1
|
Silveira ASDA, Alves ACDA, Gimenes GM, Quessada PDS, Lobato TB, Dias BB, Pereira ACG, Iser-Bem PN, Pereira JNB, Hatanaka E, Masi LN, Pithon-Curi TC, Mattaraia VGDM, Hirabara SM, Crisma AR, Gorjão R, Curi R. Evidence for a Pro-Inflammatory State of Macrophages from Non-Obese Type-2 Diabetic Goto-Kakizaki Rats. Int J Mol Sci 2024; 25:10240. [PMID: 39408569 PMCID: PMC11477416 DOI: 10.3390/ijms251910240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/20/2024] Open
Abstract
Obesity causes insulin resistance (IR) through systemic low-grade inflammation and can lead to type 2 diabetes mellitus (T2DM). However, the mechanisms that cause IR and T2DM in non-obese individuals are unclear. The Goto-Kakizaki (GK) rat develops IR spontaneously and is a model of non-obese T2DM. These rats exhibit hyperglycemia beginning at weaning and exhibit lower body mass than control Wistar rats. Herein, we tested the hypothesis that macrophages of GK rats are permanently in a pro-inflammatory state, which may be associated with a systemic inflammation condition that mimics the pathogenesis of obesity-induced T2DM. Using eighteen-week-old GK and control Wistar rats, we investigated the proportions of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages isolated from the peritoneal cavity. Additionally, the production of inflammatory cytokines and reactive oxygen species (ROS) in cultured macrophages under basal and stimulated conditions was assessed. It was found that phorbol myristate acetate (PMA) stimulation increased GK rat macrophage ROS production 90-fold compared to basal levels. This response was also three times more pronounced than in control cells (36-fold). The production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), tended to be upregulated in cultured macrophages from GK rats under basal conditions. Macrophages from GK rats produced 1.6 times more granulocyte-macrophage colony-stimulating factor (GM-CSF), 1.5 times more monocyte chemoattractant protein-1 (MCP-1) and 3.3 times more TNF-α than control cells when stimulated with lipopolysaccharide (LPS) (p = 0.0033; p = 0.049; p = 0.002, respectively). Moreover, compared to control cells, GK rats had 60% more M1 (p = 0.0008) and 23% less M2 (p = 0.038) macrophages. This study is the first to report macrophage inflammatory reprogramming towards a pro-inflammatory state in GK rats.
Collapse
Affiliation(s)
- Amanda Santos de Almeida Silveira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Amara Cassandra dos Anjos Alves
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Patrícia da Silva Quessada
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Tiago Bertola Lobato
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Beatriz Belmiro Dias
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Ana Carolina Gomes Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Patrícia Nancy Iser-Bem
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Joice Naiara Bertaglia Pereira
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
- Butantan Institute, São Paulo 05585-000, SP, Brazil
| | - Elaine Hatanaka
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Laureane Nunes Masi
- Multicenter Graduate Program in Physiological Sciences, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, SC 88037-000, Brazil
| | - Tânia Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | | | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Amanda Rabello Crisma
- Department of Clinical Analysis, Federal University of Paraná, Curitiba 80210-170, PR, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil (T.B.L.); (S.M.H.)
- Butantan Institute, São Paulo 05585-000, SP, Brazil
| |
Collapse
|
2
|
Hüttl M, Markova I, Miklánková D, Zapletalova I, Kujal P, Šilhavý J, Pravenec M, Malinska H. Hypolipidemic and insulin sensitizing effects of salsalate beyond suppressing inflammation in a prediabetic rat model. Front Pharmacol 2023; 14:1117683. [PMID: 37077818 PMCID: PMC10106727 DOI: 10.3389/fphar.2023.1117683] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Background and aims: Low-grade chronic inflammation plays an important role in the pathogenesis of metabolic syndrome, type 2 diabetes and their complications. In this study, we investigated the effects of salsalate, a non-steroidal anti-inflammatory drug, on metabolic disturbances in an animal model of prediabetes—a strain of non-obese hereditary hypertriglyceridemic (HHTg) rats.Materials and Methods: Adult male HHTg and Wistar control rats were fed a standard diet without or with salsalate delivering a daily dose of 200 mg/kg of body weight for 6 weeks. Tissue sensitivity to insulin action was measured ex vivo according to basal and insulin-stimulated 14C-U-glucose incorporation into muscle glycogen or adipose tissue lipids. The concentration of methylglyoxal and glutathione was determined using the HPLC-method. Gene expression was measured by quantitative RT-PCR.Results: Salsalate treatment of HHTg rats when compared to their untreated controls was associated with significant amelioration of inflammation, dyslipidemia and insulin resistance. Specificaly, salsalate treatment was associated with reduced inflammation, oxidative and dicarbonyl stress when inflammatory markers, lipoperoxidation products and methylglyoxal levels were significantly decreased in serum and tissues. In addition, salsalate ameliorated glycaemia and reduced serum lipid concentrations. Insulin sensitivity in visceral adipose tissue and skeletal muscle was significantly increased after salsalate administration. Further, salsalate markedly reduced hepatic lipid accumulation (triglycerides −29% and cholesterol −14%). Hypolipidemic effects of salsalate were associated with differential expression of genes coding for enzymes and transcription factors involved in lipid synthesis (Fas, Hmgcr), oxidation (Pparα) and transport (Ldlr, Abc transporters), as well as changes in gene expression of cytochrome P450 proteins, in particular decreased Cyp7a and increased Cyp4a isoforms.Conclusion: These results demonstrate important anti-inflammatory and anti-oxidative effects of salsalate that were associated with reduced dyslipidemia and insulin resistance in HHTg rats. Hypolipidemic effects of salsalate were associated with differential expression of genes regulating lipid metabolism in the liver. These results suggest potential beneficial use of salsalate in prediabetic patients with NAFLD symptoms.
Collapse
Affiliation(s)
- Martina Hüttl
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
| | - Irena Markova
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
| | - Denisa Miklánková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
| | - Iveta Zapletalova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech
| | - Petr Kujal
- Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech
| | - Hana Malinska
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech
- *Correspondence: Hana Malinska,
| |
Collapse
|
3
|
Alterations in Energy Metabolism, Mitochondrial Function and Redox Homeostasis in GK Diabetic Rat Tissues Treated with Aspirin. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010104. [PMID: 35054496 PMCID: PMC8780217 DOI: 10.3390/life12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
Abstract
Our recent studies have demonstrated that aspirin treatment prevents inflammatory and oxidative stress-induced alterations in mitochondrial function, improves glucose tolerance and pancreatic endocrine function and preserves tissue-specific glutathione (GSH)-dependent redox homeostasis in Goto-Kakizaki (GK) diabetic rats. In the current study, we have investigated the mechanism of action of aspirin in maintaining mitochondrial bioenergetics and redox metabolism in the liver and kidneys of GK rats. Aspirin reduced the production of reactive oxygen species (ROS) and oxidative stress-induced changes in GSH metabolism. Aspirin treatment also improved mitochondrial respiratory function and energy metabolism, in addition to regulating the expression of cell signaling proteins that were altered in diabetic animals. Ultrastructural electron microscopy studies revealed decreased accumulation of glycogen in the liver of aspirin-treated diabetic rats. Hypertrophic podocytes with irregular fusion of foot processes in the renal glomerulus and detached microvilli, condensed nuclei and degenerated mitochondria observed in the proximal convoluted tubules of GK rats were partially restored by aspirin. These results provide additional evidence to support our previous observation of moderation of diabetic complications by aspirin treatment in GK rats and may have implications for cautious use of aspirin in the therapeutic management of diabetes.
Collapse
|
4
|
Kikuchi H, Nakamura Y, Inoue C, Nojiri S, Koita M, Kojima M, Koyama H, Miki R, Seki T, Egawa Y. Hydrogen Peroxide-Triggered Conversion of Boronic Acid-Appended Insulin into Insulin and Its Application as a Glucose-Responsive Insulin Formulation. Mol Pharm 2021; 18:4224-4230. [PMID: 34623822 DOI: 10.1021/acs.molpharmaceut.1c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
p-Boronophenylmethoxycarbonyl (BPmoc) is a protecting group for amines that is removable by treatment with hydrogen peroxide (H2O2). We prepared BPmoc-modified insulin (BPmoc-Ins) and subcutaneously injected the formulation into diabetic rats. The results demonstrated that BPmoc effectively sealed the blood glucose (Glc)-lowering effects of Ins. Conversely, coinjection of BPmoc-Ins and Glc oxidase (GOx) resulted in reduced blood Glc levels, indicating that Ins was generated from BPmoc-Ins through the following reactions: oxidation of endogenous Glc by GOx; production of H2O2 accompanied by Glc oxidation; removal of BPmoc residues by H2O2. These results show the potential of BPmoc-Ins for a Glc-responsive Ins release system.
Collapse
Affiliation(s)
- Hinako Kikuchi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuki Nakamura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Chika Inoue
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Sayaka Nojiri
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Miho Koita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Minori Kojima
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Hiroki Koyama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Ryotaro Miki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Toshinobu Seki
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Yuya Egawa
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| |
Collapse
|
5
|
Dopamine D2 receptor agonist, bromocriptine, remodels adipose tissue dopaminergic signalling and upregulates catabolic pathways, improving metabolic profile in type 2 diabetes. Mol Metab 2021; 51:101241. [PMID: 33933677 PMCID: PMC8164040 DOI: 10.1016/j.molmet.2021.101241] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/05/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background and objectives The therapeutic effects of the dopamine D2 receptor (D2R) agonist, bromocriptine, in type 2 diabetes (T2D) have been attributed to central nervous system actions. However, peripheral dopamine directly modulates glucose uptake in insulin-sensitive tissues and lipid metabolism in adipose tissue (AT). We hypothesized that the dopaminergic system may be impaired in the adipose tissue of patients with T2D and that the therapeutic actions of bromocriptine could involve the modulation of metabolism in this tissue. Methods The expression of dopamine receptors was evaluated in visceral AT samples from patients with obesity and stratified in several groups: insulin sensitive (IS); insulin resistance (IR) normoglycaemic; insulin resistant prediabetic; insulin resistant diabetic, according to Ox-HOMA2IR, fasting glycaemia and HbA1c levels. T2D Goto-Kakizaki rats (GK) were fed a high-caloric diet (HCD) for five months and treated with bromocriptine (10 mg/kg/day, i.p.) in the last month. The levels of dopaminergic system mediators and markers of insulin sensitivity and glucose and lipid metabolism were assessed in the peri-epididymal adipose tissue (pEWAT) and brown (BAT) adipose tissues, liver, and skeletal muscle. Results Patients with IR presented a decreasing trend of DRD1 expression in the visceral adipose tissue, being correlated with the expression of UCP1, PPARA, and insulin receptor (INSR) independently of insulin resistance and body mass index. Although no differences were observed in DRD2, DRD4 expression was significantly decreased in patients with prediabetes and T2D. In HCD-fed diabetic rats, bromocriptine increased D1R and tyrosine hydroxylase (TH) levels in pEWAT and the liver. Besides reducing adiposity, bromocriptine restored GLUT4 and PPARγ levels in pEWAT, as well as postprandial InsR activation and postabsorptive activation of lipid oxidation pathways. A reduction of liver fat, GLUT2 levels and postprandial InsR and AMPK activation in the liver was observed. Increased insulin sensitivity and GLUT4 levels in BAT and an improvement of the overall metabolic status were observed. Conclusions Bromocriptine treatment remodels adipose tissue and the liver dopaminergic system, with increased D1R and TH levels, resulting in higher insulin sensitivity and catabolic function. Such effects may be involved in bromocriptine therapeutic effects, given the impaired expression of dopamine receptors in the visceral adipose tissue of IR patients, as well as the correlation of D1R expression with InsR and metabolic mediators. Patients with insulin resistance have imbalanced VAT dopamine receptors expression. Bromocriptine restored D1R and TH in pEWAT and the liver of an obese T2DM animal model. Bromocriptine improves pEWAT insulin sensitivity and lipid oxidation pathways. Peripheral modulation of the dopaminergic system may constitute a therapeutic target.
Collapse
|
6
|
Subramaniam A, Landstrom M, Luu A, Hayes KC. The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients 2018; 10:nu10020235. [PMID: 29463026 PMCID: PMC5852811 DOI: 10.3390/nu10020235] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/13/2018] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a multifactorial disease involving complex genetic and environmental interactions. No single animal model has so far mirrored all the characteristics or complications of diabetes in humans. Since this disease represents a chronic nutritional insult based on a diet bearing a high glycemic load, the ideal model should recapitulate the underlying dietary issues. Most rodent models have three shortcomings: (1) they are genetically or chemically modified to produce diabetes; (2) unlike humans, most require high-fat feeding; (3) and they take too long to develop diabetes. By contrast, Nile rats develop diabetes rapidly (8-10 weeks) with high-carbohydrate (hiCHO) diets, similar to humans, and are protected by high fat (with low glycemic load) intake. This review describes diabetes progression in the Nile rat, including various aspects of breeding, feeding, and handling for best experimental outcomes. The diabetes is characterized by a striking genetic permissiveness influencing hyperphagia and hyperinsulinemia; random blood glucose is the best index of disease progression; and kidney failure with chronic morbidity and death are outcomes, all of which mimic uncontrolled T2DM in humans. Non-alcoholic fatty liver disease (NAFLD), also described in diabetic humans, results from hepatic triglyceride and cholesterol accumulation associated with rising blood glucose. Protection is afforded by low glycemic load diets rich in certain fibers or polyphenols. Accordingly, the Nile rat provides a unique opportunity to identify the nutritional factors and underlying genetic and molecular mechanisms that characterize human T2DM.
Collapse
Affiliation(s)
| | | | - Alice Luu
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| | - K C Hayes
- Department of Biology, Brandeis University, Waltham, MA 02454, USA.
| |
Collapse
|
7
|
Lai N, Kummitha C, Hoppel C. Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus. PLoS One 2017; 12:e0183978. [PMID: 28850625 PMCID: PMC5574550 DOI: 10.1371/journal.pone.0183978] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/15/2017] [Indexed: 11/18/2022] Open
Abstract
Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunction. Diabetes and obesity are reported to have a selective effect on the function of subsarcolemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current study investigated the role of the subpopulations of mitochondria in the pathogenesis of insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2 diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical properties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria, minor defects are observed whereas in interfibrillar mitochondria function is preserved. Subsarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphorylation efficiency are related to ATP synthase and structural alterations of inner mitochondria membrane but are considered unimportant because of the absence of defects upstream as shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide compelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle from T2DM non-obese rats.
Collapse
Affiliation(s)
- Nicola Lai
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States of America
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - China Kummitha
- Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, Virginia, United States of America
- Biomedical Engineering Institute, Old Dominion University, Norfolk, Virginia, United States of America
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Charles Hoppel
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Center for Mitochondrial Disease, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
8
|
Nie J, DuBois DC, Xue B, Jusko WJ, Almon RR. Effects of High-Fat Feeding on Skeletal Muscle Gene Expression in Diabetic Goto-Kakizaki Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2017; 11:1177625017710009. [PMID: 28607540 PMCID: PMC5457139 DOI: 10.1177/1177625017710009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
Abstract
In the present report, we examined the responses of diabetic Goto-Kakizaki (GK) rats and control Wistar-Kyoto (WKY) rats fed either a standard chow or high-fat diet (HFD) from weaning to 20 weeks of age. This comparison included gene expression profiling of skeletal muscle using Affymetrix gene array chips. The expression profiling is interpreted within the context of a wide array of physiological measurements. Genes whose expressions are different between the 2 strains regardless of diet, as well as genes that differ between strains only with HFD, were identified. In addition, genes that were regulated by diet in 1 or both strains were identified. The results suggest that both strains respond to HFD by an increased capacity to oxidize lipid fuels in the musculature but that this adaptation occurs more rapidly in WKY rats. The results also demonstrated an impaired cytokine signalling and heightened inflammatory status in the GK rats.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA.,Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
Trnovská J, Šilhavý J, Kuda O, Landa V, Zídek V, Mlejnek P, Šimáková M, Strnad H, Škop V, Oliyarnyk O, Kazdová L, Haluzík M, Pravenec M. Salsalate ameliorates metabolic disturbances by reducing inflammation in spontaneously hypertensive rats expressing human C-reactive protein and by activating brown adipose tissue in nontransgenic controls. PLoS One 2017; 12:e0179063. [PMID: 28586387 PMCID: PMC5460879 DOI: 10.1371/journal.pone.0179063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022] Open
Abstract
Chronic low-grade inflammation plays an important role in the pathogenesis of insulin resistance. In the current study, we tested the effects of salsalate, a non-steroidal anti-inflammatory drug, in an animal model of inflammation and metabolic syndrome using spontaneously hypertensive rats (SHR) that transgenically express human C-reactive protein (SHR-CRP rats). We treated 15-month-old male transgenic SHR-CRP rats and nontransgenic SHR with salsalate (200 mg/kg/day) mixed as part of a standard diet for 4 weeks. A corresponding untreated control group of male transgenic SHR-CRP and SHR rats were fed a standard diet without salsalate. In the SHR-CRP transgenic strain, salsalate treatment decreased circulating concentrations of the inflammatory markers TNF-α and MCP-1, reduced oxidative stress in the liver and kidney, increased sensitivity of skeletal muscles to insulin action and improved tolerance to glucose. In SHR controls with no CRP-induced inflammation, salsalate treatment reduced body weight, decreased concentrations of serum free fatty acids and total and HDL cholesterol and increased palmitate oxidation and incorporation in brown adipose tissue. Salsalate regulated inflammation by affecting the expression of genes from MAPK signalling and NOD-like receptor signalling pathways and lipid metabolism by affecting hepatic expression of genes that favour lipid oxidation from PPAR-α signalling pathways. These findings suggest that salsalate has metabolic effects beyond suppressing inflammation.
Collapse
Affiliation(s)
- Jaroslava Trnovská
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Šilhavý
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Ondřej Kuda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimír Landa
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Zídek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Mlejnek
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Šimáková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Vojtěch Škop
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Olena Oliyarnyk
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ludmila Kazdová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martin Haluzík
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
10
|
Overexpression of a glucokinase point mutant in the treatment of diabetes mellitus. Gene Ther 2016; 23:323-9. [PMID: 26752353 PMCID: PMC4827006 DOI: 10.1038/gt.2016.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/25/2015] [Accepted: 12/31/2015] [Indexed: 12/21/2022]
Abstract
Glucokinase (GCK) is an important enzyme critical for glucose metabolism, and has been targeted as such in the pursuit of a cure for diabetes mellitus. We show that streptozotocin (STZ)-induced diabetic murine model exhibits low GCK expression with high blood glucose levels; moreover, aggravated glomerulonephritis is observed in the model when there is IL10 deficiency. Although T cells infiltrate into the liver and pancreas in STZ-induced diabetes mice, T helper 1 (Th1) and T helper 17 (Th17) cells decrease significantly with STZ addition in in vitro polarization. Using a mutant GCK gene (GCK 262) with a knocked out cytosine at position 2643 results in lower protein expression and more ubiquitination-led protein degradation compared with wild-type GCK (GCK 261). We further observed that hsa-mir-1302 can bind to 3'-untranslated region of mutant GCK, which can decrease GCK mRNA translation. Finally, delivery of mutant GCK by subcutaneous injection is more effective at decreasing blood glucose in the STZ-treated (STZ) murine diabetes model than insulin treatment alone. Similarly, mutant GCK consistently and moderately decreases blood glucose levels in GK rats over a period of 12 and 70 days without inducing hypoglycemia, whereas insulin is only effective over 12 h. These results suggest that mutant GCK may be a future cure for diabetes.
Collapse
|
11
|
Xue B, Nie J, Wang X, DuBois DC, Jusko WJ, Almon RR. Effects of High Fat Feeding on Adipose Tissue Gene Expression in Diabetic Goto-Kakizaki Rats. GENE REGULATION AND SYSTEMS BIOLOGY 2015; 9:15-26. [PMID: 26309393 PMCID: PMC4533846 DOI: 10.4137/grsb.s25172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/24/2015] [Accepted: 06/17/2015] [Indexed: 12/15/2022]
Abstract
Development and progression of type 2 diabetes is a complex interaction between genetics and environmental influences. High dietary fat is one environmental factor that is conducive to the development of insulin-resistant diabetes. In the present report, we compare the responses of lean poly-genic, diabetic Goto-Kakizaki (GK) rats to those of control Wistar-Kyoto (WKY) rats fed a high fat diet from weaning to 20 weeks of age. This comparison included a wide array of physiological measurements along with gene expression profiling of abdominal adipose tissue using Affymetrix gene array chips. Animals of both strains fed a high fat diet or a normal diet were sacrificed at 4, 8, 12, 16, and 20 weeks for this comparison. The microarray analysis revealed that the two strains developed different adaptations to increased dietary fat. WKY rats decrease fatty acid synthesis and lipogenic processes whereas GK rats increase lipid elimination. However, on both diets the major differences between the two strains remained essentially the same. Specifically relative to the WKY strain, the GK strain showed lipoatrophy, chronic inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Bai Xue
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Jing Nie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Xi Wang
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Debra C DuBois
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Richard R Almon
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, NY, USA. ; New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY, USA
| |
Collapse
|
12
|
Macia M, Pecchi E, Vilmen C, Desrois M, Lan C, Portha B, Bernard M, Bendahan D, Giannesini B. Insulin Resistance Is Not Associated with an Impaired Mitochondrial Function in Contracting Gastrocnemius Muscle of Goto-Kakizaki Diabetic Rats In Vivo. PLoS One 2015; 10:e0129579. [PMID: 26057538 PMCID: PMC4461248 DOI: 10.1371/journal.pone.0129579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022] Open
Abstract
Insulin resistance, altered lipid metabolism and mitochondrial dysfunction in skeletal muscle would play a major role in type 2 diabetes mellitus (T2DM) development, but the causal relationships between these events remain conflicting. To clarify this issue, gastrocnemius muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in Goto-Kakizaki (GK) rats, a non-obese T2DM model developing peripheral insulin resistant without abnormal level of plasma non-esterified fatty acids (NEFA). Wistar rats were used as controls. Mechanical performance and energy metabolism were assessed strictly non-invasively using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Compared with control group, plasma insulin and glucose were respectively lower and higher in GK rats, but plasma NEFA level was normal. In resting GK muscle, phosphocreatine content was reduced whereas glucose content and intracellular pH were both higher. However, there were not differences between both groups for basal oxidative ATP synthesis rate, citrate synthase activity, and intramyocellular contents for lipids, glycogen, ATP and ADP (an important in vivo mitochondrial regulator). During a standardized fatiguing protocol (6 min of maximal repeated isometric contractions electrically induced at a frequency of 1.7 Hz), mechanical performance and glycolytic ATP production rate were reduced in diabetic animals whereas oxidative ATP production rate, maximal mitochondrial capacity and ATP cost of contraction were not changed. These findings provide in vivo evidence that insulin resistance is not caused by an impairment of mitochondrial function in this diabetic model.
Collapse
Affiliation(s)
- Michael Macia
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
- * E-mail:
| | - Emilie Pecchi
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Christophe Vilmen
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Martine Desrois
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Carole Lan
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Bernard Portha
- Universitx Paris-Diderot, Sorbonne Paris Cité, Laboratoire B2PE, Unité BFA, CNRS EAC 4413, Paris, France
| | - Monique Bernard
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| | - Benoît Giannesini
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, 13385, Marseille, France
| |
Collapse
|