1
|
Wang Y, Liao X, Zhang J, Yang Y, Gao Y, Zhang C, Guo X, Zhu Q, Li J, Yu L, Xu G, Fang X, Liao SG. Anti-hyperuricemic effects of the seeds of Hovenia acerba in hyperuricemia mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119215. [PMID: 39643021 DOI: 10.1016/j.jep.2024.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Hovenia acerba water extract (HAW) are used as an edible traditional Chinese medicine to treat diseases related to hyperuricemia (HUA). AIM OF THE STUDY To evaluate HAW for its anti-HUA effect and to figure out their underlying mechanisms. MATERIALS AND METHODS The anti-HUA effects were evaluated on a mouse model by testing HAW's effects on the levels of serum uric acid (SUA), the biochemical indicators of liver and kidney function, and the histology of liver and kidney. Body weight and organ coefficients were determined for safety evaluation. RT-qPCR, Western blot and transcriptomic analysis was applied to investigate key mRNAs, proteins and signaling pathways. RESULTS HAW significantly reduced the serum levels of UA, ALT, AST, and xanthine oxidase (XOD) and histologically alleviated the liver damage in HUA mice with no negative effect on body weight and organ coefficients. HAW markedly inhibited hepatic XOD activity and protein expression, significantly down-regulated mRNA and protein expressions of urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9), and up-regulated those of ATP transporter G2 (ABCG2) and renal organic anion transporter 1 (OAT1). RNA-seq analysis showed that 248 HUA-induced differential expression genes (DEGs) were reversed by HAW in the kidney. qRT-PCR analysis showed that regulation of the expressions of HUA-related inflammatory genes were involved. CONCLUSION HAW possessed remarkable anti-HUA effect. The mechanism involved XOD inhibition to reduce uric acid production, up-regulation of ABCG2 and OAT1 to increase uric acid excretion, and down-regulation of GLUT9 and URAT1 to inhibit uric acid reabsorption, and regulation of HUA-related inflammatory genes.
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 561113, China; Sinopharm Guizhou Health Industry Development Co., Ltd, Guiyang Economic and Technological Development Zone, 550009, Guizhou, China
| | - Xingjiang Liao
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 561113, China
| | - Jinjuan Zhang
- University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Yaxin Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Yanyan Gao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Chunlei Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Xiaoli Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Qinfeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Jing Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Lingling Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China
| | - Guobo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; School of Basic Medical Sciences, Guizhou Medical University, Guizhou, 561113, China
| | - Xiang Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; Sinopharm Guizhou Health Industry Development Co., Ltd, Guiyang Economic and Technological Development Zone, 550009, Guizhou, China.
| | - Shang-Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmaceutical Sciences, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; University Engineering Research Center for the Prevention and Treatment of Chronic Diseases By Authentic Medicinal Materials in Guizhou Province, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 6 Ankang Avenue, Guian New District, 561113, Guizhou, China.
| |
Collapse
|
2
|
Pokushalov E, Ponomarenko A, Shrainer E, Kudlay D, Miller R. Biomarker-Guided Dietary Supplementation: A Narrative Review of Precision in Personalized Nutrition. Nutrients 2024; 16:4033. [PMID: 39683427 DOI: 10.3390/nu16234033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Dietary supplements (DS) are widely used to address nutritional deficiencies and promote health, yet their indiscriminate use often leads to reduced efficacy, adverse effects, and safety concerns. Biomarker-driven approaches have emerged as a promising strategy to optimize DS prescriptions, ensuring precision and reducing risks associated with generic recommendations. Methods: This narrative review synthesizes findings from key studies on biomarker-guided dietary supplementation and the integration of artificial intelligence (AI) in biomarker analysis. Key biomarker categories-genomic, proteomic, metabolomic, lipidomic, microbiome, and immunological-were reviewed, alongside AI applications for interpreting these biomarkers and tailoring supplement prescriptions. Results: Biomarkers enable the identification of deficiencies, metabolic imbalances, and disease predispositions, supporting targeted and safe DS use. For example, genomic markers like MTHFR polymorphisms inform folate supplementation needs, while metabolomic markers such as glucose and insulin levels guide interventions in metabolic disorders. AI-driven tools streamline biomarker interpretation, optimize supplement selection, and enhance therapeutic outcomes by accounting for complex biomarker interactions and individual needs. Limitations: Despite these advancements, AI tools face significant challenges, including reliance on incomplete training datasets and a limited number of clinically validated algorithms. Additionally, most current research focuses on clinical populations, limiting generalizability to healthier populations. Long-term studies remain scarce, raising questions about the sustained efficacy and safety of biomarker-guided supplementation. Regulatory ambiguity further complicates the classification of supplements, especially when combinations exhibit pharmaceutical-like effects. Conclusions: Biomarker-guided DS prescription, augmented by AI, represents a cornerstone of personalized nutrition. While offering significant potential for precision and efficacy, advancing these strategies requires addressing challenges such as incomplete AI data, regulatory uncertainties, and the lack of long-term studies. By overcoming these obstacles, clinicians can better meet individual health needs, prevent diseases, and integrate precision nutrition into routine care.
Collapse
Affiliation(s)
- Evgeny Pokushalov
- Center for New Medical Technologies, Novosibirsk 630090, Russia
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
| | | | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119435, Russia
| | - Richard Miller
- Scientific Research Laboratory, Triangel Scientific, San Francisco, CA 94101, USA
| |
Collapse
|
3
|
Wei Y, Chen X, Li Y, Guo Y, Zhang S, Jin J, Li J, Wu D. Toxicological mechanism of cannabidiol (CBD) exposure on zebrafish embryonic development. Food Chem Toxicol 2024; 193:114929. [PMID: 39134136 DOI: 10.1016/j.fct.2024.114929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024]
Abstract
Cannabidiol (CBD) is the main component of plant Cannabis (Cannabis sativa), which exhibits strong antioxidant and anti-inflammatory activities. With the legalization of CBD in the United States, it is an inevitable tendency for its global legalization in the future. Therefore, it has become an urgent task to conduct the toxicological evaluation of CBD before clinical application. In this study, the developmental toxicities of CBD on zebrafish embryos were systematically evaluated, and the mechanisms were revealed. The results showed that the phenotype of liver degeneration was observed in 96 hpf zebrafish embryos after 0.1-5 μmol/L CBD exposure, further RT-qPCR experiments indicated that the above result may attributed by the alterations of FABP10A, GCLC, and GSR. Besides, 1 and 5 μmol/L CBD contributed to the developmental toxicities of heart and eye in zebrafish embryos, characterizing by the decrease in heart rate, the phenotype of pericardial edema, and the reduce of eye area. Compared to other organs, the liver of zebrafish displayed the most sensitive characteristic to CBD exposure, as 0.1 μmol/L CBD already led to the phenotype of liver degeneration. In summary, this paper provided theoretical supports for CBD toxicology research, and laid the foundation for its future clinical application.
Collapse
Affiliation(s)
- Ying Wei
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, PR China
| | - Xiqi Chen
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Yue Li
- Key Laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154000, PR China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Sida Zhang
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jiazheng Jin
- Science and Technology Innovation Center for College Students, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China
| | - Jinlian Li
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| | - Dongmei Wu
- College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang, 154007, PR China.
| |
Collapse
|
4
|
Sabalic A, Mei V, Solinas G, Madeddu R. The Role of Copper in Alzheimer's Disease Etiopathogenesis: An Updated Systematic Review. TOXICS 2024; 12:755. [PMID: 39453175 PMCID: PMC11511397 DOI: 10.3390/toxics12100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common cause of dementia and cognitive decline in the elderly. Although the etiology of AD is unknow, an increase in amyloid precursor protein (APP) leads to the toxic aggregation of Aβ plaques. Several factors, such as hypertension, diabetes, dyslipidemia, smoking, hormonal changes, and metal exposure, could increase the risk of developing AD. In this review, we will examine the role of copper (Cu) in the pathophysiology of AD, as well as the mechanisms involved in neurotoxicity and cognitive decline. METHODS This review was conducted in accordance with PRISMA guidelines. We performed a comprehensive literature analysis over the last ten years on AD and Cu. Only late-onset Alzheimer's disease was considered; only studies on elderly people of both sexes were included. RESULTS A total of seven articles were picked for this review, three studies focused on non-ceruloplasmin-bound Copper (non-Cp-Cu) and four on ceruloplasmin-bound Copper (Cp-Cu). The results showed higher Cu concentrations in patients compared to healthy controls. CONCLUSIONS Elevated concentrations of Cu may contribute to the progression of AD, potentially interacting with ATP7B mutations, oxidative stress (OS), and amyloid-β plaques. Future research is needed to provide more robust evidence and better characterize the relationship between AD and Cu.
Collapse
Affiliation(s)
- Angela Sabalic
- Department of Biomedical Sciences-Histology, University of Sassari, 07100 Sassari, Italy;
- Division of Thoracic Surgery, European Institute of Oncology (IEO), Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), 20141 Milan, Italy
| | - Veronica Mei
- Department of Biomedical Sciences-Biostatistics, University of Sassari, 07100 Sassari, Italy;
| | - Giuliana Solinas
- Department of Biomedical Sciences-Biostatistics, University of Sassari, 07100 Sassari, Italy;
- National Institute of Biostructure and Biosystem (I.N.B.B.), 00136 Rome, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, 07100 Sassari, Italy;
- National Institute of Biostructure and Biosystem (I.N.B.B.), 00136 Rome, Italy
| |
Collapse
|
5
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Lu J, Quan J, Zhou J, Liu Z, Ding J, Shang T, Zhao G, Li L, Zhao Y, Li X, Wu J. Combined transcriptomics and metabolomics to reveal the effects of copper exposure on the liver of rainbow trout(Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116996. [PMID: 39244881 DOI: 10.1016/j.ecoenv.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Copper (Cu) is recognized as an essential trace elements for the body; However, excessive levels of Cu can lead to toxic effects. We investigated the effects of Cu2+(75 μg/L, 150 μg/L, and 300 μg/L) on the rainbow trout liver. Combination of transcriptome and metabolome analyses, the regulatory mechanisms of the liver under Cu stress were elucidated. The results showed that Cu affected the antioxidant levels, leading to disruptions in the normal tissue structure of the liver. Combined transcriptome and metabolome analyses revealed significant enrichment of the insulin signaling pathway and the adipocytokine signaling pathway. Additionally, Cu2+ stress altered the amino acid metabolism in rainbow trout by reducing serine and arginine levels while increasing proline content. Apoptosis is inhibited and autophagy and lipid metabolism are suppressed; In summary, Cu2+ stress affects energy and lipid metabolism, and the reduction of serine and arginine represents a decrease in the antioxidant capacity, whereas the increase in proline and the promotion of apoptosis potentially serving as crucial strategies for Cu2+ resistance in rainbow trout. These findings provided insights into the regulatory mechanisms of rainbow trout under Cu2+ stress and informed the prevention of heavy metal pollution and the selection of biomarkers under Cu pollution.
Collapse
Affiliation(s)
- Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jing Zhou
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jieping Ding
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Tingting Shang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yingcan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiangru Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jiajun Wu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
7
|
Ali AA, Darwish WS. Acute phase proteins patterns as biomarkers in bacterial infection: Recent insights. Open Vet J 2024; 14:2539-2550. [PMID: 39545194 PMCID: PMC11560262 DOI: 10.5455/ovj.2024.v14.i10.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/07/2024] [Indexed: 11/17/2024] Open
Abstract
Escherichia coli is a bacterium with command and pathogenic variants. It has been implicated in the induction of several inflammatory conditions. Finding a biomarker for infection began many years ago. The challenge of using acute phase proteins (APPs) as biomarkers for infection is a promising target for many researchers in this field. Many APPs have been studied for their roles as biomarkers of E. coli infection. The following review aims to highlight recent trials that have approved the use of adiponectin, amyloid A, ceruloplasmin, C-reactive protein, Haptoglobin, and Pentraxin 3 as biomarkers for E. coli infection and assess the obtained results. In conclusion, despite the existing approaches for the use of APPs as biomarkers in E. coli infection, we recommend more precise studies to enable these markers to be more specific and applicable in clinical fields. APPs could be markers for systemic inflammatory conditions, regardless of the causative agent.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Wageh Sobhy Darwish
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| |
Collapse
|
8
|
Peng G, Huang Y, Xie G, Tang J. Exploring Copper's role in stroke: progress and treatment approaches. Front Pharmacol 2024; 15:1409317. [PMID: 39391696 PMCID: PMC11464477 DOI: 10.3389/fphar.2024.1409317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Copper is an important mineral, and moderate copper is required to maintain physiological processes in nervous system including cerebral ischemia/reperfusion (I/R) injury. Over the past few decades, copper induced cell death, named cuprotosis, has attracted increasing attention. Several lines of evidence have confirmed cuprotosis exerts pivotal role in diverse of pathological processes, such as cancer, neurodegenerative diseases, and I/R injury. Therefore, an in-depth understanding of the interaction mechanism between copper-mediated cell death and I/R injury may reveal the significant alterations about cellular copper-mediated homeostasis in physiological and pathophysiological conditions, as well as therapeutic strategies deciphering copper-induced cell death in cerebral I/R injury.
Collapse
Affiliation(s)
- Gang Peng
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| | - Yongpan Huang
- School of Medicine, Changsha Social Work College, Changsha, Hunan, China
| | - Guangdi Xie
- Department of Neurology, Huitong People’s Hospital, Huitong, Hunan, China
| | - Jiayu Tang
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan, China
| |
Collapse
|
9
|
Paz A, Michelotti TC, Suazo M, Bonilla J, Bulnes M, Minuti A, Luchini D, Trevisi E, Lima AF, Halfen J, Rovai M, Osorio JS. Rumen-protected methionine supplementation improves lactation performance and alleviates inflammation during a subclinical mastitis challenge in lactating dairy cows. J Dairy Sci 2024:S0022-0302(24)01099-3. [PMID: 39218072 DOI: 10.3168/jds.2024-25028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to evaluate the effects of rumen-protected Met on lactation performance, inflammation and immune response, and liver glutathione of lactating dairy cows during a subclinical mastitis challenge (SMC). Thirty-two Holstein cows (145 ± 51 DIM) were enrolled in a randomized complete block design. At -21 d relative to the SMC, cows were assigned to dietary treatments, and data were collected before and during the SMC. Cows were blocked according to parity, DIM, and milk yield and received a basal diet (17.4% CP; Lys 7.01% MP and Met 2.14% MP) plus 100 g/d of ground corn (CON; n = 16) or a basal diet plus 100 g/d of ground corn and rumen-protected Met (SM, Smartamine M at 0.09% of dietary DM; n = 16), fed as a top-dress. At 0 d, the mammary gland's rear right quarter was infused with 100,000 cfu of Streptococcus uberis (O140J). Milk yield was recorded twice daily from 0 until 3 d relative to SMC. Milk samples were collected during each milking from 0 to 3 d relative to SMC, blood samples were collected at 0, 6, 12, 24, 48, and 72 h relative to SMC. The mTOR pathway activation was assessed in immune cells in blood and milk samples by measuring quantity and phosphorylation status of mTOR-related proteins, including AKT, S6RP, and 4EBP1. For the ratio of phosphorylated to total AKT, S6RP, and 4EBP1, blood samples were collected at 0, 12, and 24 h, and milk samples at 24 h relative to SMC. Liver biopsies were performed at -10 d and 24 h relative to SMC for measurement of glutathione. Linear mixed models with repeated measures were used to analyze the results. There was a trend for greater milk yield per milking (+ 0.8 kg) and per day (+1.7 kg) after SMC in SM cows compared with CON. The DMI was not affected by dietary treatments. Reactive oxygen metabolites (ROM) were lower in SM cows than in CON. Milk somatic cell linear score was not affected by dietary treatments, and a score >4 at 24 h confirmed subclinical mastitis. The SM cows had greater milk fat percentage at 24 and 36 h post SMC, resulting in overall greater milk fat. Milk protein tended to be greater in SM cows than in CON. We observed greater liver glutathione in SM cows than in CON. Among inflammation biomarkers, ceruloplasmin was lower for SM cows compared with CON. In milk, greater pAKT:AKT and pS6RP:S6RP ratios were observed in immune cell populations from SM cows compared with CON. Blood neutrophils had a greater p4EBP1:4EBP1 ratio in SM cows compared with CON. Overall, our results show that Met supplementation during an SMC positively affected milk performance, lowered the risk of oxidative stress, and attenuated inflammation partially by increasing liver glutathione and immune cells' protein synthesis via mTOR signaling.
Collapse
Affiliation(s)
- A Paz
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - T C Michelotti
- INRAE, UMR Herbivores, Saint-Genès-Champanelle, France 631222
| | - M Suazo
- Department of Animal Sciences, University of Minnesota, Falcon Heights, Minnesota 55108
| | - J Bonilla
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - M Bulnes
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - A Minuti
- Department of Animal Science, Food and Nutrition (DIANA), Facoltà di Scienza Agrarie, Alimentari e Ambientali, Universit Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | | | - E Trevisi
- Department of Animal Science, Food and Nutrition (DIANA), Facoltà di Scienza Agrarie, Alimentari e Ambientali, Universit Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - A F Lima
- School of Animal Science, Virginia Tech, Blacksburg 24061
| | - J Halfen
- School of Animal Science, Virginia Tech, Blacksburg 24061
| | - M Rovai
- Dairy and Food Science Department, South Dakota State University, Brookings, South Dakota 57007
| | - J S Osorio
- School of Animal Science, Virginia Tech, Blacksburg 24061..
| |
Collapse
|
10
|
Min JH, Sarlus H, Harris RA. Copper toxicity and deficiency: the vicious cycle at the core of protein aggregation in ALS. Front Mol Neurosci 2024; 17:1408159. [PMID: 39050823 PMCID: PMC11267976 DOI: 10.3389/fnmol.2024.1408159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024] Open
Abstract
The pathophysiology of ALS involves many signs of a disruption in copper homeostasis, with both excess free levels and functional deficiency likely occurring simultaneously. This is crucial, as many important physiological functions are performed by cuproenzymes. While it is unsurprising that many ALS symptoms are related to signs of copper deficiency, resulting in vascular, antioxidant system and mitochondrial oxidative respiration deficiencies, there are also signs of copper toxicity such as ROS generation and enhanced protein aggregation. We discuss how copper also plays a key role in proteostasis and interacts either directly or indirectly with many of the key aggregate-prone proteins implicated in ALS, such as TDP-43, C9ORF72, SOD1 and FUS as well as the effect of their aggregation on copper homeostasis. We suggest that loss of cuproprotein function is at the core of ALS pathology, a condition that is driven by a combination of unbound copper and ROS that can either initiate and/or accelerate protein aggregation. This could trigger a positive feedback cycle whereby protein aggregates trigger the aggregation of other proteins in a chain reaction that eventually captures elements of the proteostatic mechanisms in place to counteract them. The end result is an abundance of aggregated non-functional cuproproteins and chaperones alongside depleted intracellular copper stores, resulting in a general lack of cuproenzyme function. We then discuss the possible aetiology of ALS and illustrate how strong risk factors including environmental toxins such as BMAA and heavy metals can functionally behave to promote protein aggregation and disturb copper metabolism that likely drives this vicious cycle in sporadic ALS. From this synthesis, we propose restoration of copper balance using copper delivery agents in combination with chaperones/chaperone mimetics, perhaps in conjunction with the neuroprotective amino acid serine, as a promising strategy in the treatment of this incurable disease.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
11
|
Lin Y, Yuan M, Wang G. Copper homeostasis and cuproptosis in gynecological disorders: Pathogenic insights and therapeutic implications. J Trace Elem Med Biol 2024; 84:127436. [PMID: 38547725 DOI: 10.1016/j.jtemb.2024.127436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 05/27/2024]
Abstract
This review comprehensively explores the complex role of copper homeostasis in female reproductive system diseases. As an essential trace element, copper plays a crucial role in various biological functions. Its dysregulation is increasingly recognized as a pivotal factor in the pathogenesis of gynecological disorders. We investigate how copper impacts these diseases, focusing on aspects like oxidative stress, inflammatory responses, immune function, estrogen levels, and angiogenesis. The review highlights significant changes in copper levels in diseases such as cervical, ovarian, endometrial cancer, and endometriosis, underscoring their potential roles in disease mechanisms and therapeutic exploration. The recent discovery of 'cuproptosis,' a novel cell death mechanism induced by copper ions, offers a fresh molecular perspective in understanding these diseases. The review also examines genes associated with cuproptosis, particularly those related to drug resistance, suggesting new strategies to enhance traditional therapy effectiveness. Additionally, we critically evaluate current therapeutic approaches targeting copper homeostasis, including copper ionophores, chelators, and nanoparticles, emphasizing their emerging potential in gynecological disease treatment. This article aims to provide a comprehensive overview of copper's role in female reproductive health, setting the stage for future research to elucidate its mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ying Lin
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Ming Yuan
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China
| | - Guoyun Wang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, China; Jinan Key Laboratory of Diagnosis and Treatment of Major Gynecological Disease, Jinan, Shandong Province China; Gynecology Laboratory, Shandong Provincial Hospital, Jinan Shandong Province, China; Gynecology Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan Shandong Province, China.
| |
Collapse
|
12
|
Huang Z, Cao L, Yan D. Inflammatory immunity and bacteriological perspectives: A new direction for copper treatment of sepsis. J Trace Elem Med Biol 2024; 84:127456. [PMID: 38692229 DOI: 10.1016/j.jtemb.2024.127456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/03/2024]
Abstract
Copper is an essential trace element for all aerobic organisms because of its unique biological functions. In recent years, researchers have discovered that copper can induce cell death through various regulatory mechanisms, thereby inducing inflammation. Efforts have also been made to alter the chemical structure of copper to achieve either anticancer or anti-inflammatory effects. The copper ion can exhibit bactericidal effects by interfering with the integrity of the cell membrane and promoting oxidative stress. Sepsis is a systemic inflammatory response caused by infection. Some studies have revealed that copper is involved in the pathophysiological process of sepsis and is closely related to its prognosis. During the infection of sepsis, the body may enhance the antimicrobial effect by increasing the release of copper. However, to avoid copper poisoning, all organisms have evolved copper resistance genes. Therefore, further analysis of the complex relationship between copper and bacteria may provide new ideas and research directions for the treatment of sepsis.
Collapse
Affiliation(s)
- Zhenzhen Huang
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Lunfei Cao
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China
| | - Dengfeng Yan
- Department of Emergency Medicine,Zhoukou Central Hospital, No.26 Renmin Road, Chuanhui District, Zhoukou, Henan Province 466000, China..
| |
Collapse
|
13
|
Skarżyńska E, Jakimiuk A, Issat T, Lisowska-Myjak B. Meconium Proteins Involved in Iron Metabolism. Int J Mol Sci 2024; 25:6948. [PMID: 39000056 PMCID: PMC11240925 DOI: 10.3390/ijms25136948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/15/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The lack of specific biological materials and biomarkers limits our knowledge of the mechanisms underlying intrauterine regulation of iron supply to the fetus. Determining the meconium content of proteins commonly used in the laboratory to assess the transport, storage, and distribution of iron in the body may elucidate their roles in fetal development. Ferritin, transferrin, haptoglobin, ceruloplasmin, lactoferrin, myeloperoxidase (MPO), neutrophil gelatinase-associated lipocalin (NGAL), and calprotectin were determined by ELISA in meconium samples obtained from 122 neonates. There were strong correlations between the meconium concentrations of haptoglobin, transferrin, and NGAL (p < 0.05). Meconium concentrations of ferritin were several-fold higher than the concentrations of the other proteins, with the exception of calprotectin whose concentration was approximately three-fold higher than that of ferritin. Meconium ceruloplasmin concentration significantly correlated with the concentrations of MPO, NGAL, lactoferrin, and calprotectin. Correlations between the meconium concentrations of haptoglobin, transferrin, and NGAL may reflect their collaborative involvement in the storage and transport of iron in the intrauterine environment in line with their recognized biological properties. High meconium concentrations of ferritin may provide information about the demand for iron and its utilization by the fetus. The associations between ceruloplasmin and neutrophil proteins may indicate the involvement of ceruloplasmin in the regulation of neutrophil activity in the intrauterine environment.
Collapse
Affiliation(s)
- Ewa Skarżyńska
- Department of Laboratory Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Artur Jakimiuk
- Department of Obstetrics, Women's Diseases and Gynecologic Oncology, National Medical Institute of the Ministry of the Interior and Administration, 02-507 Warsaw, Poland
- Center for Reproductive Health, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Tadeusz Issat
- Department of Obstetrics and Gynecology, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Barbara Lisowska-Myjak
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
14
|
Saha A, Das S, De S, Dutta T, Roy S, Biswas A, Sengupta M. An Effort to Identify Genetic Determinants in Siblings With Wilson Disease Manifesting Striking Clinical Heterogeneity: An Exome Profiling Study of Two Indian Families. Pediatr Neurol 2024; 155:1-7. [PMID: 38552405 DOI: 10.1016/j.pediatrneurol.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 05/21/2024]
Abstract
BACKGROUND Wilson disease (WD) is a rare autosomal recessive disorder of copper metabolism caused due to mutations in the copper transporter ATP7B. There is often a striking variability of clinical manifestations among patients with ATP7B mutations, including in siblings. This phenomenon may be caused by individual differences in copper accumulation in hepatocytes and intolerance to copper toxicity as governed by genetic variations in copper metabolism genes acting as modifier loci to the disease. OBJECTIVE To elucidate the genetic basis of striking clinical heterogeneity among two siblings of two families with WD. METHODS The disease diagnosis and subsequent clinical examinations were performed by expert clinicians. The younger siblings in both families presented with early neurological manifestations at a younger age than their older siblings. Interestingly, only the younger siblings were reported to have had hepatic manifestations. Exome sequencing of all the four individuals was performed to understand their heterogeneous phenotypic outcomes. RESULTS Genetic screening revealed no difference in the ATP7B variant spectrum between the siblings of each family. However, the siblings of both the families were found to harbor mutually exclusive pathogenic variants in suspected modifier genes implicated in copper metabolism and/or other neurological and hepatic disorders having overlapping symptoms with WD, viz., CFTR, PPARG, ABCB11, ATP7A, CYP2D6, mTOR, TOR1A, and CP, which can potentially explain their differential clinical phenotypes. CONCLUSION Clinical heterogeneity between siblings with WD with the same ATP7B mutation profile may be attributed to the presence of different pathogenic variants in potential modifier genes.
Collapse
Affiliation(s)
- Arpan Saha
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Shristi Das
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Samragni De
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Tithi Dutta
- Department of Genetics, University of Calcutta, Kolkata, India
| | - Shubhrajit Roy
- The Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Atanu Biswas
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, India.
| |
Collapse
|
15
|
Salimi Z, Afsharinasab M, Rostami M, Eshaghi Milasi Y, Mousavi Ezmareh SF, Sakhaei F, Mohammad-Sadeghipour M, Rasooli Manesh SM, Asemi Z. Iron chelators: as therapeutic agents in diseases. Ann Med Surg (Lond) 2024; 86:2759-2776. [PMID: 38694398 PMCID: PMC11060230 DOI: 10.1097/ms9.0000000000001717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/03/2024] [Indexed: 05/04/2024] Open
Abstract
The concentration of iron is tightly regulated, making it an essential element. Various cellular processes in the body rely on iron, such as oxygen sensing, oxygen transport, electron transfer, and DNA synthesis. Iron excess can be toxic because it participates in redox reactions that catalyze the production of reactive oxygen species and elevate oxidative stress. Iron chelators are chemically diverse; they can coordinate six ligands in an octagonal sequence. Because of the ability of chelators to trap essential metals, including iron, they may be involved in diseases caused by oxidative stress, such as infectious diseases, cardiovascular diseases, neurodegenerative diseases, and cancer. Iron-chelating agents, by tightly binding to iron, prohibit it from functioning as a catalyst in redox reactions and transfer iron and excrete it from the body. Thus, the use of iron chelators as therapeutic agents has received increasing attention. This review investigates the function of various iron chelators in treating iron overload in different clinical conditions.
Collapse
Affiliation(s)
- Zohreh Salimi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Mehdi Afsharinasab
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad
| | - Yaser Eshaghi Milasi
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Seyedeh Fatemeh Mousavi Ezmareh
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Fariba Sakhaei
- Department of Clinical Biochemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan
| | - Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| |
Collapse
|
16
|
Zhang Z, Li B, Wang Z, Yang L, Peng J, Wang H, Wang Y, Hong L. Novel LncRNA LINC02936 Suppresses Ferroptosis and Promotes Tumor Progression by Interacting with SIX1/CP Axis in Endometrial Cancer. Int J Biol Sci 2024; 20:1356-1374. [PMID: 38385087 PMCID: PMC10878161 DOI: 10.7150/ijbs.86256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Endometrial cancer (EC) is a prevalent gynecological malignancy, and metabolic disorders are among its most significant risk factors. Abnormal iron metabolism is associated with the progression of cancer malignancy. Nevertheless, the involvement of iron metabolism in the EC remains uncertain. Ceruloplasmin (CP) functions as a multicopper oxidase and ferroxidase, playing a crucial role in maintaining the metabolic balance between copper and iron. Prior research has demonstrated that the dysregulated expression of CP has important clinical implications in EC. However, the specific underlying molecular mechanisms remains uncertain. This research examined the impact of CP on the malignant advancement of EC by suppressing ferroptosis. Next, we explored the possibility that Long non-coding RNA (lncRNA) LINC02936/SIX1/CP axis may be a key pathway for inhibiting ferroptosis and promoting cancer progression in EC. Mechanistically, SIX1 modulates the expression of CP, whereas LINC02936 interacts with SIX1 and recruits SIX1 to the CP promoter, leading to upregulation of CP, inhibition of ferroptosis, and promotion of EC progression. Administration of a small peptide cloud block the LINC02936-SIX1 interaction, thereby inhibits EC progression by promoting ferroptosis. Altogether, this is the first report on the lncRNA regulation of ferroptosis in EC. Our research enhances the knowledge of the lncRNA-mediated regulation of ferroptosis in EC progression and indicates the potential therapeutic significance of the LINC02936/SIX1/CP axis in treating EC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province People's Republic of China
| |
Collapse
|
17
|
Bilyayeva O, Karol I, Kryzhevsky V, Osadchay O. Dynamics of changes in proteins of the acute phase of inflammation in the postoperative period in patients with disseminated peritonitis. WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:1409-1414. [PMID: 39241140 DOI: 10.36740/wlek202407115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
OBJECTIVE Aim: To determine the effect of the developed complex treatment of patients with peritonitis on the dynamics of humoral factors of nonspecific reactivity in the course of the disease. PATIENTS AND METHODS Materials and Methods: The study included 124 patients with toxic and terminal stages of peritonitis, who were divided into 3 groups. Group I (main) included 39 patients whose complex treatment included cytochrome C. Group II (main) included 41 patients whose complex treatment included cytochrome C and a solution containing levocarnitine and arginine hydrochloride. The comparison group comprised 44 patients who did not receive the specified drugs. The patients underwent determination of the levels of fibronectin, ceruloplasmin, and procalcitonin in the serum during the course of the disease. RESULTS Results: In patients of the I and II main groups, the use of the proposed treatment contributed to the optimization of the production of acute phase proteins: a decrease in procalcitonin production during the study, optimization of ceruloplasmin and fibronectin production, especially in the II main group. In patients of the comparison group, decompensation in the production of humoral inflammatory factors was determined, associated with a significant increase in fibronectin production, a decrease in ceruloplasmin content, and an increase in procalcitonin throughout the entire period. CONCLUSION Conclusions: The use of cytochrome C and a solution containing levocarnitine and arginine hydrochloride in the complex treatment of patients with disseminated peritonitis helps to optimize the production of acute phase proteins, which leads to a decrease in inflammation and the preservation of factors of nonspecific humoral activity at a subcompensated level.
Collapse
Affiliation(s)
- Olga Bilyayeva
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE
| | - Ivan Karol
- SHUPYK NATIONAL HEALTHCARE UNIVERSITY OF UKRAINE, KYIV, UKRAINE
| | | | - Oksana Osadchay
- STATE INSTITUTION «INSTITUTE OF HAEMATOLOGY AND TRANSFUSIOLOGY OF NATIONAL ACADEMY OF MEDICAL SCIENCES OF UKRAINE», KYIV, UKRAINE
| |
Collapse
|
18
|
Zhu W, Zhang Y, Luo X, Peng J. Role of copper and its complexes in cardiovascular diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1731-1738. [PMID: 38432864 PMCID: PMC10929953 DOI: 10.11817/j.issn.1672-7347.2023.230159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 03/05/2024]
Abstract
Copper is a trace element essential for the maintenance of normal physiological functions in cardiovascular system, and its transport and metabolisms are regulated by various copper proteins such as copper-based enzymes, copper chaperones and copper transporters. The disturbance of copper level or abnormal expression of copper proteins are closely associated with the development of cardiovascular diseases such as atherosclerosis, hypertension, ischemic heart disease, myocardial hypertrophy and heart failure. Thus, intervention of copper ion signaling pathways is expected to be an effective measure for treating cardiovascular diseases. Some copper complexes, such as trientine, copper-aspirinate complex and copper (II) diethyldithiocarbamate, have been found to play a role in the prevention and treatment of cardiovascular diseases and possess potential prospects. Exploring the role of copper in maintaining normal cardiovascular status and the potential application of copper complexes in the treatment of cardiovascular diseases may lay a foundation for finding new targets for prevention and treatment of various cardiovascular diseases, and provide new ideas for clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Wenjun Zhu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| | - Yiyue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078
| | - Xiuju Luo
- Department of Laboratory Medicine, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078.
| |
Collapse
|
19
|
Xue D, Narisu N, Taylor DL, Zhang M, Grenko C, Taylor HJ, Yan T, Tang X, Sinha N, Zhu J, Vandana JJ, Nok Chong AC, Lee A, Mansell EC, Swift AJ, Erdos MR, Zhong A, Bonnycastle LL, Zhou T, Chen S, Collins FS. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic human embryonic stem cell-derived β-like cells. Cell Metab 2023; 35:1897-1914.e11. [PMID: 37858332 PMCID: PMC10841752 DOI: 10.1016/j.cmet.2023.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/26/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on β cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on β cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with β cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.
Collapse
Affiliation(s)
- Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - D Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meili Zhang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Caleb Grenko
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry J Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA; Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN Cambridge, UK
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xuming Tang
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Neelam Sinha
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiajun Zhu
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - J Jeya Vandana
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, The Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Angie Chi Nok Chong
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Angela Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erin C Mansell
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amy J Swift
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aaron Zhong
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ting Zhou
- Stem Cell Research Facility, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; Center for Genomic Health, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Szlachta B, Birková A, Wielkoszyński T, Gospodarczyk A, Hubková B, Dydoń M, Zalejska-Fiolka J. Serum Oxidative Status in People with Obesity: Relation to Tissue Losses, Glucose Levels, and Weight Reduction. Antioxidants (Basel) 2023; 12:1923. [PMID: 38001776 PMCID: PMC10669655 DOI: 10.3390/antiox12111923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND This work aims to study the effect of reductions in various body mass components on the oxidative, glycemic, and lipid parameters of people with obesity (PWO). METHODS A total of 53 PWO underwent a six-month individualized low-calorie diet combined with moderate exercise, during which anthropometric, biochemical, and oxidative parameters were measured. Probands were divided into groups based on weight, visceral fat area (VFA), total body water (TBW), and skeletal muscle mass (SMM) losses. RESULTS Weight reduction normalizes glycemia, but VFA reduction is less pronounced, while SMM and TBW reductions are more pronounced in patients with higher initial concentrations of glucose and fructosamine. Moreover, changes in oxidative parameters correlate with changes in glucose. CONCLUSIONS Weight loss, regardless of the reduced tissue, decreases cardiovascular risk. We observed a significant change in almost all parameters related to the redox state. In general, parameters responsible for antioxidant action improved, and markers of oxidative damage decreased. Malondialdehyde, lipid peroxides, and total oxidative status levels can be considered biomarkers reflecting only the current severity of reactive oxygen species genesis processes. When considering the glycemic state, the results are not as clear due to the substantial differences between normoglycemic and hyperglycemic patients. Glycemic status is a factor playing a crucial role in weight reduction.
Collapse
Affiliation(s)
- Beata Szlachta
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.); (M.D.); (J.Z.-F.)
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | | | - Alicja Gospodarczyk
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.); (M.D.); (J.Z.-F.)
- Doctoral School, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland
| | - Beáta Hubková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University, 040 11 Košice, Slovakia;
| | - Maria Dydoń
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.); (M.D.); (J.Z.-F.)
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Science, Zabrze Medical University of Silesia, 40-055 Katowice, Poland; (B.S.); (A.G.); (M.D.); (J.Z.-F.)
| |
Collapse
|
21
|
Wang M, Cheng L, Xiang Q, Gao Z, Ding Y, Xie H, Chen X, Yu P, Shen L. Evaluation the role of cuproptosis-related genes in the pathogenesis, diagnosis and molecular subtypes identification of atherosclerosis. Heliyon 2023; 9:e21158. [PMID: 37928399 PMCID: PMC10622704 DOI: 10.1016/j.heliyon.2023.e21158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Background At present, the pathogenesis of atherosclerosis has not been fully elucidated, and the diagnosis and treatment face great challenges. Cuproptosis is a novel cell death pattern that might be involved in the development of atherosclerosis. However, no research has reported the correlation between cuproptosis and atherosclerosis. Methods The differential cuproptosis-related genes (CRGs) between atherosclerosis group and control group (A-CRGs) were discovered via differential expression analysis. The correlation analysis, PPI network analysis, GO, KEGG and GSEA analysis were performed to investigate the function of A-CRGs. The differences of biological function between atherosclerosis group and control group were investigated via immune infiltration analysis and GSVA. The LASSO regression, nomogram and machine learning models were constructed to predict atherosclerosis risk. The atherosclerosis molecular subtypes clusters were discovered via unsupervised cluster analysis. Subsequently, we used the above research methods to analyze the differential CRGs between clusters (M-CRGs) and evaluate the molecular subtypes identification performance of M-CRGs. Finally, we verified the diagnostic value for atherosclerosis and role in cuproptosis of these CRGs through the validation set and in vitro experiments. Results Five A-CRGs were identified and they were mainly related to the biological function of copper ion metabolism and immune inflammatory response. The diagnostic models and nomogram of atherosclerosis based on 5 A-CRGs indicated that these genes had well diagnostic value. A total of two molecular subtypes clusters were obtained in the atherosclerosis group. There were many differences in biological functions between these two molecular subtypes clusters, such as mitochondrial outer membrane permeabilization and primary immunodeficiency. In addition, 3 M-CRGs were identified in the 2 clusters. Machine learning models and nomogram constructed based on M-CRGs showed that these genes had well molecular subtypes identification efficacy. In the end, the results of in vitro experiment and validation set confirmed the diagnostic value for atherosclerosis and role in cuproptosis of these genes. Conclusion The cuproptosis may be a potential pathogenesis of atherosclerosis and CRGs may be promising markers for the diagnosis and molecular subtypes identification of atherosclerosis.
Collapse
Affiliation(s)
- Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Liying Cheng
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Gao
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haitao Xie
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| | - Le Shen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
- Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
22
|
Karpenko MN, Muruzheva ZM, Ilyechova EY, Babich PS, Puchkova LV. Abnormalities in Copper Status Associated with an Elevated Risk of Parkinson's Phenotype Development. Antioxidants (Basel) 2023; 12:1654. [PMID: 37759957 PMCID: PMC10525645 DOI: 10.3390/antiox12091654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
In the last 15 years, among the many reasons given for the development of idiopathic forms of Parkinson's disease (PD), copper imbalance has been identified as a factor, and PD is often referred to as a copper-mediated disorder. More than 640 papers have been devoted to the relationship between PD and copper status in the blood, which include the following markers: total copper concentration, enzymatic ceruloplasmin (Cp) concentration, Cp protein level, and non-ceruloplasmin copper level. Most studies measure only one of these markers. Therefore, the existence of a correlation between copper status and the development of PD is still debated. Based on data from the published literature, meta-analysis, and our own research, it is clear that there is a connection between the development of PD symptoms and the number of copper atoms, which are weakly associated with the ceruloplasmin molecule. In this work, the link between the risk of developing PD and various inborn errors related to copper metabolism, leading to decreased levels of oxidase ceruloplasmin in the circulation and cerebrospinal fluid, is discussed.
Collapse
Affiliation(s)
- Marina N. Karpenko
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Zamira M. Muruzheva
- I.P. Pavlov Department of Physiology, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia; (M.N.K.); (Z.M.M.)
- State Budgetary Institution of Health Care “Leningrad Regional Clinical Hospital”, 194291 St. Petersburg, Russia
| | - Ekaterina Yu. Ilyechova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| | - Polina S. Babich
- Department of Zoology and Genetics, Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 St. Petersburg, Russia;
| | - Ludmila V. Puchkova
- Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
- Research Center of Advanced Functional Materials and Laser Communication Systems, ADTS Institute, ITMO University, 197101 St. Petersburg, Russia
- Department of Molecular Genetics, Research Institute of Experimental Medicine, 197376 St. Petersburg, Russia
| |
Collapse
|
23
|
Jia M, Dong T, Cheng Y, Rong F, Zhang J, Lv W, Zhen S, Jia X, Cong B, Wu Y, Cui H, Hao P. Ceruloplasmin is associated with the infiltration of immune cells and acts as a prognostic biomarker in patients suffering from glioma. Front Pharmacol 2023; 14:1249650. [PMID: 37637428 PMCID: PMC10450624 DOI: 10.3389/fphar.2023.1249650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Glioma is regarded as a prevalent form of cancer that affects the Central Nervous System (CNS), with an aggressive growth pattern and a low clinical cure rate. Despite the advancement of the treatment strategy of surgical resection, chemoradiotherapy and immunotherapy in the last decade, the clinical outcome is still grim, which is ascribed to the low immunogenicity and tumor microenvironment (TME) of glioma. The multifunctional molecule, called ceruloplasmin (CP) is involved in iron metabolism. Its expression pattern, prognostic significance, and association with the immune cells in gliomas have not been thoroughly investigated. Studies using a variety of databases, including Chinese Glioma Genome Atlas (CGGA), The Cancer Genome Atlas (TCGA), and Gliovis, showed that the mRNA and protein expression levels of CP in patients suffering from glioma increased significantly with an increasing glioma grade. Kaplan-Meier (KM) curves and statistical tests highlighted a significant reduction in survival time of patients with elevated CP expression levels. According to Cox regression analysis, CP can be utilized as a stand-alone predictive biomarker in patients suffering from glioma. A significant association between CP expression and numerous immune-related pathways was found after analyzing the data using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Tumor Immune Estimation Resource (TIMER) and CIBERSORT analyses indicated a substantial correlation between the CP expression and infiltration of immunocytes in the TME. Additionally, immune checkpoints and CP expression in gliomas showed a favorable correlation. According to these results, patients with glioma have better prognoses and levels of tumor immune cell infiltration when their CP expression is low. As a result, CP could be used as a probable therapeutic target for gliomas and potentially anticipate the effectiveness of immunotherapy.
Collapse
Affiliation(s)
- Miaomiao Jia
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Postdoctoral Mobile Station of Biology, Hebei Medical University, Shijiazhuang, Hebei, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianyu Dong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Yangyang Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fanghao Rong
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Jiamin Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
| | - Wei Lv
- Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuman Zhen
- Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xianxian Jia
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Bin Cong
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuming Wu
- Hebei Collaborative Innovation Center for Cardio Cerebrovascular Disease, Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Peipei Hao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei, China
- International Cooperation Laboratory of Stem Cell Research, Shijiazhuang, China
- Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| |
Collapse
|
24
|
Wei J, Wang S, Zhu H, Cui W, Gao J, Gao C, Yu B, Liu B, Chen J, Peng J. Hepatic depletion of nucleolar protein mDEF causes excessive mitochondrial copper accumulation associated with p53 and NRF1 activation. iScience 2023; 26:107220. [PMID: 37456842 PMCID: PMC10339200 DOI: 10.1016/j.isci.2023.107220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/15/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023] Open
Abstract
Copper is an essential component in the mitochondrial respiratory chain complex IV (cytochrome c oxidases). However, whether any nucleolar factor(s) is(are) involved in regulating the mitochondrial copper homeostasis remains unclear. The nucleolar localized Def-Capn3 protein degradation pathway cleaves target proteins, including p53, in both zebrafish and human nucleoli. Here, we report that hepatic depletion of mDEF in mice causes an excessive copper accumulation in the mitochondria. We find that mDEF-depleted hepatocytes show an exclusion of CAPN3 from the nucleoli and accumulate p53 and NRF1 proteins in the nucleoli. Furthermore, we find that NRF1 is a CAPN3 substrate. Elevated p53 and NRF1 enhances the expression of Sco2 and Cox genes, respectively, to allow more copper acquirement in the mDefloxp/loxp, Alb:Cre mitochondria. Our findings reveal that the mDEF-CAPN3 pathway serves as a novel mechanism for regulating the mitochondrial copper homeostasis through targeting its substrates p53 and NRF1.
Collapse
Affiliation(s)
- Jinsong Wei
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuai Wang
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haozhe Zhu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Cui
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianan Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ce Gao
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bojing Liu
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Starodubtseva NL, Tokareva AO, Rodionov VV, Brzhozovskiy AG, Bugrova AE, Chagovets VV, Kometova VV, Kukaev EN, Soares NC, Kovalev GI, Kononikhin AS, Frankevich VE, Nikolaev EN, Sukhikh GT. Integrating Proteomics and Lipidomics for Evaluating the Risk of Breast Cancer Progression: A Pilot Study. Biomedicines 2023; 11:1786. [PMID: 37509426 PMCID: PMC10376786 DOI: 10.3390/biomedicines11071786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Metastasis is a serious and often life-threatening condition, representing the leading cause of death among women with breast cancer (BC). Although the current clinical classification of BC is well-established, the addition of minimally invasive laboratory tests based on peripheral blood biomarkers that reflect pathological changes in the body is of utmost importance. In the current study, the serum proteome and lipidome profiles for 50 BC patients with (25) and without (25) metastasis were studied. Targeted proteomic analysis for concertation measurements of 125 proteins in the serum was performed via liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM MS) using the BAK 125 kit (MRM Proteomics Inc., Victoria, BC, Canada). Untargeted label-free lipidomic analysis was performed using liquid chromatography coupled to tandem mass-spectrometry (LC-MS/MS), in both positive and negative ion modes. Finally, 87 serum proteins and 295 lipids were quantified and showed a moderate correlation with tumor grade, histological and biological subtypes, and the number of lymph node metastases. Two highly accurate classifiers that enabled distinguishing between metastatic and non-metastatic BC were developed based on proteomic (accuracy 90%) and lipidomic (accuracy 80%) features. The best classifier (91% sensitivity, 89% specificity, AUC = 0.92) for BC metastasis diagnostics was based on logistic regression and the serum levels of 11 proteins: alpha-2-macroglobulin, coagulation factor XII, adiponectin, leucine-rich alpha-2-glycoprotein, alpha-2-HS-glycoprotein, Ig mu chain C region, apolipoprotein C-IV, carbonic anhydrase 1, apolipoprotein A-II, apolipoprotein C-II and alpha-1-acid glycoprotein 1.
Collapse
Affiliation(s)
- Natalia L Starodubtseva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Department of Chemical Physics, Moscow Institute of Physics and Technology, 141700 Moscow, Russia
| | - Alisa O Tokareva
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Valeriy V Rodionov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Alexander G Brzhozovskiy
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna E Bugrova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vitaliy V Chagovets
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Vlada V Kometova
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| | - Evgenii N Kukaev
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- V.L. Talrose Institute for Energy Problems of Chemical Physics, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Nelson C Soares
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Grigoriy I Kovalev
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Alexey S Kononikhin
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Omics Technologies and Big Data for Personalized Medicine and Health, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Vladimir E Frankevich
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgeny N Nikolaev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology, and Perinatology, Ministry of Health of Russia, 117997 Moscow, Russia
| |
Collapse
|
26
|
Xie Y, Zhou W, Tao X, Lv H, Cheng Z. Early Gestational Blood Markers to Predict Preeclampsia Complicating Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2023; 16:1493-1503. [PMID: 37252009 PMCID: PMC10216866 DOI: 10.2147/dmso.s410912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Gestational diabetes mellitus (GDM) and preeclampsia (PE) are common pregnancy complications that share some common risk factors. GDM patients are also at high risk for PE. There are no sensitive markers for prediction, especially for the occurrence of PE in GDM patients. This study investigated plasma proteins for the prediction of PE in GDM patients. Methods A total of 10 PE, 10 GDM, and 5 PE complicated with GDM cases, as well as 10 pregnant controls without obvious complications, were included in the nested cohort. The proteomics in the plasma collected at 12-20 weeks of gestational age (GA) were analyzed by liquid chromatography‒mass spectrometry/mass spectrometry. Some potential markers, such as soluble transferrin receptor (sTfR), ceruloplasmin (CP), apolipoprotein E (ApoE) and inositol 1,4,5-trisphosphate receptor 1 (ITPR1), were validated using enzyme-linked immunosorbent assays. Results Functional analysis of the plasma showed that proteasome activation, pancreatic secretion, and fatty acid degradation were activated in the GDM group, and renin secretion-, lysosome-, and proteasome pathways involving iron transport and lipid metabolism were enriched in the PE group, distinguishing PE complicating GDM. Conclusion Through proteomics analysis of plasma in early pregnancy, PE complicating GDM may have a unique mechanism from that of PE alone. Plasma sTfR, CP and ApoE levels have potential clinical applications in early screening.
Collapse
Affiliation(s)
- Yan Xie
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Wenni Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200090, People’s Republic of China
| | - Hui Lv
- SG Bio-Testing Inc, Shanghai, 200093, People’s Republic of China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
27
|
Xue D, Narisu N, Taylor DL, Zhang M, Grenko C, Taylor HJ, Yan T, Tang X, Sinha N, Zhu J, Vandana JJ, Chong ACN, Lee A, Mansell EC, Swift AJ, Erdos MR, Zhou T, Bonnycastle LL, Zhong A, Chen S, Collins FS. Functional interrogation of twenty type 2 diabetes-associated genes using isogenic hESC-derived β-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.07.539774. [PMID: 37214922 PMCID: PMC10197532 DOI: 10.1101/2023.05.07.539774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional role of many loci has remained unexplored. In this study, we engineered isogenic knockout human embryonic stem cell (hESC) lines for 20 genes associated with T2D risk. We systematically examined β-cell differentiation, insulin production and secretion, and survival. We performed RNA-seq and ATAC-seq on hESC-β cells from each knockout line. Analyses of T2D GWAS signals overlapping with HNF4A-dependent ATAC peaks identified a specific SNP as a likely causal variant. In addition, we performed integrative association analyses and identified four genes ( CP, RNASE1, PCSK1N and GSTA2 ) associated with insulin production, and two genes ( TAGLN3 and DHRS2 ) associated with sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental hESC line, to identify a single likely functional variant at each of 23 T2D GWAS signals.
Collapse
|
28
|
Stołtny T, Dobrakowski M, Augustyn A, Rokicka D, Kasperczyk S. The concentration of chromium and cobalt ions and parameters of oxidative stress in serum and their impact on clinical outcomes after metaphyseal hip arthroplasty with modular metal heads. J Orthop Surg Res 2023; 18:225. [PMID: 36945025 PMCID: PMC10031909 DOI: 10.1186/s13018-023-03618-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
PURPOSE Current epidemiological data forecast an almost 40% increase in the number of hip arthroplasty performed in the population of patients with osteoarthritis in 2060, compared to year 2018. On the basis of 10 years of observation, the failure rate after a metal-on-metal hip replacement is between 56.7 and 88.9%, depending on the used implant. METHODS Seventy-six men operated using metaphyseal hip prostheses, with modular metal heads: the J&J DePuy ASR and Biomet Recap-Magnum systems, after a period of about 5-7 years after the procedure, were assessed twice (an interval of 6 months) in terms of the parameters of oxidative stress and the concentration of chromium, cobalt and ions nickel, as well as their impact on the current clinical status and quality of life. RESULTS The mean values of the Co and Cr ion concentrations increased in a statistically significant manner at the individual stages of the study (13.20 Co and 18.16 Cr) for J&J DePuy ASR. Using the WOMAC-hip, HHS and SF-12 rating scales, the functional status of operated patients in both study groups did not change in a statistically significant manner during subsequent visits. There was a statistically significant increase in perceived pain in patients operated bilaterally with the J&J DePuy ASR system. The severity of pain could be related to the increase in the concentration of Co and Cr ions; however, it concerned a small group of bilaterally operated patients (n = 3 + n = 4). CONCLUSIONS Metal-on-metal configuration in hip arthroplasty significantly influences with the increase in the concentration of chromium and cobalt ions in a double assessment. A statistically significant increase in the concentration of the tested Co and Cr ions in the blood correlates with an increase in the intensity of pain, especially in patients undergoing bilateral surgery. The limitation of this study is the relatively small number of bilaterally operated patients. Elevated levels of Co and Cr ions in the blood of patients operated on with the J&J DePuy ASR system increased steadily during both follow-up visits.
Collapse
Affiliation(s)
- Tomasz Stołtny
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska St. 62, 41-940, Piekary Śląskie, Poland
| | - Michał Dobrakowski
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| | - Aleksander Augustyn
- District Hospital of Orthopaedics and Trauma Surgery in Piekary Śląskie, Bytomska St. 62, 41-940, Piekary Śląskie, Poland.
| | - Dominika Rokicka
- Department of Internal Diseases, Diabetology, and Cardiometabolic Diseases, School of Medicine With the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases in Zabrze, M. Curie-Skłodowskiej St. 9, 41-800, Zabrze, Poland
| | - Sławomir Kasperczyk
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Jordana St. 19, 41-808, Zabrze, Poland
| |
Collapse
|
29
|
Qi L, Han H, Han MM, Sun Y, Xing L, Jiang HL, Pandol SJ, Li L. Remodeling of imbalanced extracellular matrix homeostasis for reversal of pancreatic fibrosis. Biomaterials 2023; 292:121945. [PMID: 36508773 DOI: 10.1016/j.biomaterials.2022.121945] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Pancreatic fibrosis is mainly manifested by imbalance in extracellular matrix (ECM) homeostasis due to excessive deposition of collagen in pancreas by activated pancreatic stellate cells (PSCs). Recently, some drugs have exhibited therapeutic potentials for the treatment of pancreatic fibrosis; however, currently, no effective clinical strategy is available to remodel imbalanced ECM homeostasis because of inferior targeting abilities of drugs and collagen barriers that hinder the efficient delivery of drugs. Herein, we design and prepare collagen-binding peptide (CBP) and collagenase I co-decorated dual drug-loaded lipid nanoparticles (named AT-CC) for pancreatic fibrosis therapy. Specifically, AT-CC can target fibrotic pancreas via the CBP and degrade excess collagen by the grafted collagenase I, thereby effectively delivering all-trans-retinoic acid (ATRA) and ammonium tetrathiomolybdate (TM) into pancreas. The released ATRA can reduce collagen overproduction by inhibiting the activation of PSCs. Moreover, the released TM can restrain lysyloxidase activation, consequently reducing collagen cross-linking. The combination of ATRA and TM represses collagen synthesis and reduces collagen cross linkages to restore ECM homeostasis. The results of this research suggest that AT-CC is a safe and efficient collagen-targeted degradation drug-delivery system for reversing pancreatic fibrosis. Furthermore, the strategy proposed herein will offer an innovative platform for the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Han Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Ying Sun
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, 210009, China.
| | - Stephen J Pandol
- Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA; Basic and Translational Pancreatic Research, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Institute of Glucose and Lipid Metabolism, Southeast University, Nanjing, 210009, China; Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
30
|
Urbanowicz T, Hanć A, Olasińska-Wiśniewska A, Rodzki M, Witkowska A, Michalak M, Perek B, Haneya A, Jemielity M. Serum copper concentration reflect inflammatory activation in the complex coronary artery disease - A pilot study. J Trace Elem Med Biol 2022; 74:127064. [PMID: 36058104 DOI: 10.1016/j.jtemb.2022.127064] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/07/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Coronary artery disease possess inflammatory background related to enzymatic processes with trace elements involvements as co-factors. The aim of the study was to compare serum, urine and salivary copper, magnesium, calcium and zinc levels with inflammatory indices obtained from the whole blood count in patients with complex coronary artery disease. MATERIAL AND METHOD Fifty-two (42(81 %) males, 10 (19 %) females) consecutive patients (mean (SD) age 68 (9) years with symptomatic complex coronary artery disease were enrolled into prospective single center study in 2021. Serum, saliva and urine samples were collected at the day of admission for trace elements concentration (copper, zinc, magnesium, calcium) and compared with inflammatory indexes obtained from preoperative and perioperative period. RESULTS Multivariable regression analysis revealed relation between the copper serum concentration and neutrophil to lymphocyte ratio (NLR) and systemic inflammatory index (SII). CONCLUSION Serum copper concentration interplay with preoperative inflammatory activation in complex coronary disease measured by NLR and SII. The copper serum concentration possesses the strongest relation to preoperative inflammatory activation in patients reffered for off-pump coronary artery bypass grafting.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland.
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Rodzki
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Witkowska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| | - Assad Haneya
- Klinik für Herz, und Gefäßchirurgie, Universitat Klinikum Schleswig-Holstein, Germany
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
31
|
Nogueira VC, de Oliveira VDN, Guedes MIF, Smith BJ, da C Freire JE, Gonçalves NGG, de O M Moreira AC, de A Moreira R. UPLC-HDMS E to discover serum biomarkers in adults with type 1 diabetes. Int J Biol Macromol 2022; 221:1161-1170. [PMID: 36115450 DOI: 10.1016/j.ijbiomac.2022.09.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
Type 1 diabetes (T1D) is a complex disease with metabolic and functional changes that can alter an individual's proteome. An LC-MS/MS analytical method, in an HDMSE system, was used to identify differentially expressed proteins in the high abundance protein-depleted serum of T1D patients and healthy controls. Samples were processed in Progenesis QI for Proteomics software. A functional enrichment of the proteins was performed with Gene Ontology and ToppGene, and the interactions were visualized by STRING 11.5. As a result, 139 proteins were identified, 14 of which were downregulated in the serum of patients with T1D compared to controls. Most of the differentially expressed proteins were shown to be involved with the immune system, inflammation, and growth hormone stimulus response, and were associated with the progression of T1D. Differential protein expression data showed for the first-time changes in CPN2 expression levels in the serum of patients with T1D. Our findings indicate that these proteins are targets of interest for future investigations and for validation of protein biomarkers in T1D.
Collapse
Affiliation(s)
- Valeria C Nogueira
- Department of Education, Federal Institute of Ceará (IFCE), Ubajara, Ceará, Brazil.
| | - Valzimeire do N de Oliveira
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Maria I F Guedes
- Laboratory of Biotechnology and Molecular Biology, State University of Ceará (UECE), Fortaleza, Ceara, Brazil
| | - Bradley J Smith
- Laboratory of Neuroproteomics, Institute of Biology, Department of Biochemistry and Tissue Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - José E da C Freire
- Department of Clinical Medicine, Federal University of Ceará (UFC), Fortaleza, Ceará, Brazil
| | | | - Ana C de O M Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| | - Renato de A Moreira
- Experimental Biology Center, University of Fortaleza (UNIFOR), Fortaleza, Ceará, Brazil
| |
Collapse
|
32
|
Tian Y, Tian Y, Yuan Z, Zeng Y, Wang S, Fan X, Yang D, Yang M. Iron Metabolism in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:3612. [PMID: 35408967 PMCID: PMC8998315 DOI: 10.3390/ijms23073612] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Iron is a trace metal element necessary to maintain life and is also involved in a variety of biological processes. Aging refers to the natural life process in which the physiological functions of the various systems, organs, and tissues decline, affected by genetic and environmental factors. Therefore, it is imperative to investigate the relationship between iron metabolism and aging-related diseases, including neurodegenerative diseases. During aging, the accumulation of nonheme iron destroys the stability of the intracellular environment. The destruction of iron homeostasis can induce cell damage by producing hydroxyl free radicals, leading to mitochondrial dysfunction, brain aging, and even organismal aging. In this review, we have briefly summarized the role of the metabolic process of iron in the body, then discussed recent developments of iron metabolism in aging and age-related neurodegenerative diseases, and finally, explored some iron chelators as treatment strategies for those disorders. Understanding the roles of iron metabolism in aging and neurodegenerative diseases will fill the knowledge gap in the field. This review could provide new insights into the research on iron metabolism and age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yuanliangzi Tian
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Zhixiao Yuan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Yutian Zeng
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Shuai Wang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
| | - Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Deying Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu 611130, China; (Y.T.); (Y.T.); (Z.Y.); (Y.Z.); (S.W.); (X.F.); (D.Y.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|