1
|
Ye Q, Xie J, Xiao H, Wang J, Tian W, Wang W, Zhang J, Chang Y, Wang L, Yin D, Ding J, Han B. Effects of Selenium, Iron, and Zinc Enrichment on Cultured Sea Cucumber (Apostichopus Japonicus). Biol Trace Elem Res 2024:10.1007/s12011-024-04352-9. [PMID: 39340597 DOI: 10.1007/s12011-024-04352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 09/30/2024]
Abstract
Selenium, iron, and zinc (Se, Fe, Zn) are essential trace elements crucial for animal growth, development, and immune protection, but they can be detrimental in excess. This study evaluates the impacts of Se, Fe and Zn on Apostichopus japonicus over a period of nine days, utilizing concentrations ranging from low to high: Se (0.20 µmol/L and 0.82 µmol/L), Fe (4.74 µmol/L and 18.96 µmol/L), Zn (1.88 µmol/L and 7.51 µmol/L). Concentrations of these trace elements in sea cucumbers increased with exposure time. Activities of CAT, SOD, and GSH-PX enzymes were enhanced. Transcriptomic analyses of sea cucumber body wall revealed significant gene expression changes, with differentially expressed genes (DEGs) numbering 294 at high and 945 at low Se concentrations, 906 at high and 210 at low Fe concentrations, and 423 at high and 123 at low Zn concentrations. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses highlighted DEGs enrichment in critical metabolic and immune-related pathways, including DNA replication, arachidonic acid metabolism, and oxidative phosphorylation. These results suggest that energy metabolism and immune regulation are pivotal in managing these elements, potentially enhancing sea cucumber immunity. This study enhances our comprehension of the physiological responses of sea cucumbers to trace elements and provides a theoretical basis for their use in aquaculture.
Collapse
Affiliation(s)
- Qi Ye
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Jiahui Xie
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Haoran Xiao
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Junhui Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Wanrong Tian
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Wenpei Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Jinyuan Zhang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Yaqing Chang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Luo Wang
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Donghong Yin
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China
| | - Jun Ding
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China.
| | - Bing Han
- Liaoning Provincial Key Laboratory of Northern Aquatic Germplasm Resources and Genetics and Breeding, Dalian Ocean University, Dalian, 116023, Liaoning, PR China.
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, 52 Heishijiao Rd., Dalian, 116023, Liaoning, PR China.
| |
Collapse
|
2
|
Mirzaei F, Abbasi E, Mirzaei A, Hosseini NF, Naseri N, Khodadadi I, Jalili C, Majdoub N. Toxicity and Hepatoprotective Effects of ZnO Nanoparticles on Normal and High-Fat Diet-Fed Rat Livers: Mechanism of Action. Biol Trace Elem Res 2024:10.1007/s12011-024-04108-5. [PMID: 38441796 DOI: 10.1007/s12011-024-04108-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/13/2024] [Indexed: 10/11/2024]
Abstract
This experiment aimed to evaluate the beneficial and toxic properties of synthetic zinc oxide nanoparticles (ZnO NPs) on the liver of normal and high-fat diet (HFD) fed-rats. The ZnO NPs were synthesized and, its characterizations were determined by different techniques. Effect of ZnO NP on cell viability, liver enzymes and lipid accumulation were measured in HepG2 cells after 24 h. After that, rats orally received various dosages of ZnO NPs for period of 4 weeks. Toxicity tests were done to determine the appropriate dose. In the subsequent step, the hepatoprotective effects of 5 mg/kg ZnO NPs were determined in HFD-fed rats (experiment 2). The oxidative stress, NLRP3 inflammasome, inflammatory, and apoptosis pathways were measured. Additionally, the activity of caspase 3, nitric oxide levels, antioxidant capacity, and various biochemical factors were measured. Morphological changes in the rat livers were also evaluated by hematoxylin and eosin (H & E) and Masson trichrome. Liver apoptosis rate was also approved by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Treatment of animals with 5 mg/ZnO NPs revealed potential hepatoprotective properties, while ZnO NPs at the doses of above 10 mg/kg showed toxic effects. Antioxidant enzyme gene expression and activity were significantly augmented, while apoptosis, NLRP3 inflammasome, and inflammation pathways were significantly reduced by 5 mg/kg ZnO NPs. Liver histopathological alterations were restored by 5 mg/kg ZnO NPs in HFD. Our study highlights the hepatoprotective effects of ZnO NPs against the HFD-induced liver damage, involving antioxidant, anti-inflammatory, and anti-apoptotic pathways, indicating their promising therapeutic potential.
Collapse
Affiliation(s)
- Fatemeh Mirzaei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Abbasi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Mirzaei
- Centre Énergie, Matériaux Et Télécommunications, Institut National de La Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec, J3X 1P7, Canada
| | - Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nima Naseri
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Khodadadi
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nesrine Majdoub
- Faculdade de Ciências E Tecnologia, Universidade Do Algarve, Campus de Gambelas, 8005-139, Faro, MeditBio, Portugal
| |
Collapse
|
3
|
Ashour MA, Abd-Elhalim BT. Biosynthesis and biocompatibility evaluation of zinc oxide nanoparticles prepared using Priestia megaterium bacteria. Sci Rep 2024; 14:4147. [PMID: 38378738 PMCID: PMC10879496 DOI: 10.1038/s41598-024-54460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The current study aimed to find an effective, simple, ecological, and nontoxic method for bacterial green synthesis of zinc oxide nanoparticles (ZnONPs) using the bacterial strain Priestia megaterium BASMA 2022 (OP572246). The biosynthesis was confirmed by the change in color of the cell-free supernatant added to the zinc nitrate from yellow to pale brown. The Priestia megaterium zinc oxide nanoparticles (Pm/ZnONPs) were characterized using UV-Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and zeta potential. The Pm/ZnONPs characterization showed that they have a size ranging between 5.77 and 13.9 nm with a semi-sphere shape that is coated with a protein-carbohydrate complex. An EDX analysis of the Pm/ZnONPs revealed the presence of the shield matrix, which was composed of carbon, nitrogen, oxygen, chlorine, potassium, sodium, aluminum, sulfur, and zinc. The results of the FTIR analysis showed that the reduction and stabilization of the zinc salt solution were caused by the presence of O-H alcohols and phenols, O=C=O stretching of carbon dioxide, N=C=S stretching of isothiocyanate, and N-H bending of amine functional groups. The produced ZnONPs had good stability with a charge of - 16.2 mV, as evidenced by zeta potential analysis. The MTT assay revealed IC50 values of 8.42% and 200%, respectively, for the human A375 skin melanoma and human bone marrow 2M-302 cell lines. These findings revealed that the obtained Pm/ZnONPs have the biocompatibility to be applied in the pharmaceutical and biomedical sectors.
Collapse
Affiliation(s)
- Mona A Ashour
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Shubra El-Khaimah, Cairo, 11241, Egypt
| | - Basma T Abd-Elhalim
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Shubra El-Khaimah, Cairo, 11241, Egypt.
| |
Collapse
|
4
|
Casiano-Muñiz IM, Ortiz-Román MI, Lorenzana-Vázquez G, Román-Velázquez FR. Synthesis, Characterization, and Ecotoxicology Assessment of Zinc Oxide Nanoparticles by In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:255. [PMID: 38334526 PMCID: PMC10857287 DOI: 10.3390/nano14030255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
The widespread use of zinc oxide nanoparticles (ZnO NPs) in multiple applications has increased the importance of safety considerations. ZnO NPs were synthesized, characterized, and evaluated for toxicity in Artemia salina and zebrafish (Danio rerio). NPs were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and ultraviolet-visible (UV-Vis) spectroscopy. The hydrodynamic size and stability of the ZnO NP surface were examined using a Zetasizer. Characterization techniques confirmed the ZnO wurtzite structure with a particle size of 32.2 ± 5.2 nm. Synthesized ZnO NPs were evaluated for acute toxicity in Artemia salina using the Probit and Reed and Muench methods to assess for lethal concentration at 50% (LC50). The LC50 was 86.95 ± 0.21 μg/mL in Artemia salina. Physical malformations were observed after 96 h at 50 μg/mL of exposure. The total protein and cytochrome P450 contents were determined. Further analysis was performed to assess the bioaccumulation capacity of zebrafish (Danio rerio) using ICP-OES. ZnO NP content in adult zebrafish was greater in the gastrointestinal tract than in the other tissues under study. The present analysis of ZnO NPs supports the use of Artemia salina and adult zebrafish as relevant models for assessing toxicity and bioaccumulation while considering absorption quantities.
Collapse
Affiliation(s)
- Ileska M. Casiano-Muñiz
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA; (M.I.O.-R.); (G.L.-V.)
| | | | | | - Félix R. Román-Velázquez
- Department of Chemistry, University of Puerto Rico, Mayaguez Campus, Mayaguez, PR 00681, USA; (M.I.O.-R.); (G.L.-V.)
| |
Collapse
|
5
|
Fatima A, Zaheer T, Pal K, Abbas RZ, Akhtar T, Ali S, Mahmood MS. Zinc Oxide Nanoparticles Significant Role in Poultry and Novel Toxicological Mechanisms. Biol Trace Elem Res 2024; 202:268-290. [PMID: 37060542 DOI: 10.1007/s12011-023-03651-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/27/2023] [Indexed: 04/16/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have involved a lot of consideration owing to their distinctive features. The ZnO NPs can be described as particularly synthesized mineral salts via nanotechnology, varying in size from 1 to 100 nm, while zinc oxide (ZnO), it is an inorganic substrate of zinc (Zn). The Zn is a critical trace element necessary for various biological and physiological processes in the body. Studies have revealed ZnO NPs' efficient immuno-modulatory, growth-promoting, and antimicrobial properties in poultry birds. They offer increased bioavailability as compared to their traditional sources, producing better results in terms of productivity and welfare and consequently reducing ecological harm in the poultry sector. However, they have also been reported for their toxicological effects, which are size, shape, concentration, and exposure route dependent. The investigations done so far have yielded inconsistent results, therefore, a lot of additional studies and research are required to clarify the harmful consequences of ZnO NPs and to bring them to a logical end. This review explores an overview of efficient possible role of ZnO NPs, while comparing them with other nutritional Zn sources, in the poultry industry, primarily as dietary supplements that effect the growth, health, and performance of the birds. In addition to the anti-bacterial mechanisms of ZnO NPs and their promising role as antifungal, and anti-colloidal agent, this paper also covers the toxicological mechanisms of ZnO NPs and their consequent toxicological hazards to vital organs and the reproductive system of poultry birds.
Collapse
Affiliation(s)
- Arjmand Fatima
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Tean Zaheer
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab, 140413, India.
| | - Rao Zahid Abbas
- Institute of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Tayyaba Akhtar
- KBCMA College of Veterinary and Animal Sciences, Sub-Campus UVAS-Lahore, Narowal, Pakistan
| | - Sultan Ali
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
6
|
Fujihara J, Nishimoto N. Review of Zinc Oxide Nanoparticles: Toxicokinetics, Tissue Distribution for Various Exposure Routes, Toxicological Effects, Toxicity Mechanism in Mammals, and an Approach for Toxicity Reduction. Biol Trace Elem Res 2024; 202:9-23. [PMID: 36976450 DOI: 10.1007/s12011-023-03644-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) are widely used as a sunscreen, antibacterial agent, dietary supplement, food additive, and semiconductor material. This review summarizes the biological fate following various exposure routes, toxicological effects, and toxicity mechanism of ZnO NPs in mammals. Furthermore, an approach to reduce the toxicity and biomedical applications of ZnO NPs are discussed. ZnO NPs are mainly absorbed as Zn2+ and partially as particles. Regardless of exposure route, elevated Zn concentration in the liver, kidney, lungs, and spleen are observed following ZnO NP exposure, and these are the target organs for ZnO NPs. The liver is the main organ responsible for ZnO NP metabolism and the NPs are mainly excreted in feces and partly in urine. ZnO NPs induce liver damage (oral, intraperitoneal, intravenous, and intratracheal exposure), kidney damage (oral, intraperitoneal, and intravenous exposure) and lung injury (airway exposure). Reactive oxygen species (ROS) generation and induction of oxidative stress may be a major toxicological mechanism for ZnO NPs. ROS are generated by both excess Zn ion release and the particulate effect resulting from the semiconductor or electronic properties of ZnO NPs. ZnO NP toxicity can be reduced by coating their surface with silica, which prevents Zn2+ release and ROS generation. Due to their superior characteristics, ZnO NPs are expected to be used for biomedical applications, such as bioimaging, drug delivery, and anticancer agents, and surface coatings and modification will expand the biomedical applications of ZnO NPs further.
Collapse
Affiliation(s)
- Junko Fujihara
- Department of Legal Medicine, Shimane University Faculty of Medicine, 89-1 Enya, Izumo , Shimane, 693-8501, Japan.
| | - Naoki Nishimoto
- Department of Research Planning and Coordination, Shimane Institute for Industrial Technology, 1 Hokuryo, Matsue, Shimane, 690-0816, Japan
| |
Collapse
|
7
|
Ahluwalia KK, Thakur K, Ahluwalia AS, Hashem A, Avila-Quezada GD, Abd_Allah EF, Thakur N. Assessment of Genotoxicity of Zinc Oxide Nanoparticles Using Mosquito as Test Model. TOXICS 2023; 11:887. [PMID: 37999539 PMCID: PMC10674525 DOI: 10.3390/toxics11110887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
The widespread applications of ZnO NPs in the different areas of science, technology, medicine, agriculture, and commercial products have led to increased chances of their release into the environment. This created a growing public concern about the toxicological and environmental effects of the nanoparticles. The impact of these NPs on the genetic materials of living organisms is documented in some cultured cells and plants, but there are only a few studies regarding this aspect in animals. In view of this, the present work regarding the assessment of the genotoxicity of zinc oxide nanoparticles using the mosquito Culex quinquefaciatus has been taken up. Statistically significant chromosomal aberrations over the control are recorded after the exposure of the fourth instar larvae to a dose of less than LD20 for 24 h. In order to select this dose, LD20 of ZnO NPs for the mosquito is determined by Probit analysis. Lacto-aceto-orcein stained chromosomal preparations are made from gonads of adult treated and control mosquitoes. Both structural aberrations, such as chromosomal breaks, fragments, translocations, and terminal fusions, resulting in the formation of rings and clumped chromosomes, and numerical ones, including hypo- and hyper-aneuploidy at metaphases, bridges, and laggards at the anaphase stage are observed. The percentage frequency of abnormalities in the shape of sperm heads is also found to be statistically significant over the controls. Besides this, zinc oxide nanoparticles are also found to affect the reproductive potential and embryo development as egg rafts obtained from the genetic crosses of ZnO nanoparticle-treated virgin females and normal males are small in size with a far smaller number of eggs per raft. The percentage frequencies of dominant lethal mutations indicated by the frequency of unhatched eggs are also statistically significant (p < 0.05) over the control. The induction of abnormalities in all of the three short-term assays studied during the present piece of work indicates the genotoxic potential of ZnO NPs, which cannot be labeled absolutely safe, and this study pinpoints the need to develop strategies for the protection of the environment and living organisms thriving in it.
Collapse
Affiliation(s)
- Kanwaljit Kaur Ahluwalia
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| | - Kritika Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| | - Amrik Singh Ahluwalia
- Department of Botany, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India;
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | | | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia;
| | - Neelam Thakur
- Department of Zoology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh 173101, India; (K.K.A.); (K.T.)
| |
Collapse
|
8
|
Kausar S, Jabeen F, Latif MA, Asad M. Characterization, dose dependent assessment of hepatorenal oxidative stress, hematological parameters and histopathological divulging of the hepatic damages induced by Zinc oxide nanoparticles (ZnO-NPs) in adult male Sprague Dawley rats. Saudi J Biol Sci 2023; 30:103745. [PMID: 37588571 PMCID: PMC10425408 DOI: 10.1016/j.sjbs.2023.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/14/2023] [Indexed: 08/18/2023] Open
Abstract
Nanoparticles are beneficial in many aspects to human life but their excessive use can cause various abnormalities. They dispose in the environment through transport, industrial and agricultural usage and enter in living body through dermal, respiratory route or ingested with the lipsticks and there higher concentration produces toxicity. Therefore, current study characterized ZnO-NPs to evaluate toxic ability by X-rays diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques and showed 29.83 and 35 nm size, respectively with hexagonal crystalline structure. LC50 value of ZnO-NPs was also evaluated as 72.48 ± 10.33 mg/kg BW. Male Sprague Dawley (Post weaning) rats were divided into five groups with five rats in each group. Control (C) group received no treatment, placebo (S) group received normal saline (0.9% sodium chloride) intraperitoneally and three treated groups received different levels of ZnO- NPs intraperitoneally at the dose of either 10 or 20 or 30 mg/kg for 21 days on alternate days and named as 1G1, 1G2 and 1G3, respectively for the assessment of toxicity for better understanding of precautionary measures in future. Oxidative stress enzymes of liver and kidney, hepatorenal function enzymes and hematological parameters along with hepatic histology were measured at the end of the experiment. Results showed highly significant variations in all parameters in a dose dependent manner as compared to control group while groups receiving 10 or 20 mg/kg of ZnO-NPs showed low to moderate pathological changes in both organs. Liver histological analysis showed congestion, necrosis, hemorrhage, RBC's accumulations; inflammatory cells infiltration and severe abnormalities in high dose group while medium, low dose group showed moderate and least effects, respectively. It is concluded that ZnO-NPs are highly toxic at more concentration so their careful usage is needed in daily routine.
Collapse
Affiliation(s)
- Sana Kausar
- Department of Zoology, Government College Universisty, Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College Universisty, Faisalabad, Pakistan
| | | | - Muhammad Asad
- Department of Zoology, University of Education, Lahore, Pakistan
| |
Collapse
|
9
|
Tan YZ, Thomsen LR, Shrestha N, Camisasca A, Giordani S, Rosengren R. Short-Term Intravenous Administration of Carbon Nano-Onions is Non-Toxic in Female Mice. Int J Nanomedicine 2023; 18:3897-3912. [PMID: 37483316 PMCID: PMC10361275 DOI: 10.2147/ijn.s414438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023] Open
Abstract
Background A nanoscale drug carrier could have a variety of therapeutic and diagnostic uses provided that the carrier is biocompatible in vivo. Carbon nano-onions (CNOs) have shown promising results as a nanocarrier for drug delivery. However, the systemic effect of CNOs in rodents is unknown. Therefore, we investigated the toxicity of CNOs following intravenous administration in female BALB/c mice. Results Single or repeated administration of oxi-CNOs (125, 250 or 500 µg) did not affect mouse behavior or organ weight and there was also no evidence of hepatotoxicity or nephrotoxicity. Histological examination of organ slices revealed a significant dose-dependent accumulation of CNO aggregates in the spleen, liver and lungs (p<0.05, ANOVA), with a trace amount of aggregates appearing in the kidneys. However, CNO aggregates in the liver did not affect CYP450 enzymes, as total hepatic CYP450 as well as CYP3A catalytic activity, as meased by erythromycin N-demethylation, and protein levels showed no significant changes between the treatment groups compared to vehicle control. CNOs also failed to act as competitive inhibitors of CYP3A in vitro in both mouse and human liver microsomes. Furthermore, CNOs did not cause oxidative stress, as indicated by the unchanged malondialdehyde levels and superoxide dismutase activity in liver microsomes and organ homogenates. Conclusion This study provides the first evidence that short-term intravenous administration of oxi-CNOs is non-toxic to female mice and thus could be a promising novel and safe drug carrier.
Collapse
Affiliation(s)
- Yi Zhen Tan
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Lucy R Thomsen
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Nensi Shrestha
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| | - Adalberto Camisasca
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, D09 NA55, Ireland
| | - Rhonda Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
10
|
Abouzeinab NS, Kahil N, Fakhruddin N, Awad R, Khalil MI. Intraperitoneal hepato-renal toxicity of zinc oxide and nickel oxide nanoparticles in male rats: biochemical, hematological and histopathological studies. EXCLI JOURNAL 2023; 22:619-644. [PMID: 37662710 PMCID: PMC10471841 DOI: 10.17179/excli2023-6237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 09/05/2023]
Abstract
In recent years, zinc oxide (ZnO) and nickel oxide (NiO) nanoparticles (NPs) have become more prevalent in commercial and industrial products. However, questions have been raised regarding their potential harm to human health. Limited studies have been conducted on their intraperitoneal toxicity in rats, and their co-exposure effects remain uncertain. Therefore, this study aimed to investigate some biological responses induced by a single intraperitoneal injection of ZnO-NPs (200 mg/kg) and/or NiO-NPs (50 mg/kg) in rats over time intervals. Blood and organ samples were collected from 36 male rats for hematological, biochemical, oxidative stress, and histological analysis. Results showed that the administration of NPs reduced the body and organ weights as well as red blood cell (RBC) indices and altered white blood cell (WBC) and platelet (PLT) counts. The experimental groups exhibited elevated levels of aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine (CREA), urea, lipid profile, glucose (GLU), total protein (TP), albumin (ALB) and malondialdehyde (MDA), and decreased uric acid (UA), superoxide dismutase (SOD), and glutathione (GSH). Histological observations also revealed architectural damages in liver and kidneys. These alterations were time-dependent and varied in their degree of toxicity. Co-exposure of NPs initially lessened the damage but increased it afterwards compared to individual exposure. In conclusion, intraperitoneal injection of ZnO-NPs and/or NiO-NPs alters biological processes and induces oxidative stress in rats' liver and kidneys in a time-dependent manner, with NiO-NPs being more potent than ZnO-NPs. Furthermore, co-exposed NPs initially appeared to be antagonistic to one another while further aiming toward synergism.
Collapse
Affiliation(s)
- Noura S. Abouzeinab
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Nour Kahil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Najla Fakhruddin
- Department of Pathology and Laboratory Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ramadan Awad
- Department of Physics, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Department of Physics, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
11
|
Smaoui S, Chérif I, Ben Hlima H, Khan MU, Rebezov M, Thiruvengadam M, Sarkar T, Shariati MA, Lorenzo JM. Zinc oxide nanoparticles in meat packaging: A systematic review of recent literature. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Daei S, Abbasalipourkabir R, Khajvand-Abedini M, Ziamajidi N. The Alleviative Efficacy of Vitamins A, C, and E Against Zinc Oxide Nanoparticles-Induced Hepatic Damage by Reducing Apoptosis in Rats. Biol Trace Elem Res 2023; 201:1252-1260. [PMID: 35364806 DOI: 10.1007/s12011-022-03218-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles are vastly exploited in today's technology. However, it is realized that exposure to high concentrations of nanoparticles (NPs) may have adverse effects on human health. According to previous reports, zinc oxide (ZnO) NPs cause toxic effects in tissues via inducing apoptosis. The current work was designed to evaluate possible protective activities of vitamins (Vits) A, C, and E against ZnO NPs-induced apoptosis in the liver of rats. To this aim, fifty-four adult male Wistar rats were randomly distributed into nine groups (n = 6 rats for each group), namely, Control1 (water), Control2 (olive oil), Vit A (1000 IU/kg), Vit C (200 mg/kg), Vit E (100 IU/kg), ZnO (200 mg/kg), ZnO + VitA, ZnO + VitC, and ZnO + VitE. To investigate apoptosis, the mRNA and protein expression of Bcl-2-associated X (Bax) and B-cell lymphoma protein 2 (Bcl-2) were examined by qRT-PCR and western blot techniques. The mRNA and protein expression of TNF-α as well as the activity of caspase 3,7 were also measured. The results revealed that ZnO NPs considerably enhance the ratio of Bax to Bcl-2 mRNA and protein expression as well as the activity of caspase 3,7 compared to the control group. Furthermore, the findings implied that the elevated level of TNF-α may link with ZnO NPs-mediated apoptosis in the liver of rats. More importantly, Vits A, C, and E exhibited ameliorative properties against apoptosis-inducing effects of ZnO NPs. Thus, administration of Vits A, C, and E may be effective in preventing liver damage and apoptosis caused by ZnO NPs.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Khajvand-Abedini
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Molecular Medicine Research Center, Hamadan University of Medical Science, Hamadan, Iran.
| |
Collapse
|
13
|
Naji RM, Bashandy MA, Fathy AH. Ameliorative Effects of some Natural Antioxidants against Blood and Cardiovascular Toxicity of Oral Subchronic Exposure to Silicon Dioxide, Aluminum Oxide, or Zinc Oxide Nanoparticles in Wistar Rats. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:8373406. [PMID: 36942197 PMCID: PMC10024631 DOI: 10.1155/2023/8373406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/14/2023] [Accepted: 02/08/2023] [Indexed: 03/13/2023]
Abstract
The present study determines the possible protective role of fig fruit extract with olive oil and date palm fruit extract (FOD) in decreasing the oral subchronic blood and cardiovascular toxicity of SiO2NPs, Al2O3NPs, or ZnONPs. The present study used 80 male Wistar rats (8 groups, n = 10) distributed according to the treatment. The FOD treatments were used at their recommended antioxidant doses. All nanoparticles (NPs) were given orally and daily at doses of 100 mg/kg for 75 days. The oral administration of different NPs alone led to dramatic, oxidative stress, inflammatory markers, blood coagulation, endothelial dysfunction markers, myocardial enzymes, hematological parameters, lipid profile, and histopathological features compared with the control group. The FOD-NP-treated groups recorded significantly ameliorated blood and cardiovascular toxicity hazards compared to the groups administered with the NPs alone. In conclusion, the administration of FOD provides considerable chemopreventive and ameliorative effects against NP toxicity.
Collapse
Affiliation(s)
- Riyadh Musaed Naji
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
- 2Department of Zoology, Faculty of Science and Education, Aden University, Yemen
| | - Mohamed A. Bashandy
- 1Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11651, Egypt
| | - Abdallah H. Fathy
- 3Department of Animal House Facility, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
14
|
The effect of exposure to MoO 3-NP and common bean fertilized by MoO 3-NPs on biochemical, hematological, and histopathological parameters in rats. Sci Rep 2022; 12:12074. [PMID: 35840748 PMCID: PMC9287347 DOI: 10.1038/s41598-022-16022-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/04/2022] [Indexed: 01/22/2023] Open
Abstract
Nanotechnologies has been used to introduce several beneficial tools in the agricultural field. Herein, the effect of molybdenum oxide nanoparticles (MoO3-NPs) was investigated by evaluating the hematological, biochemical, and histopathological parameters in rats orally exposed to MoO3-NPs or fed common beans (CB) fertilized by MoO3-NPs. In the first study, 18 rats were randomly divided into 3 groups: G1 (control group) was given water orally, while G2 and G3 were administered 10 and 40 ppm MoO3-NPs by oral gavage tube, respectively. There was a significant increase in the levels of alanine aminotransferase (ALT), albumin, and total protein; however, there was a a significant decrease in body weight change (BWC), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), creatinine, creatine kinase–MB (CK-MB), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and testosterone levels in G3 compared to G1. In the second study, 24 rats were divided into 4 groups: the control (C) group was fed a balanced diet, and three groups were fed on a balanced diet plus 10% CB that was fertilized with 0, 10, and 40 ppm MoO3-NPs, resulting in nCB, CB10, and CB40 groups, respectively. This revealed a significant increase in BWC and total food intake (TFI) but a significant decrease in relative kidney weight in all the CB groups compared to the control group. In CB10 and CB40 groups ALT, LDH, TSH, FT3, and testosterone levels were significantly lower than the respective levels in the control group. We concluded that high doses of MoO3-NPs caused more side effects than low doses in both experiments.
Collapse
|
15
|
Rahimi G, Mohammad KS, Zarei M, Shokoohi M, Oskoueian E, Poorbagher MRM, Karimi E. Zinc oxide nanoparticles synthesized using Hyssopus Officinalis L. Extract Induced oxidative stress and changes the expression of key genes involved in inflammatory and antioxidant Systems. Biol Res 2022; 55:24. [PMID: 35765116 PMCID: PMC9238176 DOI: 10.1186/s40659-022-00392-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent advances in the synthesis of bioactive nanoparticles resulted in the discovery and introduction of new bioactive nanoparticles to the pharmaceutical industry. In this regard, this research is aimed to synthesize the zinc oxide nanoparticles (ZnO-NPs) using Hyssopus officinalis L. extract and to evaluate the safety of nanoparticles using Balb/C mice. METHODS Forty male mice were divided into four groups and received 0, 50, 100, and 200 mg/kg of ZnO-NPs for thirty days. At the end of the experiment, blood sugar, creatinine, aspartate aminotransferase (A.S.T.), and alanine aminotransferase (A.L.T.) were determined. Furthermore, histopathological and oxidative stress biomarker analyses in liver and kidney tissues were performed. The changes in the major inflammatory- and antioxidant-related genes were determined. RESULTS The results showed that blood sugar and creatinine reduced significantly (P < 0.05) when 50, 100, and 200 mg/kg ZnO-NPs were supplemented to the diet. The serum ALT and AST and lipid peroxidation in the liver and kidney tissues were increased significantly (p < 0.05) when 50, 100, and 200 mg/kg ZnO-NPs were supplemented to the diet. Supplementation of ZnO-NPs suppressed the expression of antioxidant-related genes (SOD and CAT) and up-regulated the inflammatory biomarkers (iNOS and TNF- α). The concentration of 200 mg/Kg nanoparticles indicated cellular degeneration and necrosis in the liver and kidney tissues. CONCLUSIONS Overall, it can be concluded that supplementation of ZnO-NPs synthesized using Hyssopus Officinalis L. extract in this study at 50 mg/kg or higher concentrations might be toxic to the mice.
Collapse
Affiliation(s)
- Ghasem Rahimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Mahsa Zarei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammad Shokoohi
- Department of Biology, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran.
| | | | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| |
Collapse
|
16
|
Raha S, Ahmaruzzaman M. ZnO nanostructured materials and their potential applications: progress, challenges and perspectives. NANOSCALE ADVANCES 2022; 4:1868-1925. [PMID: 36133407 PMCID: PMC9419838 DOI: 10.1039/d1na00880c] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 05/22/2023]
Abstract
Extensive research in nanotechnology has been conducted to investigate new behaviours and properties of materials with nanoscale dimensions. ZnO NPs owing to their distinct physical and chemical properties have gained considerable importance and are hence investigated to a detailed degree for exploitation of these properties. This communication, at the outset, elaborates the various chemical methods of preparation of ZnO NPs, viz., the mechanochemical process, controlled precipitation, sol-gel method, vapour transport method, solvothermal and hydrothermal methods, and methods using emulsion and micro-emulsion environments. The paper further describes the green methods employing the use of plant extracts, in particular, for the synthesis of ZnO NPs. The modifications of ZnO with organic (carboxylic acid, silanes) and inorganic (metal oxides) compounds and polymer matrices have then been described. The multitudinous applications of ZnO NPs across a variety of fields such as the rubber industry, pharmaceutical industry, cosmetics, textile industry, opto-electronics and agriculture have been presented. Elaborative narratives on the photocatalytic and a variety of biomedical applications of ZnO have also been included. The ecotoxic impacts of ZnO NPs have additionally been briefly highlighted. Finally, efforts have been made to examine the current challenges and future scope of the synthetic modes and applications of ZnO NPs.
Collapse
Affiliation(s)
- Sauvik Raha
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar 788010 Assam India
| |
Collapse
|
17
|
Babaei AA, Rafiee M, Khodagholi F, Ahmadpour E, Amereh F. Nanoplastics-induced oxidative stress, antioxidant defense, and physiological response in exposed Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11332-11344. [PMID: 34535860 DOI: 10.1007/s11356-021-15920-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, plastic pollution and in particular nano(micro)plastics is considered as an issue of global concern in environmental samples. The present work was conducted to clarify the oxidative stress of polystyrene nanoplastics (PS-NPs) exposure and physiological response of male Wistar rats. Animals were treated orally with PS-NPs at four doses (1, 3, 6, and10 mg/kg-day) for 5 weeks. Results demonstrated the accumulation of PS-NPs through whole body scanning and also a dose-dependent increase in the production of reactive oxygen species (ROS). Alterations in antioxidant responses including serum levels of catalase (CAT) and total glutathione content were noticed, but not superoxide dismutase (SOD), pointing towards the perturbation of redox state induced by exposure conditions. Biochemical parameters viz. glucose, cortisol, lipase, lactate, lactate dehydrogenase (LDH), alkaline phosphatase, gamma-glutamyl transpeptidase (GGT), triglycerides, and urea showed a significant increase, while total protein, albumin, and globulin levels showed an appreciable decline. The pattern of associations noticed with AChE activity and biochemical responses in our study suggests the possibility that a neurobehavioral effect or dysfunctions in energy metabolism may be the potential modes of action, possibly through stress response as well as liver function. Perturbations of creatinine and uric acid levels are indeed plausible biological explanations for the association with kidney dysfunction. Although we provided a new scientific clue for exploring the biological consequences of NPs which might induce effects such as oxidative stress relating to the induction of antioxidant enzymes, the results warrant additional research with a larger sample size.
Collapse
Affiliation(s)
- Ali Akbar Babaei
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rafiee
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality Health and Climate Change Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fariba Khodagholi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Ahmadpour
- Department of Environment and Occupational Health, Deputy of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fatemeh Amereh
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Al-Ali AAA, Al-Tamimi SQ, Al-Maliki SJ, Abdullah MA. Toxic effects of zinc oxide nanoparticles and histopathological and caspase-9 expression changes in the liver and lung tissues of male mice model. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02248-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Malika S, Ullah A, Anjum AA, Sattar MMK, Ali T, Manzoor R. Bio-efficacy of iron and zinc fortified wheat flour along with bio-assessment of its hepatic and renal toxic potential. BRAZ J BIOL 2022; 82:e261695. [DOI: 10.1590/1519-6984.261695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022] Open
Abstract
Abstract Study was planned to assess the bio-efficiency along with toxicity of iron and zinc fortified whole wheat flour in Sprague dawley albino rats. Whole wheat flour was fortified with different dosage of sodium iron EDTA (NaFeEDTA), ferrous sulphate (FeSO4), zinc oxide (ZnO) and zinc sulphate (ZnSO4). The rats (n=3) in each group were fed on fortified wheat flour for 2 months. Liver biomarkers including alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate aminotransferase (AST) and bilirubin were recorded from serum samples. Increased concentration of ZnSO4 affected the liver biomarkers to be highest among all whereas, bilirubin levels were less than the rats fed on control diet. The above mentioned fortificants have negligible effect on renal biomarkers including creatinine and urea. Moreover, hematological parameters were also checked and reportedly, sodium iron EDTA fed rats presented highest amount of hemoglobin, iron and total iron binding capacity. Highest zinc level was observed in rats fed on whole wheat flour fortified with 60mg/Kg Zinc oxide. Microscopic observation of liver tissue depicted that rats fed on iron and zinc fortified wheat flour have more toxic effects whereas, histopathology presentation of kidney tissue has least toxic impact. It has been concluded that mandatory fortification of wheat flour with iron and zinc may cause increased serum biomarkers along with toxicity of vital organs like liver, hence fraction of wheat flour may be fortified to fulfill the requirements of deprived and vulnerable group.
Collapse
Affiliation(s)
| | - A. Ullah
- University of the Punjab, Pakistan
| | - A. A. Anjum
- University of Veterinary and Animal Sciences, Pakistan
| | | | - T. Ali
- University of Veterinary and Animal Sciences, Pakistan
| | - R. Manzoor
- University of Veterinary and Animal Sciences, Pakistan
| |
Collapse
|
20
|
Hassan ME, Hassan RR, Diab KA, El-Nekeety AA, Hassan NS, Abdel-Wahhab MA. Nanoencapsulation of thyme essential oil: a new avenue to enhance its protective role against oxidative stress and cytotoxicity of zinc oxide nanoparticles in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52046-52063. [PMID: 33999325 PMCID: PMC8126601 DOI: 10.1007/s11356-021-14427-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/10/2021] [Indexed: 05/09/2023]
Abstract
Although the green synthesis of nanometals is eco-friendly, the toxicity or safety of these biosynthesized nanoparticles in living organisms is not fully studied. This study aimed to evaluate the potential protective role of encapsulated thyme oil (ETO) against zinc oxide nanoparticles (ZnO-NPs). ETO was prepared using a mixture of whey protein isolate, maltodextrin, and gum Arabic, and ZnO-NPs were synthesized using parsley extract. Six groups of male Sprague-Dawley rats were treated orally for 21 days which included the control group, ZnO-NP-treated group (25 mg/kg body weight (b.w.)), ETO-treated groups at low or high dose (50, 100 mg/kg b.w.), and the groups that received ZnO-NPs plus ETO at the two tested doses. Blood and tissue samples were collected for different assays. The results showed that carvacrol and thymol were the major components in ETO among 13 compounds isolated by GC-MS. ZnO-NPs were nearly spherical and ETOs were round in shape with an average size of 38 and 311.8 nm, respectively. Administration of ZnO-NPs induced oxidative stress, DNA damage, biochemical, ctyogentical, and histological changes in rats. ETO at the tested doses alleviated these disturbances and showed protective effects against the hazards of ZnO-NPs. It could be concluded that encapsulation of thyme oil using whey protein isolate, maltodextrin, and gum Arabic improved the antioxidant properties of ETO, probably possess synergistic effects, and can be used as a promising tool in pharmaceutical and food applications.
Collapse
Affiliation(s)
- Marwa E Hassan
- Toxicology Department, Research Institute of Medical Entomology, Cairo, Egypt
| | - Rasha R Hassan
- Immunology Department, Research Institute of Medical Entomology, Cairo, Egypt
| | - Kawthar A Diab
- Genetics and Cytology Department, National Research Center, Dokki, Cairo, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt
| | - Nabila S Hassan
- Pathology Department, National Research Center, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
21
|
El-Wafaey DI, Nafea OE, Faruk EM. Naringenin alleviates hepatic injury in zinc oxide nanoparticles exposed rats: impact on oxido-inflammatory stress and apoptotic cell death. Toxicol Mech Methods 2021; 32:58-66. [PMID: 34348583 DOI: 10.1080/15376516.2021.1965275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Human exposure to nanoparticles became unavoidable secondary to their massive involvement in a multitude of industrial applications. Zinc oxide nanoparticles (ZnONPs) are one of the most commonly used metal oxide nanoparticles in biological applications. Naringenin (NAR), a citrus-derived flavonoid, has favorable biological properties that promote human health. The present study was carried out to investigate the possible defensive role of NAR versus ZnONPs provoked hepatic injury in rats through an evaluation of liver enzymes, hepatic biomarkers of oxidative stress, inflammatory process, apoptotic cell death along with histopathological examination of liver tissue. Therefore, 32 adult rats were randomly divided into four equal groups as control, NAR, ZnONPs and co-treated ZnONPs with NAR groups. All treatments were administered for 14 days. Our results showed that ZnONPs induced hepatic injury as documented by the marked increased in hepatic enzymes activities, disturbed hepatic oxidant/antioxidant balance, increased hepatic inflammatory reactions, in addition to, extensive hepatic morphological alterations, marked collagen fibers accumulation as well as overexpression of apoptotic BAX and the noticeable intensified positive nuclear staining for nuclear factor Kabba-b in hepatic tissues. Concurrent NAR supplement to ZnONPs- treated rats significantly declined liver enzymes activities, restored oxidant/antioxidant balance, reversed inflammation, induced fewer collagen fibers accumulation, and antagonized BAX-mediated apoptotic cell death in hepatic tissues. We concluded that concurrent NAR supplement to ZnONPs treated rats improved hepatic function and structure by its antioxidant, anti-inflammatory and antiapoptotic potentials.
Collapse
Affiliation(s)
- Dalia Ibrahim El-Wafaey
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ola Elsayed Nafea
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Eman Mohamed Faruk
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha, Egypt.,Department of Anatomy, Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| |
Collapse
|
22
|
Kavaz D, Abubakar AL, Rizaner N, Umar H. Biosynthesized ZnO Nanoparticles Using Albizia lebbeck Extract Induced Biochemical and Morphological Alterations in Wistar Rats. Molecules 2021; 26:molecules26133864. [PMID: 34202852 PMCID: PMC8270351 DOI: 10.3390/molecules26133864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Nano-based particles synthesized via green routes have a particular structure that is useful in biomedical applications as they provide cheap, eco-friendly, and non-toxic nanoparticles. In the present study, we reported the effect of various concentrations of Zinc oxide nanoparticles synthesized using A. lebbeck stem bark extract (ZnO NPsAL) as stabilizing agent on rat biochemical profiles and tissue morphology. Adult Wistar rats weighing 170 ± 5 g were randomly classified into eight groups of five rats each; Group A served as a control fed with normal diet and water. Groups B1, B2, C1, C2, D1, D2, and E were treated with 40 mg/kg and 80 mg/kg of the 0.01, 0.05, and 0.1 M biosynthesized ZnO NPsAL and zinc nitrate daily by the gavage method, respectively. The rats were anesthetized 24 h after the last treatment, blood samples, kidney, heart, and liver tissues were collected for biochemical and histopathological analysis. The rats mean body weight, serum alkaline phosphatase, alanine aminotransferase, creatinine, urea, bilirubin, protein, albumin, globulin, total cholesterol, triacylglycerol, and high-density lipoprotein were significantly altered with an increased concentration of biosynthesized ZnO NPsAL when compared with the control group (p < 0.05; n ≥ 5). Furthermore, histopathological analysis of treated rats' kidney, heart, and liver tissue revealed vascular congestion, tubular necrosis, inflammation, and cytoplasmic vacuolation. Biosynthesized ZnO NPsAL showed significant alteration in biochemical parameters and tissue morphology in rats with increasing concentrations of the nanoparticles.
Collapse
Affiliation(s)
- Doga Kavaz
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
- Correspondence: ; Tel.: +90-3926711111
| | - Amina Lawan Abubakar
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Department of Biochemistry, Kano State University of Science and Technology, Wudil, Kano P.M.B 3244, Nigeria
| | - Nahit Rizaner
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
| | - Huzaifa Umar
- Bioenginering Department, Faculty of Engineering, Cyprus International University, Via Mersin 10, Nicosia 98258, Northern Cyprus, Turkey; (A.L.A.); (N.R.); (H.U.)
- Biotechnology Research Centre, Cyprus International University, Via Mersin 10, Nicosia 99258, Northern Cyprus, Turkey
| |
Collapse
|
23
|
Effect of zinc oxide nanoparticles and ferulic acid on renal ischemia/reperfusion injury: possible underlying mechanisms. Biomed Pharmacother 2021; 140:111686. [PMID: 34015581 DOI: 10.1016/j.biopha.2021.111686] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The present study examined the effects of ferulic acid (FA) and Zinc oxide nanoparticles (ZnO-NPs) and a combination of both on renal ischemia/reperfusion injury (IRI) in rats and their possible underlying mechanisms. METHODS two-hundreds male Sprague Dawley rats were randomly allocated into the 5 groups; i) sham group, ii) control (IRI) group (occlusion of the left renal pedicle for 45 min), iii) FA group as IRI group with FA (100 mg/Kg oral 24 hrs before ischemia), iv) ZnO-NPs group as IRI group with ZnO-NPs single 5 mg/Kg i.p. 2 hrs before ischemia and v) FA + ZnO-NPs group as IRI group with both FA and ZnO-NPs in the same previous doses. According to the reperfusion times, each group was further subdivided into 4 hr, 24 hr, 48 hr and 7 days reperfusion subgroups. RESULTS administration of either FA or ZnO-NPs caused significant improvement in the elevated serum creatinine and BUN and malondialdehyde (MDA) concentrations and expression of TNF-α, Bax, caspase-3 in kidney tissues with significant rise in the creatinine clearance, the activities of catalase (CAT) and superoxide dismutase (SOD) and the expression of HO-1, HIF-1α genes and proliferation marker (ki67) in kidney tissues compared to IRI group (p < 0.05). Moreover, a combination of both agents produced more significant improvement in the studied parameters than each agent did alone (p < 0.05). CONCLUSIONS Both FA and ZnO-NPs exerted cytoprotective effects against ischemic kidney injury and a combination of both exhibited more powerful renoprotective effect. This renoprotective effect might be due to suppression of oxidative stress, enhancement of cell proliferation (ki67), upregulation of antioxidant genes (Nrf2, HO-1 and HIF-1α) and downregulation of inflammatory cytokine (TNF-α) and apoptotic genes (caspase-3 and Bax).
Collapse
|
24
|
Mahmoud MAM, Yahia D, Abdel-Magiud DS, Darwish MHA, Abd-Elkareem M, Mahmoud UT. Broiler welfare is preserved by long-term low-dose oral exposure to zinc oxide nanoparticles: preliminary study. Nanotoxicology 2021; 15:605-620. [PMID: 33792477 DOI: 10.1080/17435390.2021.1905099] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The potential public health risk through utilizing of zinc oxide nanoparticles (ZnO NPs) in food constitutes the major obstacle to the expansion of nanoparticle (NP) in food industry. Liver histology, bone marrow and liver genotoxicity, immunity, and oxidant status were investigated upon long-term ZnO NPs feed supplementation. One hundred and sixty male IR (Indian River) chicks were randomly allocated to one of the four dietary treatments: control, ZnO NPs at 10, 20, or 40 mg/kg for 42 days. This study revealed non-significant hepatic histopathological alterations and DNA damage and the treatment had no influence on body and organ weights, liver enzymes, lipid peroxidation (MDA), IgG, IgM, and interferon gamma (IFN-γ). This study suggests that low-dose (< 40 mg/kg diet) long-term ZnO NPs supplementation to broiler chicks has no observed potential adverse effects on normal histology of the liver, blood physiology, immune system, and DNA damage of liver and bone marrows, which are critical features for validating ZnO NPs for use in food. Further studies are required to evaluate the probable withdrawal period of ZnO NPs before approval as a dietary supplement in broiler or livestock diets.
Collapse
Affiliation(s)
- Manal A M Mahmoud
- Department of Animal Hygiene and Environmental sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doha Yahia
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Doaa S Abdel-Magiud
- Department of Forensic and Toxicology, Faculty of Veterinary Medicine, New Valley University, New Valley, Egypt
| | - Madeha H A Darwish
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Usama T Mahmoud
- Department of Animal and poultry behavior and management, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
25
|
Current Updates On the In vivo Assessment of Zinc Oxide Nanoparticles Toxicity Using Animal Models. BIONANOSCIENCE 2021. [DOI: 10.1007/s12668-021-00845-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Colloid Interface Sci 2020; 286:102317. [PMID: 33212389 DOI: 10.1016/j.cis.2020.102317] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/29/2022]
Abstract
In recent years, zinc oxide nanoparticles (ZnONPs) emerged as an excellent candidate in the field of optical, electrical, food packaging and particularly in biomedical research. ZnONPs show cancer cell specific toxicity via the pH-dependent (low pH) dissolution into Zn2+ ions, which generate reactive oxygen species and induce cytotoxicity in cancer cells. Further, ZnONPs have also been used as an effective carrier for the targeted delivery of several anticancer drugs into tumor cells. The increasing focus on ZnONPs resulted in the development of various synthesis approaches including chemical, pHysical, and green or biological for the manufacturing of ZnONPs. In this article, at first we have discussed the various synthesis methods of ZnONPs and secondly its biomedical applications. We have extensively reviewed the anticancer mechanism of ZnONPs on different types of cancers considering its size, shape and surface charge dependent cytotoxicity. Photoirradiation with UV light or NIR laser further increase its anticancer activity via synergistic chemo-photodynamic effect. The drug delivery applications of ZnONPs with special emphasis on drug loading mechanism, stimuli-responsive controlled release and therapeutic effects have also been discussed in this review. Finally, its side effects to vital body organs with mechanism via different exposure routes, the future direction of the ZnONPs research and application are also discussed.
Collapse
|
27
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
28
|
Aboulhoda BE, Abdeltawab DA, Rashed LA, Abd Alla MF, Yassa HD. Hepatotoxic Effect of Oral Zinc Oxide Nanoparticles and the Ameliorating Role of Selenium in Rats: A histological, immunohistochemical and molecular study. Tissue Cell 2020; 67:101441. [PMID: 32949962 DOI: 10.1016/j.tice.2020.101441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022]
Abstract
Despite the emerging concerns about the hepatotoxic risks associated with Zinc oxide nanoparticles (ZnO NPs), yet, the morphological and molecular alterations associated with these extensively-used nanoparticles remain to be elucidated. Thus, the current study has been designed to analyze the effect of ZnO NPs on the hepatic histopathological and immunohistochemical changes, along with the modulation of the oxidative-stress induced JNK/p38MAPK and the STAT-3 signalling. The study also explored the potential protective role of selenium against those alterations. ZnO NPs disrupted the hepatic architecture, elevated the serum liver enzyme alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) levels and caused dose-dependent decrease in the activity of the antioxidant enzymes glutathione-peroxidase, superoxide dismutase and catalase along with an increase in the lipid peroxidation product malondialdehyde. ZnO NPs also increased the area of immune-reactivity of the apoptotic protein bax and decreased the area of immune-reactivity of the anti-apoptotic protein bcl2 together with augmentation of the hepatic caspase 3 gene expression. The role of selenium in ameliorating the hepatotoxicity, oxidative stress injury, and apoptosis induced by ZnO-NPs, along with its role in modulating the JNK/p38MAPK and the STAT-3 signalling and improving the histopathological hepatic changes, offers selenium as a promising adjunctive therapy in individuals subjected to high concentrations of ZnO NPs especially in cases of extensive occupational, medicinal and industrial exposure.
Collapse
Affiliation(s)
- Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Egypt.
| | - Dina Adel Abdeltawab
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Laila Ahmed Rashed
- Department of biochemistry and molecular biology, Faculty of Medicine, Cairo University, Egypt
| | - Marwa Fathi Abd Alla
- Department of biochemistry and molecular biology, Faculty of Medicine, Beni-Suef University, Egypt
| | - Hanan Dawood Yassa
- Department of Anatomy and Embryology, Faculty of Medicine, Beni-Suef University, Egypt
| |
Collapse
|
29
|
Hussain A, Kumar S, Kaul G. Postnatal distribution of ZnO nanoparticles to the breast milk through oral route and their risk assessment for breastfed rat offsprings. Hum Exp Toxicol 2020; 39:1318-1332. [PMID: 32347117 DOI: 10.1177/0960327120921441] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Various studies in rodents have shown that nanoparticles are transferred to the breast milk. Under the present study, lactating Wistar rats were repetitively gavaged 5, 25, and 50 mg/kg bw of zinc oxide nanoparticles (ZnO-NPs) and 50 mg kg-1 bw of bulk zinc oxide (bZnO) for 19 days after parturition. The results showed that ZnO-NPs were absorbed in the small intestine of dams and distributed to the liver. Furthermore, ZnO-NPs were distributed to the intestine and liver of rat pups through dam's milk. No significant change in body weight was observed in the dams treated with ZnO-NPs or bZnO and their offsprings as compared to the control group. The spleen weight significantly increased in the rat dams treated with 50 mg kg-1 of ZnO-NPs. ZnO-NPs were mostly excreted through feces. The levels of liver cytochrome P450 reductase and serum total antioxidant capacity significantly decreased in the rat dams treated with ZnO-NPs (50 mg kg-1) and their offsprings. The levels of serum cytokines (tumor necrosis factor-alpha and interleukin-1 beta) and liver injury marker enzymes (alanine aminotransferase and aspartate aminotransferase) significantly increased in the rat dams treated with ZnO-NPs (25 and 50 mg kg-1) and their offsprings. The level of immunoglobulin A secretion in the intestinal fluid of rat dams and their offsprings is significantly increased by increasing the dose of ZnO-NPs. Histopathology of intestine and liver of offsprings whose rat dams were treated with ZnO-NPs (50 mg kg-1) showed gross pathological changes. These results provide information for the safety evaluation of ZnO-NPs use during lactation. In conclusion, a dose-dependent postnatal transfer of ZnO-NPs is hazardous to the breastfed offsprings.
Collapse
Affiliation(s)
- A Hussain
- N.T. Lab-I, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - S Kumar
- N.T. Lab-I, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - G Kaul
- N.T. Lab-I, Division of Animal Biochemistry, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
30
|
Singh N, Das MK, Ramteke A, R. P. Oxidative stress mediated hepatotoxicity induced by ZNP and modulatory role of fruit extract on male Wistar rat. Toxicol Rep 2020; 7:492-500. [PMID: 32309148 PMCID: PMC7155234 DOI: 10.1016/j.toxrep.2020.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 01/24/2023] Open
Abstract
Zinc oxide nanoparticles (ZNP) are being used in various fields viz cosmetics industry as UV protectants, in the food packaging industry due to their anti-bacterial properties, in agriculture as micronutrients, etc. Increased applications of ZNPs in our day to day life, leading to the contamination of the surrounding environment posing a direct or indirect health risk. Various reports suggest that fruits and vegetables are a rich source of phytochemicals having antioxidant properties which help in neutralizing ROS generated on metal toxicity of the body. The present study focuses to study the ameliorative effect of apple (Pyrus malus) extract (E) on ZNP induced toxicity. Therefore, animals were grouped, six in each, exposed to various doses of ZNP (50 and 250 mg/kg), ZNP (50 and 250 mg/kg)+E. The studied parameters was: food intake, water intake, antioxidants assay, zinc accumulation, and histological alterations and was compared to control. Investigation revealed that ZNP induces toxicity as revealed by the alteration in the studied parameter, whereas those exposed to ZNP along with Pyrus malus fruit extract try to reduce the toxicity induced by nanoparticles but at low doses only. This ameliorative effect of fruit extract might be due to the presence of antioxidants scavenging the free radicals generated by ZNPs suggesting that antioxidant-rich fruit may have a protective role and have the potential to reduce the nanoparticles mediated oxidative stress.
Collapse
Affiliation(s)
- Neelu Singh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Monoj Kumar Das
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam, India
| | - Anand Ramteke
- Cancer Genetics and Chemoprevention Research Group, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028 Assam, India
| | - Paulraj R.
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Corresponding author.
| |
Collapse
|
31
|
Keerthana S, Kumar A. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Crit Rev Toxicol 2020; 50:47-71. [PMID: 32186437 DOI: 10.1080/10408444.2020.1726282] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- S. Keerthana
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| | - A. Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
32
|
Nabeel AI. Samarium enriches antitumor activity of ZnO nanoparticles via downregulation of CXCR4 receptor and cytochrome P450. Tumour Biol 2020; 42:1010428320909999. [PMID: 32129155 DOI: 10.1177/1010428320909999] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer is the leading cause of death and exhausts human and economic resources for treatment and protection. Zinc oxide nanoparticles play an effective role in tumor treatment but with some cautions, such as overexpression of cytochrome P450, hepatic overload, and the mammalian target of rapamycin pathway resistance. Although lanthanides have antitumor activity, their use is limited. Therefore, the current study aims to improve the effectiveness of zinc oxide nanoparticle via doping with lanthanides, such as samarium. In vitro study revealed that samarium doped with zinc oxide showed more antitumor activity than the other lanthanides, and the antitumor activity depends on the concentration of samarium in the nanocomposite. The in vivo experiment on mice bearing Ehrlich solid tumor revealed that intramuscular injection of samarium/zinc oxide downregulates the expressions of CXCR4 and PI3K/Akt/mammalian target of rapamycin pathway in respect to Ehrlich solid tumor group. Regarding the apoptotic biomarkers, samarium/zinc oxide upregulates the apoptotic biomarker; Bax accompanied with the mitotic catastrophe which was indicated by cell cycle arrest in G2 phase. Moreover, samarium:zinc oxide nanoparticles exhibited minimum toxicity which was indicated by suppressed activities of cytochrome P450 and hepatic enzymes, including alanine transaminase and aspartate transaminase. In addition, the histopathological finding, as well as immunophenotyping results, appreciated the biochemical finding. Therefore, samarium:zinc oxide might be offered a new approach to improve the effectiveness of zinc oxide nanoparticles along with lower toxic effect. Also, samarium:zinc oxide nanoparticles can be a candidate as a new antitumor compound to detect its mode of action.
Collapse
Affiliation(s)
- Asmaa I Nabeel
- Biochemistry Laboratory, Chemistry Department, Faculty of Education, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Cornu R, Béduneau A, Martin H. Influence of nanoparticles on liver tissue and hepatic functions: A review. Toxicology 2019; 430:152344. [PMID: 31843632 DOI: 10.1016/j.tox.2019.152344] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/14/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
Due to the increasing interest in nanotechnology in very large application fields, including biotechnology, electronics and food industries, humans are increasingly exposed to nanoparticles (NPs). Consequently, the question about the safety of these nanomaterials and their impact on human health is a legitimate concern. The liver is the primary organ of detoxification and is one of the tissues that is most exposed to NPs. When they reach the bloodstream, NPs are mainly internalized by liver cells. This review focuses on recent in vitro and in vivo studies addressing the effects of organic and inorganic NPs on the liver. Specifically, the impact of the NPs on hepatic enzyme activities, the inflammatory response and genotoxicity processes will be described. Depending on the physicochemical parameters of the NPs and the conditions of exposure, NPs could lead to global liver injury.
Collapse
Affiliation(s)
- Raphaël Cornu
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| | - Arnaud Béduneau
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| | - Hélène Martin
- PEPITE EA4267, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France.
| |
Collapse
|
34
|
Sekretarska J, Szczepaniak J, Sosnowska M, Grodzik M, Kutwin M, Wierzbicki M, Jaworski S, Bałaban J, Daniluk K, Sawosz E, Chwalibog A, Strojny B. Influence of Selected Carbon Nanostructures on the CYP2C9 Enzyme of the P450 Cytochrome. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4149. [PMID: 31835701 PMCID: PMC6947289 DOI: 10.3390/ma12244149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022]
Abstract
Carbon nanostructures have recently gained significant interest from scientists due to their unique physicochemical properties and low toxicity. They can accumulate in the liver, which is the main expression site of cytochrome P450 (CYP450) enzymes. These enzymes play an important role in the metabolism of exogenous compounds, such as drugs and xenobiotics. Altered activity or expression of CYP450 enzymes may lead to adverse drug effects and toxicity. The objective of this study was to evaluate the influence of three carbon nanostructures on the activity and expression at the mRNA and protein levels of CYP2C9 isoenzyme from the CYP2C subfamily: Diamond nanoparticles, graphite nanoparticles, and graphene oxide platelets. The experiments were conducted using two in vitro models. A microsome model was used to assess the influence of the three-carbon nanostructures on the activity of the CYP2C9 isoenzyme. The CYP2C9 gene expression at the mRNA and protein levels was determined using a hepatoma-derived cell line HepG2. The experiments have shown that all examined nanostructures inhibit the enzymatic activity of the studied isoenzymes. Moreover, a decrease in the expression at the mRNA and protein levels was also observed. This indicates that despite low toxicity, the nanostructures can alter the enzymatic function of CYP450 enzymes, and the molecular pathways involved in their expression.
Collapse
Affiliation(s)
- Justyna Sekretarska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Jarosław Szczepaniak
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Malwina Sosnowska
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Marta Grodzik
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Marta Kutwin
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Sławomir Jaworski
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Jaśmina Bałaban
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Karolina Daniluk
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - Ewa Sawosz
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark;
| | - Barbara Strojny
- Department of Nanobiotechnology and Experimental Ecology, Institute of Biology, Warsaw University of Life Science, Ciszewskiego 8, 02-786 Warsaw, Poland; (J.S.); (J.S.); (M.S.); (M.G.); (M.K.); (M.W.); (S.J.); (J.B.); (K.D.); (E.S.)
| |
Collapse
|
35
|
|
36
|
Li Q, Sun M, Li G, Qiu L, Huang Z, Gong J, Huang J, Li G, Si L. The sub-chronic impact of mPEG2k-PCLx polymeric nanocarriers on cytochrome P450 enzymes after intravenous administration in rats. Eur J Pharm Biopharm 2019; 142:101-113. [DOI: 10.1016/j.ejpb.2019.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
|
37
|
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 2019; 10:57. [PMID: 31321032 PMCID: PMC6615095 DOI: 10.1186/s40104-019-0368-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles (NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods. Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, non-toxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal's body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor’ Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
38
|
Choi K, Joo H. Impact of Gold Nanoparticles on Testosterone Metabolism in Human Liver Microsomes. NANOSCALE RESEARCH LETTERS 2019; 14:205. [PMID: 31209583 PMCID: PMC6579798 DOI: 10.1186/s11671-019-3021-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/20/2019] [Indexed: 05/04/2023]
Abstract
Gold nanoparticle (AuNP)-protein corona complexes can alter cytochrome P450 (CYP)-mediated testosterone (TST) metabolism by altering their physicochemical properties. We investigated the impact of NP size, surface chemistry, and protein corona in TST metabolism in pooled human liver microsomes (pHLM) employing 40 and 80 nm AuNP functionalized with branched polyethylenimine (BPEI), lipoic acid (LA), and polyethylene glycol (PEG) as well as human plasma protein corona (PC). Individual variation in AuNP-mediated TST metabolism was also characterized among single donor HLM that contained different levels of CYP activities. Inhibitory effects of 40 nm AuNP and to a lesser degree of 80 nm AuNP occurred for the production of a total of five hydroxylated metabolites of TST in pHLM but PC alleviated them. Meanwhile, naked AuNP increased androstenedione production. Interindividual variation in TST metabolism occurred within single donor HLM. In most cases, 40 and 80 nm naked and PC AuNP essentially suppressed TST metabolism at non-inhibitory concentration but PC PEG-AuNP increased androstenedione. These studies contribute to a better understanding of the role of AuNP as TST disruptor by altering TST metabolism and could be utilized to screen other NP as potential endocrine disruptor.
Collapse
Affiliation(s)
- Kyoungju Choi
- Department of Anatomy & Physiology, Nanotechnology Innovation Center of Kansas State (NICKS), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| | - Hyun Joo
- Department of Anatomy & Physiology, Nanotechnology Innovation Center of Kansas State (NICKS), College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 USA
| |
Collapse
|
39
|
Hassan I, Husain FM, Khan RA, Ebaid H, Al-Tamimi J, Alhazza IM, Aman S, Ibrahim KE. Ameliorative effect of zinc oxide nanoparticles against potassium bromate-mediated toxicity in Swiss albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9966-9980. [PMID: 30739294 DOI: 10.1007/s11356-019-04443-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Potassium bromate (PB) is a commonly used food additive, a prominent water disinfection by-product, and a class IIB carcinogen. It exerts a various degree of toxicity depending on its dose and exposure duration consumed with food and water in the living organisms. The present investigation aims to demonstrate the protective efficacy of zinc oxide nanoparticles (ZnO NPs) derived from Ochradenus arabicus (OA) leaf extract by green technology in PB-challenged Swiss albino rats. The rodents were randomly distributed, under the lab-standardized treatment strategy, into the following six treatment groups: control (group I), PB alone (group II), ZnO alone (group III), ZnO NP alone (group IV), PB + ZnO (group V), and PB + ZnO NPs (group VI). The rats were sacrificed after completion of the treatment, and their blood and liver samples were collected for further analysis. Group II showed extensive toxic effects with altered liver function markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, gamma-glutamyl transferase, glutathione-S-transferase, and thioredoxin reductase) and compromised redox status (SOD, CAT, GR, GPx, GSH, MDA, and total carbonyl content). The histopathological analysis and comet assay further supported the biochemical results of the same group. Besides, group III also showed moderate toxicity evidenced by an alteration in most of the studied parameters while group IV demonstrated mild toxicity after biochemical analysis indicating the excellent biocompatibility of the NPs. However, group VI exhibited attenuation of the PB-induced toxic insults to a significant level as compared to group II, whereas group V failed to show similar improvement in the studied parameters. All these findings entail that the ZnO NPs prepared by green synthesis have significant ameliorative property against PB-induced toxicity in vivo. Moreover, administration of the NPs improved the overall health of the treated animals profoundly. Hence, these NPs have significant therapeutic potential against the toxic effects of PB and similar compounds in vivo, and they are suitable to be used at the clinical and industrial levels.
Collapse
Affiliation(s)
- Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Hossam Ebaid
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Jameel Al-Tamimi
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Alhazza
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| | - Shazia Aman
- Department of Biochemistry, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Khalid Elfaki Ibrahim
- Department of Zoology, College of Science, King Saud University, Building 05, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
40
|
Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO 2) in edible bivalve mollusks and poses a potential threat to seafood safety. Sci Rep 2019; 9:3516. [PMID: 30837670 PMCID: PMC6401146 DOI: 10.1038/s41598-019-40047-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/08/2019] [Indexed: 11/08/2022] Open
Abstract
Large amounts of anthropogenic CO2 in the atmosphere are taken up by the ocean, which leads to ‘ocean acidification’ (OA). In addition, the increasing application of nanoparticles inevitably leads to their increased release into the aquatic environment. However, the impact of OA on the bioaccumulation of nanoparticles in marine organisms still remains unknown. This study investigated the effects of OA on the bioaccumulation of a model nanoparticle, titanium dioxide nanoparticles (nTiO2), in three edible bivalves. All species tested accumulated significantly greater amount of nTiO2 in pCO2-acidified seawater. Furthermore, the potential health threats of realistic nTiO2 quantities accumulated in bivalves under future OA scenarios were evaluated with a mouse assay, which revealed evident organ edema and alterations in hematologic indices and blood chemistry values under future OA scenario (pH at 7.4). Overall, this study suggests that OA would enhance the accumulation of nTiO2 in edible bivalves and may therefore increase the health risk for seafood consumers.
Collapse
|
41
|
Younes N, Pintus G, Al-Asmakh M, Rasool K, Younes S, Calzolari S, Mahmoud KA, Nasrallah GK. “Safe” Chitosan/Zinc Oxide Nanocomposite Has Minimal Organ-Specific Toxicity in Early Stages of Zebrafish Development. ACS Biomater Sci Eng 2019; 6:38-47. [DOI: 10.1021/acsbiomaterials.8b01144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | - Kashif Rasool
- Qatar Environment
and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | | | - Simone Calzolari
- ZeClinics SL, PRBB (Barcelona Biomedical Research Park), 08003 Barcelona, Spain
| | - Khaled A. Mahmoud
- Qatar Environment
and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar
- Department of Physics & Mathematical Engineering, Faculty of Engineering, Port Said University, 42523 Port Said, Egypt
| | | |
Collapse
|
42
|
Qiu L, Li Q, Huang J, Wu Q, Tu K, Wu Y, Zhang X, Qian J, Zhang R, Li G, Sun M, Si L. In vitro effect of mPEG2k-PCLx micelles on rat liver cytochrome P450 enzymes. Int J Pharm 2018; 552:99-110. [PMID: 30253212 DOI: 10.1016/j.ijpharm.2018.09.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/03/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
|
43
|
Xu M, Tang H, Zhou X, Chen H, Dong Q, Zhang Y, Ye G, Shi F, Lv C, Jing B, He C, Zhao L, Li Y. Effects and mechanisms of sub-chronic exposure to copper nanoparticles on renal cytochrome P450 enzymes in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 63:135-146. [PMID: 30100346 DOI: 10.1016/j.etap.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Copper nanoparticles (Cu NPs) have widespread application because of their special physicochemical characteristics, however we need to more clearly study the toxicity mechanism of Cu NPs to ensure its safe use in pharmaceutical and animal feed. Thus, the aim of this study was to evaluate the effects and mechanisms of sub-chronic exposure to Cu NPs on renal CYP450 s of rats. In this study, we investigated the effects of Cu NPs on renal oxidative stress, cytokines and histopathology of rats. We found that Cu NPs (200 mg/kg) significantly disordered the function and structure of the kidney and caused a dose-dependent increase in oxidative stress and cytokines, which significantly decreased the levels of mRNA, protein, and activity of CYP450 s. Micro-coppers (Cu MPs) and Cu ions have similar effects, but their effects on CYP450 s were weaker than Cu NPs. The expression of nuclear receptors were inhibited and the expression of Akt, STAT3/5, CREB, p70S6K, NF-κB, P38 and ERK1/2 were activated when the inhibition effects of CYP450 s activity were observed in renal of rats. Therefore, we believe that Cu NPs can activate the STAT, NF-κB and MAPK signaling pathways to down-regulate the expression and activity of CYP450 s by inducing oxidative stress and inflammatory response in rat kidney.
Collapse
Affiliation(s)
- Min Xu
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Huaqiao Tang
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - XueRong Zhou
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Helin Chen
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Qi Dong
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Yuanli Zhang
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Gang Ye
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Fei Shi
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Cheng Lv
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Bo Jing
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Changliang He
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Ling Zhao
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China
| | - Yinglun Li
- Sichuan Agricultural University, Department of Pharmacy, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
44
|
Pan Y, Ong CE, Pung YF, Chieng JY. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes – a literature-based review. Xenobiotica 2018; 49:863-876. [DOI: 10.1080/00498254.2018.1503360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yan Pan
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Chin Eng Ong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Yuh Fen Pung
- Department of Biomedical Science, The University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Jin Yu Chieng
- Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
45
|
Rajput VD, Minkina TM, Behal A, Sushkova SN, Mandzhieva S, Singh R, Gorovtsov A, Tsitsuashvili VS, Purvis WO, Ghazaryan KA, Movsesyan HS. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.enmm.2017.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Xie J, Dong W, Liu R, Wang Y, Li Y. Research on the hepatotoxicity mechanism of citrate-modified silver nanoparticles based on metabolomics and proteomics. Nanotoxicology 2017; 12:18-31. [DOI: 10.1080/17435390.2017.1415389] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jiabin Xie
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Wenying Dong
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Rui Liu
- School of Chinese Materia Medica, Shanxi University of Traditional Chinese Medicine, Shanxi, PR China
| | - Yuming Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yubo Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, School of Traditional Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
47
|
Al-Hada NM, Mohamed Kamari H, Abdullah CAC, Saion E, Shaari AH, Talib ZA, Matori KA. Down-top nanofabrication of binary (CdO) x (ZnO) 1-x nanoparticles and their antibacterial activity. Int J Nanomedicine 2017; 12:8309-8323. [PMID: 29200844 PMCID: PMC5702176 DOI: 10.2147/ijn.s150405] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Khamirul Amin Matori
- Department of Physics, Faculty of Science
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|