared with the model group, the drug intervention group had significant reductions in the above indicators, but which were still higher than those in the blank control group (P<0.05). There was no significant difference in the relative protein expression of Smad3 among the three groups (P>0.05). CONCLUSIONS Low-concentration PTX exerts a marked inhibitory effect on TGF-β1-induced collagen deposition outside PASMCs, possibly by regulating the phosphorylation of Smad3 protein.
Collapse
Affiliation(s)
- Yan Luo
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | | | | | | |
Collapse
|
33
|
Luo Y, Xie L, Liu HM, Liu B. [Effect of low-concentration paclitaxel on collagen deposition outside rat pulmonary artery smooth muscle cells and related mechanism]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:924-929. [PMID: 31506155 PMCID: PMC7390237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/05/2019] [Indexed: 08/01/2024]
Abstract
OBJECTIVE To study the effect of low-concentration paclitaxel (PTX) on transforming growth factor-β1 (TGF-β1)-induced collagen deposition outside rat pulmonary artery smooth muscle cells (PASMCs) and related mechanism. METHODS Primary rat PASMCs were divided into a blank control group (n=3), a model group (n=3), and a drug intervention group (n=3). No treatment was given for the blank control group. The model group was treated with TGF-β1 with a final concentration of 10 ng/mL. The drug intervention group was treated with PTX with a final concentration of 100 nmol/L in addition to the treatment in the model group. MTT colorimetry was used to measure cell proliferation. Quantitative real-time PCR was used to measure the relative mRNA expression of collagen type I (COL-I) and collagen type III (COL-III). ELISA was used to measure the OD value of COL-I and COL-III proteins. Western blot was used to measure the relative protein expression of COL-I, COL-III, and the key proteins of the TGF-β1/Smad3 signaling pathway (Smad3 and p-Smad3). RESULTS Compared with the blank control group, the model group had significant increases in proliferation ability, relative mRNA and protein expression of COL-I and COL-III, and relative protein expression of p-Smad3 (P<0.05). Compared with the model group, the drug intervention group had significant reductions in the above indicators, but which were still higher than those in the blank control group (P<0.05). There was no significant difference in the relative protein expression of Smad3 among the three groups (P>0.05). CONCLUSIONS Low-concentration PTX exerts a marked inhibitory effect on TGF-β1-induced collagen deposition outside PASMCs, possibly by regulating the phosphorylation of Smad3 protein.
Collapse
Affiliation(s)
- Yan Luo
- Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | | | | | | |
Collapse
|
34
|
Zhang D, Wu JR, Duan XJ, Wang KH, Zhao Y, Ni MW, Liu SY, Zhang XM, Zhang B. A Bayesian Network Meta-Analysis for Identifying the Optimal Taxane-Based Chemotherapy Regimens for Treating Gastric Cancer. Front Pharmacol 2019; 10:717. [PMID: 31333452 PMCID: PMC6624233 DOI: 10.3389/fphar.2019.00717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/05/2019] [Indexed: 01/30/2023] Open
Abstract
Background: Several taxane-based chemotherapy regimens are effective in the treatment of gastric cancer; nevertheless, their comparative efficacy and safety remain disputed. This network meta-analysis (NMA) was designed to compare the efficacy and safety of different taxane-based chemotherapy regimens against gastric cancer. Methods: A comprehensive search was conducted to identify all relevant randomized controlled trials (RCTs) in multiple electronic databases. A Bayesian NMA was performed to combine the direct and indirect evidence and estimate the comparative efficacy and safety of different taxane-based chemotherapy regimens simultaneously by utilizing WinBUGS 1.4.3 and Stata 13.1 software. The efficacy outcomes included overall survival rate (OS), progression-free survival (PFS), and overall response rate (ORR), and the safety outcomes were adverse reactions (ADRs), namely, neutropenia, leucopenia, vomiting, and fatigue. Results: A total of 37 RCTs were identified involving 7,178 patients with gastric cancer, and 10 taxane-based chemotherapy regimens (RT, T, TC, TCF, TF, TO, TOF, mTCF, mTF, and mTOF) were collected in gastric cancer therapy. According to the results of cluster analysis, compared with other taxane-based chemotherapy regimens, the regimens of TOF, mTCF, and TF were associated with the most favorable clinical efficacy in improving OS, PFS, and ORR. On the other hand, the regimens of T and mTF had the potential to be the most tolerable and acceptable therapeutic alternative in terms of ADRs. Conclusions: The current NMA provides the evidence that the combination of taxanes (paclitaxel or docetaxel) and fluorouracil is associated with the most preferable and beneficial option for patients with gastric cancer, although additional results from multicenter trials and high-quality studies will be pivotal for supporting our findings.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Rui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Jiao Duan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kai-Huan Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meng-Wei Ni
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shu-Yu Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Meng Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Bing Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
35
|
In Search of Panacea-Review of Recent Studies Concerning Nature-Derived Anticancer Agents. Nutrients 2019; 11:nu11061426. [PMID: 31242602 PMCID: PMC6627480 DOI: 10.3390/nu11061426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/21/2022] Open
Abstract
Cancers are one of the leading causes of deaths affecting millions of people around the world, therefore they are currently a major public health problem. The treatment of cancer is based on surgical resection, radiotherapy, chemotherapy or immunotherapy, much of which is often insufficient and cause serious, burdensome and undesirable side effects. For many years, assorted secondary metabolites derived from plants have been used as antitumor agents. Recently, researchers have discovered a large number of new natural substances which can effectively interfere with cancer cells’ metabolism. The most famous groups of these compounds are topoisomerase and mitotic inhibitors. The aim of the latest research is to characterize natural compounds found in many common foods, especially by means of their abilities to regulate cell cycle, growth and differentiation, as well as epigenetic modulation. In this paper, we focus on a review of recent discoveries regarding nature-derived anticancer agents.
Collapse
|
36
|
Monteiro LOF, Fernandes RS, Castro L, Reis D, Cassali GD, Evangelista F, Loures C, Sabino AP, Cardoso V, Oliveira MC, Branco de Barros A, Leite EA. Paclitaxel-Loaded Folate-Coated pH-Sensitive Liposomes Enhance Cellular Uptake and Antitumor Activity. Mol Pharm 2019; 16:3477-3488. [DOI: 10.1021/acs.molpharmaceut.9b00329] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Progress in research on paclitaxel and tumor immunotherapy. Cell Mol Biol Lett 2019; 24:40. [PMID: 31223315 PMCID: PMC6567594 DOI: 10.1186/s11658-019-0164-y] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Paclitaxel is a well-known anticancer agent with a unique mechanism of action. It is considered to be one of the most successful natural anticancer drugs available. This study summarizes the recent advances in our understanding of the sources, the anticancer mechanism, and the biosynthetic pathway of paclitaxel. With the advancement of biotechnology, improvements in endophytic fungal strains, and the use of recombination techniques and microbial fermentation engineering, the yield of extracted paclitaxel has increased significantly. Recently, paclitaxel has been found to play a large role in tumor immunity, and it has a great potential for use in many cancer treatments.
Collapse
|
38
|
Tajima H, Ohta T, Okazaki M, Yamaguchi T, Ohbatake Y, Okamoto K, Nakanuma S, Kinoshita J, Makino I, Nakamura K, Miyashita T, Takamura H, Ninomiya I, Fushida S, Nakamura H. Neoadjuvant chemotherapy with gemcitabine-based regimens improves the prognosis of node positive resectable pancreatic head cancer. Mol Clin Oncol 2019; 11:157-166. [PMID: 31281650 DOI: 10.3892/mco.2019.1867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/16/2019] [Indexed: 01/02/2023] Open
Abstract
The effectiveness of preoperative (neoadjuvant) chemotherapy (NAC) for resectable pancreatic ductal adenocarcinoma (PDAC) remains unclear. The present study retrospectively evaluated the efficacy of NAC with gemcitabine (GEM)-based regimens or GEM monotherapy for resectable PDAC. Between 2006 and 2015, NAC with GEM was performed in 52 cases (head 31, and body and tail 21) and compared with 34 resection-only cases serving as controls (head 20, and body and tail 14). According to the Response Evaluation Criteria In Solid Tumors guidelines, the treatment effect was a partial response in 5 cases, stable disease in 45 cases, and progressive disease in 2 cases. Maximum standardized uptake values and carbohydrate antigen (CA19-9) values were significantly reduced after preoperative chemotherapy. Using the Evans grading system, the treatment effect was grade I in 31 patients, grade IIa in 8, and grade IIb in 3 cases. There were significant differences in the overall survival rate between the NAC and control groups, only in the patients with node-positive pancreatic head cancer. Significantly higher CA19-9 values in peripheral blood and higher lymph node metastasis and plexus invasion rates were observed in early-recurring cases within a year. The preoperative CA 19-9 cutoff value as an early recurrence risk factor was calculated as 30 U/ml in the NAC group and 88 U/ml in the control group. NAC with GEM prolonged survival in patients with node-positive pancreatic head cancer. High CA19-9 values before operation, lymph node metastases and plexus invasion were risk factors for early tumor recurrence after surgery. Preoperative chemotherapy would be necessary for resectable pancreatic head cancer as lymph node metastasis was observed in >60% with resectable PDAC. Moreover, if normalization of CA19-9 values is not achieved with NAC, extension of preoperative chemotherapy should be considered as for borderline resectable PDAC cases.
Collapse
Affiliation(s)
- Hidehiro Tajima
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Mitsuyoshi Okazaki
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Takahisa Yamaguchi
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Yoshinao Ohbatake
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Koichi Okamoto
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Jun Kinoshita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Keishi Nakamura
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Itasu Ninomiya
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Sachio Fushida
- Department of Gastroenterological Surgery, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hiroyuki Nakamura
- Department of Environmental and Preventive Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| |
Collapse
|
39
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
40
|
Wawro ME, Chojnacka K, Wieczorek-Szukała K, Sobierajska K, Niewiarowska J. Invasive Colon Cancer Cells Induce Transdifferentiation of Endothelium to Cancer-Associated Fibroblasts through Microtubules Enriched in Tubulin-β3. Int J Mol Sci 2018; 20:ijms20010053. [PMID: 30583584 PMCID: PMC6337286 DOI: 10.3390/ijms20010053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
Colon cancer, the second leading cause of cancer-related deaths in the world, is usually diagnosed in invasive stages. The interactions between cancer cells and cells located in their niche remain the crucial mechanism inducing tumor metastasis. The most important among those cells are cancer-associated fibroblasts (CAFs), the heterogeneous group of myofibroblasts transdifferentiated from numerous cells of different origin, including endothelium. The endothelial-to-mesenchymal transition (EndMT) is associated with modulation of cellular morphology, polarization and migration ability as a result of microtubule cytoskeleton reorganization. Here we reveal, for the first time, that invasive colon cancer cells regulate EndMT of endothelium via tubulin-β3 upregulation and its phosphorylation. Thus, we concluded that therapies based on inhibition of tubulin-β3 expression or phosphorylation, or blocking tubulin-β3's recruitment to the microtubules, together with anti-inflammatory chemotherapeutics, are promising means to treat advanced stages of colon cancer.
Collapse
Affiliation(s)
- Marta Ewelina Wawro
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Katarzyna Chojnacka
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
- Department of Biochemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Katarzyna Wieczorek-Szukała
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska 281/289, 93-338 Lodz, Poland.
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| | - Jolanta Niewiarowska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
41
|
Luan J, Zhang Z, Shen W, Chen Y, Yang X, Chen X, Yu L, Sun J, Ding J. Thermogel Loaded with Low-Dose Paclitaxel as a Facile Coating to Alleviate Periprosthetic Fibrous Capsule Formation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30235-30246. [PMID: 30102023 DOI: 10.1021/acsami.8b13548] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Medical-grade silicones as implants have been utilized for decades. However, the postoperative complications, such as capsular formation and contracture, have not yet been fully controlled and resolved. The aim of the present study is to elucidate whether the capsular formation can be alleviated by local and sustained delivery of low-dose paclitaxel (PTX) during the critical phase after the insertion of silicone implants. A biocompatible and thermogelling poly(lactic acid- co-glycolic acid)- b-poly(ethylene glycol)- b-poly(lactic acid- co-glycolic acid) triblock copolymer was synthesized by us. The micelles formed by the amphiphilic polymers in water could act as a reservoir for the solubilization of PTX, a very hydrophobic drug. The concentrated polymer aqueous solution containing PTX exhibited a sol-gel transition upon heating and formed a thermogel depot at body temperature. In vitro release tests demonstrated that the entrapped microgram-level PTX displayed a sustained release manner up to 57 days without a significant initial burst effect. Customized silicone implants coated with the PTX-loaded thermogels at various drug concentrations were inserted into the pockets of the subpanniculus carnosus plane of rats. The histological observations performed 1 month postoperation showed that the sustained release of PTX with an appropriate dose significantly reduced the peri-implant capsule thickness, production and deposition of collagen, and expression of contracture-mediating factors compared with bare silicone implants. More importantly, such an optimum dose had an excellent repeatability for the suppression of the capsular formation. Therefore, this study provides a strategic foothold regarding the sustained release of low-dose PTX to alleviate fibrotic capsule formation after implantation, and the microgram-level PTX-loaded thermogel holds great potential as an "all-purpose antifibrosis coating" for veiling the surfaces of various implantable medical devices.
Collapse
Affiliation(s)
- Jiabin Luan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Zheng Zhang
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Wenjia Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Yipei Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaowei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Xiaobin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Lin Yu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| | - Jian Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
- Department of Breast Surgery, Obstetrics and Gynecology Hospital , Fudan University , Shanghai 200011 , China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , China
| |
Collapse
|
42
|
Juarez EF, Garri C, Ghaffarizadeh A, Macklin P, Kani K. Quantification of cancer cell migration with an integrated experimental-computational pipeline. F1000Res 2018. [DOI: 10.12688/f1000research.15599.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We describe an integrated experimental-computational pipeline for quantifying cell migration in vitro. This pipeline is robust to image noise, open source, and user friendly. The experimental component uses the Oris cell migration assay (Platypus Technologies) to create migration regions. The computational component of the pipeline creates masks in Matlab (MathWorks) to cell-covered regions, uses a genetic algorithm to automatically select the migration region, and outputs a metric to quantify cell migration. In this work we demonstrate the utility of our pipeline by quantifying the effects of a drug (Taxol) and of the extracellular Anterior Gradient 2 (eAGR2) protein on the migration of MDA-MB-231 cells (a breast cancer cell line). In particular, we show that inhibiting eAGR2 reduces migration of MDA-MB-231 cells.
Collapse
|
43
|
Multifunctional core-shell silica microspheres and their performance in self-carrier decomposition, sustained drug release and fluorescent bioimaging. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
44
|
Kusumoto S, Fujiwara H, Sagawa M, Nobuzane T, Nishida T, Akagi Y, Hirokawa Y, Katsube Y. Successful radiotherapy for endometrial serous carcinoma with local repeated recurrence. Int Cancer Conf J 2018; 7:71-75. [PMID: 31149518 PMCID: PMC6498359 DOI: 10.1007/s13691-018-0323-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/26/2018] [Indexed: 01/31/2023] Open
Abstract
The incidence of endometrial serous carcinoma (ESC) has been increasing, and ESC is resistant to treatment. We report a patient with ESC who responded to radiotherapy for multiple recurrences. The first recurrence was detected in the vaginal wall and left internal iliac lymph node 5 months after the initial treatment. Concurrent chemoradiotherapy (CCRT) was administered. Radiation was delivered using the intensity modulated radiation therapy technique. The second recurrent tumor was detected in the right internal iliac lymph node after 4 months, and CCRT was conducted. After 4 months, the third recurrence was detected in the right common iliac node, and CCRT was performed. After 8 months, the fourth recurrence was detected in the horizontal portion of the duodenum, and radiotherapy was administered. After 9 months, the fifth recurrence was detected in the vaginal wall. Interstitial brachytherapy was conducted. Grade 2 gastrointestinal injury, nausea and radiodermatitis were observed. During the subsequent 13-month follow-up, there has been no recurrence. Although ESC is resistant to treatment, radiotherapy could be effective in some cases. Even when multiple recurrences occur, radiotherapy may be considered a treatment option if the irradiation level is permissible.
Collapse
Affiliation(s)
- Shinya Kusumoto
- 1Department of Obstetrics and Gynecology, Chugoku Rosai Hospital, 1-5-1 Hiro Tagaya, Kure, Hiroshima 737-0193 Japan
| | - Hisaya Fujiwara
- 1Department of Obstetrics and Gynecology, Chugoku Rosai Hospital, 1-5-1 Hiro Tagaya, Kure, Hiroshima 737-0193 Japan
| | - Maiko Sagawa
- 1Department of Obstetrics and Gynecology, Chugoku Rosai Hospital, 1-5-1 Hiro Tagaya, Kure, Hiroshima 737-0193 Japan
| | - Takahiro Nobuzane
- 1Department of Obstetrics and Gynecology, Chugoku Rosai Hospital, 1-5-1 Hiro Tagaya, Kure, Hiroshima 737-0193 Japan
| | - Toshihiro Nishida
- 2Department of Pathology, Chugoku Rosai Hospital, 1-5-1 Hiro Tagaya, Kure, Hiroshima 737-0193 Japan
| | - Yukio Akagi
- Hiroshima Heiwa Clinic, State of the Art Treatment Center, 1-31 Kawara-machi, Naka-ku, Hiroshima, 730-0856 Japan
| | - Yutaka Hirokawa
- Hiroshima Heiwa Clinic, State of the Art Treatment Center, 1-31 Kawara-machi, Naka-ku, Hiroshima, 730-0856 Japan
| | - Yasuhiro Katsube
- 1Department of Obstetrics and Gynecology, Chugoku Rosai Hospital, 1-5-1 Hiro Tagaya, Kure, Hiroshima 737-0193 Japan
| |
Collapse
|
45
|
Bousquet G, El Bouchtaoui M, Sophie T, Leboeuf C, de Bazelaire C, Ratajczak P, Giacchetti S, de Roquancourt A, Bertheau P, Verneuil L, Feugeas JP, Espié M, Janin A. Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget 2018; 8:35205-35221. [PMID: 28445132 PMCID: PMC5471047 DOI: 10.18632/oncotarget.16925] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 01/16/2023] Open
Abstract
There is growing evidence for the role of cancer stem-cells in drug resistance, but with few in situ studies on human tumor samples to decipher the mechanisms by which they resist anticancer agents.Triple negative breast cancer (TNBC) is the most severe sub-type of breast cancer, occurring in younger women and associated with poor prognosis even when treated at a localized stage.We investigated here the relationship between complete pathological response after chemotherapy and breast cancer stem-cell characteristics in pre-treatment biopsies of 78 women with triple negative breast carcinoma (TNBC).We found that chemoresistance was associated with large numbers of breast cancer stem-cells, and that these cancer stem-cells were neither proliferative nor apoptotic, but in an autophagic state related to hypoxia. Using relevant pharmacological models of patient-derived TNBC xenografts, we further investigated the role of autophagy in chemoresistance of breast cancer stem-cells. We demonstrated that hypoxia increased drug resistance of autophagic TNBC stem-cells, and showed that molecular or chemical inhibition of autophagic pathway was able to reverse chemoresistance.Our results support breast cancer stem-cell evaluation in pre-treatment biopsies of TNBC patients, and the need for further research on autophagy inhibition to reverse resistance to chemotherapy.
Collapse
Affiliation(s)
- Guilhem Bousquet
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,Université Paris 13, Villetaneuse, France.,AP, HP, Avicenne, Service Oncologie, Paris, France
| | | | | | - Christophe Leboeuf
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France
| | - Cédric de Bazelaire
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Radiologie, Paris, France
| | - Philippe Ratajczak
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France
| | | | - Anne de Roquancourt
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Pathologie, Paris, France
| | - Philippe Bertheau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Pathologie, Paris, France
| | - Laurence Verneuil
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France
| | | | - Marc Espié
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,AP HP Hôpital Saint-Louis, Centre Maladies Sein, Paris, France
| | - Anne Janin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Pathologie, Paris, France.,INSERM, Paris, France.,AP HP Hôpital Saint-Louis, Service Pathologie, Paris, France
| |
Collapse
|
46
|
Monteiro LOF, Fernandes RS, Oda CMR, Lopes SC, Townsend DM, Cardoso VN, Oliveira MC, Leite EA, Rubello D, de Barros ALB. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: A biodistribution study. Biomed Pharmacother 2018; 97:489-495. [PMID: 29091899 PMCID: PMC6361139 DOI: 10.1016/j.biopha.2017.10.135] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/18/2017] [Accepted: 10/21/2017] [Indexed: 02/07/2023] Open
Abstract
A range of antitumor agents for cancer treatment is available; however, they show low specificity, which often limit their use. Recently, we have reported the preparation of folate-coated long-circulating and pH-sensitive liposomes (SpHL-folate-PTX) loaded with paclitaxel (PTX), an effective drug for the treatment of solid tumors, including breast cancer. The purpose of this study was to prepare and characterize SpHL-PTX and SpHL-folate-PTX radiolabeled with technetium-99m (99mTc). Biodistribution studies and scintigraphic images were performed after intravenous administration of 99mTc-PTX, 99mTc-SpHL-PTX and 99mTc-SpHL-folate-PTX into healthy and tumor-bearing mice. High radiochemical purity (>98%) and in vitro stability (>90%) were achieved for both liposome formulations. The pharmacokinetic properties of 99mTc-SpHL-DTPA-PTX and 99mTc-SpHL-folate-DTPA-PTX decreased in a monophasic manner showing half-life of 400.1 and 541.8min, respectively. Scintigraphic images and biodistribution studies showed a significant uptake in liver, spleen and kidneys, demonstrating these routes as way for excretion. At 8h post-injection, the liposomal tumor uptake was higher than 99mTc-PTX. Interesting, 4h after administration, the liposome folate coated showed higher tumor-to-muscle ratio than 99mTc-SpHL-DTPA-PTX and 99mTc-PTX. In conclusion, the liposomal systems, showed high tumor uptake by scintigraphic images, especially the 99mTc-SpHL-folate-DTPA-PTX that showed a sustained and higher tumor-to-muscle ratio than non-functionalized liposome, which indicate its feasibility as a PTX delivery system to folate positive tumors.
Collapse
Affiliation(s)
- Liziane O F Monteiro
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata S Fernandes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline M R Oda
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sávia C Lopes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danyelle M Townsend
- Department of Drug Discovery and Pharmaceutical Sciences, Medical University of South Carolina, USA
| | - Valbert N Cardoso
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica C Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine A Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Domenico Rubello
- Department of Nuclear Medicine, Santa Maria della Misericordia Hospital, Rovigo, Italy.
| | - André L B de Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
47
|
Oguzkan SB, Karagul B, Uzun A, Guler OO, Ugras HI. Pre-purification of an Anticancer Drug (Paclitaxel) Obtained from Nut Husks. INT J PHARMACOL 2017. [DOI: 10.3923/ijp.2018.76.82] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Li W, Zhu W, Lv C, Qu H, Xu K, Li H, Li H, Du Y, Liu G, Wang Y, Wei HJ, Zhao HY. Low-dose paclitaxel downregulates MYC proto-oncogene bHLH transcription factor expression in colorectal carcinoma cells. Oncol Lett 2017; 15:1881-1887. [PMID: 29434885 DOI: 10.3892/ol.2017.7525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/15/2017] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel (PTX) has been commonly used to treat multiple types of tumor. Its anticancer mechanism differs based on different PTX concentrations and types of tumor cell. In the present study, MTT assays of HCT116 and LOVO cells treated with PTX revealed the chemosensitivity of the cell lines for different PTX concentrations. The half-maximal inhibitory concentration values of PTX for these cells were 2.46 and 2.24 nM, respectively. Cell morphology observation revealed that both cell lines exhibited rounded, wrinkled and damaged morphologies with increasing concentrations of PTX. Fluorescence-activated cell sorting analysis indicated that 1 nM PTX increased the proportion of cells in sub-G1 phases and decreased the proportion of cells in G0/G1 phases, whereas the proportions of cells in S and G2/M phases only slightly changed for both cell lines. Western blot analysis indicated that the total/nuclear protein expression of MYC proto-oncogene bHLH transcription factor (c-Myc) and phosphorylated (P)-c-Myc decreased in HCT116 cells in a dose-dependent manner, whereas the nuclear protein expression of P-c-Myc increased in LOVO cells in a dose-dependent manner. These results suggest that low-dose PTX downregulates c-Myc and P-c-Myc expression, subsequently inhibiting the cell cycle at G0/G1 in colorectal carcinoma.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Wanyun Zhu
- Pharmaceutical and Chemical Academy, Dali University, Dali, Yunnan 671003, P.R. China
| | - Chaoxiang Lv
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Kaixiang Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Honghui Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Haifeng Li
- Pharmaceutical and Chemical Academy, Dali University, Dali, Yunnan 671003, P.R. China
| | - Yiming Du
- Pharmaceutical and Chemical Academy, Dali University, Dali, Yunnan 671003, P.R. China
| | - Guangming Liu
- Pharmaceutical and Chemical Academy, Dali University, Dali, Yunnan 671003, P.R. China
| | - Yunyue Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Hong-Jiang Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China.,College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China
| | - Hong-Ye Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan 650201, P.R. China.,Pharmaceutical and Chemical Academy, Dali University, Dali, Yunnan 671003, P.R. China
| |
Collapse
|
49
|
Ayyagari VN, Diaz-Sylvester PL, Hsieh THJ, Brard L. Evaluation of the cytotoxicity of the Bithionol-paclitaxel combination in a panel of human ovarian cancer cell lines. PLoS One 2017; 12:e0185111. [PMID: 28931042 PMCID: PMC5607185 DOI: 10.1371/journal.pone.0185111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/05/2017] [Indexed: 01/21/2023] Open
Abstract
Previously, Bithionol (BT) was shown to enhance the chemosensitivity of ovarian cancer cell lines to cisplatin treatment. In the present study, we focused on the anti-tumor potential of the BT-paclitaxel combination when added to a panel of ovarian cancer cell lines. This in vitro study aimed to 1) determine the optimum schedule for combination of BT and paclitaxel and 2) assess the nature and mechanism(s) underlying BT-paclitaxel interactions. The cytotoxic effects of both drugs either alone or in combination were assessed by presto-blue cell viability assay using six human ovarian cancer cell lines. Inhibitory concentrations to achieve 50% cell death (IC50) were determined for BT and paclitaxel in each cell line. Changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27 were determined via immunoblot. Luminescent and colorimetric assays were used to determine caspases 3/7 and autotaxin (ATX) activity. Cellular reactive oxygen species (ROS) were measured by flow cytometry. Our results show that the efficacy of the BT-paclitaxel combination depends upon the concentrations and sequence of addition of paclitaxel and BT. Pretreatment with BT followed by paclitaxel resulted in antagonistic interactions whereas synergistic interactions were observed when both drugs were added simultaneously or when cells were pretreated with paclitaxel followed by BT. Synergistic interactions between BT and paclitaxel were attributed to increased ROS generation and enhanced apoptosis. Decreased expression of pro-survival factors (XIAP, bcl-2, bcl-xL) and increased expression of pro-apoptotic factors (caspases 3/7, PARP cleavage) was observed. Additionally, increased expression of key cell cycle regulators p21 and p27 was observed. These results show that BT and paclitaxel interacted synergistically at most drug ratios which, however, was highly dependent on the sequence of the addition of drugs. Our results suggest that BT-paclitaxel combination therapy may be effective in sensitizing ovarian cancer cells to paclitaxel treatment, thus mitigating some of the toxic effects associated with high doses of paclitaxel.
Collapse
Affiliation(s)
- Vijayalakshmi N. Ayyagari
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Paula L. Diaz-Sylvester
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Center for Clinical Research, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Tsung-han Jeff Hsieh
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
| | - Laurent Brard
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- Simmons Cancer Institute at SIU, Southern Illinois University School of Medicine, Springfield, IL, United States of America
- * E-mail:
| |
Collapse
|
50
|
Tajima H, Makino I, Ohbatake Y, Nakanuma S, Hayashi H, Nakagawara H, Miyashita T, Takamura H, Ohta T. Neoadjuvant chemotherapy for pancreatic cancer: Effects on cancer tissue and novel perspectives. Oncol Lett 2017; 13:3975-3981. [PMID: 28599404 DOI: 10.3892/ol.2017.6008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 02/17/2017] [Indexed: 01/05/2023] Open
Abstract
Chemotherapy for pancreatic cancer has diversified following the addition of more treatment regimens; however, in spite of this, pancreatic cancer remains a fatal disease. Preoperative (neoadjuvant) chemotherapy (NAC) or neoadjuvant chemoradiation therapy (NACRT) has been developed and implemented. For patients with borderline resectable pancreatic cancer (BRPC) and locally advanced pancreatic cancer (LAPC), a number of clinical trials have been conducted; NACRT was demonstrated to improve resectability, R0 resection rate, overall survival rate, disease-free survival rate and even an LAPC and BRPC survival advantage over NAC. However, from the knowledge obtained from resected specimens following preoperative treatment, residual pancreatic cancer tissues following NAC are rich in chemoresistant cancer stem-like cells and epithelial-mesenchymal transition (EMT) markers. Conversely, metformin, angiotensin receptor blocker, statins and low-dose paclitaxel are well-known as drugs that inhibit EMT, which is associated with cancer stem cell-like characteristics. Although clinical effectiveness is unlikely to be achieved using one of these as an anticancer agent, it is reasonable to use these drugs for patients with comorbidities in the treatment of pancreatic cancer. Furthermore, gemcitabine (GEM) affects antitumor immunity by stimulating the expression of major histocompatibility complex class I-related chain A on the surface of cancer cells to enhance the cytotoxicity of natural killer cells. Considering EMT and antitumor immunity, there is a possibility that GEM and nanoparticle albumin-bound paclitaxel therapy is the most suitable regimen for treating pancreatic cancer. However, even as preoperative treatment progresses, R0 resection is the most important factor for the long-term survival of pancreatic cancer patients.
Collapse
Affiliation(s)
- Hidehiro Tajima
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Isamu Makino
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Yoshinao Ohbatake
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Shinichi Nakanuma
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hironori Hayashi
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hisatoshi Nakagawara
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tomoharu Miyashita
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Hiroyuki Takamura
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Division of Cancer Medicine, Graduate School of Medicine Science, Kanazawa University, Kanazawa 920-8641, Japan
| |
Collapse
|