1
|
Kang K, Chen SH, Wang DP, Chen F. Inhibition of Endoplasmic Reticulum Stress Improves Chronic Ischemic Hippocampal Damage Associated with Suppression of IRE1α/TRAF2/ASK1/JNK-Dependent Apoptosis. Inflammation 2024; 47:1479-1490. [PMID: 38401021 PMCID: PMC11343861 DOI: 10.1007/s10753-024-01989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/13/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Chronic cerebral ischemia is a complex form of stress, of which the most common hemodynamic characteristic is chronic cerebral hypoperfusion (CCH). Lasting endoplasmic reticulum (ER) stress can drive neurological disorders. Targeting ER stress shows potential neuroprotective effects against stroke. However, the role of ER stress in CCH pathological processes and the effects of targeting ER stress on brain ischemia are unclear. Here, a CCH rat model was established by bilateral common carotid artery occlusion. Rats were treated with 4-PBA, URB597, or both for 4 weeks. Neuronal morphological damage was detected using hematoxylin-eosin staining. The expression levels of the ER stress-ASK1 cascade-related proteins GRP78, IRE1α, TRAF2, CHOP, Caspase-12, ASK1, p-ASK1, JNK, and p-JNK were assessed by Western blot. The mRNA levels of TNF-α, IL-1β, and iNOS were assessed by RT-PCR. For oxygen-glucose deprivation experiments, mouse hippocampal HT22 neurons were used. Apoptosis of the hippocampus and HT22 cells was detected by TUNEL staining and Annexin V-FITC analysis, respectively. CCH evoked ER stress with increased expression of GRP78, IRE1α, TRAF2, CHOP, and Caspase-12. Co-immunoprecipitation experiments confirmed the interaction between TRAF2 and ASK1. ASK1/JNK signaling, inflammatory cytokines, and neuronal apoptosis were enhanced, accompanied by persistent ER stress; these were reversed by 4-PBA and URB597. Furthermore, the ASK1 inhibitor GS4997 and 4-PBA displayed synergistic anti-apoptotic effects in cells with oxygen-glucose deprivation. In summary, ER stress-induced apoptosis in CCH is associated with the IRE1α/TRAF2/ASK1/JNK signaling pathway. Targeting the ER stress-ASK1 cascade could be a novel therapeutic approach for ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Shu-Hui Chen
- Department of Radiation Oncology, Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Cancer Institute, Nanchang, 330029, Jiangxi, China
| | - Da-Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, 200065, China.
| |
Collapse
|
2
|
Wu Y, Sun J, Lin Q, Wang D, Hai J. Sustained release of vascular endothelial growth factor A and basic fibroblast growth factor from nanofiber membranes reduces oxygen/glucose deprivation-induced injury to neurovascular units. Neural Regen Res 2024; 19:887-894. [PMID: 37843225 PMCID: PMC10664103 DOI: 10.4103/1673-5374.382252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 10/17/2023] Open
Abstract
Upregulation of vascular endothelial growth factor A/basic fibroblast growth factor (VEGFA/bFGF) expression in the penumbra of cerebral ischemia can increase vascular volume, reduce lesion volume, and enhance neural cell proliferation and differentiation, thereby exerting neuroprotective effects. However, the beneficial effects of endogenous VEGFA/bFGF are limited as their expression is only transiently increased. In this study, we generated multilayered nanofiber membranes loaded with VEGFA/bFGF using layer-by-layer self-assembly and electrospinning techniques. We found that a membrane containing 10 layers had an ideal ultrastructure and could efficiently and stably release growth factors for more than 1 month. This 10-layered nanofiber membrane promoted brain microvascular endothelial cell tube formation and proliferation, inhibited neuronal apoptosis, upregulated the expression of tight junction proteins, and improved the viability of various cellular components of neurovascular units under conditions of oxygen/glucose deprivation. Furthermore, this nanofiber membrane decreased the expression of Janus kinase-2/signal transducer and activator of transcription-3 (JAK2/STAT3), Bax/Bcl-2, and cleaved caspase-3. Therefore, this nanofiber membrane exhibits a neuroprotective effect on oxygen/glucose-deprived neurovascular units by inhibiting the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Yifang Wu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qi Lin
- Department of Pharmacy, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dapeng Wang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
3
|
Zhu H, Du Z, Lu R, Zhou Q, Shen Y, Jiang Y. Investigating the Mechanism of Chufan Yishen Formula in Treating Depression through Network Pharmacology and Experimental Verification. ACS OMEGA 2024; 9:12698-12710. [PMID: 38524447 PMCID: PMC10955564 DOI: 10.1021/acsomega.3c08350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Objective: To investigate the antidepressant effect and potential mechanism of the Chufan Yishen Formula (CFYS) through network pharmacology, molecular docking, and experimental verification. Methods: The active ingredients and their target genes of CFYS were identified through Traditional Chinese Medicine Systems Pharmacology (TCMSP) and TCM-ID. We obtained the differentially expressed genes in patients with depression from the GEO database and screened out the genes intersecting with the target genes of CFYS to construct the PPI network. The key pathways were selected through STRING and KEGG. Then, molecular docking and experimental verification were performed. Results: A total of 113 effective components and 195 target genes were obtained. After intersecting the target genes with the differentially expressed genes in patients with depression, we obtained 37 differential target genes, among which HMOX1, VEGFA, etc., were the key genes. After enriching the differential target genes by KEGG, we found that the "chemical carcinogenesis-reactive oxygen species" pathway was the key pathway for the CFYS antidepressant effect. Besides, VEGFA might be a key marker for depression. Experimental verification found that CFYS could significantly improve the behavioral indicators of rats with depression models, including improving the antioxidant enzyme activity and increasing VEGFA levels. The results are consistent with the network pharmacology analysis. Conclusions: CFYS treatment for depression is a multicomponent, multitarget, and multipathway complex process, which may mainly exert an antidepressant effect by improving the neuron antioxidant stress response and regulating VEGFA levels.
Collapse
Affiliation(s)
- Haohao Zhu
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Zhiqiang Du
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Rongrong Lu
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Qin Zhou
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Yuan Shen
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| | - Ying Jiang
- Mental Health
Center of
Jiangnan University, Wuxi, Jiangsu 214151, China
| |
Collapse
|
4
|
Luo R, Wan Y, Liu G, Chen J, Luo X, Li Z, Su D, Lu N, Luo Z. Engineering Self-Assembling Peptide Hydrogel to Enhance the Capacity of Dendritic Cells to Activate In Vivo T-Cell Immunity. Biomacromolecules 2024; 25:1408-1428. [PMID: 38236703 DOI: 10.1021/acs.biomac.3c00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The efficacy of the dendritic cell (DC) has failed to meet expectations thus far, and crucial problems such as the immature state of DCs, low targeting efficiency, insufficient number of dendritic cells, and microenvironment are still the current focus. To address these problems, we developed two self-assembling peptides, RLDI and RQDT, that mimic extracellular matrix (ECM). These peptides can be self-assembled into highly ordered three-dimensional nanofiber scaffold structures, where RLDI can form gelation immediately. In addition, we found that RLDI and RQDT enhance the biological function of DCs, including releasing antigens sustainably, adhering to DCs, promoting the maturation of DCs, and increasing the ability of DC antigen presentation. Moreover, peptide hydrogel-based DC treatment significantly achieved prophylactic and treatment effects on colon cancer. These results have certain implications for the design of new broad-spectrum vaccines in the future.
Collapse
Affiliation(s)
- Ruyue Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Yuan Wan
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guicen Liu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Jialei Chen
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhaoxu Li
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Di Su
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Na Lu
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Zhongli Luo
- College of Basic Medical Sciences, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Lian S, Lamprou D, Zhao M. Electrospinning technologies for the delivery of Biopharmaceuticals: Current status and future trends. Int J Pharm 2024; 651:123641. [PMID: 38029864 DOI: 10.1016/j.ijpharm.2023.123641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
This review provides an in-depth exploration of electrospinning techniques employed to produce micro- or nanofibres of biopharmaceuticals using polymeric solutions or melts with high-voltage electricity. Distinct from prior reviews, the current work narrows its focus on the recent developments and advanced applications in biopharmaceutical formulations. It begins with an overview of electrospinning principles, covering both solution and melt modes. Various methods for incorporating biopharmaceuticals into electrospun fibres, such as surface adsorption, blending, emulsion, co-axial, and high-throughput electrospinning, are elaborated. The review also surveys a wide array of biopharmaceuticals formulated through electrospinning, thereby identifying both opportunities and challenges in this emerging field. Moreover, it outlines the analytical techniques for characterizing electrospun fibres and discusses the legal and regulatory requirements for their production. This work aims to offer valuable insights into the evolving realm of electrospun biopharmaceutical delivery systems.
Collapse
Affiliation(s)
- Shangjie Lian
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK
| | | | - Min Zhao
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK; China Medical University- Queen's University Belfast Joint College (CQC), China Medical University, Shenyang 110000, China
| |
Collapse
|
6
|
Wang DP, Kang K, Hai J, Lv QL, Wu ZB. Alleviating CB2-Dependent ER Stress and Mitochondrial Dysfunction Improves Chronic Cerebral Hypoperfusion-Induced Cognitive Impairment. J Neuroimmune Pharmacol 2024; 19:1. [PMID: 38214766 PMCID: PMC10786746 DOI: 10.1007/s11481-024-10098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/06/2023] [Indexed: 01/13/2024]
Abstract
Augmentation of endoplasmic reticulum (ER) stress may trigger excessive oxidative stress, which induces mitochondrial dysfunction. The fatty acid amide hydrolase inhibitor, URB597, shows anti-oxidation characteristics in multiple neurological disorders. The present study aimed to determine whether inhibition of ER stress was involved in the protective effects of URB597 against chronic cerebral hypoperfusion (CCH)-induced cognitive impairment. Hippocampal HT-22 cells were exposed to oxygen-glucose deprivation. The cell viability, apoptosis, ER stress, mitochondrial ATP, and oxidative stress levels were assessed following treatment with URB597, benzenebutyric acid (4-PBA), and thapsigargin (TG). Furthermore, the effects of URB597 on ER stress and related pathways were investigated in the CCH animal model, including Morris water maze testing of cognition, western blotting analysis of ER stress signaling, and transmission electron microscopy of mitochondrial and ER ultrastructure changes. The results suggested that cerebral ischemia caused ER stress with upregulation of ER stress signaling-related proteins, mitochondrial dysfunction, neuronal apoptosis, ultrastructural injuries of mitochondria-associated ER membranes, and cognitive decline. Co-immunoprecipitation experiments confirmed the interaction between CB2 and β-Arrestin1. Inhibiting ER stress by URB597 improved these changes by activating CB2/β-Arrestin1 signaling, which was reversed by the CB2 antagonist, AM630. Together, the results identified a novel mechanism of URB597, involving CCH-induced cognitive impairment alleviation of CB2-dependent ER stress and mitochondrial dysfunction. Furthermore, this study identified CB2 as a potential target for therapy of ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Da Peng Wang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, China
- Department of Neurosurgery, Tong Ji Hospital, School of Medicine, Tong Ji University, Shanghai, 200065, China
| | - Kai Kang
- School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai, 200040, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, School of Medicine, Tong Ji University, Shanghai, 200065, China
| | - Qiao Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi, 330029, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai, 200025, China.
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
7
|
Taboada-Rosell K, Castro-García FA, Medina-Saldivar C, Cruz-Visalaya SR, Pacheco-Otalora LF. The novel FAAH inhibitor, MCH1, reduces the infarction area in the motor cortex-related region but does not affect the sensorimotor function or memory and spatial learning in rats exposed to transient middle cerebral artery occlusion. Brain Res 2024; 1822:148636. [PMID: 37865139 DOI: 10.1016/j.brainres.2023.148636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/23/2023]
Abstract
Macamides, amides of fatty acids first isolated from maca (Lepidium meyenii) are potentially responsible for the reduction of ischemic injury in the stroke animal model followed by maca extract administration. This deduction comes from its ability to inhibit the fatty acid amide hydrolase activity, an enzyme related to the endocannabinoid anandamide hydrolysis. However, no study about the effects of isolated macamides on in-vivo models has been published yet. Our objective was to evaluate the effect of a 10-day 30 mg/kg i.p. MCH1 administration, the macamide with the higher FAAH inhibition capability, on the neurological recovery and brain infarction area of Sprague-Dawley rats exposed to the transient middle cerebral artery occlusion (MCAO) model. Our results showed that the group receiving MCH1 for 10 days did not improve Garcia's neurological score compared to receiving the vehicle only. Likewise, the MCH1 group did not improve their sensorimotor dysfunction as indicated by the latency to detect and remove the tape from the contralateral forepaw in the adhesive removal test, and a similar number of errors with the contralateral forepaw in the foot fault test compared to the vehicle group at the 10th day. Evaluation of the spatial memory and learning using the Barnes test showed longer latency to reach the escape box in the Vehicle and MCH1 groups compared to the control group (no MCAO) only in the retrieval test, while no effect of MCAO procedure or MCH1 administration was observed in the reversal learning test. Despite the lack of behavioral effect of MCH1, analysis of the infarcted areas in the brain using the 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining method in the seven consecutive coronal sections revealed that the infarcted area in the first (bregma + 4.2 mm) and fifth (bregma -3.8 mm) coronal sections of the MCAO + MCH1 group remained similar to the Control group. These results provide evidence that MCH1 can limit damage from ischemic stroke, although it is not reflected in neurological or sensorimotor behavior and spatial learning and memory.
Collapse
Affiliation(s)
- K Taboada-Rosell
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - F A Castro-García
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - C Medina-Saldivar
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - S R Cruz-Visalaya
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru
| | - L F Pacheco-Otalora
- Laboratorio de Investigación en Neurociencia, Instituto Científico, Universidad Andina del Cusco, Cuzco, Peru.
| |
Collapse
|
8
|
Wu YF, Sun J, Chen M, Lin Q, Jin KY, Su SH, Hai J. Combined VEGF and bFGF loaded nanofiber membrane protects against neuronal injury and hypomyelination in a rat model of chronic cerebral hypoperfusion. Int Immunopharmacol 2023; 125:111108. [PMID: 37890380 DOI: 10.1016/j.intimp.2023.111108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023]
Abstract
Currently, there are no effective therapeutic targets for the treatment of chronic cerebral hypoperfusion(CCH)-induced cerebral ischemic injury. Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are discovered as the inducers of neurogenesis and angiogenesis. We previously made a nanofiber membrane (NFM), maintaining a long-term release of VEGF and bFGF up to 35 days, which might make VEGF and bFGF NFM as the potential protective agents against cerebral ischemic insult. In this study, the effects of VEGF and bFGF delivered by NFM into brain were investigated as well as their underlying mechanismsin a rat model of CCH. VEGF + bFGF NFM application increased the expressions of tight junction proteins, maintained BBB integrity, and alleviated vasogenic cerebral edema. Furthermore, VEGF + bFGF NFM sticking enhanced angiogenesis and elevated CBF. Besides, VEGF + bFGF NFM treatment inhibited neuronal apoptosis and decreased neuronal loss. Moreover, roofing of VEGF + bFGF NFM attenuated microglial activation and blocked the launch of NLRP3/caspase-1/IL-1β pathway. In addition, VEGF + bFGF NFM administration prevented disruption to the pre/postsynaptic membranes and loss of myelin sheath, relieving synaptic injury and demyelination. Oligodendrogenesis, neurogenesis and PI3K/AKT/mTOR pathway were involved in the treatment of VEGF + bFGF NFM against CCH-induced neuronal injury and hypomyelination. These findings supported that VEGF + bFGF NFM application constitutes a neuroprotective strategy for the treatment of CCH, which may be worth further clinical translational research as a novel neuroprotective approach, benifiting indirect surgical revascularization.
Collapse
Affiliation(s)
- Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Ming Chen
- Department of Neurosurgery, Xinhua hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
9
|
Kang K, Wang DP, Lv QL, Chen F. VEGF-A ameliorates ischemia hippocampal neural injury via regulating autophagy and Akt/CREB signaling in a rat model of chronic cerebral hypoperfusion. J Stroke Cerebrovasc Dis 2023; 32:107367. [PMID: 37734181 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/23/2023] Open
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.
Collapse
Affiliation(s)
- Kai Kang
- School of Public Health, Fudan University, Shanghai 200032, China; Department of Research and Surveillance Evaluation, Shanghai Municipal Center for Health Promotion, Shanghai 200040, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| | - Qiao-Li Lv
- Jiangxi Key Laboratory of Translational Cancer Research, Jiangxi Cancer Hospital, Jiangxi 330029, China.
| | - Feng Chen
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Chen ZG, Shi X, Zhang XX, Yang FF, Li KR, Fang Q, Cao C, Chen XH, Peng Y. Neuron-secreted NLGN3 ameliorates ischemic brain injury via activating Gαi1/3-Akt signaling. Cell Death Dis 2023; 14:700. [PMID: 37880221 PMCID: PMC10600254 DOI: 10.1038/s41419-023-06219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xian-Xian Zhang
- Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Fang-Fang Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ke-Ran Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xiong-Hui Chen
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
11
|
Yuan X, Ye W, Chen L, Luo D, Zhou L, Qiu Y, Zhuo R, Zhao Y, Peng L, Yang L, Jin X, Zhou Y. URB597 exerts neuroprotective effects against transient brain ischemia injury in mice by regulating autophagic flux and necroptosis. Eur J Pharmacol 2023; 957:175982. [PMID: 37572942 DOI: 10.1016/j.ejphar.2023.175982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/14/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Ischemic stroke is a leading cause of death and disability, and medical treatments for ischemic stroke are very limited. URB597 is a potent and selective inhibitor of fatty acid amide hydrolase (FAAH). However, the effect of URB597 on ischemic stroke and the underlying molecular mechanisms remain little known. In this study, focal cerebral ischemia was induced by transient middle cerebral artery occlusion in mice. Our results showed that URB597 dose-dependently improved neurological function and reduced brain infarct volume and brain edema 24 h after brain ischemia. The most effective dose was 1 mg/kg and the therapeutic time window was within 3 h after ischemic stroke. To further investigate the underlying mechanism, necroptosis and autophagy flux were detected by Western blot and/or immunofluorescence staining with or without chloroquine, an autophagic flux inhibitor. Our results showed that URB597 promoted autophagic flux and reduced neuronal necroptosis after brain ischemia and these effects could be abolished by chloroquine. In addition, we found that peroxisome proliferator-activated receptor α (PPARα) antagonist GW6471 partly abolished the effect of URB597 against brain ischemia and URB597 upregulated the expressions of PPARα. In conclusion, URB597 exerts a neuroprotective effect in a dose- and time-dependent manner, and this effect may be related to its restoration of autophagic flux and inhibition of neuronal necroptosis. PPARα is involved in the neuroprotective effect of URB597. This study provides novel evidence that URB597 may be a promising agent for the clinical treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xiaoqian Yuan
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China.
| | - Wenxuan Ye
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Ling Chen
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Doudou Luo
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Li Zhou
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yan Qiu
- Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Rengong Zhuo
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Yun Zhao
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Lu Peng
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Lichao Yang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Xin Jin
- Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China
| | - Yu Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China; Department of Basic Medical Science, School of Medicine, Xiamen University, Xiamen, 361102, China; Key Laboratory of Chiral Drugs, Xiamen, 361102, China; State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
12
|
Santos-García I, Rodríguez-Cueto C, Villegas P, Piscitelli F, Lauritano A, Shen CKJ, Di Marzo V, Fernández-Ruiz J, de Lago E. Preclinical investigation in FAAH inhibition as a neuroprotective therapy for frontotemporal dementia using TDP-43 transgenic male mice. J Neuroinflammation 2023; 20:108. [PMID: 37149645 PMCID: PMC10163746 DOI: 10.1186/s12974-023-02792-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 04/24/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is a heterogeneous group of early onset and progressive neurodegenerative disorders, characterized by degeneration in the frontal and temporal lobes, which causes deterioration in cognition, personality, social behavior and language. Around 45% of the cases are characterized by the presence of aggregates of the RNA-binding protein TDP-43. METHODS In this study, we have used a murine model of FTD that overexpresses this protein exclusively in the forebrain (under the control of the CaMKIIα promoter) for several biochemical, histological and pharmacological studies focused on the endocannabinoid system. RESULTS These mice exhibited at postnatal day 90 (PND90) important cognitive deficits, signs of emotional impairment and disinhibited social behaviour, which were, in most of cases, maintained during the first year of life of these animals. Motor activity was apparently normal, but FTD mice exhibited higher mortality. Their MRI imaging analysis and their ex-vivo histopathological evaluation proved changes compatible with atrophy (loss of specific groups of pyramidal neurons: Ctip2- and NeuN-positive cells) and inflammatory events (astroglial and microglial reactivities) in both cortical (medial prefrontal cortex) and subcortical (hippocampus) structures at PND90 and also at PND365. The analysis of the endocannabinoid system in these mice proved a decrease in the hydrolysing enzyme FAAH in the prefrontal cortex and the hippocampus, with an increase in the synthesizing enzyme NAPE-PLD only in the hippocampus, responses that were accompanied by modest elevations in anandamide and related N-acylethanolamines. The potentiation of these elevated levels of anandamide after the pharmacological inactivation of FAAH with URB597 resulted in a general improvement in behaviour, in particular in cognitive deterioration, associated with the preservation of pyramidal neurons of the medial prefrontal cortex and the CA1 layer of the hippocampus, and with the reduction of gliosis in both structures. CONCLUSIONS Our data confirmed the potential of elevating the endocannabinoid tone as a therapy against TDP-43-induced neuropathology in FTD, limiting glial reactivity, preserving neuronal integrity and improving cognitive, emotional and social deficits.
Collapse
Affiliation(s)
- Irene Santos-García
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Carmen Rodríguez-Cueto
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patricia Villegas
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
| | - Anna Lauritano
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
| | - Che-Kun J Shen
- The PhD Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale Delle Ricerche Pozzuoli, Naples, Italy
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and INAF, Centre NUTRISS, Faculties of Medicine and Agriculture and Food Sciences, Université Laval, Quebéc City, QC, G1V 0A6, Canada
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| | - Eva de Lago
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Investigación en Neuroquímica, Universidad Complutense, 28040, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.
| |
Collapse
|
13
|
Lins BR, Anyaegbu CC, Hellewell SC, Papini M, McGonigle T, De Prato L, Shales M, Fitzgerald M. Cannabinoids in traumatic brain injury and related neuropathologies: preclinical and clinical research on endogenous, plant-derived, and synthetic compounds. J Neuroinflammation 2023; 20:77. [PMID: 36935484 PMCID: PMC10026409 DOI: 10.1186/s12974-023-02734-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023] Open
Abstract
Traumatic brain injury is common, and often results in debilitating consequences. Even mild traumatic brain injury leaves approximately 20% of patients with symptoms that persist for months. Despite great clinical need there are currently no approved pharmaceutical interventions that improve outcomes after traumatic brain injury. Increased understanding of the endocannabinoid system in health and disease has accompanied growing evidence for therapeutic benefits of Cannabis sativa. This has driven research of Cannabis' active chemical constituents (phytocannabinoids), alongside endogenous and synthetic counterparts, collectively known as cannabinoids. Also of therapeutic interest are other Cannabis constituents, such as terpenes. Cannabinoids interact with neurons, microglia, and astrocytes, and exert anti-inflammatory and neuroprotective effects which are highly desirable for the management of traumatic brain injury. In this review, we comprehensively appraised the relevant scientific literature, where major and minor phytocannabinoids, terpenes, synthetic cannabinoids, and endogenous cannabinoids were assessed in TBI, or other neurological conditions with pathology and symptomology relevant to TBI, as well as recent studies in preclinical TBI models and clinical TBI populations.
Collapse
Affiliation(s)
- Brittney R Lins
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia.
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia.
| | - Chidozie C Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Melissa Papini
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Terence McGonigle
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
| | - Luca De Prato
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Matthew Shales
- MediCann Health Aust Pty Ltd, Osborne Park, 6017, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| |
Collapse
|
14
|
Wu YF, Jin KY, Wang DP, Lin Q, Sun J, Su SH, Hai J. VEGF loaded nanofiber membranes inhibit chronic cerebral hypoperfusion-induced cognitive dysfunction by promoting HIF-1a/VEGF mediated angiogenesis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 48:102639. [PMID: 36549557 DOI: 10.1016/j.nano.2022.102639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
We investigated the potential effects and mechanisms of vascular endothelial growth factor (VEGF)-nanofiber membranes (NFMs) treatment in a rat model of chronic cerebral hypoperfusion (CCH). VEGF-NFMs treatment promoted angiogenesis in surgical temporal cortex and hippocampus, alleviating decreased CBF in these two cerebral regions. VEGF-NFMs application improved reduced NAA/Cr ratio, preventing neuronal loss. VEGF-NFMs sticking decreased the number of TUNEL-positive cells in surgical temporal cortex, ameliorated impaired synaptic plasticity, and inhibited the release of pro-inflammatory cytokines and the activation of microglia and astrocytes in surgical temporal cortex and hippocampus. Furthermore, BDNF-TrkB/PI3K/AKT, BDNF-TrkB/ERK and HIF-1a/VEGF/ERK pathways were involved in the treatment of VEGF-NFMs against CCH-induced neuronal injury. These results showed the neuroprotective effects of VEGF-NFMs sticking may initiate from neurovascular repairing followed by inhibition of neuronal apoptosis and neuronal and synaptic damage, eventually leading to the suppression of cognitive dysfunction, which provided theoretical foundation for further clinical transformation of VEGF-NFMs.
Collapse
Affiliation(s)
- Yi-Fang Wu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Kai-Yan Jin
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Da-Peng Wang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Jun Sun
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shao-Hua Su
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jian Hai
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| |
Collapse
|
15
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
16
|
Duranti A, Beldarrain G, Álvarez A, Sbriscia M, Carloni S, Balduini W, Alonso-Alconada D. The Endocannabinoid System as a Target for Neuroprotection/Neuroregeneration in Perinatal Hypoxic-Ischemic Brain Injury. Biomedicines 2022; 11:biomedicines11010028. [PMID: 36672536 PMCID: PMC9855621 DOI: 10.3390/biomedicines11010028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The endocannabinoid (EC) system is a complex cell-signaling system that participates in a vast number of biological processes since the prenatal period, including the development of the nervous system, brain plasticity, and circuit repair. This neuromodulatory system is also involved in the response to endogenous and environmental insults, being of special relevance in the prevention and/or treatment of vascular disorders, such as stroke and neuroprotection after neonatal brain injury. Perinatal hypoxia-ischemia leading to neonatal encephalopathy is a devastating condition with no therapeutic approach apart from moderate hypothermia, which is effective only in some cases. This overview, therefore, gives a current description of the main components of the EC system (including cannabinoid receptors, ligands, and related enzymes), to later analyze the EC system as a target for neonatal neuroprotection with a special focus on its neurogenic potential after hypoxic-ischemic brain injury.
Collapse
Affiliation(s)
- Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| | - Gorane Beldarrain
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Álvarez
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Matilde Sbriscia
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Silvia Carloni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Walter Balduini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy
| | - Daniel Alonso-Alconada
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Correspondence: (A.D.); (D.A.-A.); Tel.: +39-0722-303501 (A.D.); +34-946-013294 (D.A.-A.)
| |
Collapse
|
17
|
Nanotechnology and quantum science enabled advances in neurological medical applications: diagnostics and treatments. Med Biol Eng Comput 2022; 60:3341-3356. [DOI: 10.1007/s11517-022-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
|
18
|
Shang W, Zhao X, Yang F, Wang D, Lu L, Xu Z, zhao Z, Cai H, Shen J. Ginsenoside Rg1 Nanoparticles Induce Demethylation of H3K27me3 in VEGF-A and Jagged 1 Promoter Regions to Activate Angiogenesis After Ischemic Stroke. Int J Nanomedicine 2022; 17:5447-5468. [PMID: 36426373 PMCID: PMC9680969 DOI: 10.2147/ijn.s380515] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 11/04/2022] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Compared with traditional drugs, nanomaterial drugs have the benefits of improving the solubility, bioavailability, and absorption rate of insoluble drugs. Nanoporous complexes can increase the efficiency with which drugs can penetrate the blood-brain barrier and reach target organs. Ginsenoside Rg1 is an effective drug that promotes angiogenesis. Ginsenoside Rg1 composite nanoparticles were employed to induce the expression of several key epigenetic enzymes and then activate the VEGF and Notch pathways after the onset of ischemic brain lesions. METHODS We constructed nanoparticles to fully encapsulate the therapeutic drug (ginsenoside Rg1), which can be transferred into brain tissue via the receptor-mediated transfer of drug-encapsulated nanoparticles. Evaluation of the therapeutic effect of ginsenoside Rg1 complex nanovesicles (CNV) was performed by in vitro and in vivo experiments. Real-time polymerase chain reaction (RT- PCR), Western blot, immunohistochemistry staining (IHC), and Co-immunoprecipitation (co-IP) were employed to screen for epigenetic enzymes with an up-regulated expression post ginsenoside Rg1-CNV intervention. RNA sequencing, shRNA knockdown, and chromatin Immunoprecipitation (ChIP) sequencing were performed to detect the target genes of ginsenoside Rg1-CNV that regulate angiogenesis. Then, bioinformatic analysis was performed to investigate the mechanism of action of epigenetic modifying enzymes in regulating target genes. RESULTS The average of the synthesized ginsenoside Rg1-CNV was 203.78±6.83 nm, the polydispersion index was 0.135±0.007, and the Zeta potential was 23.13±1.65 mV. Through in vivo and in vitro experiments, we found that it promotes the proliferation, migration, and tubular formation of brain microvascular endothelial cells (BMECs). Meanwhile, the intervention of ginsenoside Rg1-CNV promoted the demethylation of H3K27me3 within the promoter region of VEGF-A and Jagged1 genes and reduced the H3K27me3 modification within this region. CONCLUSION The ginsenoside Rg1 nanoparticles may be an available blood-brain barrier penetrating agent for ischemic stroke.
Collapse
Affiliation(s)
- Wei Shang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Xin Zhao
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Fan Yang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Dongyi Wang
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Le Lu
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Zihan Xu
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Zhiming zhao
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Hui Cai
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| | - Junyi Shen
- Department of Integrated Traditional and Western Medicine, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210002, People’s Republic of China
| |
Collapse
|
19
|
URB597 and Andrographolide Improve Brain Microvascular Endothelial Cell Permeability and Apoptosis by Reducing Oxidative Stress and Inflammation Associated with Activation of Nrf2 Signaling in Oxygen-Glucose Deprivation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4139330. [PMID: 35602108 PMCID: PMC9119762 DOI: 10.1155/2022/4139330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/17/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022]
Abstract
Ischemic stroke, a cerebrovascular disease worldwide, triggers a cascade of pathophysiological events, including blood-brain barrier (BBB) breakdown. Brain microvascular endothelial cells (BMECs) play a vital role in maintaining BBB function. The injury of BMECs may worsen neurovascular dysfunction and patients' prognosis. Therefore, uncover the principal molecular mechanisms involved in BBB disruption in stroke becomes pressing. The endocannabinoid system (ECS) has been implicated in increasingly physiological functions, both in neurometabolism and cerebrovascular regulation. Modulating its activities by the fatty acid amide hydrolase (FAAH) shows anti-inflammatory characteristics. Andrographolide (AG), one Chinese herbal ingredient, has also attracted attention for its role in immunomodulatory and as a therapeutic target in BBB disorders. Recently, the FAAH inhibitor URB597 and AG have important regulatory effects on neuronal and vascular cells in ischemia. However, the effects of URB597 and AG on BMEC permeability and apoptosis in oxygen-glucose deprivation (OGD) and the underlying mechanisms remain unclear. To address these issues, cultured BMECs (bEnd.3 cells) were exposed to OGD. The cell viability, permeability, tube formation, and apoptosis were assessed following treatment with URB597, AG, and cotreatment. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), proinflammatory factors, tight junction (TJ) proteins, and oxidative stress-mediated Nrf2 signaling were also investigated. Results revealed that OGD broke the endothelial barrier, cell viability, MMP, and tube formation, which was reversed by URB597 and AG. OGD-induced enhancement of ROS, MDA, and apoptosis was reduced after drug interventions. URB597 and AG exhibited antioxidant/anti-inflammatory and mitochondrial protective effects by activating Nrf2 signaling. These findings indicated that URB597 and AG protect BMECs against OGD-induced endothelial permeability impairment and apoptosis by reducing mitochondrial oxidative stress and inflammation associated with activation of Nrf2 signaling. URB597 and AG showing the vascular protection may have therapeutic potential for the BBB damage in ischemic cerebrovascular diseases.
Collapse
|
20
|
Lategan M, Kumar P, Choonara YE. Functionalizing nanofibrous platforms for neural tissue engineering applications. Drug Discov Today 2022; 27:1381-1403. [DOI: 10.1016/j.drudis.2022.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022]
|