1
|
Li C, Xin W. Different Disinfection Strategies in Bacterial and Biofilm Contamination on Dental Unit Waterlines: A Systematic Review. Int J Dent Hyg 2025. [PMID: 39757558 DOI: 10.1111/idh.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/30/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
OBJECTIVE The aim of this systematic review is to explore the effectiveness of different methods of reducing contamination and biofilms in dental unit waterlines (DUWLs) and to provide reference for future standardisation of disinfection practices in dental clinic. METHODS This systematic review searched PubMed and Web of Science databases for DUWL disinfection studies from 2013 to 2023, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Synthesis Without Meta-analysis, additional extracting relevant data based on predefined inclusion and exclusion criteria. RESULTS The study review identified 8442 articles, with 58 included after rigorous screening. Disinfection methods for DUWLs were categorised into 14 physical and 90 chemical methods. Peroxides, chloramine-based, and biguanide methods were frequently used, often in combination. The effectiveness of these methods varied; for instance, phenolic was effective, while alcohol was not, in reducing bacterial and biofilm contamination. Biguanide, when used alone or combined with chlorine-based or alcohol, showed mixed results. Chlorine-based methods, particularly when combined with quaternary ammonium salt or enzymes, were generally effective. Enzymes and iodophor also demonstrated efficacy, though with some inconsistencies. Mechanical systems, peroxides, quaternary ammonium salts, silver, and tube coatings had varying degrees of success. Other innovative methods, such as Aloe vera and slightly acidic electrolysed water, showed promise in some studies, but the effectiveness of flushing was questioned. This comprehensive analysis highlights the diversity and complexity of disinfection strategies for DUWLs. CONCLUSION Future studies should focus on how material composition and tubing design affect biofilm development and the effectiveness of disinfection methods to guide the design of advanced dental units.
Collapse
Affiliation(s)
- Chuang Li
- Department of Stomatology, Clinic of Stomatology, Shantou University Medical College, Shantou, China
| | - Weini Xin
- Department of Stomatology, Clinic of Stomatology, Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Fytory M, Khalid SA, Zaki AH, Fritzsche W, Azzazy HME. Photocatalytic Nanocomposite Based on Titanate Nanotubes Decorated with Plasmonic Nanoparticles for Enhanced Broad-Spectrum Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:6720-6729. [PMID: 39352856 DOI: 10.1021/acsabm.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Infections resulting from microorganisms pose an ongoing global public health challenge, necessitating the constant development of novel antimicrobial approaches. Utilizing photocatalytic materials to generate reactive oxygen species (ROS) presents an appealing strategy for combating microbial threats. In alignment with this perspective, sodium titanate nanotubes were prepared by scalable hydrothermal method using TiO2 and NaOH. Ag, Au, and Ag/Au-modified titanate nanotubes (TNTs) were prepared by a cost-effective and simple ion-exchange method. All samples were characterized by XRD, FT-IR, HRTEM, and DLS techniques. HRTEM images indicated that the tubular structure was preserved in all TNTs even after the replacement of Na+ with Ag+ and/or Au3+ ions. The antibacterial activity in dark and sunlight conditions was evaluated using different bacterial strains, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results showed that while a low bacterial count (∼log 5 cells per well) was used for inoculation, the TNTs exhibited no antibacterial activity against the three bacterial strains, regardless of whether they were tested under light or dark conditions. However, the plasmonic nanoparticle-decorated TNTs showed remarkable activity in the dark. Additionally, Ag/Au-TNTs demonstrated significantly higher activity in the dark compared with either Ag-TNTs or Au-TNTs alone. Notably, under dark conditions, the Au/Ag-TNTs achieved log reductions of up to 4.5 for P. aeruginosa, 5 for S. aureus, and 3.7 for E. coli. However, when exposed to sunlight, Au/Ag-TNTs resulted in a complete reduction (log reduction ∼9) for P. aeruginosa and E. coli. The combination of two plasmonic nanoparticles (Ag/Au) decorated on the surface of TNTs showed synergetic bactericidal activity under both dark and light conditions. Ag/Au-TNTs could be explored to design surfaces that are responsive to visible light and exhibit antimicrobial properties.
Collapse
Affiliation(s)
- Mostafa Fytory
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shaimaa A Khalid
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Food Hygiene Department Agricultural Research Center, Animal Health Research Institute (AHRI), Giza, Dokki 12311, Egypt
| | - Ayman H Zaki
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| | - Hassan M E Azzazy
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
4
|
Maliar T, Blažková M, Polák J, Maliarová M, Ürgeová E, Viskupičová J. Antioxidant and Pro-Oxidant Properties of Selected Clinically Applied Antibiotics: Therapeutic Insights. Pharmaceuticals (Basel) 2024; 17:1257. [PMID: 39458897 PMCID: PMC11510234 DOI: 10.3390/ph17101257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The balance between antioxidants and pro-oxidants plays a significant role in the context of oxidative stress, influenced by both physiological and non-physiological factors. OBJECTIVES In this study, 18 prescribed antibiotics (including doxycycline hydrochloride, tigecycline, rifampicin, tebipenem, cefuroxime, cefixime, potassium clavulanate, colistin, ampicillin, amoxicillin, amikacin, nalidixic acid, azithromycin, pipemidic acid trihydrate, pivmecillinam, aztreonam, fosfomycin sodium, and ciprofloxacin) were subjected to simultaneous determination of antioxidant and pro-oxidant potential to assess if pro-oxidant activity is a dominant co-mechanism of antibacterial activity or if any antibiotic exhibits a balanced effect. METHODS This study presents a recently developed approach for the simultaneous assessment of antioxidant and pro-oxidant potential on a single microplate in situ, applied to prescribed antibiotics. RESULTS Ten antibiotics from eighteen showed lower antioxidant or pro-oxidant potential, while five exhibited only mild potential with DPPH50 values over 0.5 mM. The pro-oxidant antioxidant balance index (PABI) was also calculated to determine whether antioxidant or pro-oxidant activity was dominant for each antibiotic. Surprisingly, three antibiotics-doxycycline hydrochloride, tigecycline, and rifampicin-showed significant measures of both antioxidant and pro-oxidant activities. Especially notable was tebipenem, a broad-spectrum, orally administered carbapenem, showed a positive PABI index ratio, indicating a dominant antioxidant over pro-oxidant effect. CONCLUSIONS These findings could be significant for both therapy, where the antibacterial effect is enhanced by radical scavenging activity, and biotechnology, where substantial pro-oxidant activity might limit microbial viability in cultures and consequently affect yield.
Collapse
Affiliation(s)
- Tibor Maliar
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Marcela Blažková
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
- National Agricultural and Food Centre, Hlohovecká 2, 951 41 Lužianky, Slovakia
| | - Jaroslav Polák
- Helgeheim Inc., Palackého 6403, 911 01 Trenčín, Slovakia;
| | - Mária Maliarová
- Institute of Chemistry and Environmental Sciences, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia;
| | - Eva Ürgeová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Nám. J. Herdu 2, 917 01 Trnava, Slovakia; (M.B.); (E.Ü.)
| | - Jana Viskupičová
- Centre of Experimental Medicine SAS, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| |
Collapse
|
5
|
Guo P, Li Z, Cai T, Guo D, Yang B, Zhang C, Shan Z, Wang X, Peng X, Liu G, Shi C, Alharbi M, Alasmari AF. Inhibitory effect and mechanism of oregano essential oil on Listeria monocytogenes cells, toxins and biofilms. Microb Pathog 2024; 194:106801. [PMID: 39025378 DOI: 10.1016/j.micpath.2024.106801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Listeria monocytogenes (L. monocytogenes) is a prevalent foodborne pathogen with a remarkable capacity to form biofilms on utensil surfaces. The Listeriolysin O (LLO) exhibits hemolytic activity, which is responsible for causing human infections. In this study, we investigated the inhibitory effect and mechanism of oregano essential oil (OEO) on L. monocytogenes, evaluated the effects on its biofilm removal and hemolytic activity. The minimum inhibitory concentration (MIC) of OEO against L. monocytogenes was 0.03 % (v/v). L. monocytogenes was treated with OEO at 3/2 MIC for 30 min the bacteria was decreased below the detection limit (10 CFU/mL) in PBS and TSB (the initial bacterial load was about 6.5 log CFU/mL). The level of L. monocytogenes in minced pork co-cultured with OEO (15 MIC) about 2.5 log CFU/g lower than that in the untreated group. The inhibitory mechanisms of OEO against planktonic L. monocytogenes encompassed perturbation of cellular morphology, elevation in reactive oxygen species levels, augmentation of lipid oxidation extent, hyperpolarization of membrane potential, and reduction in intracellular ATP concentration. In addition, OEO reduced biofilm coverage on the surface of glass slides by 62.03 % compared with the untreated group. Meanwhile, OEO (1/8 MIC) treatment reduced the hemolytic activity of L. monocytogenes to 24.6 % compared with the positive control. Molecular docking suggested carvacrol and thymol might reduce the hemolytic activity of L. monocytogenes. The results of this study demonstrate that OEO exhibits inhibitory effects against L. monocytogenes, biofilms and LLO, which had potential as natural antimicrobial for the inhibition of L. monocytogenes.
Collapse
Affiliation(s)
- Peng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenye Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ting Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, China.
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong, 518057, China.
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
6
|
Sun S, Chen X. Mechanism-guided strategies for combating antibiotic resistance. World J Microbiol Biotechnol 2024; 40:295. [PMID: 39122871 DOI: 10.1007/s11274-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Bacterial antibiotic resistance has been recognized as a global threat to public health. It challenges the antibiotics currently used in clinical practice and causes severe and often fatal infectious diseases. Fighting against antibiotic-resistant bacteria (ARB) is growing more urgent. While understanding the molecular mechanisms that underlie resistance is a prerequisite, several major mechanisms have been previously proposed including bacterial efflux systems, reduced cell membrane permeability, antibiotic inactivation by enzymes, target modification, and target protection. In this context, this review presents a panel of promising and potential strategies to combat antibiotic resistance/resistant bacteria. Different types of direct-acting and indirect resistance breakers, such as efflux pump inhibitors, antibiotic adjuvants, and oxidative treatments are discussed. In addition, the emerging multi-omics approaches for rapid resistance identification and promising alternatives to existing antibiotics are highlighted. Overall, this review suggests that continued effort and investment in research are required to develop new antibiotics and alternatives to existing antibiotics and translate them into environmental and clinical applications.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
7
|
Dong S, Mei Y, Zhang Y, Bu W, Zhang Y, Sun C, Zou R, Niu L. A Novel Therapeutic Calcium Peroxide Loaded Injectable Bio-adhesive Hydrogel Against Periodontitis. Int Dent J 2024:S0020-6539(24)00150-3. [PMID: 39127517 DOI: 10.1016/j.identj.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 08/12/2024] Open
Abstract
OBJECTIVES Periodontitis is a prevalent oral disease that can significantly impact patients' life quality and systemic health. However, non-surgical subgingival scaling is largely compromised due to poor patient compliance, leading to a high recurrence rate of periodontitis. Therefore, this research aims to explore new approaches to enhance the effectiveness of existing local drug administration therapies. MATERIALS AND METHODS Gelatin-oxidized dextran hydrogel loaded with calcium peroxide and penicillin (CP-P hydrogel) was synthesized and characterized using Universal mechanical testing machine, Fourier transform infrared spectroscopy, swelling test, and dissolved oxygen meter. Furthermore, the cytotoxicity, osteogenic ability, antibacterial behavior, and alveolar bone regenerating capability of CP-P hydrogel were conducted both in vitro and in vivo. RESULTS The CP-P hydrogel demonstrated excellent mechanical properties, minimal swelling, and ideal biocompatibility. It created more favorable environments in the periodontal pocket by reversing anaerobic environment, eliminating drug-resistant bacteria and enhancing the therapeutic potency of drugs. By continuously releasing drugs in the periodontal pocket, the CP-P hydrogel effectively inhibited bacteria and reduce local inflammation response. In addition to bacteriostatic effects, the CP-P hydrogel also promoted the expression of osteogenic genes and enhanced osteogenic differentiation of PDLSCs in vitro. CONCLUSIONS CP-P hydrogel can be developed as a new therapeutic platform to enhance the effectiveness of local drug administration strategy against periodontitis.
Collapse
Affiliation(s)
- Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Wenqing Bu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Changjie Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, Shaanxi Province, China; Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
8
|
Vitiello A, Rezza G, Silenzi A, Salzano A, Alise M, Boccellino MR, Ponzo A, Zovi A, Sabbatucci M. Therapeutic Strategies to Combat Increasing Rates of Multidrug Resistant Pathogens. Pharm Res 2024; 41:1557-1571. [PMID: 39107513 DOI: 10.1007/s11095-024-03756-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/29/2024] [Indexed: 08/30/2024]
Abstract
The emergence of antimicrobic-resistant infectious pathogens and the consequent rising in the incidence and prevalence of demises caused by or associated to infections which are not sensitive to drug treatments is one of today's major global health challenges. Antimicrobial resistance (AMR) can bring to therapeutic failure, infection's persistence and risk of serious illness, in particular in vulnerable populations such as the elderly, patients with neoplastic diseases or the immunocompromised. It is assessed that AMR will induce until 10 million deaths per year by 2050, becoming the leading cause of disease-related deaths. The World Health Organisation (WHO) and the United Nations General Assembly urgently call for new measures to combat the phenomenon. Research and development of new antimicrobial agents has decreased due to market failure. However, promising results are coming from new alternative therapeutic strategies such as monoclonal antibodies, microbiome modulators, nanomaterial-based therapeutics, vaccines, and phages. This narrative review aimed to analyse the benefits and weaknesses of alternative therapeutic strategies to antibiotics which treat multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Antonio Vitiello
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Giovanni Rezza
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Andrea Silenzi
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Antonio Salzano
- Directorate-General for Health Prevention, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | - Mosè Alise
- Directorate General of Animal Health and Veterinary Medicines, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy
| | | | - Annarita Ponzo
- Department of Biology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Andrea Zovi
- Directorate General for Hygiene, Food Safety and Nutrition, Ministry of Health, Viale Giorgio Ribotta 5, 00144, Rome, Italy.
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
9
|
Alfei S, Schito GC, Schito AM, Zuccari G. Reactive Oxygen Species (ROS)-Mediated Antibacterial Oxidative Therapies: Available Methods to Generate ROS and a Novel Option Proposal. Int J Mol Sci 2024; 25:7182. [PMID: 39000290 PMCID: PMC11241369 DOI: 10.3390/ijms25137182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens causes difficult-to-treat infections with long-term hospitalizations and a high incidence of death, thus representing a global public health problem. To manage MDR bacteria bugs, new antimicrobial strategies are necessary, and their introduction in practice is a daily challenge for scientists in the field. An extensively studied approach to treating MDR infections consists of inducing high levels of reactive oxygen species (ROS) by several methods. Although further clinical investigations are mandatory on the possible toxic effects of ROS on mammalian cells, clinical evaluations are extremely promising, and their topical use to treat infected wounds and ulcers, also in presence of biofilm, is already clinically approved. Biochar (BC) is a carbonaceous material obtained by pyrolysis of different vegetable and animal biomass feedstocks at 200-1000 °C in the limited presence of O2. Recently, it has been demonstrated that BC's capability of removing organic and inorganic xenobiotics is mainly due to the presence of persistent free radicals (PFRs), which can activate oxygen, H2O2, or persulfate in the presence or absence of transition metals by electron transfer, thus generating ROS, which in turn degrade pollutants by advanced oxidation processes (AOPs). In this context, the antibacterial effects of BC-containing PFRs have been demonstrated by some authors against Escherichia coli and Staphylococcus aureus, thus giving birth to our idea of the possible use of BC-derived PFRs as a novel method capable of inducing ROS generation for antimicrobial oxidative therapy. Here, the general aspects concerning ROS physiological and pathological production and regulation and the mechanism by which they could exert antimicrobial effects have been reviewed. The methods currently adopted to induce ROS production for antimicrobial oxidative therapy have been discussed. Finally, for the first time, BC-related PFRs have been proposed as a new source of ROS for antimicrobial therapy via AOPs.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| | - Gian Carlo Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genoa, Italy
| |
Collapse
|
10
|
Yeo JH, Low JQ, Begam N, Leow WT, Kwa ALH. Can flow cytometric measurements of reactive oxygen species levels determine minimal inhibitory concentrations and antibiotic susceptibility testing for Acinetobacter baumannii? PLoS One 2024; 19:e0305939. [PMID: 38913680 PMCID: PMC11195951 DOI: 10.1371/journal.pone.0305939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/08/2024] [Indexed: 06/26/2024] Open
Abstract
Current antimicrobial susceptibility testing (AST) requires 16-24 hours, delaying initiation of appropriate antibiotics. Hence, there is a need for rapid AST. This study aims to develop and evaluate the feasibility of a rapid flow cytometric AST assay to determine minimum inhibitory concentration (MIC) for carbapenem-resistant Acinetobacter baumannii (CRAB). Antibiotic exposure causes increased intracellular reactive oxygen species (ROS) in bacteria. We hypothesized that ROS can be used as a marker to determine MIC. We assessed three CRAB clinical isolates across fifteen antibiotics at various concentrations in a customized 96-well microtiter plate. The antibiotics assessed include amikacin, beta-lactams (ampicillin/sulbactam, aztreonam, cefepime, ceftolozane/tazobactam, doripenem, imipenem, meropenem, and piperacillin/tazobactam), levofloxacin, polymyxin B, rifampicin, trimethoprim/sulfamethoxazole, and tetracyclines (tigecycline and minocycline). These clinical CRAB isolates were assessed for ROS after antibiotic treatment. Increased ROS levels indicated by increased RedoxSensorTM Green (RSG) fluorescence intensity was assessed using flow cytometry (FCM). MIC was set as the lowest antibiotic concentration that gives a ≥1.5-fold increase in mode RSG fluorescence intensity (MICRSG). Accuracy of MICRSG was determined by comparing against microtiter broth dilution method performed under CLSI guidelines. ROS was deemed accurate in determining the MICs for β-lactams (83.3% accuracy) and trimethoprim/sulfamethoxazole (100% accuracy). In contrast, ROS is less accurate in determining MICs for levofloxacin (33.3% accuracy), rifampicin (0% accuracy), amikacin (33.3% accuracy), and tetracyclines (33.3% accuracy). Collectively, this study described an FCM-AST assay to determine antibiotic susceptibility of CRAB isolates within 5 hours, reducing turnaround time up to 19 hours.
Collapse
Affiliation(s)
- Jia Hao Yeo
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
- SingHealth-Duke-NUS Academic Clinical Programme, Singapore, Singapore
| | - Jia Qian Low
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Nasren Begam
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Wan-Ting Leow
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
| | - Andrea Lay-Hoon Kwa
- Department of Pharmacy, Singapore General Hospital, Singapore, Singapore
- SingHealth-Duke-NUS Academic Clinical Programme, Singapore, Singapore
- Department of Pharmacy, NUS, Singapore, Singapore
- Emerging Infection Diseases Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| |
Collapse
|
11
|
Ranathunga K, Yapa P, Munaweera I, Weerasekera MM, Sandaruwan C. Preparation and characterization of Fe-ZnO cellulose-based nanofiber mats with self-sterilizing photocatalytic activity to enhance antibacterial applications under visible light. RSC Adv 2024; 14:18536-18552. [PMID: 38860242 PMCID: PMC11163953 DOI: 10.1039/d4ra03136a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Bacterial infections and antibiotic resistance have posed a severe threat to public health in recent years. One emerging and promising approach to this issue is the photocatalytic sterilization of nanohybrids. By utilizing ZnO photocatalytic sterilization, the drawbacks of conventional antibacterial treatments can be efficiently addressed. This study examines the enhanced photocatalytic sterilizing effectiveness of Fe-doped ZnO nanoparticles (Fe-ZnO nanohybrids) incorporated into polymer membranes that are active in visible light. Using the co-precipitation procedure, Fe-ZnO nanohybrids (Fe x Zn100-x O) have been generated using a range of dopant ratios (x = 0, 3, 5, 7, and 10) and characterized. The ability to scavenge free radicals was assessed and the IC50 value was calculated using the DPPH test at different catalytic concentrations. PXRD patterns showed a hexagonal wurtzite structure, which indicated that the particle size of the nanohybrid decreased as the dopant concentration rose. It was demonstrated by UV-vis diffuse reflectance experiments that the band gap of the nanohybrid decreased (redshifted) with Fe doping. The photocatalytic activity under sunlight increased steadily to 87% after Fe was added as a dopant. The Fe 5%-ZnO nanohybrid exhibited the lowest IC50 value of 81.44 μg mL-1 compared to ZnO, indicating the highest radical scavenging activity and the best antimicrobial activity. The Fe 5%-ZnO nanohybrid, which is proven to have the best photocatalytic sterilization activity, was then incorporated into a cellulose acetate polymer membrane by electrospinning. Disc diffusion assay confirmed the highest antimicrobial activity of the Fe 5%-ZnO nanohybrid incorporated electrospun membrane against Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 10231) under visible light. As a result, Fe 5%-ZnO nanofiber membranes have the potential to be employed as self-sterilizing materials in healthcare settings.
Collapse
Affiliation(s)
- Kithmini Ranathunga
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - M M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda Sri Lanka
| | - Chanaka Sandaruwan
- Sri Lanka Institute of Nanotechnology (SLINTEC) Homagama Sri Lanka
- Department of Aerospace Engineering, Khalifa University of Science and Technology 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
12
|
Surur AK, de Oliveira AB, De Annunzio SR, Ferrisse TM, Fontana CR. Bacterial resistance to antimicrobial photodynamic therapy: A critical update. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 255:112905. [PMID: 38703452 DOI: 10.1016/j.jphotobiol.2024.112905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/06/2024] [Accepted: 04/04/2024] [Indexed: 05/06/2024]
Abstract
Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.
Collapse
Affiliation(s)
- Amanda Koberstain Surur
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Analú Barros de Oliveira
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Sarah Raquel De Annunzio
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| | - Túlio Morandin Ferrisse
- São Paulo State University (UNESP), School of Dentistry, Department of Dental Materials and Prosthodontics, Araraquara, São Paulo, Brazil.
| | - Carla Raquel Fontana
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Department of Clinical Analysis, Araraquara, São Paulo, Brazil.
| |
Collapse
|
13
|
Fik-Jaskółka M, Mittova V, Motsonelidze C, Vakhania M, Vicidomini C, Roviello GN. Antimicrobial Metabolites of Caucasian Medicinal Plants as Alternatives to Antibiotics. Antibiotics (Basel) 2024; 13:487. [PMID: 38927153 PMCID: PMC11200912 DOI: 10.3390/antibiotics13060487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the potential of antimicrobial metabolites derived from Caucasian medicinal plants as alternatives to conventional antibiotics. With the rise of antibiotic resistance posing a global health threat, there is a pressing need to investigate alternative sources of antimicrobial agents. Caucasian medicinal plants have traditionally been used for their therapeutic properties, and recent research has highlighted their potential as sources of antimicrobial compounds. Representatives of 15 families of Caucasian medicinal plant extracts (24 species) have been explored for their efficacy against these pathogens. The effect of these plants on Gram-positive and Gram-negative bacteria and fungi is discussed in this paper. By harnessing the bioactive metabolites present in these plants, this study aims to contribute to the development of new antimicrobial treatments that can effectively combat bacterial infections while minimizing the risk of resistance emergence. Herein we discuss the following classes of bioactive compounds exhibiting antimicrobial activity: phenolic compounds, flavonoids, tannins, terpenes, saponins, alkaloids, and sulfur-containing compounds of Allium species. The review discusses the pharmacological properties of selected Caucasian medicinal plants, the extraction and characterization of these antimicrobial metabolites, the mechanisms of action of antibacterial and antifungal plant compounds, and their potential applications in clinical settings. Additionally, challenges and future directions in the research of antimicrobial metabolites from Caucasian medicinal plants are addressed.
Collapse
Affiliation(s)
- Marta Fik-Jaskółka
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Valentina Mittova
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | | | - Malkhaz Vakhania
- Teaching University Geomedi, 4 King Solomon II Str., Tbilisi 0114, Georgia; (V.M.)
| | - Caterina Vicidomini
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giovanni N. Roviello
- Institute of Biostructures and Bioimaging, Italian National Council for Research (IBB-CNR), Area di Ricerca Site and Headquarters, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
14
|
Ahmadi S, Taghizadieh M, Mehdizadehfar E, Hasani A, Khalili Fard J, Feizi H, Hamishehkar H, Ansarin M, Yekani M, Memar MY. Gut microbiota in neurological diseases: Melatonin plays an important regulatory role. Biomed Pharmacother 2024; 174:116487. [PMID: 38518598 DOI: 10.1016/j.biopha.2024.116487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024] Open
Abstract
Melatonin is a highly conserved molecule produced in the human pineal gland as a hormone. It is known for its essential biological effects, such as antioxidant activity, circadian rhythm regulator, and immunomodulatory effects. The gut is one of the primary known sources of melatonin. The gut microbiota helps produce melatonin from tryptophan, and melatonin has been shown to have a beneficial effect on gut barrier function and microbial population. Dysbiosis of the intestinal microbiota is associated with bacterial imbalance and decreased beneficial microbial metabolites, including melatonin. In this way, low melatonin levels may be related to several human diseases. Melatonin has shown both preventive and therapeutic effects against various conditions, including neurological diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. This review was aimed to discuss the role of melatonin in the body, and to describe the possible relationship between gut microbiota and melatonin production, as well as the potential therapeutic effects of melatonin on neurological diseases.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Department of Neurosciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Khalili Fard
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Microbiology, Aalinasab Hospital, Social Security Organization, Tabriz, Iran
| | - Hammed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masood Ansarin
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Zheng J, Rong L, Lu Y, Chen J, Hua K, Du Y, Zhang Q, Li W. Trap & kill: a neutrophil-extracellular-trap mimic nanoparticle for anti-bacterial therapy. Biomater Sci 2024; 12:1841-1846. [PMID: 38410093 DOI: 10.1039/d4bm00145a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fenton chemistry-mediated antimicrobials have demonstrated great promise in antibacterial therapy. However, the short life span and diffusion distance of hydroxyl radicals dampen the therapeutic efficiency of these antimicrobials. Herein, inspired by the neutrophil extracellular trap (NET), in which bacteria are trapped and agglutinated via electronic interactions and killed by reactive oxygen species, we fabricated a NET-mimic nanoparticle to suppress bacterial infection in a "trap & kill" manner. Specifically, this NET-mimic nanoparticle was synthesized via polymerization of ferrocene monomers followed by quaternization with a mannose derivative. Similar to the NET, the NET-mimic nanoparticles trap bacteria through electronic and sugar-lectin interactions between their mannose moieties and the lectins of bacteria, forming bacterial agglutinations. Therefore, they confine the spread of the bacteria and restrict the bacterial cells to the destruction range of hydroxyl radicals. Meanwhile, the ferrocene component of the nanoparticle catalyzes the production of highly toxic hydroxyl radicals at the H2O2 rich infection foci and effectively eradicates the agglutinated bacteria. In a mouse model of an antimicrobial-resistant bacteria-infected wound, the NET-mimic nanoparticles displayed potent antibacterial activity and accelerated wound healing.
Collapse
Affiliation(s)
- Jingtao Zheng
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Lei Rong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yao Lu
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Jing Chen
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Kai Hua
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
| | - Yongzhong Du
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264003, PR China
| | - Qiang Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Weishuo Li
- Center for Molecular Metabolism, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Shandong Luye Pharmaceutical Co., Ltd, Yantai, Shandong 264003, PR China
| |
Collapse
|
16
|
Takagi G, Kirinoki-Ichikawa S, Tara S, Takagi I, Miyamoto M. Effectiveness of Repetitive Hyperbaric Oxygen Therapy for Chronic Limb-Threatening Ischemia. J NIPPON MED SCH 2024; 91:66-73. [PMID: 38072421 DOI: 10.1272/jnms.jnms.2024_91-106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
BACKGROUND Lower extremity artery disease is strongly associated with morbidity and is typically addressed through revascularization interventions. We assessed the clinical outcomes of patients with chronic limb-threatening ischemia (CLTI) without revascularization who did and did not undergo repetitive hyperbaric oxygen therapy (HBOT). METHODS Between April 2002 and March 2017, the records of 58 patients with CLTI (Rutherford classification 4 in 19% and 5 in 81%) were evaluated retrospectively. HBOT was performed at 2.8 atm of oxygen (HBOT group). The control group included those who could not continue HBOT and historical controls. Patients in poor general health or with an indication for revascularization therapy were excluded. We examined major adverse events (MAEs) and limb salvage rates. Independent predictors and risk stratification were analyzed using a multivariate regression analysis. RESULTS The mean age was 71±13 years. Of all patients, 67% had diabetes and 43% were undergoing hemodialysis. The mean follow-up period was 4.3±0.8 years. The overall survival rate was 84.5% and 81.0% at 1 and 3 years, respectively. The Cox regression analysis indicated that high body mass index (odds ratio [OR]: 0.86; 95% confidence interval [CI]: 0.76-0.97; p=0.01), well-nourished (OR: 1.21; 95% CI: 1.01-1.45), and HBOT (OR: 0.05; 95% CI: 0.01-0.26; p<0.001) independently predicted absence of MAEs. For major limb amputation, the ankle-brachial index (OR: 0.2; 95% CI: 0.05-0.86; p=0.03) and HBOT (OR: 0.04; 95% CI: 0.004-0.32; p=0.003) were independent predictors. CONCLUSIONS Repetitive, stand-alone HBOT was associated with MAE-free survival and limb salvage in patients with CLTI.
Collapse
Affiliation(s)
- Gen Takagi
- Department of Cardiovascular Medicine, Nippon Medical School
| | | | - Shuhei Tara
- Department of Cardiovascular Medicine, Nippon Medical School
| | - Ikuyo Takagi
- Department of Cardiovascular Medicine, Nippon Medical School
| | | |
Collapse
|
17
|
Liu XY, Li RF, Jia J, Yu ZL. Antibacterial micro/nanomotors: current research progress, challenges, and opportunities. Theranostics 2024; 14:1029-1048. [PMID: 38250044 PMCID: PMC10797294 DOI: 10.7150/thno.92449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/23/2023] [Indexed: 01/23/2024] Open
Abstract
Bacterial infections remain a formidable threat to human health, a situation exacerbated by the escalating problem of antibiotic resistance. While alternative antibacterial strategies such as oxidants, heat treatments, and metal nanoparticles (NPs) have shown potential, they come with significant drawbacks, ranging from non-specificity to potential environmental concerns. In the face of these challenges, the rapid evolution of micro/nanomotors (MNMs) stands out as a revolutionary development in the antimicrobial arena. MNMs harness various forms of energy and convert it into a substantial driving force, offering bright prospects for combating microbial threats. MNMs' mobility allows for swift and targeted interaction with bacteria, which not only improves the carrying potential of therapeutic agents but also narrows the required activation range for non-drug antimicrobial interventions like photothermal and photodynamic therapies, substantially improving their bacterial clearance rates. In this review, we summarized the diverse propulsion mechanisms of MNMs employed in antimicrobial applications and articulated their multiple functions, which include direct bactericidal action, capture and removal of microorganisms, detoxification processes, and the innovative detection of bacteria and associated toxins. Despite MNMs' potential to revolutionize antibacterial research, the translation from laboratory to clinical use remains challenging. Based on the current research status, we summarized the potential challenges and possible solutions and also prospected several key directions for future studies of MNMs for antimicrobial purposes. Collectively, by highlighting the important knowns and unknowns of antimicrobial MNMs, our present review would help to light the way forward for the field of antimicrobial MNMs and prevent unnecessary blindness and detours.
Collapse
Affiliation(s)
- Xin-Yang Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Rui-Fang Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Jun Jia
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| | - Zi-Li Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 430079 Wuhan, China
| |
Collapse
|
18
|
Muteeb G, Rehman MT, Shahwan M, Aatif M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals (Basel) 2023; 16:1615. [PMID: 38004480 PMCID: PMC10675245 DOI: 10.3390/ph16111615] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Antibiotics have revolutionized medicine, saving countless lives since their discovery in the early 20th century. However, the origin of antibiotics is now overshadowed by the alarming rise in antibiotic resistance. This global crisis stems from the relentless adaptability of microorganisms, driven by misuse and overuse of antibiotics. This article explores the origin of antibiotics and the subsequent emergence of antibiotic resistance. It delves into the mechanisms employed by bacteria to develop resistance, highlighting the dire consequences of drug resistance, including compromised patient care, increased mortality rates, and escalating healthcare costs. The article elucidates the latest strategies against drug-resistant microorganisms, encompassing innovative approaches such as phage therapy, CRISPR-Cas9 technology, and the exploration of natural compounds. Moreover, it examines the profound impact of antibiotic resistance on drug development, rendering the pursuit of new antibiotics economically challenging. The limitations and challenges in developing novel antibiotics are discussed, along with hurdles in the regulatory process that hinder progress in this critical field. Proposals for modifying the regulatory process to facilitate antibiotic development are presented. The withdrawal of major pharmaceutical firms from antibiotic research is examined, along with potential strategies to re-engage their interest. The article also outlines initiatives to overcome economic challenges and incentivize antibiotic development, emphasizing international collaborations and partnerships. Finally, the article sheds light on government-led initiatives against antibiotic resistance, with a specific focus on the Middle East. It discusses the proactive measures taken by governments in the region, such as Saudi Arabia and the United Arab Emirates, to combat this global threat. In the face of antibiotic resistance, a multifaceted approach is imperative. This article provides valuable insights into the complex landscape of antibiotic development, regulatory challenges, and collaborative efforts required to ensure a future where antibiotics remain effective tools in safeguarding public health.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11437, Saudi Arabia;
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
| | - Moayad Shahwan
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates;
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
19
|
Chakraborty N, Jha D, Singh VP, Kumar P, Verma NK, Gautam HK, Roy I. White-Light-Responsive Prussian Blue Nanophotonic Particles for Effective Eradication of Bacteria and Improved Healing of Infected Cutaneous Wounds. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37899589 DOI: 10.1021/acsami.3c09516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The increasing burden of cutaneous wound infections with drug-resistant bacteria underlines the dire need for novel treatment approaches. Here, we report the preparation steps, characterization, and antibacterial efficacy of novel chitosan-coated Prussian blue nanoparticles loaded with the photosensitizer fluorescein isothiocyanate-dextran (CHPB-FD). With excellent photothermal and photodynamic properties, CHPB-FD nanoparticles can effectively eradicate both Gram-positive methicillin-resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa in vitro and in vivo. The antibacterial efficacy of CHPB-FD nanophotonic particles further increases in the presence of white light. Using a bacteria-infected cutaneous wound rat model, we demonstrate that CHPB-FD particles upregulate genes involved in tissue remodeling, promote collagen deposition, reduce unwanted inflammation, and enhance healing. The light-responsive CHPB-FD nanophotonic particles can, therefore, be potentially used as an economical and safe alternative to antibiotics for effectively decontaminating skin wounds and for disinfecting biomedical equipment and surfaces in hospitals and other places.
Collapse
Affiliation(s)
- Nayanika Chakraborty
- Department of Chemistry, University of Delhi, New Delhi 110007, India
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Diksha Jha
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Vijay Pal Singh
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
- Skin Research Institute of Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Hemant Kumar Gautam
- Department of Immunology and Infectious Disease Biology, CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
20
|
Xu B, Cai G, Gao Y, Chen M, Xu C, Wang C, Yu D, Qi D, Li R, Wu J. Nanofibrous Dressing with Nanocomposite Monoporous Microspheres for Chemodynamic Antibacterial Therapy and Wound Healing. ACS OMEGA 2023; 8:38481-38493. [PMID: 37867710 PMCID: PMC10586453 DOI: 10.1021/acsomega.3c05271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
The excessive use of antibiotics and consequent bacterial resistance have emerged as crucial public safety challenges for humanity. As a promising antibacterial treatment, using reactive oxygen species (ROS) can effectively address this problem and has the advantages of being highly efficient and having low toxicity. Herein, electrospinning and electrospraying were employed to fabricate magnesium oxide (MgO)-based nanoparticle composited polycaprolactone (PCL) nanofibrous dressings for the chemodynamic treatment of bacteria-infected wounds. By utilizing electrospraying, erythrocyte-like monoporous PCL microspheres incorporating silver (Ag)- and copper (Cu)-doped MgO nanoparticles were generated, and the unique microsphere-filament structure enabled efficient anchoring on nanofibers. The composite dressings produced high levels of ROS, as confirmed by the 2,7-dichloriflurescin fluorescent probe. The sustained generation of ROS resulted in efficient glutathione oxidation and a remarkable bacterial killing rate of approximately 99% against Staphylococcus aureus (S. aureus). These dressings were found to be effective at treating externally infected wounds. The unique properties of these composite nanofibrous dressings suggest great potential for their use in the medical treatment of bacteria-infected injuries.
Collapse
Affiliation(s)
- Bingjie Xu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Guoqiang Cai
- NICE Zhejiang Technology Co., Ltd, Hangzhou 310013, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Yujie Gao
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Mingchao Chen
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenlu Xu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Chenglong Wang
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Dongming Qi
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| | - Renhong Li
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jindan Wu
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province, Lishui 323000, China
| |
Collapse
|
21
|
Wang P, Wang XY, Man CF, Gong DD, Fan Y. Advances in hyperbaric oxygen to promote immunotherapy through modulation of the tumor microenvironment. Front Oncol 2023; 13:1200619. [PMID: 37790761 PMCID: PMC10543083 DOI: 10.3389/fonc.2023.1200619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
Hyperbaric oxygen therapy is a relatively safe treatment method that has been used for a long time in the clinic. It has been proven that it can enhance the sensitivity of radiotherapy and photodynamic therapy for cancer. However, there are few studies on hyperbaric oxygen and immunotherapy. In this article, we summarize that hyperbaric oxygen therapy regulates the tumor microenvironment through various pathways such as improving tumor hypoxia, targeting hypoxia-inducing factors, and generating reactive oxygen species. The change in the tumor microenvironment ultimately affects the curative effect of immunotherapy. Therefore, hyperbaric oxygen can influence immunotherapy by regulating the tumor microenvironment, providing a direction for the future development of immunotherapy.
Collapse
Affiliation(s)
- Pei Wang
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiao-Yan Wang
- Department of Gastroenterology, The Affiliated Suqian First People’s Hospital of Xuzhou Medical University, Suqian, Jiangsu, China
| | - Chang-Feng Man
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Dan-Dan Gong
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu Fan
- Cancer Institute, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
22
|
Leitão AC, Ferreira TL, Gurgel do Amaral Valente Sá L, Rodrigues DS, de Souza BO, Barbosa AD, Moreira LEA, de Andrade Neto JB, Cabral VPDF, Rios MEF, Cavalcanti BC, Silva J, Marinho ES, Dos Santos HS, de Moraes MO, Júnior HVN, da Silva CR. Antibacterial activity of menadione alone and in combination with oxacillin against methicillin-resistant Staphylococcus aureus and its impact on biofilms. J Med Microbiol 2023; 72. [PMID: 37707372 DOI: 10.1099/jmm.0.001751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.
Collapse
Affiliation(s)
- Amanda Cavalcante Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Thais Lima Ferreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Christus University Center, Fortaleza, CE, Brazil
| | - Daniel Sampaio Rodrigues
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Beatriz Oliveira de Souza
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Vitória Pessoa de Farias Cabral
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | - Jacilene Silva
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Theoretical Chemistry and Electrochemistry Group (GQTE), State University of Ceará, Limoeiro do Norte, CE, Brazil
| | - Hélcio Silva Dos Santos
- Center for Exact Sciences and Technology, Acaraú Valley State University, Sobral, CE, Brazil
| | | | - Hélio Vitoriano Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
23
|
Wilsmann DE, Furian TQ, Carvalho D, Chitolina GZ, Lucca V, Emery BD, Borges KA, Martins AC, Pontin KP, Salle CTP, de Souza Moraes HL, do Nascimento VP. Antibiofilm activity of electrochemically activated water (ECAW) in the control of Salmonella Heidelberg biofilms on industrial surfaces. Braz J Microbiol 2023; 54:2035-2045. [PMID: 37184738 PMCID: PMC10485189 DOI: 10.1007/s42770-023-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
Owing to its antimicrobial activity, electrochemically activated water (ECAW) is a potential alternative to chemical disinfectants for eliminating foodborne pathogens, including Salmonella Heidelberg, from food processing facilities. However, their antibiofilm activity remains unclear. This study aimed to evaluate the antibiofilm activity of ECAW against S. Heidelberg biofilms formed on stainless steel and polyethylene and to determine its corrosive capacity. ECAW (200 ppm) and a broad-spectrum disinfectant (0.2%) were tested for their antibiofilm activity against S. Heidelberg at 25 °C and 37 °C after 10 and 20 min of contact with stainless steel and polyethylene. Potentiostatic polarization tests were performed to compare the corrosive capacity of both compounds. Both compounds were effective in removing S. Heidelberg biofilms. Bacterial counts were significantly lower with ECAW than with disinfectant in polyethylene, regardless the time of contact. The time of contact and the surface significantly influenced the bacterial counts of S. Heidelberg. Temperature was not an important factor affecting the antibiofilm activities of the compounds. ECAW was less corrosive than the disinfectant. ECAW demonstrated a similar or even superior effect in the control of S. Heidelberg biofilms, when compared to disinfectants, reducing bacterial counts by up to 5 log10 CFU cm-2. The corrosion of stainless steel with ECAW was similar to that of commercial disinfectants. This technology is a possible alternative for controlling S. Heidelberg in the food production chain.
Collapse
Affiliation(s)
- Daiane Elisa Wilsmann
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil.
| | - Thales Quedi Furian
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Daiane Carvalho
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Gabriela Zottis Chitolina
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vivian Lucca
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Brunna Dias Emery
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karen Apellanis Borges
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Abrahão Carvalho Martins
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Karine Patrin Pontin
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Carlos Tadeu Pippi Salle
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Hamilton Luiz de Souza Moraes
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| | - Vladimir Pinheiro do Nascimento
- Centro de Diagnóstico e Pesquisa em Patologia Aviária, Departamento de Medicina Animal, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9090, Porto Alegre, RS, CEP 91540-000, Brazil
| |
Collapse
|
24
|
Fang J, Zheng L, Liu Y, Peng Y, Yang Q, Huang Y, Zhang J, Luo L, Shen D, Tan Y, Lu X, Feng G. Smart G-quadruplex hydrogels: From preparations to comprehensive applications. Int J Biol Macromol 2023; 247:125614. [PMID: 37414320 DOI: 10.1016/j.ijbiomac.2023.125614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
In recent years, the accelerated development of G-quadruplexes and hydrogels has driven the development of intelligent biomaterials. Based on the excellent biocompatibility and special biological functions of G-quadruplexes, and the hydrophilicity, high-water retention, high water content, flexibility and excellent biodegradability of hydrogels, G-quadruplex hydrogels are widely used in various fields by combining the dual advantages of G-quadruplexes and hydrogels. Here, we provide a systematic and comprehensive classification of G-quadruplex hydrogels in terms of preparation strategies and applications. This paper reveals how G-quadruplex hydrogels skillfully utilize the special biological functions of G-quadruplexes and the skeleton structure of hydrogels, and expounds its applications in the fields of biomedicine, biocatalysis, biosensing and biomaterials. In addition, we deeply analyze the challenges in preparation, applications, stability and safety of G-quadruplex hydrogels, as well as potential future development directions.
Collapse
Affiliation(s)
- Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lijuan Zheng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuxin Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qinghui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuewen Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Jiali Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Lixin Luo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dunkai Shen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yuyan Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xuefen Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Guangfu Feng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
25
|
Yin W, Yang L, Zhou X, Liu T, Zhang L, Xu Y, Li N, Chen J, Zhang Y. Peracetic acid disinfection induces antibiotic-resistant E. coli into VBNC state but ineffectively eliminates the transmission potential of ARGs. WATER RESEARCH 2023; 242:120260. [PMID: 37392507 DOI: 10.1016/j.watres.2023.120260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.
Collapse
Affiliation(s)
- Wenjun Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Longlong Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
26
|
Ren Q, Bakker W, Wesseling S, Bouwmeester H, Rietjens IMCM. On the Role of ROS and Glutathione in the Mode of Action Underlying Nrf2 Activation by the Hydroxyanthraquinone Purpurin. Antioxidants (Basel) 2023; 12:1544. [PMID: 37627539 PMCID: PMC10451334 DOI: 10.3390/antiox12081544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Purpurin is a major anthraquinone present in the roots of Rubia cordifolia (madder). Purpurin is known to activate Nrf2 (Nuclear transcription factor erythroid 2-related factor 2) EpRE (electrophile responsive element) mediated gene expression as a potential beneficial effect. This study aimed to elucidate the balance between the electrophilicity or pro-oxidant activity of purpurin underlying the Nrf2 induction. For this, Nrf2 activation with modified intracellular glutathione (GSH) levels was measured in an Nrf2 CALUX reporter gene assay. In addition, both cell-free and intracellular ROS formation of purpurin with modified (intracellular) GSH levels at different pH were quantified using the DCF-DA assay. GSH adduct formation was evaluated by UPLC and LC-TOF-MS analysis. GSH and GSSG levels following purpurin incubations were quantified by LC-MS/MS. We show that Nrf2 induction by purpurin was significantly increased in cells with buthionine sulfoximine depleted GSH levels, while Nrf2 induction was decreased upon incubation of the cells with N-acetylcysteine being a precursor of GSH. In cell-free incubations, ROS formation increased with increasing pH pointing at a role for the deprotonated form of purpurin. Upon incubations of purpurin with GSH at physiological pH, GSH adduct formation appeared negligible (<1.5% of the added purpurin). The addition of GSH resulted in conversion of GSH to GSSG and significantly reduced the ROS formation. Together these results demonstrate that Nrf2 induction by purpurin originates from intracellular ROS formation and not from its electrophilicity, which becomes especially relevant when intracellular GSH levels can no longer scavenge the ROS. The present study demonstrated that the efficiency of intracellular Nrf2 activation by purpurin and related anthraquinones will depend on (i) their pKa and level of deprotonation at the intracellular pH, (ii) the oxidation potential of their deprotonated form and (iii) the intracellular GSH levels. Thus, the Nrf2 induction by purpurin depends on its pro-oxidant activity and not on its electrophilicity.
Collapse
Affiliation(s)
- Qiuhui Ren
- Division of Toxicology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands; (W.B.); (S.W.); (H.B.); (I.M.C.M.R.)
| | | | | | | | | |
Collapse
|
27
|
Jia C, Wu FG. Antibacterial Chemodynamic Therapy: Materials and Strategies. BME FRONTIERS 2023; 4:0021. [PMID: 37849674 PMCID: PMC10351393 DOI: 10.34133/bmef.0021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 10/19/2023] Open
Abstract
The wide and frequent use of antibiotics in the treatment of bacterial infection can cause the occurrence of multidrug-resistant bacteria, which becomes a serious health threat. Therefore, it is necessary to develop antibiotic-independent treatment modalities. Chemodynamic therapy (CDT) is defined as the approach employing Fenton and/or Fenton-like reactions for generating hydroxyl radical (•OH) that can kill target cells. Recently, CDT has been successfully employed for antibacterial applications. Apart from the common Fe-mediated CDT strategy, antibacterial CDT strategies mediated by other metal elements such as copper, manganese, cobalt, molybdenum, platinum, tungsten, nickel, silver, ruthenium, and zinc have also been proposed. Furthermore, different types of materials like nanomaterials and hydrogels can be adopted for constructing CDT-involved antibacterial platforms. Besides, CDT can introduce some toxic metal elements and then achieve synergistic antibacterial effects together with reactive oxygen species. Finally, CDT can be combined with other therapies such as starvation therapy, phototherapy, and sonodynamic therapy for achieving improved antibacterial performance. This review first summarizes the advancements in antibacterial CDT and then discusses the present limitations and future research directions in this field, hoping to promote the development of more effective materials and strategies for achieving potentiated CDT.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
28
|
Yekani M, Azargun R, Sharifi S, Nabizadeh E, Nahand JS, Ansari NK, Memar MY, Soki J. Collateral sensitivity: An evolutionary trade-off between antibiotic resistance mechanisms, attractive for dealing with drug-resistance crisis. Health Sci Rep 2023; 6:e1418. [PMID: 37448730 PMCID: PMC10336338 DOI: 10.1002/hsr2.1418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Background The discovery and development of antimicrobial drugs were one of the most significant advances in medicine, but the evolution of microbial resistance limited the efficiency of these drugs. Aim This paper reviews the collateral sensitivity in bacteria and its potential and limitation as a new target for treating infections. Results and Discussion Knowledge mechanisms of resistance to antimicrobial agents are useful to trace a practical approach to treat and control of resistant pathogens. The effect of a resistance mechanism to certain antibiotics on the susceptibility or resistance to other drugs is a key point that may be helpful for applying a strategy to control resistance challenges. In an evolutionary trade-off known as collateral sensitivity, the resistance mechanism to a certain drug may be mediated by the hypersensitivity to other drugs. Collateral sensitivity has been described for different drugs in various bacteria, but the molecular mechanisms affecting susceptibility are not well demonstrated. Collateral sensitivity could be studied to detect its potential in the battle against resistance crisis as well as in the treatment of pathogens adapting to antibiotics. Collateral sensitivity-based antimicrobial therapy may have the potential to limit the emergence of antibiotic resistance.
Collapse
Affiliation(s)
- Mina Yekani
- Department of Microbiology, Faculty of MedicineKashan University of Medical SciencesKashanIran
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
- Student Research CommitteeKashan University of Medical SciencesKashanIran
| | - Robab Azargun
- Department of Microbiology, Faculty of MedicineMaragheh University of Medical ScienceMaraghehIran
| | - Simin Sharifi
- Dental and Periodontal Research CenterTabriz University of Medical SciencesTabrizIran
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Navideh Karimi Ansari
- Department of Microbiology, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Jozsef' Soki
- Institute of Medical Microbiology, Albert Szent‐Györgyi Faculty of MedicineUniversity of SzegedSzegedHungary
| |
Collapse
|
29
|
Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res 2023; 28:157. [PMID: 37098583 PMCID: PMC10127443 DOI: 10.1186/s40001-023-01121-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of "more needs to be done", we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.
Collapse
Affiliation(s)
| | - Somprakas Basu
- All India Institute of Medical Sciences, Rishikesh, 249203, India.
| | | | | |
Collapse
|
30
|
Rotello VM. Nanomaterials for Fighting Multidrug-Resistant Biofilm Infections. BME FRONTIERS 2023; 4:0017. [PMID: 37849666 PMCID: PMC10521699 DOI: 10.34133/bmef.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/28/2023] [Indexed: 10/19/2023] Open
Abstract
Multidrug-resistant bacterial infections represent a dire threat to global health. The development of antibiotic resistance in bacteria coupled with the lack of development of new antibiotics is creating infections requiring antibiotics of last resort, and even some infections for which we have no available treatment. Biofilm-based infections present some of the most challenging targets for treatment. The biofilm matrix provides a physical barrier that can impede access of antibiotics and antimicrobials to resident bacteria. The phenotypic diversity found in biofilms further exacerbates the difficulty of eliminating infections, with quiescent "persister" cells evading therapeutics and re-initiating infections after treatment. Nanomaterials provide a tool for combatting these refractory biofilm infections. The distinctive size regime and physical properties of nanomaterials provide them with the capability to penetrate and disrupt biofilms. Nanomaterials can also access antimicrobial pathways inaccessible to conventional antimicrobials, providing a synergistic strategy for treating biofilm infections. This review will summarize key challenges presented by antibiotic resistance and biofilms when treating infection and provide selected examples of how nanomaterials are being used to address these challenges.
Collapse
Affiliation(s)
- Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
31
|
Zhou D, Fu D, Yan L, Xie L. The Role of Hyperbaric Oxygen Therapy in the Treatment of Surgical Site Infections: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:762. [PMID: 37109720 PMCID: PMC10145168 DOI: 10.3390/medicina59040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
Surgical site infections (SSIs) are among the most prevalent postoperative complications, with significant morbidity and mortality worldwide. In the past half century, hyperbaric oxygen therapy (HBOT), the administration of 100% oxygen intermittently under a certain pressure, has been used as either a primary or alternative therapy for the management or treatment of chronic wounds and infections. This narrative review aims to gather information and evidence supporting the role of HBOT in the treatment of SSIs. We followed the Scale for the Quality Assessment of Narrative Review Articles (SANRA) guidelines and scrutinized the most relevant studies identified in Medline (via PubMed), Scopus, and Web of Science. Our review indicated that HBOT can result in rapid healing and epithelialization of various wounds and has potential beneficial effects in the treatment of SSIs or other similar infections following cardiac, neuromuscular scoliosis, coronary artery bypass, and urogenital surgeries. Moreover, it was a safe therapeutic procedure in most cases. The mechanisms related to the antimicrobial activity of HBOT include direct bactericidal effects through the formation of reactive oxygen species (ROS), the immunomodulatory effect of HBOT that increase the antimicrobial effects of the immune system, and the synergistic effects of HBOT with antibiotics. We emphasized the essential need for further studies, especially randomized clinical trials and longitudinal studies, to better standardize HBOT procedures as well as to determine its full benefits and possible side effects.
Collapse
Affiliation(s)
| | | | | | - Linshen Xie
- West China School of Public Health, West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Sahoo B, Leena Panigrahi L, Jena S, Jha S, Arakha M. Oxidative stress generated due to photocatalytic activity of biosynthesized selenium nanoparticles triggers cytoplasmic leakage leading to bacterial cell death. RSC Adv 2023; 13:11406-11414. [PMID: 37063733 PMCID: PMC10090903 DOI: 10.1039/d2ra07827a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/05/2023] [Indexed: 04/18/2023] Open
Abstract
The present work investigates the role of oxidative stress generated at biosynthesized selenium nanoparticles (SeNPs) interface in defining the antimicrobial and anti-biofilm activity. To this end, SeNPs with average size of 119 nm were synthesized rapidly during the growth of Staphylococcus aureus using the principle of green chemistry. The synthesis of SeNPs was confirmed by using different biophysical techniques like UV-vis spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), EDX and zeta potential analysis. The obtained data from antimicrobial study revealed strong antimicrobial activity against both Gram-positive bacteria like Bacillus subtilis (MTCC 441) and Gram-negative bacteria like Escherichia coli (MTCC 443) and anti-biofilm activity against biofilm forming bacteria. The mechanism behind antimicrobial activity of biosynthesized SeNPs was explored by evaluating the amount of reactive oxygen species (ROS) generated at SeNPs interface due to photocatalytic activity. The experimental data obtained altogether concluded that, the ROS generated at SeNPs interface put stress on bacterial cell membrane causing leakage of cytoplasmic contents, leading to bacterial cell death.
Collapse
Affiliation(s)
- Banishree Sahoo
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | - Lipsa Leena Panigrahi
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| | - Sonali Jena
- Department of Life Science, National Institute of Technology Rourkela Odisha 769008 India
| | - Suman Jha
- Department of Life Science, National Institute of Technology Rourkela Odisha 769008 India
| | - Manoranjan Arakha
- Center for Biotechnology, Siksha 'O' Anusandhan (Deemed to be University) Bhubaneswar 751003 Odisha India
| |
Collapse
|
33
|
Capó X, Monserrat-Mesquida M, Quetglas-Llabrés M, Batle JM, Tur JA, Pons A, Sureda A, Tejada S. Hyperbaric Oxygen Therapy Reduces Oxidative Stress and Inflammation, and Increases Growth Factors Favouring the Healing Process of Diabetic Wounds. Int J Mol Sci 2023; 24:ijms24087040. [PMID: 37108205 PMCID: PMC10139175 DOI: 10.3390/ijms24087040] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is the clinical application of oxygen at pressures higher than atmospheric pressure. HBOT has been effectively used to manage diverse clinical pathologies, such as non-healing diabetic ulcers. The aim of the present study was to analyse the effects of HBOT on the plasma oxidative and inflammation biomarkers and growth factors in patients with chronic diabetic wounds. The participants received 20 HBOT sessions (five sessions/week), and blood samples were obtained at sessions 1, 5 and 20, before and 2 h after the HBOT. An additional (control) blood sample was collected 28 days after wound recovery. No significant differences were evident in haematological parameters, whereas the biochemical parameters progressively decreased, which was significant for creatine phosphokinase (CPK) and aspartate aminotransferase (AST). The pro-inflammatory mediators, tumour necrosis factor alpha (TNF-α) and interleukin 1β (IL-1β), progressively decreased throughout the treatments. Biomarkers of oxidative stress--plasma protein levels of catalase, extracellular superoxide dismutase, myeloperoxidase, xanthine oxidase, malondialdehyde (MDA) levels and protein carbonyls--were reduced in accordance with wound healing. Plasma levels of growth factors--platelet-derived growth factor (PDFG), transforming growth factor β (TGF-β) and hypoxia-inducible factor 1-alpha (HIF-1α)-- were increased as a consequence of HBOT and reduced 28 days after complete wound healing, whereas matrix metallopeptidase 9 (MMP9) progressively decreased with the HBOT. In conclusion, HBOT reduced oxidative and pro-inflammatory mediators, and may participate in activating healing, angiogenesis and vascular tone regulation by increasing the release of growth factors.
Collapse
Affiliation(s)
- Xavier Capó
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Magdalena Quetglas-Llabrés
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Juan M Batle
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- MEDISUB Recerca, 07400 Alcúdia, Spain
| | - Josep A Tur
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Pons
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| |
Collapse
|
34
|
Photodynamic antimicrobial therapy (AmPDT) using 1,9-Dimethyl-Methylene Blue zinc chloride double salt - DMMB and λ640 ± 5ηm LED light in patients undertaking orthodontic treatment. Photodiagnosis Photodyn Ther 2023; 42:103503. [PMID: 36907259 DOI: 10.1016/j.pdpdt.2023.103503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Orthodontic treatment involves the use of apparatuses that impairs oral hygiene making patients susceptible to periodontal diseases and caries. To prevent increased antimicrobial resistance AmPDT has shown itself a feasible option. The aim of this investigation was to assess the efficiency of AmPDT employing 1,9-Dimethyl-Methylene Blue zinc chloride double salt - DMMB as a photosensitizing agent combined with red LED irradiation (λ640 ± 5 ηm) against oral biofilm of patients undertaking orthodontic treatment. Twenty-one patients agreed to participate. Four biofilm collections were carried out on brackets and gingiva around inferior central incisors; first was carried out before any treatment (Control); second followed five minutes of pre-irradiation, the third was immediately after the first AmPDT, and the last after a second AmPDT. Then, a microbiological routine for microorganism growth was carried out and, after 24-h, CFU counting was performed. There was significant difference between all groups. No significant difference was seen between Control and Photosensitizer and AmpDT1 and AmPDT2 groups. Significant differences were observed between Control and AmPDT1 and AmPDT2 groups, Photosensitizer and AmPDT1 and AmPDT2 groups. It was concluded that double AmPDT using DMBB in nano concentration and red LED was capable to meaningfully decrease the number of CFUs in orthodontic patients.
Collapse
|
35
|
Memar MY, Yekani M, Farajnia S, Ghadiri Moghaddam F, Nabizadeh E, Sharifi S, Maleki Dizaj S. Antibacterial and biofilm-inhibitory effects of vancomycin-loaded mesoporous silica nanoparticles on methicillin-resistant staphylococcus aureus and gram-negative bacteria. Arch Microbiol 2023; 205:109. [PMID: 36884153 DOI: 10.1007/s00203-023-03447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
The present study aimed to prepare and characterize vancomycin-loaded mesoporous silica nanoparticles (Van-MSNs) to detect inhibitory effects on the planktonic and biofilm forms of methicillin-resistant Staphylococcus aureus (MRSA) isolates, and study the biocompatibility and toxicity of Van-MSNs in vitro as well as antibacterial activity of Van-MSNs against Gram-negative bacteria. The inhibitory effects of Van-MSNs were investigated on MRSA using the determination of minimum inhibitory (MIC) and minimum biofilm-inhibitory concentrations (MBIC) as well as the effect on bacterial attachment. Biocompatibility was studied by examining the effect of Van-MSNs on the lysis and sedimentation rate of red blood cells (RBC). The interaction of Van-MSNs with human blood plasma was detected by the SDS-PAGE approach. The cytotoxic effect of the Van-MSNs on human bone marrow mesenchymal stem cells (hBM-MSCs) was evaluated by the MTT assay. The antibacterial effects of vancomycin and Van-MSNs on Gram-negative bacteria were also investigated using MIC determination using the broth microdilution method. Furthermore, bacteria outer membrane (OM) permeabilization was determined. Van-MSNs showed inhibitory effects on planktonic and biofilm forms of bacteria on all isolates at levels lower than MICs and MBICs of free vancomycin, but the antibiofilm effect of Van-MSNs was not significant. However, Van-MSNs did not affect bacterial attachment to surfaces. Van-loaded MSNs did not show a considerable effect on the lysis and sedimentation of RBC. A low interaction of Van-MSNs was detected with albumin (66.5 kDa). The hBM-MSCs viability in exposure to different levels of Van-MSNs was 91-100%. MICs of ≥ 128 µg/mL were observed for vancomycin against all Gram-negative bacteria. In contrast, Van-MSNs exhibited modest antibacterial activity inhibiting the tested Gram-negative bacterial strains, at concentrations of ≤ 16 µg/mL. Van-MSNs increased the OM permeability of bacteria that can increase the antimicrobial effect of vancomycin. According to our findings, Van-loaded MSNs have low cytotoxicity, desirable biocompatibility, and antibacterial effects and can be an option for the battle against planktonic MRSA.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.,Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Liu X, Xie H, Zhuo S, Zhou Y, Selim MS, Chen X, Hao Z. Ru(II) Complex Grafted Ti 3C 2T x MXene Nano Sheet with Photothermal/Photodynamic Synergistic Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:958. [PMID: 36985852 PMCID: PMC10051588 DOI: 10.3390/nano13060958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/04/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
For a long time, the emergence of microbial drug resistance due to the abuse of antibiotics has greatly reduced the therapeutic effect of many existing antibiotics. This makes the development of new antimicrobial materials urgent. Light-assisted antimicrobial therapy is an alternative to antibiotic therapy due to its high antimicrobial efficiency and non-resistance. Here, we develop a nanocomposite material (Ru@MXene) which is based on Ru(bpy)(dcb)2+ connected to MXene nanosheets by ester bonding as a photothermal/photodynamic synergistic antibacterial material. The obtained Ru@MXene nanocomposites exhibit a strengthened antimicrobial capacity compared to Ru or MXene alone, which can be attributed to the higher reactive oxygen species (ROS) yield and the thermal effect. Once exposed to a xenon lamp, Ru@MXene promptly achieved almost 100% bactericidal activity against Escherichia coli (200 μg/mL) and Staphylococcus aureus (100 μg/mL). This is ascribed to its synergistic photothermal therapy (PTT) and photodynamic therapy (PDT) capabilities. Consequently, the innovative Ru@MXene can be a prospective non-drug antimicrobial therapy that avoids antibiotic resistance in practice. Notably, this high-efficiency PTT/PDT synergistic antimicrobial material by bonding Ru complexes to MXene is the first such reported model. However, the toxic effects of Ru@MXene materials need to be studied to evaluate them for further medical applications.
Collapse
Affiliation(s)
- Xiaofang Liu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongchi Xie
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Shi Zhuo
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuanhong Zhou
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mohamed S. Selim
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Egyptian Petroleum Research Institute, Petroleum Application Department, Cairo 11727, Egypt
| | - Xiang Chen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhifeng Hao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
37
|
Fan L, Pan Z, Liao X, Zhong Y, Guo J, Pang R, Chen X, Ye G, Su Y. Uracil restores susceptibility of methicillin-resistant Staphylococcus aureus to aminoglycosides through metabolic reprogramming. Front Pharmacol 2023; 14:1133685. [PMID: 36762116 PMCID: PMC9902350 DOI: 10.3389/fphar.2023.1133685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Background: Methicillin-resistant Staphylococcus aureus (MRSA) has now become a major nosocomial pathogen bacteria and resistant to many antibiotics. Therefore, Development of novel approaches to combat the disease is especially important. The present study aimed to provide a novel approach involving the use of nucleotide-mediated metabolic reprogramming to tackle intractable methicillin-resistant S. aureus (MRSA) infections. Objective: This study aims to explore the bacterial effects and mechanism of uracil and gentamicin in S. aureus. Methods: Antibiotic bactericidal assays was used to determine the synergistic bactericidal effect of uracil and gentamicin. How did uracil regulate bacterial metabolism including the tricarboxylic acid (TCA) cycle by GC-MS-based metabolomics. Next, genes and activity of key enzymes in the TCA cycle, PMF, and intracellular aminoglycosides were measured. Finally, bacterial respiration, reactive oxygen species (ROS), and ATP levels were also assayed in this study. Results: In the present study, we found that uracil could synergize with aminoglycosides to kill MRSA (USA300) by 400-fold. Reprogramming metabolomics displayed uracil reprogrammed bacterial metabolism, especially enhanced the TCA cycle to elevate NADH production and proton motive force, thereby promoting the uptake of antibiotics. Furthermore, uracil increased cellular respiration and ATP production, resulting the generation of ROS. Thus, the combined activity of uracil and antibiotics induced bacterial death. Inhibition of the TCA cycle or ROS production could attenuate bactericidal efficiency. Moreover, uracil exhibited bactericidal activity in cooperation with aminoglycosides against other pathogenic bacteria. In a mouse mode of MRSA infection, the combination of gentamicin and uracil increased the survival rate of infected mice. Conclusion: Our results suggest that uracil enhances the activity of bactericidal antibiotics to kill Gram-positive bacteria by modulating bacterial metabolism.
Collapse
Affiliation(s)
- Lvyuan Fan
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhiyu Pan
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xu Liao
- Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yilin Zhong
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Guo
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Rui Pang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinhai Chen
- Institute of Infectious Diseases Shenzhen Bay Laboratory, Shenzhen, China
| | - Guozhu Ye
- Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China,*Correspondence: Yubin Su, ; Guozhu Ye,
| | - Yubin Su
- MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology and Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China,*Correspondence: Yubin Su, ; Guozhu Ye,
| |
Collapse
|
38
|
Mone NS, Syed S, Ravichandiran P, Satpute SK, Kim AR, Yoo DJ. How Structure-Function Relationships of 1,4-Naphthoquinones Combat Antimicrobial Resistance in Multidrug-Resistant (MDR) Pathogens. ChemMedChem 2023; 18:e202200471. [PMID: 36316281 DOI: 10.1002/cmdc.202200471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Antimicrobial resistance (AMR) is one of the top ten health-related threats worldwide. Among several antimicrobial agents, naphthoquinones (NQs) of plant/chemical origin possess enormous structural and functional diversity and are effective against multidrug-resistant (MDR) pathogens. 1,4-NQs possess alkyl, hydroxyl, halide, and metal groups as side chains on their double-ring structure, predominantly at the C-2, C-3, C-5, and C-8 positions. Among 1,4-NQs, hydroxyl groups at either C-2 or C-5 exhibit significant antibacterial activity against Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. (ESKAPE) and MDR categories. 1,4-NQs exhibit antibacterial activities like plasmids curing, reactive oxygen species generation, efflux pumps inhibition, anti-DNA gyrase activity, membrane permeabilization, and biofilm inhibition. This review emphasizes the structure-function relationships of 1,4-NQs against ESKAPE and MDR pathogens based on a literature review of studies published in the last 15 years. Overall, 1,4-NQs have great potential for counteracting the antimicrobial resistance of MDR pathogens.
Collapse
Affiliation(s)
- Nishigandha S Mone
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Sahil Syed
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Present address: Analytical, HP Green R&D Centre, Hindustan Petroleum Corporation Limited, KIADB Industrial Area, Devangundi, Hoskote, Bengaluru, 562114, Karnataka, India
| | - Surekha K Satpute
- Department of Microbiology, Savitribai Phule Pune University, Ganeshkhind, Pune, 411007, Maharashtra, India
| | - Ae Rhan Kim
- Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell Systems, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea.,Department of Life Science, Department of Energy Storage/Conversion Engineering (BK21 FOUR) of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
39
|
Feschyan SM, Simonyan RM, Simonyan GM, Simonyan MA, Manukyan AL. NADPH containing superoxide-producing thermostable complex from raspberry, apricot, grape, and grape seeds: isolation, purification, and properties. PLANT METHODS 2023; 19:1. [PMID: 36593464 PMCID: PMC9808959 DOI: 10.1186/s13007-022-00978-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND NADPH oxidase (Nox) plays a crucial role in reactive oxygen spices (ROS) production and mediates different diseases' development. Under aerobic conditions, the NADPH-containing protein component of the (NCP)-Fe (III) complex produces O2- continuously and intensively. However, after the removal of Fe (III), the isolated NCP shows only antioxidant properties at the expense of NADPH composite. Based on the fact that the mentioned fruit juices are widely used in everyday life and also in biomedicine, it was aimed to use a universal method: 1. to obtain superoxide generating complex from available and relatively cheap raw materials without using any toxic substances; 2. to isolate, purify and study the components of prooxidant nature: the isoforms of O2--producing NCP-Fe (III) complexes obtained from Armenian fruits (raspberries, apricot, grapes), as well, grape seeds. RESULTS Using a licensed method, for the first time isoforms of the superoxide (O2-) producing a thermostable complex of the NCP component with Fe (III), (NCP-Fe (III)), were isolated and purified from Armenian fruits-raspberries, apricots, grapes, and grapes seeds. The process of isolation and purification of isoforms of these complexes included the following stages of processing: 1. alkaline hydrolysis at pH9,5; 2. their sedimentation at pH4.8; 3. Dissolving of the sediments in water at pH9.5, followed by ion-exchange chromatography on cellulose DE-52, and gel filtration on Sephadex G-100. Further, the heat treatment of the mentioned complexes was carried out. In a lyophilized state, under the anaerobic conditions, the isoforms of the given complexes, hybrid associates (hNCP-Nox), and NCP were stored practically without losing their activity in a mass of 1-1.5 g. CONCLUSIONS Isoforms of O2- -producing complexes are new liquid-phase, thermo-stable prooxidant components found in raspberries, apricots, grapes, and grapes seeds.
Collapse
Affiliation(s)
- Sona M Feschyan
- Department of Biology, Yerevan State Medical University After M. Heratsi, Koryun 2, 0025, Yerevan, Armenia
| | - Ruzan M Simonyan
- Laboratory of "Metabolism of Reactive Oxygen", H. Buniatyan Institute of Biochemistry NAS RA, P.Sevag Str., 5/1, 014, Yerevan, Armenia
| | - Gegham M Simonyan
- Laboratory of "Metabolism of Reactive Oxygen", H. Buniatyan Institute of Biochemistry NAS RA, P.Sevag Str., 5/1, 014, Yerevan, Armenia
| | - Maxim A Simonyan
- Laboratory of "Metabolism of Reactive Oxygen", H. Buniatyan Institute of Biochemistry NAS RA, P.Sevag Str., 5/1, 014, Yerevan, Armenia
| | - Ashkhen L Manukyan
- Department of Medical Chemistry, Yerevan State Medical University After M. Heratsi, Koryun 2, 0025, Yerevan, Armenia.
| |
Collapse
|
40
|
Han G, Lee DG. Antibacterial Mode of Action of β-Amyrin Promotes Apoptosis-Like Death in Escherichia coli by Producing Reactive Oxygen Species. J Microbiol Biotechnol 2022; 32:1547-1552. [PMID: 36384774 PMCID: PMC9843749 DOI: 10.4014/jmb.2209.09040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/18/2022]
Abstract
β-Amyrin is a pentacyclic triterpene widely distributed in leaves and stems worldwide. The ability of β-amyrin to induce the production of reactive oxygen species (ROS) in microorganisms suggests its potential as an antimicrobial agent. Thus, this study aimed to elucidate the antibacterial mode of action of β-amyrin. We treated Escherichia coli cells with β-amyrin and found that it triggered ROS accumulation. Excessive stress caused by ROS, particularly hydroxyl radicals, induces glutathione (GSH) dysfunction. GSH protects cells from oxidative and osmotic stresses; thus, its dysfunction leads to membrane depolarization. The resultant change in membrane potential leads to the release of apoptotic proteins, such as caspases. The activated caspases-like protein promotes the cleavage of DNA into single strands, which is a hallmark of apoptosis-like death in bacteria. Apoptotic cells usually undergo events such as DNA fragmentation and phosphatidylserine exposure, differentiating them from necrotic cells, and the cells treated with β-amyrin in this study were positive for annexin V and negative for propidium iodide, indicating apoptosis-like death. In conclusion, our findings suggest that the antibacterial mode of action of β-amyrin involves the induction of ROS, which resulted in apoptosis-like death in E. coli.
Collapse
Affiliation(s)
- Giyeol Han
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea,Corresponding author Phone: +82-53-950-5373 Fax: +82-53-955-5522 E-mail:
| |
Collapse
|
41
|
Thanwisai L, Kim Tran HT, Siripornadulsil W, Siripornadulsil S. A cadmium-tolerant endophytic bacterium reduces oxidative stress and Cd uptake in KDML105 rice seedlings by inducing glutathione reductase-related activity and increasing the proline content. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:72-86. [PMID: 36208600 DOI: 10.1016/j.plaphy.2022.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The effect of the endophytic Cupriavidus taiwanensis KKU2500-3 on the Cd toxicity of KDML105 rice seedlings was investigated in a 10 μM CdCl2 hydroponic system. As demonstrated after bacterial inoculation of germinating rice seeds, KKU2500-3 colonized all rice plant parts. In RB (Rice + KKU2500-3) and RBC (Rice + KKU2500-3+Cd), KKU2500-3 effectively colonized and was detected at a markedly higher number in the root surface and interior than in shoots and leaves. The activities of antioxidant enzymes ascorbate peroxidase (APOX), glutathione reductase (GR), and superoxide dismutase (SOD) and the proline content in inoculated rice were higher in roots and aboveground tissues. RBC exhibited a higher reduced-to-oxidized glutathione ratio in roots and leaves (3-55%) but a lower malondialdehyde content (8-78%). Phytochelatins (PCs) were detected in all rice tissues, but their levels in RBC were 13-70% lower than those in RC (Rice + Cd), demonstrating that the induction of PCs in rice was unrelated to KKU2500-3. The Cd levels in roots and shoots were lower in RBC than RC, and the root-to-shoot Cd translocation factor was 0.6-62.2% lower. At 30 DAT, the Cd levels in RBC roots and shoots were 30.2% and 73.7% lower, respectively, than those in RC. Colonized KKU2500-3 activated GR and increased the proline content to overcome rice Cd toxicity. These effects may trap Cd in plant cells and reduce its translocation. Hence, KKU2500-3 synergistically interacts with rice to detoxify Cd at early growth stages, and KDML105 rice grains with low Cd accumulation could be produced if this interaction is maintained until late growth stages.
Collapse
Affiliation(s)
- Lalita Thanwisai
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Hong Thi Kim Tran
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
42
|
Photo-Stimuli-Responsive CuS Nanomaterials as Cutting-Edge Platform Materials for Antibacterial Applications. Pharmaceutics 2022; 14:pharmaceutics14112343. [PMID: 36365161 PMCID: PMC9693063 DOI: 10.3390/pharmaceutics14112343] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 12/04/2022] Open
Abstract
Photo-stimuli-responsive therapeutic nanomaterials have gained widespread attention as frontline materials for biomedical applications. The photoactivation strategies are classified as single-modality (based on either reactive oxygen species (ROS)-based photodynamic therapy (PDT), hyperthermia-based photothermal therapy (PTT)), or dual-modality (which combines PDT and PTT). Due to its minimal invasiveness, phototherapy has been extensively applied as an efficient therapeutic platform for many diseases, including skin cancers. However, extensive implementation of phototherapy to address the emergence of multidrug-resistant (MDR) bacterial infections remains challenging. This review focuses on copper sulfide (CuS) nanomaterials as efficient and cost-effective PDT and PTT therapeutic nanomaterials with antibacterial activity. The features and merits of CuS nanomaterials as therapeutics are compared to those of other nanomaterials. Control of the dimensions and morphological complexity of CuS nanomaterials through judicious synthesis is then introduced. Both the in vitro antibacterial activity and the in vivo therapeutic effect of CuS nanomaterials and derivative nanocomposites composed of 2D nanomaterials, polymers, metals, metal oxides, and proteins are described in detail. Finally, the perspective of photo-stimuli-responsive CuS nanomaterials for future clinical antibacterial applications is highlighted. This review illustrates that CuS nanomaterials are highly effective, low-toxic, and environmentally friendly antibacterial agents or platform nanomaterials for combatting MDR bacterial infections.
Collapse
|
43
|
El-Gendy AO, Obaid Y, Ahmed E, Enwemeka CS, Hassan M, Mohamed T. The Antimicrobial Effect of Gold Quantum Dots and Femtosecond Laser Irradiation on the Growth Kinetics of Common Infectious Eye Pathogens: An In Vitro Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213757. [PMID: 36364531 PMCID: PMC9654226 DOI: 10.3390/nano12213757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 05/29/2023]
Abstract
We studied the antimicrobial effect of gold quantum dots (AuQDs), femtosecond laser irradiation, and the combined effect of laser irradiation and AuQD treatment against common infectious eye pathogens. The INSPIRE HF100 laser system (Spectra Physics) provided a femtosecond laser, which was pumped by a mode-locked femtosecond Ti: sapphire laser MAI TAI HP (Spectra Physics), while a Quanta-Ray nanosecond Nd: YAG laser (Spectra-Physics) was used to precisely synthesize 7.8, 8.7, and 11.6 nm spherical AuQDs. Then, the in vitro growth kinetics and growth rate analysis of E. coli, methicillin-resistant Staphylococcus aureus, Enterococcus faecalis, Listeria monocytogenes, and Candida albicans (treated with the AuQDs, femtosecond laser irradiation, or combined laser and AuQDs treatment) was measured. The biocompatibility of the AuQDs with the retinal epithelial cell lines (ARPE-19) and their toxicity to the cells was assayed. The results showed that (1) in vitro irradiation using a 159 J/cm2 energy density obtained from the 400 nm femtosecond laser suppressed the growth of each of the five pathogens. (2) Similarly, treatment with the AuQDs was antimicrobial against the four bacteria. The AuQDs with an average size of 7.8 nm were more highly antimicrobial and biocompatible and were less cytotoxic than the larger AuQD sizes. (3) The combined femtosecond laser irradiation and AuQD treatment was more highly antimicrobial than each treatment alone. (4) The AuQD treatment did not impair the rate of wound closure in vitro. These findings suggest that combined femtosecond laser irradiation and AuQD treatment is significantly antimicrobial against Candida albicans, Gram-positive L. monocytogenes, S. aureus, and E. faecalis, as well as Gram-negative E. coli. The nontoxicity and biocompatibility of the AuQD particles tested suggest that this form of treatment may be clinically viable.
Collapse
Affiliation(s)
- Ahmed O. El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Yousif Obaid
- Anbar Health Department, Ministry of Health, Ramadi 31001, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Chukuka S. Enwemeka
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
- Faculty of Health Sciences, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Department of Ophthalmology, Faculty of Medicine, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
44
|
Aribisala JO, Sabiu S. Redox Impact on Bacterial Macromolecule: A Promising Avenue for Discovery and Development of Novel Antibacterials. Biomolecules 2022; 12:1545. [PMID: 36358894 PMCID: PMC9688007 DOI: 10.3390/biom12111545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance in bacteria has remained a serious public health concern, resulting in substantial deaths and morbidity each year. Factors such as mutation and abuse of currently available antibiotics have contributed to the bulk of the menace. Hence, the introduction and implementation of new therapeutic strategies are imperative. Of these strategies, data supporting the role of reactive oxygen species (ROS) in bacterial lethality are intriguing, with several antimicrobials, including antibiotics such as fluoroquinolones, β-lactams, and aminoglycosides, as well as natural plant compounds, being remarkably implicated. Following treatment with ROS-inducing antimicrobials, ROS such as O2•-, •OH, and H2O2 generated in bacteria, which the organism is unable to detoxify, damage cellular macromolecules such as proteins, lipids, and nucleic acids and results in cell death. Despite the unique mechanism of action of ROS-inducing antibacterials and significant studies on ROS-mediated means of bacterial killing, the field remains a topical one, with contradicting viewpoints that require frequent review. Here, we appraised the antibacterial agents (antibiotics, natural and synthetic compounds) implicated in ROS generation and the safety concerns associated with their usage. Further, background information on the sources and types of ROS in bacteria, the mechanism of bacterial lethality via oxidative stress, as well as viewpoints on the ROS hypothesis undermining and solidifying this concept are discussed.
Collapse
|
45
|
Ellezian L, Jhawar A, Kyono Y, Flowers SA. Psychotropic Drugs in the Discussion of Antimicrobial-Resistant Microorganisms. DNA Cell Biol 2022; 41:919-923. [DOI: 10.1089/dna.2022.0471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lori Ellezian
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Archana Jhawar
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
- Department of Pharmacy, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Yasuhiro Kyono
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Stephanie A. Flowers
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
46
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Guo F, Pan F, Zhang W, Liu T, Zuber F, Zhang X, Yu Y, Zhang R, Niederberger M, Ren Q. Robust Antibacterial Activity of Xanthan-Gum-Stabilized and Patterned CeO 2-x-TiO 2 Antifog Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44158-44172. [PMID: 36150021 DOI: 10.1021/acsami.2c11968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increased occurrence of antimicrobial resistance leads to a huge burden on patients, the healthcare system, and society worldwide. Developing antimicrobial materials through doping rare-earth elements is a new strategy to overcome this challenge. To this end, we design antibacterial films containing CeO2-x-TiO2, xanthan gum, poly(acrylic acid), and hyaluronic acid. CeO2-x-TiO2 inks are additionally integrated into a hexagonal grid for prominent transparency. Such design yields not only an antibacterial efficacy of ∼100% toward Staphylococcus aureus and Escherichia coli but also excellent antifog performance for 72 h in a 100% humidity atmosphere. Moreover, FluidFM is employed to understand the interaction in-depth between bacteria and materials. We further reveal that reactive oxygen species (ROS) are crucial for the bactericidal activity of E. coli through fluorescent spectroscopic analysis and SEM imaging. We meanwhile confirm that Ce3+ ions are involved in the stripping phosphate groups, damaging the cell membrane of S. aureus. Therefore, the hexagonal mesh and xanthan-gum cross-linking chains act as a reservoir for ROS and Ce3+ ions, realizing a long-lasting antibacterial function. We hence develop an antibacterial and antifog dual-functional material that has the potential for a broad application in display devices, medical devices, food packaging, and wearable electronics.
Collapse
Affiliation(s)
- Fangwei Guo
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Fei Pan
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Wenchen Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tian Liu
- Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
| | - Flavia Zuber
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Xing Zhang
- Shanghai Institute of Aerospace System Engineering, Shanghai 201108, China
| | - Yali Yu
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruiji Zhang
- Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Markus Niederberger
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
48
|
Kong ASY, Maran S, Yap PSX, Lim SHE, Yang SK, Cheng WH, Tan YH, Lai KS. Anti- and Pro-Oxidant Properties of Essential Oils against Antimicrobial Resistance. Antioxidants (Basel) 2022; 11:antiox11091819. [PMID: 36139893 PMCID: PMC9495521 DOI: 10.3390/antiox11091819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid evolution of antimicrobial resistance (AMR) has remained a major public health issue, reducing the efficacy of antibiotics and increasing the difficulty of treating infections. The discovery of novel antimicrobial agents is urgently needed to overcome the challenges created by AMR. Natural products such as plant extracts and essential oils (EOs) have been viewed as potential candidates to combat AMR due to their complex chemistry that carries inherent pro-oxidant and antioxidant properties. EOs and their constituents that hold pro-oxidant properties can induce oxidative stress by producing reactive oxygen species (ROS), leading to biological damage in target cells. In contrast, the antioxidant properties scavenge free radicals through offsetting ROS. Both pro-oxidant and antioxidant activities in EOs represent a promising strategy to tackle AMR. Thus, this review aimed to discuss how pro-oxidants and antioxidants in EOs may contribute to the mitigation of AMR and provided a detailed description of the challenges and limitations of utilizing them as a means to combat AMR.
Collapse
Affiliation(s)
- Amanda Shen-Yee Kong
- School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor, Malaysia
| | - Sathiya Maran
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Polly Soo-Xi Yap
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Shun-Kai Yang
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Yong-Hui Tan
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, UCSI Heights, 1, Jalan Puncak Menara Gading, Taman Connaught, Cheras, Wilayah Persekutuan Kuala Lumpur 56000, Malaysia
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
- Correspondence:
| |
Collapse
|
49
|
El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M, Mohamed T. Preparation of zinc oxide nanoparticles using laser-ablation technique: Retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112540. [PMID: 35973287 DOI: 10.1016/j.jphotobiol.2022.112540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The unusual physical, chemical, and biological features of nanoparticles have sparked considerable attention in the ophthalmological applications. This study reports the synthesis and characterization of zinc oxide nanoparticles (ZnONPs) using laser-ablation at 100 mJ with different ablation times. The synthesized ZnONPs were spherical with an average size of 10.2 nm or 9.8 nm for laser ablation times of 20 and 30 min, respectively. The ZnONPs were screened for their antimicrobial activity against ophthalmological bacteria, methicillin-resistant S. aureus (MRSA) and Pseudomonas aeruginosa. The significant decrease in bacterial growth was observed after treatment with ZnONPs in combination with 400 nm femtosecond laser irradiation. ZnONPs were investigated for their antioxidant activity and biocompatibility towards retinal epithelial cells (ARPE-19). ZnONPs showed moderate antioxidant and free radical scavenging activity. ZnONPs prepared with an ablation time of 20 min were safer and more biocompatible than those prepared with an ablation time of 30 min, which were toxic to ARPE-19 cells with LC50 (11.3 μg/mL) and LC90 (18.3 μg/mL). In this study, laser ablation technique was used to create ZnONPs, and it was proposed that ZnONPs could have laser-activated antimicrobial activity for ophthalmological applications.
Collapse
Affiliation(s)
- Ahmed O El-Gendy
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Faculty of Pharmacy, Department of Microbiology and Immunology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Khalid T Nawaf
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt; Anbar Health Department, Anbar province, Ministry of Health, Iraq
| | - Esraa Ahmed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Samir
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Mansour Hassan
- Faculty of Medicine, Department of Ophthalmology, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Tarek Mohamed
- Laser Institute for Research and Applications LIRA, Beni-Suef University, Beni-Suef 62511, Egypt.
| |
Collapse
|
50
|
Zheng Y, Wei M, Wu H, Li F, Ling D. Antibacterial metal nanoclusters. J Nanobiotechnology 2022; 20:328. [PMID: 35842693 PMCID: PMC9287886 DOI: 10.1186/s12951-022-01538-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Combating bacterial infections is one of the most important applications of nanomedicine. In the past two decades, significant efforts have been committed to tune physicochemical properties of nanomaterials for the development of various novel nanoantibiotics. Among which, metal nanoclusters (NCs) with well-defined ultrasmall size and adjustable surface chemistry are emerging as the next-generation high performance nanoantibiotics. Metal NCs can penetrate bacterial cell envelope more easily than conventional nanomaterials due to their ultrasmall size. Meanwhile, the abundant active sites of the metal NCs help to catalyze the bacterial intracellular biochemical processes, resulting in enhanced antibacterial properties. In this review, we discuss the recent developments in metal NCs as a new generation of antimicrobial agents. Based on a brief introduction to the characteristics of metal NCs, we highlight the general working mechanisms by which metal NCs combating the bacterial infections. We also emphasize central roles of core size, element composition, oxidation state, and surface chemistry of metal NCs in their antimicrobial efficacy. Finally, we present a perspective on the remaining challenges and future developments of metal NCs for antibacterial therapeutics.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research of Southwest Medical University, 646000, Luzhou, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Haibin Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, Shanghai Jiao Tong University, 200240, Shanghai, China.
| |
Collapse
|